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ONE-RULE LENGTH-PRESERVING REWRITE SYSTEMS
AND RATIONAL TRANSDUCTIONS

Michel Latteux1 and Yves Roos1

Abstract. We address the problem to know whether the relation in-
duced by a one-rule length-preserving rewrite system is rational. We
partially answer to a conjecture of Éric Lilin who conjectured in 1991
that a one-rule length-preserving rewrite system is a rational transduc-
tion if and only if the left-hand side u and the right-hand side v of the
rule of the system are not quasi-conjugate or are equal, that means if
u and v are distinct, there do not exist words x, y and z such that
u = xyz and v = zyx. We prove the only if part of this conjecture and
identify two non trivial cases where the if part is satisfied.

Mathematics Subject Classification. 68Q45, 68Q42, 68R15.

1. Introduction

Rewrite systems are of primordial interest for computational problems. Mainly,
the problems that are investigated for rewrite systems are the accessibility problem,
the common descendant problem, the confluence problem, the termination and
uniform termination problem. For several years they have been intensively studied
and several deep results have been obtained. However some intriguing decidability
problems remain open even for very simple rewrite systems2. The most known
among these problems is certainly the decidability of the termination of one-rule
rewrite systems, a question that remains open for more than twenty years.

One-rule length-preserving rewrite systems are among the simplest rewriting
systems. Indeed, they are defined by two words u, v over an alphabet A, with
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|u| = |v|, and noted S = {u −→ v}. For a word w, S(w) is the set of words obtainable
from w by replacing repeatedly u by v. Thus S induces a relation over A∗ and
we address here the problem to decide whether this relation is rational. Abusing
notations, the question is: given a one-rule length-preserving rewrite system S, is
S a rational transduction?

One of the simplest one-rule length-preserving rewrite system that is not a
rational transduction is the system S0 = {ba −→ ab} where a and b are two distinct
letters. Indeed S0((ba)∗) ∩ a∗b∗ = {anbn | n ≥ 0}. On the other hand, the system
S1 = {abb −→ baa} is a rational transduction. Indeed, it can be proved3 that, for
all word w, S1(w) can be computed in two passes, the first one reading w from left
to right and the second one reading w from right to left, each pass substituting
non-deterministically the occurrences of abb with baa. For this, we say that S1 is
left-right. Nevertheless, there exist one-rule length-preserving rewrite systems that
define a rational transduction but are neither left-right nor right-left.

In 1991, Éric Lilin has proposed in [9] the following conjecture: a one-rule rewrite
system S = {u −→ v} with |u| = |v| and u �= v is a rational transduction if and
only if the words u and v are not quasi-conjugate. Two words u and v are quasi-
conjugate if there exist some words x, y and z such that u = xyz and v = zyx.
If this conjecture is true, it would give a nice decidable characterization of one-
rule length-preserving rewrite systems that define a rational transduction. In this
paper we prove the only if part of the conjecture and, conversely, we consider
two cases for which the if part is satisfied. These cases are based on the kind
of overlaps that exist between the left-hand side u and the right-hand side v of
the rewriting rule. As for the termination problem (see for instance [5]) and the
confluence problem [16] for one-rule rewrite systems, the study of these overlaps
plays a central role. More precisely, for a one-rule length-preserving rewrite system
S = {u −→ v}, we consider two sets: the set X of overlaps of the left factors of
u with the right factors of v and the set Z of overlaps of the right factors of u
with the left factors of v. The members of X × Z are called pairs of overlaps.
The different cases that we consider for the if part of the conjecture depends on
the presence of short pairs of overlaps, that are pairs of overlaps (x, z) such that
|xz| ≤ |u| and the presence of large pairs of overlaps, that are pairs of overlaps
(x, z) such that |xz| > |u|.

The paper is organized as follows: first, we define the quasi-conjugacy relation
and prove some of its properties. Next we prove that if a one-rule length-preserving
rewrite system S = {u −→ v} with u �= v is a rational transduction then the words
u and v are not quasi-conjugate. Then, in Section 4, we give a sufficient condition
which ensures that a one-rule length-preserving rewrite system is left-right or right-
left and so is a rational transduction. The two following sections are devoted to
some cases for which the if part of the conjecture is satisfied: when the system S
has no large pair of overlaps and when the system S has no short pair of overlaps.
At last, in the conclusion, we identify some problems that deserve to be studied
in the context of the rationality of one-rule length-preserving rewrite systems.

3As a matter of fact, it is a consequence of a result given in Section 4.
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2. Preliminaries and notations

In the following, A will denote a finite alphabet, A∗ the free monoid over A and
ε the empty word in A∗. A word w′ ∈ A∗ is a factor of a word w ∈ A∗ if there
exist some words x and y in A∗ such that w = xw′y. We denote by F(w) the set
of the factors of the word w. We denote by RF(w) (respectively LF(w)) the set of
right factors (respectively left factors) of the word w, that is:

RF(w) = {w′ ∈ A∗ | ∃w′′ ∈ A∗, w = w′′w′},
LF(w) = {w′ ∈ A∗ | ∃w′′ ∈ A∗, w = w′w′′}.

A word w′ is a subword of w if there exist some words x0, x1, . . . xn and
y0, . . . yn−1 in A∗ with n > 0 such that w = x0y0 . . . xn−1yn−1xn and w′ =
y0 . . . yn−1. For a word w ∈ A∗, |w| denotes the length of the word w. Two words
u and v are conjugate if there exist words x and y such that u = xy and v = yx.
It is well known that two words u and v are conjugate if and only if there exists a
word z such that uz = zv.

A rewrite system over an alphabet A is a subset S ⊆ A∗ × A∗. Members
of S are denoted u −→

S
v (or u −→ v if there is no ambiguity). We shall denote

S−1 the system obtained from the system S by reversing the rules of S, that is
u −→ v ∈ S iff v −→ u ∈ S−1. One-step derivation, denoted −→

S
(−→ if no ambiguity),

is the binary relation over words defined by: ∀w, w′ ∈ A∗, w −→ w′ iff there exists
u −→ v ∈ S and α, β ∈ A∗ such that w = αuβ and w′ = αvβ. The relation
∗−→ (resp. +−→), called derivation relation, is the reflexive and transitive closure
(resp. transitive closure) of the relation −→ and, for any word w ∈ A∗, we shall
denote S(w) the set S(w) = {w′ ∈ A∗ | w

∗−→
S

w′}. We extend these notations

to languages: for any language L ⊆ A∗, S(L) = ∪w∈LS(w). For a derivation
w = w0 → w1 · · · → wn = w′, n is called the length of the derivation that will
be denoted by w

n−→ w′. Abusing notation we shall identify in the following a
given rewrite system S with its associated transformation over languages. The
main question that is studied in this paper is: given a one-rule length-preserving
rewrite system S, is S a rational transduction? That means given a one-rule length-
preserving rewrite system S, does there exists a finite transducer TS such that for
all word w, TS(w) = S(w)?

A particular binary relation over words seems of crucial interest for this question
as it was conjectured in [9,15]. This relation can be seen as a generalization of the
conjugacy relation, hence we call it quasi-conjugacy.

Definition 2.1. Two words u and v are quasi-conjugate if there exist words x, y
and z such that u = xyz and v = zyx.

Observe that if one of the words x, y, z is empty, then u and v are conjugate. So
two conjugate words are also quasi-conjugate words. Note also that if u and v are
quasi-conjugate, their factorization u = xyz and v = zyx need not be unique. For
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instance, for u = aab and v = baa we have the factorizations u = aa.b and v = b.aa
but also u = a.a.b and v = b.a.a. Similarly, for u = abaca and v = acaba, we have
u = a.b.aca and v = aca.b.a but also u = aba.c.a and v = a.c.aba. A significant
remark is that, at the contrary of the conjugacy relation, the quasi-conjugacy
relation is not an equivalence relation since it is not transitive. As a matter of
fact, one can show that if two words u and v are commutatively equivalent, there
exists a chain of quasi-conjugate words from u to v i.e. words x0, . . . xn such that
u = x0, v = xn and for any 0 ≤ i < n, xi and xi+1 are quasi-conjugate, hence:

Property 2.2. The transitive closure of the quasi-conjugacy relation is the total
commutation relation.

Proof. Clearly it suffices to be able to permute two consecutive letters. For any
words w, w′ and letters a, b we have the following chain of quasi-conjugate words:
wab.w′, w′.wab = w′w.a.b, b.a.w′w = baw′.w, w.baw′. �

Another property that is true for quasi-conjugacy and false for conjugacy is the
following simplification lemma:

Lemma 2.3. For any words u, v, w and w′, if uwv and uw′v are quasi-conjugate
then w and w′ are quasi-conjugate.

Proof. The proof is an induction over |u|+|v|. First we consider the case |u|+|v| = 1
and we suppose that u = a where a is a letter and v = ε. Let aw = xyz and
aw′ = zyx. We consider different cases:

1. x = ε. Then aw = yz and aw′ = zy. If y = ε or z = ε it follows that w = w′.
Else y = ay′ and z = az′ and we get w = y′az′ and w′ = z′ay′, thus w and w′

are quasi-conjugate.
2. z = ε. This case is symmetric with Case 1.
3. x �= ε and z �= ε. Then x = ax′ and z = az′ and it follows w = x′yaz′ and

w′ = z′yax′, thus w and w′ are quasi-conjugate.

Similarly, we can prove that w and w′ are quasi-conjugate when v = a and u = ε
therefore, by induction, it is also true when u and v are arbitrary words. �

Now, if u = xyz and v = zyx are quasi-conjugate, u and v are obtainable by
simplification from the two conjugate words yu and yv. So the quasi-conjugacy
relation is the smallest relation containing the conjugacy relation and closed by
simplification.

The following remark gives alternative characterizations for quasi-conjugacy:

Property 2.4. The following properties are equivalent:

1. The words u and v are quasi-conjugate.
2. There exists a word y such that yu and yv are conjugate.
3. There exist words y, z such that yuz = zvy.
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Proof. 2 =⇒ 1 from Lemma 2.3. If u = xyz and v=zyx for some words x, y, z
then yzy.u.y = yzyxyzy = y.v.yzy so 1 =⇒ 3. If yuz = zvy for some words y, z
then yu and vy are conjugate and it follows that yu and yv are conjugate so 3
=⇒ 2. �

It has been conjectured in [9], and later in [15], the following:

Conjecture 2.5. A one-rule rewrite system S = {u −→ v} with |u| = |v| and u �= v
is a rational transduction if and only if the words u and v are not quasi-conjugate.

In this paper, we “split” this conjecture in order to “split” its proof. More
precisely, given a one-rule rewrite system S = {u −→ v} with |u| = |v| and u �= v,
we want to prove that the following properties are equivalent:

(RAT) S is a rational transduction.
(REG) S preserves regularity.
(NCM) There do not exist words s and t such that st

+−→ ts.
(NQC) u and v are not quasi-conjugate.

That would imply in particular that Conjecture 2.5 (which gives a decidable char-
acterization of the property (RAT ) since the property (NQC) is clearly decidable)
is true. The property (NCM) points out for its part that the “rationality” of a
one-rule length-preserving rewrite system depends on the impossibility to obtain
by derivation the commutation of two words.

The implication (RAT ) =⇒ (REG) is well known and the implication (NCM)
=⇒ (NQC) is straightforward: indeed, if S = {u −→ v} with u = xyz and v = zyx
for some words x, y and z, it follows yxyz −→ yzyx. We shall prove in the rest of
this paper that (REG) =⇒ (NCM) and that the implication (NQC) =⇒ (RAT )
holds for some non trivial cases.

3. (REG) =⇒ (NCM)

The proof of this implication uses a (pseudo) distance between words, defined
in [14].

For all word w and all word v �= ε,
(
w
v

)
denotes the number of occurrences of the

word v as a subword in w (see [4, 14] where it is called the generalized binomial
coefficient). By convention,

(
w
ε

)
= 1 and, thanks to this convention, we get the

relation (
ww′

z

)
=

∑
z=xy

((
w

x

)
×

(
w′

y

))
.

For instance, if w = aab, w′ = ab,
(
ww′

a

)
=

(
w
a

)
+

(
w′

a

)
and

(
ww′

ab

)
=

(
w
ab

)
+

(
w′

ab

)
+(

w
a

)× (
w′

b

)
= 2 + 1 + 2 = 5.

The notion of k-spectrum of a word appears in [11].
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Definition 3.1. The k-spectrum with multiplicity of a word w defined over an
alphabet A, denoted as SPk(w) =

∑
u∈Ak

(
w
u

)
.u, is the multiset of subwords of length

k of the word w.

Example 3.2. Let w = aabab, then SP2(w) = 3aa + 5ab + ba + bb.

Given two words w and w′, we can consider the integer Δ(w, w′) defined as
the smallest integer k such that SPk(w) �= SPk(w′). This gives a kind of measure
of similarity or distinguishability between two words. An equivalent definition of
Δ(w, w′) can be found in [14] and, following these authors, we will call Δ(w, w′)
a “distance” by abuse of language.

Definition 3.3. The subword distance between two distinct words w and w′, de-
noted as Δ(w, w′) is the smallest integer k such that SPk(w) �= SPk(w′).

Example 3.4. The subword distance between the two words abba and baab is
Δ(abba, baab) = 3 since SP2(abba) = aa+2ab+2ba+bb = SP2(baab), SP3(abba) =
abb + 2aba + bba and SP3(baab) = baa + 2bab + aab.

We observe that the subword distance between two distinct words is always
strictly positive and that two distinct words are commutatively equivalent if and
only if their subword distance is strictly greater than 1. One can also prove4:

Property 3.5. Let w and w′ be two distinct words defined over an alphabet A
and k = Δ(w, w′) then

1. For any word w′′ distinct from w and from w′,
Δ(w, w′) ≥ min(Δ(w′′, w), Δ(w′′, w′)).

2. If |w| = |w′| then Δ(ww′, w′w) = 1 + Δ(w, w′).
3. For all words p and q, for all word z such that |z| ≤ k,(

pwq
z

)− (
pw′q

z

)
=

(
w
z

)− (
w′

z

)
.

4. For any integer i ≥ 1, for all word z such that |z| ≤ k,(
wi

z

)− (
(w′)i

z

)
= i(

(
w
z

)− (
w′

z

)
).

Proof.

1. This comes directly from the definition of subword distance between two words:
for any k′ < min(Δ(w′′, w), Δ(w′′, w′)), SPk′(w) = SPk′(w′′) = SPk′(w′).

2. Firstly, one has Δ(ww′, w′w) > k = Δ(w, w′). Indeed, for z ∈ Ak and since
k > 0,

(
ww′

z

)
=

(
w

z

)
+

(
w′

z

)
+

∑
z = xy
x, y �= ε

((
w

x

)
×

(
w′

y

))
=

(
w′w
z

)
.

4The property 3.5.3 already appeared as Lemma 3.5 in [10].
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In order to prove that Δ(ww′, w′w) ≤ k + 1, we have to find z ∈ Ak+1 such
that

(
ww′

z

) �= (
w′w

z

)
. Let us consider two cases:

• If Δ(w, w′) = 1 then there exists a letter a such that
(
w
a

) �= (
w′
a

)
. We can

suppose that
(
w
a

)
<

(
w′

a

)
. Now, since |w| = |w′|, there exists a letter b,

distinct from the letter a, such that
(
w
b

)
>

(
w′

b

)
and it follows that

(
ww′

ab

)
<(

w′w
ab

)
.

• If k > 1, w and w′ are commutatively equivalent and for all letter a, for all
integer i,

(
w
ai

)
=

(
w′

ai

)
. Let us consider the greatest integer i such that there

exist a word z ∈ Ak−i and a letter a ∈ A which satisfy
(

w
zai

) �= (
w′

zai

)
. It

follows(
ww′

zai+1

)− (
w′w

zai+1

)
=

∑
xy=zai+1

(
(

w
x

)× (
w′
y

)
)− ∑

xy=zai+1
(
(
w′
x

)× (
w
y

)
)

=
(

w
zai

)× (
w′

a

)− (
w′

zai

)× (
w
a

)
= (

(
w

zai

)− (
w′

zai

)
)× (

w
a

) �= 0
which proves that Δ(ww′, w′w) = k + 1.

Observe that the condition |w| = |w′| is necessary: for instance Δ(baab, ba) = 1
but Δ(baabba, babaab) = 3.

3. The proof is based on an induction over |pq|. Clearly, it is sufficient to consider
the case |pq| = 1. In this case there exists a letter a such that p = a and q = ε or
p = ε and q = a. Let us consider the first case (the second one is symmetric) and
let us prove that for all word z with |z| ≤ Δ(w, w′),

(
aw
z

)− (
aw′

z

)
=

(
w
z

)− (
w′

z

)
.

This is clear if z = ε or if z does not begin with a or if z = a. Else z = az′

with 0 < |z′| < Δ(w, w′) and
(
aw
z

) − (
aw′
z

)
=

(
w
z′

)
+

(
w
z

) − (
w′
z′

) − (
w′
z

)
=(

w
z′

)
+

(
w
z

)− (
w
z′

)− (
w′
z

)
=

(
w
z

)− (
w′
z

)
.

4. The property is clearly true for z = ε. Else, observe that, for any word z �= ε,

(
wi

z

)
=

(
w

z

)
+

(
wi−1

z

)
+

∑
z = xy
x, y �= ε

((
w

x

)
×

(
wi−1

y

))
.

We shall prove by induction over i > 0 that
(
wi

z

) − (
(w′)i

z

)
= i × (

(
w
z

) − (
w′

z

)
)

for any word z �= ε that satisfies |z| ≤ k.

(
wi

z

)
−

(
(w′)i

z

)
=

(
w

z

)
+

(
wi−1

z

)
+

∑
z = xy
x, y �= ε

((
w

x

)
×

(
wi−1

y

))

−
(

w′

z

)
−

(
(w′)i−1

z

)
−

∑
z = xy
x, y �= ε

((
w′

x

)
×

(
(w′)i−1

y

))
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and, by induction hypothesis,

(
wi

z

)
−

(
(w′)i

z

)

= i×
((

w

z

)
−

(
w′

z

))
+

∑
z = xy
x, y �= ε

((
w

x

)
× (i− 1)×

((
w

y

)
−

(
w′

y

)))

Since |z| ≤ k, it follows

∑
z = xy
x, y �= ε

((
w

x

)
× (i− 1)×

((
w

y

)
−

(
w′

y

)))
= 0

and
(
wi

z

)− (
(w′)i

z

)
= i× (

(
w
z

)− (
w′

z

)
).

Finally, for any word z, if |z| < k then
(
wi

z

)− (
(w′)i

z

)
= 0 and if we consider a

word v such that |v| = k and
(
w
v

) �= (
w′

v

)
then

(
wi

v

) �= (
(w′)i

v

)
that proves the

property.

As a direct consequence of items 3 and 4 of Property 3.5, we get:

Property 3.6. Let w and w′ be two distinct words defined over an alphabet A
and k = Δ(w, w′) then

1. For all words p and q, Δ(pwq, pw′q) = Δ(w, w′).
2. For any integer i ≥ 1, Δ(wi, w′i) = Δ(w, w′).

Thanks to subword distance, we can now prove the following lemma:

Lemma 3.7. Let S = {u −→ v} be a one-rule rewrite system with |u| = |v| and
u �= v. Then for all words w and w′:

1. w
+−→ w′ =⇒ Δ(w, w′) = Δ(u, v);

2. if w
n−→ w′ and w

m−→ w′ then n = m.

Proof. From Item 3 of Property 3.5, we easily obtain by induction over n that, for
all integer n > 0, w n−→ w′ implies that for all word z with |z| ≤ Δ(u, v),

(
w
z

)−(
w′

z

)
=

n(
(

u
z

)−(
v
z

)
). It follows Δ(w, w′) = Δ(u, v). For 2, if we consider a word z such that

|z| = Δ(u, v) and
(
u
z

) �= (
v
z

)
, we get n(

(
u
z

)− (
v
z

)
) = m(

(
u
z

)− (
v
z

)
) so n = m. �

We can deduce:

Lemma 3.8. Let S = {u −→ v} be a one-rule rewrite system with |u| = |v| and
u �= v. If xy

+−→ yx and (xy)n +−→ ysxt for some words x and y and some integers
n, s, t then s = t = n. Hence S((xy)∗) ∩ y∗x∗ = {ynxn | n ≥ 0} is not a regular
language.
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Proof. We consider two cases:

1. |x| = |y|. Let us suppose that s > n, we prove that it leads to a contradiction
(the case s < n is symmetric). Since (xy)n +−→ ysxt and (xy)n +−→ ynxn, we
get Δ((xy)n, ysxt) = Δ((xy)n, ynxn) = Δ(u, v) from Lemma 3.7. Now, from
Item 1 of Property 3.5, we get

Δ(ysxt, ynxn) ≥ min(Δ((xy)n, ysxt), Δ((xy)n, ynxn)) = Δ(u, v).

Moreover Δ(ysxt, ynxn) = Δ(ys−n, xn−t) from Item 1 of Property 3.6 and,
since s− n = n− t, Δ(ys−n, xn−t) = Δ(x, y). It follows Δ(x, y) ≥ Δ(u, v). On
the other hand, we get Δ(xy, yx) = Δ(u, v) from Lemma 3.7, and it follows
from Item 2 of Property 3.5 that Δ(x, y) = Δ(u, v)− 1, a contradiction.

2. |x| �= |y|. Let i > 0 and j > 0 such that |xi| = |yj | and suppose that i <

j (the case i > j is symmetric). Since xy
+−→ yx, we have xiyj +−→ yjxi,

xiyj +−→ yj−ixiyi and xiyi +−→ (xy)i. We get (xiyj)jn +−→ yjn(j−i)(xy)nij +−→
yjn(j−i)(ysxt)ij +−→ (yj)nj−ni+is(xi)jt. It follows that nj − ni + is = jn and
jt = jn which implies s = t = n. �

From this lemma, we directly obtain that (REG) =⇒ (NCM):

Proposition 3.9. Let S = {u −→ v} be a one-rule rewrite system with u �= v. If
S preserves regularity then there do not exist words s and t such that st

+−→ ts.

Remark 3.10. This proposition does not hold for arbitrary rewrite systems,
even length-preserving: as a counterexample, consider the rewrite system {a −→
b, b −→ a}.

As a direct consequence of Proposition 3.9, we get that the only if part of
Conjecture 2.5 is true:

Proposition 3.11. If a one-rule rewrite system S = {u −→ v} with |u| = |v| and
u �= v is a rational transduction then the words u and v are not quasi-conjugate.

4. A sufficient condition for the rationality of S

The following notion generalizes to rewrite systems the notion of left-to-right
derivation that was introduced by Jacques Sakarovitch in [13] for one rule rewrite
systems.

Definition 4.1. Let S be a rewrite system. A derivation w0 −→ w1 . . . −→ wk is
strictly left if k ≤ 1 or else if it holds that for all i > 0 if wi−1 = xuy, wi = xvy =
x′u′y′ and wi+1 = x′v′y′ with u −→ v ∈ S and u′ −→ v′ ∈ S then

(i) |x| ≤ |x′| and
(ii) |y′| ≤ |y|.
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Remark 4.2.

• if we consider only Condition (i), we find the definition of left-to-right deriva-
tion;

• we can define symmetrically the notion of strictly right derivation from a word
w to a word w′.

Definition 4.3. Let S be a rewrite system. A derivation w
∗−→ w′ ∗−→ w′′ is a

left-right (resp. right-left) derivation if it is the composition of a strictly left (resp.
strictly right) derivation from w to w′ with a strictly right (resp. strictly left)
derivation from w′ to w′′.

We also define the notion of strictly left (resp. strictly right, left-right, right-
left) rewriting system and the notion of strictly left (resp. strictly right, left-right,
right-left) rewriting induced by a rewrite system:

Definition 4.4. A rewrite system S is strictly left (resp. strictly right, left-right,
right-left) if for any word w and w′ ∈ S(w) there exists a strictly left (resp. strictly
right, left-right, right-left) derivation from w to w′.

Definition 4.5. The strictly left (resp. strictly right, left-right, right-left) rewrit-
ing induced by a rewrite system S is the application that associates with any word
w the set of words w′ such that there exists a strictly left (resp. strictly right,
left-right, right-left) derivation from w to w′.

Observe that the fact that a derivation is strictly left is a global property of the
derivation. More precisely, if w

∗−→ w′ and w′ ∗−→ w′′ are two strictly left derivations,
it does not imply that the derivation w

∗−→ w′ ∗−→ w′′ is strictly left. It does not
imply either that there exists some strictly left derivation from w to w′′ as shown
in the following example:

Example 4.6. Let S2 = {b0c −→ b1c, ab1 −→ ab2, b1c −→ b2c, ab2 −→ ab3}. Let us
consider the possible derivations from ab0c to ab3c. There are only two possibilities:
ab0c −→ ab1c −→ ab2c −→ ab3c and ab0c −→ ab1c −→ ab2c −→ ab3c that are not strictly
left, so S2 is not strictly left. Observe that, for any derivation w

∗−→ w′ of length 2
in S2, there exists a strictly left derivation (of length 2) in S2 from w to w′. This
condition does not imply that S2 is strictly left.

Proposition 4.7. The strictly left (resp. strictly right, left-right, right-left) rewrit-
ing induced by a rewrite system S is a rational transduction.

Proof. Clearly, it is sufficient to consider the case of a strictly left rewrite system:
indeed, the proof is symmetric for a strictly right rewrite system and the class of
rational transductions is closed under composition. So, let A be an alphabet and
S ⊆ A∗ × A∗ be a strictly left rewrite system. We define, following the notations
of [1], the transducer T = (A, A, Q, q , Q+, E) where A is the input and output
alphabet, Q is the finite set of states, q is the initial state, Q+ is the set of final
states and E ⊆ Q×A∗ ×A∗ ×Q is the finite set of transitions by:

• Q = LF{u ∈ A∗ | ∃v ∈ A∗, u −→ v ∈ S},
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• q = ε,
• Q+ = {ε},
• E = {(ε, a, a, ε) | a ∈ A} ∪ {(l1, l2, r1, r2) | r2 ∈ Q ∧ l1l2 −→ r1r2 ∈ S)}.

From this definition, we easily obtain by induction over the length of paths in this
transducer that any path from the state ε to a state u, labeled by (w, w′) in E∗

satisfies that there exists a strictly left derivation from w to w′u. Conversely, we
shall first prove that for all words w, x and all rule l −→ r such that there exists a
strictly left derivation w

∗−→ xl −→ xr and for all factorization r = r1r2 with r2 ∈ Q,
there exists a path from ε to r2, labeled by (w, xr1) in E∗. The proof is based on
an induction over the length of the derivation w

∗−→ xl. If w = xl then there exists
a path from ε to r2, labeled by (xl, xr1) in E∗ since we have a path from ε to ε
labeled by (x, x) and (ε, l, r1, r2) in E. Else there exists a strictly left derivation
w

∗−→ x′l′y′ −→ x′r′y′ = xl −→ xr for some words x′, l′, r′, y′. Observe that w = w′y′

for some word w′, with a strictly left derivation w′ ∗−→ x′r′, since the derivation is
strictly left. We consider two cases:
1. |l| ≤ |y′|. In this case y′ = αl for some word α. From the induction hypothesis,

we have a path from ε to ε labeled by (w′, x′r′) and a path from ε to r2 labeled
by (αl, αr1). It follows that there exists a path from ε to r2 labeled by (w, xr1)
since w = w′αl and x′r′αr1 = xr1.

2. |l| > |y′|. Observe that |l| ≤ |r′| + |y′| since the derivation is strictly left. It
follows that x = x′r′1, l = r′2y

′ and r = r′1r
′
2 for some words r′1, r

′
2. From

the induction hypothesis, we have a path from ε to r′2 labeled by (w′, x′r′1).
Moreover (r′2, y′, r1, r2) ∈ E and it follows that there exists a path from ε to r2

labeled by (w, xr1) since w = w′y′ and x′r′1r1 = xr1.

Now, if we consider a strictly left derivation w
+−→ w′ for some arbitrary words w

and w′, there exist words x, l, r, y, w′′ such that w = w′′y, w′ = xry and w′′ ∗−→
xl −→ xr that is a strictly left derivation. From the above property, there exists
a path from ε to ε labeled by (w′′, xr). Moreover there exists a path from ε to ε
labeled by (y, y) and it follows that there exists a path from ε to ε labeled by (w, w′)
since w = w′′y and w′ = xry. That finishes the proof of the proposition. �

In the rest of this section we only consider one-rule length-preserving rewrite
systems. For such a system S = {u −→ v}, we denote:

• X = LF(u) ∩RF(v) ∩A+,
• Z = RF(u) ∩ LF(v) ∩A+,
• V ′ = vX−1 = {v′ ∈ A∗ | ∃x ∈ X, v = v′x},

V ′′ = Z−1v = {v′′ ∈ A∗ | ∃z ∈ Z, v = zv′′},
U ′ = uZ−1 and U ′′ = X−1u,
• Y ′ = Z−1V ′ = V ′′X−1,
• Y = X−1U ′ = U ′′Z−1.

Definition 4.8. A pair of overlaps for a system S = {u −→ v} is a pair (x, z) ∈
X × Z. A pair of overlaps (x, z) is called a large pair of overlaps if |xz| > |u|, else
it is called a short pair of overlaps.
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Example 4.9. Let S1 = {abb −→ baa}. Then X = {a}, Z = {b}, V ′ = {ba},
V ′′ = {aa}, U ′ = {ab}, U ′′ = {bb}, Y ′ = {a} and Y = {b}. System S1 has a single
(short) pair of overlaps.

Example 4.10. Let S3 = {abbaa −→ bbaab}. Then X = {ab}, Z = {bbaa}, V ′ =
{bba}, V ′′ = {b}, U ′ = {a}, U ′′ = {baa} and Y ′ = Y = ∅. System S3 has a single
(large) pair of overlaps.

Example 4.11. Let S4 = {babaabbababbbab−→ ababbbabaabbaba}.
Then X = {ba, baba, babaabbaba}, Z = {ab, ababbbab} and S4 has five short pairs
of overlaps and one large pair of overlaps.
We also have V ′ = {ababbbabaabba, ababbbabaab, ababb},
V ′′ = {abbbabaabbaba, aabbaba},
U ′ = {babaabbababbb, babaabb},
U ′′ = {baabbababbbab, abbababbbab, bbbab} and
Y ′ = {abbbabaabba, abbbabaab, abb, aabba, aab},
Y = {baabbababbb, abaabb, abbababbb, abb, bbb}.
Observe that Y ∩ Y ′ = {abb} �= ∅; nevertheless u and v are not quasi-conjugate
since they are not commutatively equivalent.

Lemma 4.12. Let S = {u −→ v} be a one-rule length-preserving rewrite system
over an alphabet A.

• S is strictly left iff Z ⊆ X,
• S is strictly right iff X ⊆ Z.

Proof. Let us suppose that Z ⊆ X . Let w and w′ be two words with w
n−→ w′. We

shall prove by induction over n that we can build a strictly left derivation of length
n from w to w′. This is clearly true for n ≤ 1. Else, let us consider a derivation
w = α0uβ0 −→ α0vβ0

n−1−−−→ w′ such that if w = α′
0uβ′

0 with |α′
0| < |α0| then there

is no derivation of length n− 1 from α′
0vβ′

0 to w′. From the induction hypothesis,
there exists a strictly left derivation, whose length is n− 1 thanks to Lemma 3.7:
w1 −→ w2

n−2−−−→ wn = w′ with

∀1 < i < n, wi = αi−1vβi−1 = αiuβi ∧ |αi−1| ≤ |αi|.

If |α0| ≤ |α1| then w0 −→ w1 −→ w2
n−2−−−→ wn = w′ is strictly left therefore we

can suppose |α0| > |α1|. Moreover, we cannot have |α0| ≥ |α1| + |u|: in this
case w0 = α1uβ′

1uβ0 and w1 = α1uβ′
1vβ0 for some word β′

1. It follows that the
word w′

1 = α1vβ′
1uβ0 satisfies w′

1
n−1−−−→ w′ that contradicts the hypothesis since

|α1| < |α0|. Thus we can suppose |α0| < |α1| + |u|. It follows α0 = α1u
′ with

u = u′z, v = zv′ and β1 = v′β0 for some words u′, v′ and some word z ∈ Z ⊆ X .
Since z ∈ X , there exist words u′′ and v′′ such that u = zu′′ and v = v′′z, so
u′u = uu′′, vu′′ = v′′u and v′′v = vv′. We finally obtain the following strictly
left derivation from w to w′: w = α0uβ0 = α1u

′uβ0 = α1uu′′β0 −→ α1vu′′β0 =
α1v

′′uβ0 −→ α1v
′′vβ0 = α1vv′β0 = α1vβ1 = w2

n−2−−−→ wn = w′.



ONE-RULE LENGTH-PRESERVING SRS AND RATIONAL TRANSDUCTIONS 161

Conversely, let z ∈ Z \ X . Then u = u′z and v = zv′′. Let us consider the
derivation u′u −→ u′v = uv′′ −→ vv′′. We shall prove that there does not exist a
strictly left derivation from u′u to vv′′. Thanks to Lemma 3.7, the length of all
derivation from u′u to vv′′ is 2. Let us consider a derivation

u′u = α0uβ0 −→ α0vβ0 = α1uβ1 −→ α1vβ1 = vv′′

with |α0| ≤ |α1| and β0 �= ε, α1 �= ε. If u′u = α0uβ0, then u′ = α0α
′
0 for some word

α′
0 and it follows α′

0u = uβ0 that implies u ∈ LF(α′∗
0 ). Moreover α0α

′
0 = α′

0α0 so
u ∈ LF(α0α

′
0) that implies u ∈ LF(u′u). On the other hand, since u and v are

distinct, u = sbs′ and v = sas′′ for some words s, s′, s′′ and some distinct letters
a and b. Now, if we suppose α0 �= ε, it follows sb ∈ LF(u′u), sb ∈ LF(α0vβ0) and
sb ∈ LF(α1vβ1), a contradiction since v = sas′′. Thus α0 = ε and symmetrically
we get β1 = ε. Now, since u ∈ LF(u′u) it follows z ∈ LF(u) and, since z �∈ X , it
follows z �∈ RF(v), a contradiction with the equality vβ0 = α1u. Thus there is no
strictly left derivation from u′u to vv′′.

Similarly, we can prove that S is strictly right iff X ⊆ Z. �

Depending on whether the set S(V ′′A∗)∩U ′′A∗ is empty or not is a key property
in the following of the paper. Here, emptiness of this set gives a sufficient condition
for a one-rule length-preserving rewrite system to be a rational transduction. More
precisely the condition implies that the system is left-right.

Lemma 4.13. Let S = {u −→ v} be a one-rule length-preserving rewrite system.
If S(V ′′A∗) ∩ U ′′A∗ = ∅ then the system S is left-right.

Proof. The proof is based on an induction over the length n of the derivation
between two words w and w′ ∈ S(w). More precisely she shall prove that for
all derivation from a word w to a word w′ of length n, there exists a left-right
derivation from w to w′. This is clearly true for n ≤ 1 since in this case the
derivation is strictly left. If n > 1, let us consider a derivation w = α0uβ0 −→
α0vβ0

n−1−−−→ w′ such that if w = α′
0uβ′

0 with |α′
0| < |α0| then there is no derivation

of length n − 1 from α′
0vβ′

0 to w′. From the induction hypothesis, there exists a
left-right derivation (of length n − 1) from w1 to wn = w′: there exists an index
1 ≤ q ≤ n such that w1

q−1−−→ wq is strictly left and wq
n−q−−−→ wn is strictly right. It

follows that for all 0 < i < n, wi = αi−1vβi−1 = αiuβi with:

• for all 1 < i ≤ q, |αi−1| < |αi|;
• for all q < i ≤ p, |αi−1| > |αi|.

If |α0| ≤ |α1| then w0
∗−→ wq is strictly left therefore we can suppose |α0| > |α1|.

Moreover, we cannot have |α0| ≥ |α1| + |u|: in this case w0 = α1uβ′
1uβ0 and

w1 = α1uβ′
1vβ0 for some word β′

1. It follows that the word w′
1 = α1vβ′

1uβ0 satisfies
w0 = α1uβ′

1uβ0 −→ w′
1

n−1−−−→ w′ that contradicts the hypothesis since |α1| < |α0|.
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Thus we can suppose |α0| < |α1|+ |u|. We consider two cases:

• ∀j > 1, |αj| ≥ |α1|+|u|. It follows that for all 1 < j < p, αjuβj = α1vα′
juβj and

we get w0 −→ α1uα′
2uβ2

∗−→ α1uα′
p−1vβp−1 −→ wp that is a left-right derivation.

• ∃j > 1, |αj| < |α1| + |u|. Let us consider the smallest index s > 1 such
that |αs| < |α1| + |u|. Necessarily, s = 2 or s > q since the derivation is
strictly left from w1 to wq. If s = 2, then w1 = α0vβ0 = α1uβ1. Since
|α1| < |α0| < |α1| + |u|, it follows that β1 = v′′β0 with v′′ ∈ V ′′ and
w2 = α1vv′′β0 = α2uβ2. Since |α1| < |α2| < |α1| + |u| we finally get, as
described in the following picture, v′′β0 = u′′β2 with u′′ ∈ U ′′ that contradicts
the hypothesis S(V ′′A∗) ∩ U ′′A∗ = ∅.

α2 u u β2

α1 v v β0

α1 u v

α0 v β0

w2

w1

If s > q then we obtain a similar contradiction: indeed, |α1| < |α0| < |α1| +
|u| implies that β1 = v′′β0 with v′′ ∈ V ′′ and w2 = α1vv′′β0. Moreover, for
all 2 ≤ i < s, α1v is a prefix of wi since |αi| > |α1| + |u|. It follows that
w2 = α1vv′′β0

∗−→ α1vz = αsuβs for some word z with v′′β0
∗−→ z. Now, since

|αs| < |α1| + |u|, it follows z = u′′z′ with u′′ ∈ U ′′ and v′′β0
∗−→ u′′z′ that

contradicts the hypothesis S(V ′′A∗) ∩ U ′′A∗ = ∅ and finishes the proof. �

We do not know whether the converse holds or not. Nevertheless, we shall prove
in Section 6 that this condition becomes a necessary and sufficient condition when
the system S has no short pair of overlaps. We first consider in the next section
the dual case, that is when S has no large pair of overlaps.

5. Without large pair of overlaps

We shall prove in this section that Conjecture 2.5 is true for all one-rule length-
preserving rewrite system S that has no large pair of overlaps. This result is a
consequence of the following key lemma:

Lemma 5.1. If S = {u −→ v} is a one-rule length-preserving rewrite system with-
out large pair of overlaps, the three following statements are equivalent:

(i) u and v are quasi-conjugate,



ONE-RULE LENGTH-PRESERVING SRS AND RATIONAL TRANSDUCTIONS 163

(ii) S(V ′′A∗) ∩ U ′′A∗ �= ∅,
(iii) S(A∗V ′) ∩A∗U ′ �= ∅.

Proof. We prove 5.1 implies 5.1 and 5.1 implies 5.1, the proofs for 5.1 implies 5.1
and 5.1 implies 5.1 are similar.

• 5.1 implies 5.1: Assume that u = xyz and v = zyx. Then yx ∈ V ′′, yz ∈ U ′′

and yxyz
∗−→ yzyx ∈ S(V ′′A∗) ∩ U ′′A∗.

• 5.1 implies 5.1: Assume that u and v are not quasi-conjugate and prove that
S(V ′′A∗) ∩ U ′′A∗ = ∅. We need some intermediate results.

Claim 5.2. V ′′A∗ ∩ U ′′A∗ = ∅ and A∗U ′ ∩A∗V ′ = ∅.

We prove V ′′A∗ ∩ U ′′A∗ = ∅, the proof for A∗U ′ ∩ A∗V ′ = ∅ is similar. Let
u′′ ∈ U ′′ and v′′ ∈ V ′′ and assume that u′′f = v′′f ′ for some words f and f ′.
By definition, u = xu′′ with x ∈ X and v = zv′′ with z ∈ Z. Since S is without
large pair of overlaps, |x| + |z| ≤ |u| and it follows that there exists words y
and y′ such that u = xyz and v = zy′x that implies u′′ = yz and v′′ = y′x
therefore yzf = y′zf ′. Since |y| = |y′|, it follows y = y′, a contradiction since
u and v are not quasi-conjugate.

Claim 5.3. u �∈ F(V ′∗v).

In order to prove this claim, we assume that u ∈ F(V ′∗v) and we consider two
cases:
– u ∈ F(v′v) with v′ ∈ V ′.

u

u z

v v

This would imply A∗U ′ ∩A∗V ′ �= ∅ that contradicts Claim 5.2.
– u = rv′z with v′ ∈ V ′ and z ∈ Z for some word r. It follows rv′ in U ′ and

A∗U ′ ∩A∗V ′ �= ∅ that contradicts again Claim 5.2.

Claim 5.4. S(V ′′A∗) = V ′′A∗ ∪ Y ′V ′∗vA∗.

In order to prove this claim, observe that S(V ′′A∗) = V ′′A∗∪S(Y ′vA∗). More-
over, since Y ′ = Z−1V ′ we get F (Y ′V ′∗v) = F (V ′∗v) and, from Claim 5.3,
u �∈ F (Y ′V ′∗v). In particular, u �∈ F (Y ′v) and it follows that S(Y ′vA∗) is
included in Y ′V ′∗vA∗. That proves the equality S(Y ′vA∗) = Y ′V ′∗vA∗ since
the converse inclusion is clear.
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Claim 5.5. Y ∩ Y ′V ′∗ = ∅.
Indeed, if Y ∩A∗V ′ �= ∅, it follows U ′ ∩A∗V ′ �= ∅ that contradicts Claim 5.2.
Therefore Y ∩ Y ′V ′+ = ∅. If y ∈ Y ∩ Y ′, it follows u = xyz and v = z′yx′ with
x, x′ ∈ X and z, z′ ∈ Z. Assume that |x| ≥ |x′|. We get |z′| ≥ |z| and, since
|x|+ |z′| ≤ |u|, u = xy′′z′ and v = z′y′′′x for some words y′′, y′′′. Thus y′′ and
y′′′ are two words in LF(y) having the same length. That implies y′′ = y′′′ and
u, v are quasi-conjugate, a contradiction.
We can now finish the proof 5.1 implies 5.1: thanks to Claim 5.2 and Claim 5.4,
in order to get S(V ′′A∗)∩U ′′A∗ = ∅, it remains to prove Y ′V ′∗vA∗∩U ′′A∗ = ∅
that is LF(Y ′V ′∗v) ∩ U ′′ = ∅. Assume that u′′ ∈ LF(Y ′V ′∗v) ∩ U ′′. From
Claim 5.2, u′′ �∈ LF(Y ′). Then there exist v1, . . . , vt ∈ V ′ such that u′′ =
y′v1 . . . vt−1z with z ∈ RF(u′′) ∩ LF(vt) ⊆ RF(u) ∩ LF(v). Thus z ∈ Z and
y′v1 . . . vt−1 ∈ Y , contradicting Claim 5.5. �

As a consequence of Proposition 3.9, Proposition 4.7, Lemmas 4.13 and 5.1, we
get:

Proposition 5.6. Conjecture 2.5 is true for all one-rule length-preserving rewrite
system S that has no large pair of overlaps. Moreover, when S is a rational trans-
duction, S is left-right and right-left.

Proof. Thanks to Proposition 3.11, it remains to prove that (NQC) =⇒ (RAT )
for a one-rule length-preserving rewrite system S = {u −→ v} with u �= v that has
no large pair of overlaps. From Lemma 5.1, if u and v are not quasi-conjugate then
S(V ′′A∗) ∩ U ′′A∗ = ∅ and S(A∗V ′) ∩A∗U ′ = ∅. It follows from Lemma 4.13 that
S is left-right and right-left that implies from Proposition 4.7 that S is a rational
transduction. �

In the case when the set of letters occurring in u differs from the set of letters
occurring in v, the system S = {u −→ v} cannot have a large pair of overlaps and
the words u and v cannot be quasi-conjugate. It follows:

Corollary 5.7. Let S = {u −→ v} be a one-rule length-preserving rewrite system.
If there is a letter that occurs in u but not in v, or that occurs in v but not in u,
then S is a rational transduction.

It has been proved in [7] (and stated again in [16]) that a one-rule length-
preserving rewrite system S = {u −→ v} is confluent if and only if

(LF(u) ∩ RF(u)) \ {u} ⊆ LF(v) ∩ RF(v)

One can deduce:

Corollary 5.8. Conjecture 2.5 is true for all confluent one-rule length-preserving
rewrite system S. Moreover, when S is a rational transduction, S is left-right and
right-left.
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Proof. Let S = {u −→ v} be a confluent one-rule length-preserving rewrite system
with u �= v. It is sufficient to prove that, if S has a large pair of overlaps then
u and v are quasi-conjugate. Let (x, z) be a large pair of overlaps of S such that
there does not exist another large pair of overlaps (x′, z′) with |xz| > |x′z′|. It
follows u = xu′′ = u′z = u′mu′′ and v = v′x = zv′′ = v′m′v′′ for some words
u′, u′′, v′, v′′, m, m′ with |m| = |m′|. That implies m′ ∈ LF(u) ∩ RF(u) and m ∈
LF(v) ∩ RF(v). Since S is confluent, we obtain m = m′ ∈ X ∩ Z. Moreover,
since there does not exist another large pair of overlaps (x′, z′) with |xz| > |x′z′|,
|xm| ≤ |u| and |mz| ≤ |u| that implies x = msm and z = mtm for some words s
and t. It follows that u = msmtm and v = mtmsm are quasi-conjugate. �

Remark 5.9. We also directly obtain from Corollary 5.8 that Conjecture 2.5 is
true for all one-rule length-preserving rewrite system S such that S−1 is confluent.

The condition S has no large pair of overlaps in Lemma 5.1 is a mandatory
condition. Indeed, when a system S = {u −→ v} has large pairs of overlaps, it is
possible to get S(V ′′A∗)∩U ′′A∗ �= ∅ with u and v that are not quasi-conjugate as
shown in the following example.

Example 5.10. Let S3 = {abbaa −→ bbaab}. Although abbaa and bbaab are not
quasi-conjugate, we have X = {ab}, Z = {bbaa}, V ′′ = {b}, U ′′ = {baa} so
V ′′A∗ ∩ U ′′A∗ is not empty. Moreover let us consider the derivation aabbaaaa −→
abbaabaa −→ bbaabbaa −→ bbabbaab −→ bbbbaabb. It is the only possible derivation
from abbaaaa to bbbbaabb and it is neither left-right nor right-left. Nevertheless
we shall see in the next section that the system S3 = {abbaa −→ bbaab} is still a
rational transduction.

6. Without short pair of overlaps

In the previous section, we have proved that for a system S that has no large
pair of overlaps, (NQC) implies (RAT ). Up to now, we are unable to prove this
implication in the general case. However, we shall show the rationality of S under
a stronger hypothesis than (NQC): if S has no short pair of overlaps then S is a
rational transduction.

A first remark concerning this situation is that the language S(V ′′A∗) ∩ U ′′A∗

occurring in Section 4 becomes easily calculable. Indeed, RF(V ′′) ∩ LF(u) = {ε}
and S(V ′′A∗) = V ′′A∗. Similarly, we have S(A∗V ′) = A∗V ′. It follows:

Lemma 6.1. If S = {u −→ v} is a one-rule length-preserving rewrite system that
has no short pair of overlaps then:

• S(V ′′A∗) ∩ U ′′A∗ = V ′′A∗ ∩ U ′′A∗.
• S(A∗V ′) ∩A∗U ′ = A∗V ′ ∩A∗U ′.
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Another important property in this case, proved below, is that if S has at least
one pair of overlaps but no short pair of overlaps, then S has a unique (large) pair
of overlaps. Moreover u and v have particular factorizations:

Lemma 6.2. Let S = {u −→ v} be a one-rule length-preserving rewrite system
that has no short pair of overlaps. If X �= ∅ and Z �= ∅ then:

1. X = {x} and Z = {z};
2. u = m′lmrm′ and v = mrm′lm with x = m′lm and z = mrm′ for some words

m, m′, l, r.

Proof.

1. Let x be the shortest element in X and z be the shortest element in Z. Suppose
that there exists x′ �= x in X . It follows x ∈ LF(x′)∩RF(x′). If |xx| > |x′|, then
there exists x′′ ∈ LF(x) ∩ RF(x) ⊆ X with |x′′| < |x|, therefore x′ = xfx for
some word f . Since |xz| > |u|, there exist x2 ∈ RF(x) such that x2fx ∈ LF(z)
and x1 ∈ LF(x) such that xfx1 ∈ RF(z). It follows x2fx1 ∈ LF(z)∩RF(z) ⊆ Z,
a contradiction since x2fx1 is shorter than z. The proof is similar if we consider
that Z is not a singleton.

2. u = u′mu′′ and v = v′m′v′′ with x = u′m = m′v′′ and z = mu′′ = v′m′. If
|m′z| > |u|, there exists a word z′ �= z ∈ LF(z)∩RF(m′) ⊆ Z, a contradiction.
It follows |m′z| ≤ |u| and, similarly, |mx| ≤ |u|. Therefore there exist words l
and r such that u′ = m′l and u′′ = rm′. �

Example 6.3. Recall that for system S3 = {abbaa −→ bbaab}, we have X = {ab},
Z = {bbaa} and it has no short pair of overlaps. For this system, m = b, m′ = a,
r = ba and l = ε.

The simplest example of such a one-rule length-preserving rewrite system S =
{u −→ v} that has only one large pair of overlaps is the case l = r = ε and m, m′

reduced to two distinct letters, that gives u = bab and v = aba. The particular
forms of u and v are now used to establish that the condition of the Lemma 4.13
becomes here a necessary and sufficient condition:

Lemma 6.4. If S = {u −→ v} is a one-rule length-preserving rewrite system that
has no short pair of overlaps then:

1. S is left-right iff S(V ′′A∗) ∩ U ′′A∗ = ∅;
2. S is right-left iff S(A∗V ′) ∩A∗V U ′ = ∅.
Proof.

1. Assume that S(V ′′A∗) ∩ U ′′A∗ �= ∅. That implies X �= ∅ and Z �= ∅ and it
follows from Lemma 6.2 that S has a single large pair of overlaps and u =
m′lmrm′, v = mrm′lm, x = m′lm, z = mrm′, u′ = m′l, u′′ = rm′, v′ = mr
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and v′′ = lm for some words m, m′, l, r. We consider two cases:
(a) v′′ = u′′f for some word f . We shall prove that the derivation

u′u −→ u′v = u′zu′′f −→ vu′′f = v′xu′′f −→ v′vf

is the unique derivation going from u′u to v′vf . For that we show that there
is a unique occurrence of u in u′u, u′v and vv′′. It is clear for u′v and vv′′

since X = {x} and Z = {z}. Assume now that u′u = αuβ for some words
α and β such that β �= ε. Since u′ ∈ LF(u), we have u′ = αγ = γα for some
γ ∈ LF(u). Let ρ be the root of u′, we get u′, γ ∈ ρ∗ and u ∈ LF(γ∗) ⊆
LF(ρ∗). It follows u ∈ LF(u′u), a contradiction since u ∈ m′lmA∗ and
u′u ∈ m′lm′A∗ with |m| = |m′| and m �= m′. Finally, this unique derivation
going from u′u to v′vf is not left-right since |u′| > 0 and |v′| > 0.

(b) u′′ = v′′f for some word f . The proof is symmetric to the first case,
considering S−1 and the derivation

v′v −−→
S−1

v′xu′′ = vu′′ −−→
S−1

u′zu′′ = u′vf −−→
S−1

u′uf

2. The proof is similar to 1. �
We shall now prove the main result of this section: a one-rule length-preserving

rewrite system that has no short pair of overlaps is always a rational transduction.
For this, we use a result of Bala Ravikumar in [12], extended by Alfons Geser et al.
in [6], that gives a sufficient condition for a length-preserving rewrite system to be
a rational transduction. This condition is based on the notion of change-bounded
length-preserving rewrite system that was introduced in the same article and that
we recall here:

Let S = {u1 −→ v1, . . . , ut −→ vt} be a length-preserving rewrite system and
consider a derivation

d = α0ui0β0 −→ α0vi0β0 = α1ui1β1 . . . −→ αn−1vin−1βn−1 = αnuinβn −→ αnvinβn

For all integer j, we denote N (d, j) the subset of indexes N (d, j) = {i ∈ [0, n] |
|αi| = j}. The system S is called change-bounded (by K) if there exists an integer
K such that for all derivation d and all integer j, the cardinality of N (d, j) is
bounded by K. Intuitively, this means that in all derivation in S, the number of
times that a change (an application of a rule) is made at a same position during
the derivation is bounded by K. Bala Ravikumar has proved:

Proposition 6.5 [12]. A change-bounded length-preserving rewrite system is a
rational transduction.

We prove now that a one-rule length-preserving rewrite system that has no short
pair of overlaps is always change-bounded by 1:

Lemma 6.6. Let S = {u −→ v} be a one-rule length-preserving rewrite system
that has no short pair of overlaps and a derivation αvβ

∗−→ α′wβ′ with |α| = |α′|
and |β| = |β′|, then w �= u.
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Proof. Clearly, if S has no pair of overlaps, we are done. So, one can assume that
S has a unique large pair of overlaps and from Lemma 6.2, we have u = xu′′ = u′z
and v = v′x = zv′′ with x = m′lm, z = mrm′, u′′ = rm′, u′ = m′l, v′ = mr and
v′′ = lm for some words m, m′, l, r. Let us consider two cases:

1. u′′A∗ ∩ v′′A∗ = ∅ = A∗u′ ∩A∗v′. We shall reason by induction on the length n
of the derivation αvβ

n−→ α′wβ′. If n = 0 then w = v �= u, otherwise one can
consider the first step of the derivation: αvβ = α′′uβ′′ −→ α′′vβ′′ n−1−−−→ α′wβ′.
There are three cases:
(a) |α′′u| ≤ |α| or |α′′| ≥ |αv|. Then α′′vβ′′ = α′′′vβ′′ with |α′′′| = |α| = |α′|

and |β′′′| = |β| = |β′| and it follows w �= u by the induction hypothesis.
(b) |α| < |α′′u| < |αv|. Then α = γu′ and γu′vβ −→ γvv′′β n−1−−−→ α′wβ′.

Since S(γvv′′) ⊆ A∗v(v′′)+ and that LF(u) ∩ RF(v(v′′)+) = {ε}, it follows
w ∈ RF(v(v′′)+) ⊆ A∗m that implies w �= u.

(c) |α| < |α′′| < |αv|. Similarly it comes that w ∈ LF(v′+v) ⊆ mA∗ that implies
w �= u.

2. u′′A∗ ∩ v′′A∗ �= ∅ (the case A∗u′ ∩ A∗v′ �= ∅ is similar). One can assume that
|u′′| ≥ |v′′|, otherwise we consider S−1. It follows v′′ ∈ LF(u′′). Let i be the
largest integer such that (v′′)i ∈ LF (u′′). Since LF(m′) ∩ RF(m) = {ε}, it
follows r = (v′′)ir′ with v′′ �∈ LF(r′m′) so u′′ = (v′′)ir′m′ �∈ LF((v′′)∗). Let
us consider now the language K = LF(v′) ∩m(v′′)iA∗. We need the following
properties:

Claim 6.7. For all word w, S(wK+vA∗) = S(w)K+vA∗.

First, we prove that S(K+vA∗) = K+vA∗. For this, take w1 ∈ K+, w2 ∈ A∗

and assume that w1vw2 = w′
1uw′

2. We show that w′
1vw′

2 ∈ K+vA∗. Since K ⊆
LF(v′) and LF(v′) ∩RF(u) = {ε}, u �∈ F(w1) and |w′

1u| > |w1|. If |w′
1| ≥ |w1v|

then w′
1vw′

2 ∈ K+vA∗ else first assume |w1v| > |w′
1u| > |w1|. It follows that

w1 = w′
1u

′ ∈ K∗m(v′′)iγ for some γ. Since |u′| = |v′′| and LF(u′)∩RF(v′′) = ∅
it follows u′ ∈ RF(γ) so w′

1 ∈ K∗m(v′′)iA∗ ⊆ K+ and w′
1vw′

2 ∈ K+vA∗.
Assume, now, that |w1| < |w′

1| < |w1v|. Since v′ ∈ K, w′
1vw′

2 ∈ w1v
′vA∗ ⊆

K+vA∗. So, S(K+vA∗) = K+vA∗. Let us now consider S(wK+vA∗) for some
word w. Let w′ ∈ wK+vA∗ and assume that w′ = αuβ with |α| < |w| < |αu|.
Since LF(v′)∩RF(u) = {ε}, this would imply RF(u′)∩K+ �= ∅, a contradiction
since |u′| < |mv′′|. It follows S(wK+vA∗) = S(w)S(K+vA∗) = S(w)K+vA∗.

Claim 6.8. ∀t ≥ 0, if w1v(v′′)tw2
∗−→ w′

1ww′
2 with |w| = |v| and |w′

2| = |w2|
then w �= u.

We prove this claim by induction on the length n of the derivation from
w1v(v′′)tw2 to w′

1ww′
2. If n = 0, w �= u since u �∈ RF(v(v′′)∗). If n > 0,

let us consider the first step of the derivation: w1v(v′′)tw2 = αuβ −→ αvβ
n−1−−−→

w′
1ww′

2. Since RF(v′′) ∩ LF(u) = {ε} we only have to consider four cases:
(a) |αu| ≤ |w1| or |uβ| ≤ |w2|. In this case αvβ = w′′

1v(v′′)tw′′
2 with |w′′

2 | =
|w2| = |w′

2| and it follows w �= u by induction hypothesis.
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(b) |w1| < |αu| < |w1v|. Then αvβ = αv(v′′)t+1w2 and it follows w �= u by
induction hypothesis.

(c) |w1| < |α| < |w1v| and |β| ≥ |w2|. This would imply u′′ ∈ LF((v′′)∗), a
contradiction.

(d) |w1| < |α| < |w1v| and |β| < |w2|. Then αuβ = w1v
′z(v′′)tw2 with (v′′)t ∈

LF(u′′) so t ≤ i. Moreover, S(αvβ) ⊆ S(w1)K+vA∗ from the previous
claim since v′ ∈ K. Let us consider w′

1ww′
2 ∈ S(αvβ) with |w′

2| = |w2| and
|w| = |v|, then w′

1 = α′α′′ with α′ ∈ S(w1) and w = w′′
1w′′

2 with α′′w′′
1 ∈ K.

It follows α′′w′′
1 = m(v′′)iδ = m(lm)iδ for some δ and, since t ≤ i, we get

α′′w′′
1 = (ml)t(ml)imδ. Moreover |α′′| = |(v′′)t| since |α′′w| = |v(v′′)t|. It

follows α′′ = (ml)t and w′′
1 = (ml)i−tm. This implies w ∈ mA∗ and w �= u.

α α w1 w2 w2

w1 w

w1 v v β

v uw1 β

α

w1 v (v )t w2

∗

Finally, taking t = 0 in Claim 6.8 finishes the proof of the lemma. �

As a consequence of Lemma 6.6 and Proposition 6.5, we obtain:

Proposition 6.9. A one-rule length-preserving rewrite system that has no short
pair of overlaps is a rational transduction.

We observe that a direct consequence of this proposition is that Conjecture 2.5
is satisfied in the case of a one-rule length-preserving rewrite system S = {u −→ v}
that has no short pair of overlaps since, in this case the words u and v are not quasi-
conjugate and S is a rational transduction so, combining the results of Sections 5
and 6, we get:

Proposition 6.10. Conjecture 2.5 is true for all one-rule length-preserving
rewrite system S that has a single pair of overlaps.

7. Conclusion

In this paper, we have mainly studied the following conjecture: a one-rule length-
preserving rewrite system S = {u −→ v}, with u �= v, is a rational transduction if
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and only if u and v are not quasi-conjugate. In Section 3 we have proved the only
if part: if S = {u −→ v} is a rational transduction then u and v are not quasi-
conjugate. Conversely, in Sections 5 and 6, we have proved the if part in two cases:
when the system S has no large pair of overlaps and when it has no short pair of
overlaps. The main remaining open question is to know whether the conjecture is
true for one-rule length-preserving rewrite systems that have both short and large
pair of overlaps. Nevertheless some other questions, listed below, deserve to be
studied.

The Thue congruence ∗←→ generated by a rewrite system S is the reflexive tran-
sitive symmetric closure of −→. It corresponds to the derivation relation of the
Thue system S↔= S ∪S−1 generated by S. We may wonder whether or when the
rationality of S implies the rationality of S↔.

It is the case when S (or S−1) is a confluent one-rule length-preserving rewrite
system since, when S is confluent, S↔ = S−1 ◦ S and, as a consequence, if S
is a rational transduction, then S↔ is a rational transduction; but it is not true
for arbitrary one-rule length-preserving rewrite systems: for instance the rewrite
system S5 = {aa −→ bb} is clearly a rational transduction since it has no pair of
overlaps, but, rather surprisingly, it is not the case for S↔

5 = {aa ←→ bb}. Indeed,
abba←→ aaaa←→ bbaa←→ bbbb←→ baab so, for all integer n, (abba)n ∗←→ (ba)n(ab)n.
Moreover, we can prove that for all integer 0 < i ≤ n, (ba)n−i(ab)n+i ∗←→ (ba)n(ab)n

implies i = 0. This last property is a consequence of a more general result: let
u and v be two words and a, b be two distinct letters then the system {bu ←→
av} is left simplifiable, that means: for all words w, w′, w′′, if ww′ ∗←→ ww′′ then
w′ ∗←→ w′′ (this can easily be proved for w = a by induction on the length of
the derivation aw′ ∗←→ aw′′). Symmetrically, system S5 is also right simplifiable.
So, if (ba)n−i(ab)n+i ∗←→ (ba)n(ab)n, it follows (ab)i ∗←→ (ba)i that implies i = 0.
Finally, S↔

5 ((abba)∗) ∩ (ba)∗(ab)∗ = {(ba)n(ab)n | n ≥ 0} and S↔
5 is not a rational

transduction.
Conversely, we think that the rationality of S↔ implies the rationality of S when

S is one-rule length-preserving rewrite system while it is not the case when S has
several rules: let S6 = {ba −→ ab, b −→ a} then S6((ba)∗)∩a∗b∗ = {anbp | n ≥ p ≥ 0},
so S6 is not rational while S↔

6 is equivalent to the rational substitution s defined
by s(a) = s(b) = {a, b}.

Conjecture 7.1. For all one-rule length-preserving rewrite system S, if S↔ is a
rational transduction then S is a rational transduction.

Another question about one-rule rewrite systems and regularity is the following:
if a rewrite system S does not preserve regularity, does it transform all regular
language into a context-free language ? Indeed, the simplest example of one-rule
length-preserving rewrite system that is not rational is the system S6 = {ba −→ ab}
and it has been proved in [2], in the context of a particular class of rewrite systems
called semi-commutations, that S6 transform all regular language into a context-
free language.
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One could think that all one-rule rewrite system satisfies this property but it is
not the case: consider the system S7 = {ba −→ a2b2} then S7(b2a2) is not a context-
free language([8]). Nevertheless, we think it is true when S is length-preserving:

Conjecture 7.2. A one-rule length-preserving rewrite system always transforms
a regular language into a context-free language.
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