
RAIRO-Theor. Inf. Appl. 48 (2014) 23–38 Available online at:

DOI: 10.1051/ita/2013047 www.rairo-ita.org

REACTION AUTOMATA WORKING
IN SEQUENTIAL MANNER ∗, ∗∗

Fumiya Okubo
1

Abstract. Based on the formal framework of reaction systems by
Ehrenfeucht and Rozenberg [Fund. Inform. 75 (2007) 263–280], reac-
tion automata (RAs) have been introduced by Okubo et al. [Theoret.
Comput. Sci. 429 (2012) 247–257], as language acceptors with multiset
rewriting mechanism. In this paper, we continue the investigation of
RAs with a focus on the two manners of rule application: maximally
parallel and sequential. Considering restrictions on the workspace and
the λ-input mode, we introduce the corresponding variants of RAs and
investigate their computation powers. In order to explore Turing ma-
chines (TMs) that correspond to RAs, we also introduce a new variant
of TMs with restricted workspace, called s(n)-restricted TMs. The main
results include the following: (i) for a language L and a function s(n),
L is accepted by an s(n)-bounded RA with λ-input mode in sequential
manner if and only if L is accepted by a log s(n)-bounded one-way TM;
(ii) if a language L is accepted by a linear-bounded RA in sequential
manner, then L is also accepted by a P automaton [Csuhaj−Varju and
Vaszil, vol. 2597 of Lect. Notes Comput. Sci. Springer (2003) 219–233.]
in sequential manner; (iii) the class of languages accepted by linear-
bounded RAs in maximally parallel manner is incomparable to the
class of languages accepted by RAs in sequential manner.

Mathematics Subject Classification. 68Q05, 68Q45.

Keywords and phrases. Models of biochemical reactions, sequential reaction automata, space
complexity, Turing machines.

∗ This paper is a revised and extended version of a paper that was presented at NCMA
2012 [14].
∗∗ The work of F. Okubo was in part supported by Grants-in-Aid for Young Scientists (B)
No. 24700304, Japan Society for the Promotion of Science and by Grants-in-Aid for JSPS
Fellows No. 25 · 3528, Japan Society for the Promotion of Science.
1 Graduate School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo
169-8050, Japan. f.okubo@akane.waseda.jp

Article published by EDP Sciences c© EDP Sciences 2014

http://dx.doi.org/10.1051/ita/2013047
http://www.rairo-ita.org
http://www.edpsciences.org

24 F. OKUBO

1. Introduction

In recent years, Ehrenfeucht and Rozenberg have introduced a formal model,
called reaction systems [5], for investigating the functioning of the living cell, based
on the idea that the functioning is decided by interactions between biochemical
reactions, where two basic components (reactants and inhibitors) play a key role as
a regulation mechanism in controlling interactions. In [6], it is shown that reaction
systems provide a formal framework suited for investigating in an abstract level
the way of emergence and evolution of biochemical events and modules. Recent
papers continue the investigation of reaction systems in various topics motivated
by biological and theoretical considerations, such as the issue of times for cre-
ating compounds [7], combinatorial properties of functions defined by reaction
systems [8, 9, 18], probabilistic and quantum variants of reaction systems [11].

In the theory of reaction systems, a biochemical reaction is formulated as a
triple a = (Ra, Ia, Pa), where Ra is the set of molecules called reactants, Ia is the
set of molecules called inhibitors, and Pa is the set of molecules called products.
Let T be a set of molecules, and the result of applying a reaction a to T , denoted
by resa(T), is given by Pa if a is enabled by T (i.e., if Ra is included in T and
Ia is disjoint with T). Otherwise, the result is empty. Thus, resa(T) = Pa if a is
enabled on T , and resa(T) = ∅ otherwise. The result of applying a reaction a is
extended to the set of reactions A, denoted by resA(T), and an interactive process
consisting of a sequence of resA(T)’s is properly introduced and investigated.

Inspired by the notion of reaction systems, reaction automata have been intro-
duced in [15] as computing devices, and it has been shown that they are com-
putationally universal by proving that all recursively enumerable languages are
accepted by reaction automata. In [16], the investigation with reaction automata
is continued with a focus on the formal language theoretic properties of space-
bounded classes of reaction automata. Specifically, it is shown that all context-
sensitive languages are accepted by exponential space bounded reaction automata.
The notion of reaction automata may be regarded as an extension of reaction sys-
tems in the sense that reactants and inhibitors are employed as regulation in reac-
tion automata, however they deal with multisets rather than usual sets as reaction
systems do. Reaction automata are introduced as multiset rewriting devices that
accept languages over an alphabet, where this feature is realized by a simple idea
of feeding one symbol of an input string at each step of computation, to the device
from the environment. In this sense, reaction automata may also be regarded as
simplified variants of P automata introduced by Csuhaj−Varjú and Vaszil in [4]
with no membrane structure.

In this paper, we continue the investigation of reaction automata with a focus
on the way of rule application. We consider not only maximally parallel manner
employed in [15, 16], but also sequential manner as the way of rule application,
and compare the computational powers of reaction automata and their space-
bounded variants in the above two manners. Reaction automata with λ-moves (in-
troduced in [16]) in sequential manner are also investigated. Further, we explore a

REACTION AUTOMATA WORKING IN SEQUENTIAL MANNER 25

Turing machine corresponding to reaction automata, and introduce a new variant
of Turing machines with restricted workspace, called s(n)-restricted Turing ma-
chines, which is a relaxation of the notion of restricted s(n) space bounded Turing
machines introduced in [2]. The idea for these restrictions is that the workspace
used in the computation is provided depending on the number of symbols actually
read from the input.

This paper is organized as follows. After preparing the basic notions and no-
tations from formal language theory in Section 2.1, we formally describe the no-
tion of reaction automata (RAs) and the classes of languages RAX , RAλ

X with
X ∈ {sq,mp} in Section 2.2. We also introduce the space-bounded variants of
reaction automata and the classes of languages LRAsq accepted by them. In Sec-
tion 2.3, Turing machines and their several variants, e.g., s(n)-restricted Turing
machines, are introduced. Then, in Section 3, we establish (i) the relation between
space-bounded reaction automata in sequential manner and space-bounded one-
way Turing machine; (ii) the relation between LRAsq and the class of languages ac-
cepted by P automata in sequential manner, with the help of logarithmic-restricted
Turing machines; (iii) the relation between RAsq and LRAmp. Finally, concluding
remarks as well as future research topics are briefly discussed in Section 4.

2. Preliminaries

2.1. Basic definitions

We assume that the reader is familiar with the basic notions of formal language
theory. For unexplained details, refer to [12]. Let V be a finite alphabet. For a
set U ⊆ V , the cardinality of U is denoted by |U |. The set of all finite-length
strings over V is denoted by V ∗. The empty string is denoted by λ. For a string
x ∈ V ∗, |x| denotes the length of x, while for a symbol a ∈ V we denote by |x|a the
number of occurrences of a in x. For x ∈ V ∗, define the r-tuple of natural numbers
ψ(w) = (|x|a1 , |x|a2 , . . . , |x|ar). wR is the reversal of w, that is, (a1a2 . . . an)R =
an . . . a2a1. Further, for a string x = a1a2 . . . an ∈ V ∗, x̂ denotes the hat version
of x, i.e., x̂ = â1â2 . . . ân, where each âi is in an alphabet V̂ = {â | a ∈ V } such
that V ∩ V̂ = ∅.

A morphism h : V ∗ → U∗ such that h(a) ∈ U for all a ∈ V is called a coding,
and it is a weak coding if h(a) ∈ U ∪ {λ} for all a ∈ V . A weak coding is a
projection if h(a) ∈ {a, λ} for each a ∈ V . The notion of a projection is extended
to language L as h(L) = {h(w) |w ∈ L}. Further, for a class of language L,
PR(L) = {h(L) |h : projection, L ∈ L}.

We use the basic notations and definitions regarding multisets that follow [1,13].
A multiset over an alphabet V is a mapping μ : V → N, where N is the set of non-
negative integers and for each a ∈ V , μ(a) represents the number of occurrences of
a in the multiset μ. The set of all multisets over V is denoted by V #, including the
empty multiset denoted by μλ, where μλ(a) = 0 for all a ∈ V . We can represent
the multiset μ by any permutation of the string w = a

μ(a1)
1 . . . a

μ(an)
n . Conversely,

26 F. OKUBO

with any string x ∈ V ∗ one can associate the multiset μx : V → N defined
by μx(a) = |x|a for each a ∈ V . In this sense, we often identify a multiset μ
with its string representation wμ or any permutation of wμ. Note that the string
representation of μλ is λ, i.e., wμλ

= λ. A usual set U ⊆ V is regarded as a multiset
μU such that μU (a) = 1 if a is in U and μU (a) = 0 otherwise. In particular, for
each symbol a ∈ V , a multiset μ{a} is often denoted by a itself.

For two multisets μ1, μ2 over V , we define one relation and four operations as
follows:

• Inclusion : μ1 ⊆ μ2 iff μ1(a) ≤ μ2(a), for each a ∈ V ;
• Sum : (μ1 + μ2)(a) = μ1(a) + μ2(a), for each a ∈ V ;
• Union : (μ1 ∪ μ2)(a) = max{μ1(a), μ2(a)}, for each a ∈ V ;
• Intersection : (μ1 ∩ μ2)(a) = min{μ1(a), μ2(a)}, for each a ∈ V ;
• Difference : (μ1 − μ2)(a) = μ1(a) − μ2(a), for each a ∈ V

(for the case μ2 ⊆ μ1).

The sum for a family of multisets M = {μi}i∈I is denoted by
∑

i∈I μi. The union
for a family of multisets M = {μi}i∈I is also denoted by

⋃
i∈I μi. For a multiset

μ and n ∈ N, μn is defined by μn(a) = n · μ(a) for each a ∈ V . The weight of a
multiset μ is |μ| =

∑
a∈V μ(a).

2.2. Reaction automata

Inspired by the works of reaction systems, we have introduced the notion of
reaction automata in [15] by extending sets in each reaction to multisets. Here, we
start by recalling basic notions concerning reaction automata.

Definition 2.1. For a set S, a reaction in S is a 3-tuple a = (Ra, Ia, Pa) of finite
multisets, such that Ra, Pa ∈ S#, Ia ⊆ μS and Ra ∩ Ia = ∅.

The multisets Ra, Ia and Pa are called the reactant of a, the inhibitor of a
and the product of a, respectively. These notations are extended to a multiset of
reactions as follows: For a set of reactions A and a multiset α over A,

Rα =
∑
a∈A

Rα(a)
a , Iα =

⋃
a⊆α

Ia, Pα =
∑
a∈A

Pα(a)
a .

In this paper, we consider two ways for applying reactions, i.e., sequential man-
ner and maximally parallel manner, while only the latter manner is concerned in
the previous papers.

Definition 2.2. Let A be a set of reactions in S and α ∈ A# be a multiset of
reactions over A. Then, for a finite multiset T ∈ S#, we say that:

(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅.
(2) α is enabled by T in sequential manner if α is enabled by T with |α| = 1.
(3) α is enabled by T in maximally parallel manner if there is no β ∈ A# such

that α ⊂ β, and α and β are enabled by T .

REACTION AUTOMATA WORKING IN SEQUENTIAL MANNER 27

(4) By Ensq
A (T) and Enmp

A (T), we denote the sets of all multisets of reactions
α ∈ A# which are enabled by T in sequential manner and in maximally
parallel manner, respectively.

(5) The results of A on T , denoted by ResX
A (T) with X ∈ {sq,mp}, is defined as

follows:

ResX
A (T) = {T −Rα + Pα |α ∈ EnX

A (T)}.

We note that ResX
A (T) = {T } if EnX

A (T) = ∅. Thus, if no multiset of reactions
α ∈ A# is enabled by T , then T remains unchanged.

We are now in a position to introduce the notion of reaction automata.

Definition 2.3. A reaction automaton (RA) A is a 5-tuple A = (S,Σ,A,D0, f),
where

• S is a finite set, called the background set of A;
• Σ(⊆ S) is called the input alphabet of A;
• A is a finite set of reactions in S;
• D0 ∈ S# is an initial multiset;
• f ∈ S is a special symbol which indicates the final state.

Definition 2.4. Let A = (S,Σ,A,D0, f) be an RA, w = a1 . . . an ∈ Σ∗ and
X ∈ {sq,mp}. An interactive process in A with input w in X manner is an infinite
sequence π = D0, . . . , Di, . . ., where

{
Di+1 ∈ ResX

A (ai+1 +Di) (for 0 ≤ i ≤ n− 1), and
Di+1 ∈ ResX

A (Di) (for all i ≥ n).

In order to represent an interactive process π, we also use the “arrow notation”
for π : D0 →a1 D1 →a2 D2 →a3 . . . →an−1 Dn−1 →an Dn → Dn+1 → . . . By
IPX(A, w) we denote the set of all interactive processes in A with input w in X
manner.

Recall that in [16], if it is allowed that ai = λ for some several 1 ≤ i ≤ n, for an
input string w = a1 . . . an, an interactive process is said to be with λ-input mode.
By IPλ

X(A, w) we denote the set of all interactive processes in A with λ-input
mode in X manner for the input w.

For an interactive process π in A with input w, if EnX
A (Dm) = ∅ for some

m ≥ |w|, then we have that ResA(Dm) = {Dm} and Dm = Dm+1 = . . . In this
case, considering the smallest m, we say that π converges on Dm (at the mth step).
If an interactive process π converges on Dm, then Dm is called the converging state
of π and each Di of π is omitted for i ≥ m+ 1.

28 F. OKUBO

Definition 2.5. Let A = (S,Σ,A,D0, f) be an RA and X = {sq,mp}. Then, the
set of accepting interactive processes is defined as follows:

AIPX(A, w) = {π ∈ IPX(A, w) | π converges on Dm at the mth step
for some m ≥ |w| and f ⊆ Dm},

AIPλ
X(A, w) = {π ∈ IPλ

X(A, w) | π converges on Dm at the mth step
for some m ≥ |w| and f ⊆ Dm}.

The language accepted by A is defined as follows:

LX(A) = {w ∈ Σ∗ |AIPX(A, w) �= ∅},
Lλ

X(A) = {w ∈ Σ∗ |AIPλ
X(A, w) �= ∅}.

Let A be an RA. Motivated by the notion of a workspace for a phrase-structure
grammar [17], we define: for w ∈ LX(A) with n = |w|, and for π in AIPX(A, w),

WS(w, π) = max{|Di| | Di appears in π }.

Further, the workspace of A for w is defined as:

WS(w,A) = min{WS(w, π) | π ∈ AIPX(A, w) }.

Definition 2.6. Let s be a function defined on N and X = {sq,mp}.
(1) An RA A is s(n)-bounded if for any w ∈ LX(A) with n = |w|, WS(w,A) is

bounded by s(n).
(2) If a function s(n) is a constant k (linear, exponential), then A is termed

constant-bounded (resp. linear-bounded, exponential-bounded).
(3) The class of languages accepted by constant-bounded RAs (linear-bounded,

exponential-bounded, arbitrary RAs) in X manner is denoted by CRAX (resp.
LRAX , ERAX , RAX).

(4) The class of languages accepted by constant-bounded RAs (linear-bounded,
exponential-bounded, arbitrary RAs) with λ-input mode in X manner is de-
noted by CRAλ

X (resp. LRAλ
X , ERAλ

X , RAλ
X).

From the definition, it obviously holds that REG = CRAsq. For reaction au-
tomata and their space-bounded subclasses, the following results have been shown
in [15, 16].

Proposition 2.7 [15, 16]. The following inclusions hold:

(1) REG = CRAmp ⊂ LRAmp ⊂ ERAmp ⊂ RAmp = RE .
(2) LIN (CF) and LRAmp are incomparable.
(3) RE = PR(LRAmp).
(4) CS = ERAmp.

REACTION AUTOMATA WORKING IN SEQUENTIAL MANNER 29

Figure 1. A graphic illustration of interactive processes for ac-
cepting strings in the language L = {anbn |n ≥ 0} in terms of a
reaction automaton A.

Example 2.8. Let us consider a reaction automaton A = (S,Σ,A,D0, f) defined
as follows:

S = {p0, p1, a, b, a
′, f} with Σ = {a, b},

A = {a0,a1,a2,a3,a4}, where
a0 = (p0, aba

′, f), a1 = (p0a, b, p0a
′), a2 = (p0a

′b, ∅, p1),
a3 = (p1a

′b, a, p1), a4 = (p1, aba
′, f),

D0 = p0.

Figure 1 illustrates the whole view of possible interactive processes in A with
inputs anbn for n ≥ 0. Let w = aaabbb ∈ Σ∗ be the input string and consider an
interactive process π in sequential manner such that

π : p0 →a p0a
′ →a p0a

′2 →a p0a
′3 →b p1a

′2 →b p1a
′ →b p1 → f.

It can be easily seen that π ∈ IPsq(A, w) and w ∈ Lsq(A). We may see that
Lsq(A) = {anbn |n ≥ 0} which is a context-free language.

We note the following two remarks: (i) this interactive process can be also
performed by A in maximally parallel manner, i.e. π ∈ IPmp(A, w). Moreover, it
holds that Lmp(A) = {anbn |n ≥ 0}. (ii) The workspace of A may be bounded
by a linear function regarding the length of an input string. Hence, it holds that
{anbn |n ≥ 0} ∈ LRAsq ∩ LRAmp.

2.3. Turing machines and variants

In [2], in order to look for a Turing machine corresponding to P automata, a
variant of a Turing machine restricted on the workspace, called a restricted s(n)
space bounded Turing machine, is introduced. Here, we consider the relaxation of
that restriction.

30 F. OKUBO

!"##!$##%##!&##%%''##!(!

!"#$%&%'!(')*%+!

)(*+,-!

./01,!*2-!

!"##!$##%##!&##%%''##!(!

,-&&',-".')*$+/-&)0-123"$!

)(*+,-!

./01,!*2-!

!320#02!&)(4#,52#.5/62#)(*+,!

Figure 2. The notion of an s(n)-restricted Turing machine.

Definition 2.9. A one-way nondeterministic Turing machine is s(n)-restricted if
for every accepted input of length n, there is an accepting computation where the
number of cells on the worktape before reading through the whole input is bounded
by s(d), where d is the number of input tape cells already read.

The difference between “s(n)-restricted” and “restricted s(n) space bounded
(in [2])” is that for the case “s(n)-restricted”, a different restriction is imposed on
the workspace after reading the whole input. We say that a one-way nondeterminis-
tic Turing machine M is LOG-restricted, LIN -restricted or NON -restricted if M
is logarithmic-restricted, linear function-restricted or not restricted, respectively.

Definition 2.10. Let X ,Y ∈ {LOG,LIN,NON}. L1(X ,Y) denotes the class
of languages accepted by X -restricted Y-space-bounded one-way nondeterministic
Turing machines.

Note that (i) L1(NON,Y) is the class of language accepted by Y-space-bounded
(in usual sense in space complexity theory) one-way nondeterministic Turing ma-
chines, (ii) the class of language accepted by restricted X space bounded one-way
nondeterministic Turing machines (defined in [2]) is equivalent to L1(X ,X).

We introduce a notation about instantaneous descriptions (IDs) of offline Turing
machines.

Definition 2.11. For an offline Turing machine M = (Q,Σ, Γ, δ, p0, F) and an
input string w, an ID can be expressed by (w1qw2, x1qx2), where q ∈ Q is the
current state, w1w2 ∈ Σ∗ is the input string, x1x2 ∈ Γ ∗ is the content of the
worktape of M , and the heads of M point to the first symbols of w2 and x2.

By ID(M,w), we denotes the set of all sequences of the IDs which express com-
putations of M with the input w.

A multicounter machine is a variant of a Turing machine with a one-way read
only input tape and several counters. It is known that a two-counter machine is

REACTION AUTOMATA WORKING IN SEQUENTIAL MANNER 31

equivalent to a Turing machine as a language accepting device [10,12]. A k-counter
machine is represented by a 5-tupleM = (Q,Σ, δ, q0, F), where,Q is a set of states,
Σ is an alphabet of inputs, q0 is an initial state, F is a set of final states, and δ
is a mapping from Q × (Σ ∪ {λ}) × {0, 1}k into Q × {0,+1} × {−1, 0,+1}k. A
configuration of M on an input w is given by a (k + 3)-tuple (q, w, i, c1, . . . , ck),
where M is in state q with the input head reading the ith symbol of w, and
c1, c2, . . . , ck stored in the k counters. Write (q, w, i, c1, . . . , ck) ⇒ (p, w, i+ d, c1 +
d1, . . . , ck + dk) if a is the ith symbol of w and δ(q, a, h(c1), . . . , h(ck)) contains
(p, d, d1, . . . , dk), where h(cj) = 0 if cj = 0 and h(cj) = 1 if cj �= 0. The reflexive-
transitive closure of ⇒ is written by ⇒∗. A language accepted by M is defined as

L(M) = {w ∈ Σ∗ | (q0, w, 1, 0, . . . , 0) ⇒∗ (f, w, i, c1, . . . , ck), f ∈ F}.

In [10, 12], it is proved that every recursively enumerable language is accepted
by a 3-counter machine (and a 2-counter machine), where a 2-stack machine acts
as an intermediary machine. In the proof, for r−1 tape symbols used by the stack
machine, the contents of the 2 stacks X1 . . .Xi and Y1 . . . Yj are regarded as an
integer in base r. They are simulated by the 2 counters as Xir

i−1 + Xi−1r
i−2 +

. . .+X1 and Yjr
j−1 +Yj−1r

j−2 + . . .+Y1. The third counter is used to adjust the
other 2 counters. It can be observed that a 2-stack machine using s(n) workspace
is simulated by a 3-counter machine where the values of counters are bounded
by rs(n).

On the other hand, from the proof of Theorem 8.13 in [12], it obviously holds
that any s(n)-bounded 1-way Turing machine can be simulated by a 2-stack ma-
chine using s(n) workspace.

These facts imply the following proposition.

Proposition 2.12. If a language L is accepted by a log s(n)-bounded one-way
TM, then L is accepted by a 3-counter machine where the values of counters are
bounded by s(n).

3. Main results

Theorem 3.1. A language L is accepted by an s(n)-bounded RA with λ-input
mode in sequential manner if and only if L is accepted by a log s(n)-bounded one-
way TM.

Proof. (“if” part) For a k-counter machine M = (Q,Σ, δ, q0, F), construct an RA
AM = (S,Σ,A, q0, f ′), where S = Q ∪ {f ′, e1, . . . , ek} and A is defined as follows:

(1) for any f ∈ F , (f, ∅, f ′) is in A;
(2) If (p, d, d1, . . . , dk) is contained in δ(q, a, h(c1), . . . , h(ck)) of M , then

(qas1 . . . sn, t1 . . . tmf, ps1 . . . sn + u1 . . . ur − v1 . . . vl) ∈ A,

32 F. OKUBO

where

• {ei ∈ S | 1 ≤ i ≤ k, h(ci) = 1} = {s1, . . . , sn};
• {ei ∈ S | 1 ≤ i ≤ k, h(ci) = 0} = {t1, . . . , tm};
• {ei ∈ S | 1 ≤ i ≤ k, di = +1} = {u1, . . . , ur};
• {ei ∈ S | 1 ≤ i ≤ k, di = −1} = {v1, . . . , vl}.

From the way of construction of AM , it is easily confirmed that for the input w,
there is a configuration (q, w, i, c1, . . . , ck) in M if and only if there is an interactive
process π = D0, . . . , Di′ , . . . in AM such that Di′ = qec1

1 . . . eck

k after reading the
ith symbol of w. Hence, it holds that L(M) = L(AM). Note that if the values of
counters of M are bounded by s(n), the workspace of AM is also bounded by s(n).

From Proposition 2.12, if a language L is accepted by a log s(n)-bounded one-
way TM, then L is accepted by a 3-counter machine where the values of counters
are bounded by s(n). Hence, L is accepted by an s(n)-bounded RA with λ-input
mode in sequential manner.

(“only if” part) The proof is almost same to the one of Theorem 8 in [16],
however, we show it for the proof of the following corollary.

Let S = {s1, . . . , sk} be an ordered alphabet and A = (S,Σ,A,D0, f) be an
RA. Assume that for an input w = a1 . . . an the workspace of A is bounded by the
function s(n). Then, we shall construct the nondeterministic (k + 2)-tape Turing
machine MA. MA imitates an interactive process π : D0, . . . , Dn, . . . ∈ IPλ

sq(A, w)
in the following manner:

1. At first, Tape-1 has the input w ∈ Σ∗ and Tape-(i + 1) has the number of si

in D0 (for 1 ≤ i ≤ k) represented by the binary number. Tape-(k + 2) is used
to count the number of computation step of MA.

2. Let D be the current multiset in π. When MA reads the symbol si in the
input, add one to the Tape-(i+ 1). Then, by checking all tapes except Tape-1,
compute an element of Ressq

A (si +D) in the nondeterministic way and rewrite
the contents in the tapes. After reading through the input w, MA computes
an element of Ressq

A (D) in the nondeterministic way and rewrite the contents
in the tapes.

3. After reading through the input w, if Ressq
A (D) = {D} and f ⊆ D, then MA

accepts w. In the case where (i) Ressq
A (D) = {D} and f � D; (ii) |D| exceeds

s(n) or (iii) the number of computation step exceeds c(s(n))k for k(= |S|) and
some constant c, MA rejects w.

Since we use the binary number for counting the number of symbols, the maximum
length of each tape to memorize D is log2 s(n). In the case where MA never stops
with the input w, there exists a cycle of configurations in the computation. Since
the number of all possible Ds during the computation is bounded by c(s(n))k

for k and some constant c, the length of Tape-(k + 2) to count the number of
steps of computation is bounded by log2 c + k log2 s(n). Therefore, it holds that
L(MA) = Lλ

sq(A) and the workspace of MA is bounded by the function regarding
log2 s(n). �

REACTION AUTOMATA WORKING IN SEQUENTIAL MANNER 33

Corollary 3.2. The following equations hold:
(1) RAλ

sq = RE.
(2) ERAλ

sq = CS.

Corollary 3.3. PR(RAsq) = RE.

Proof. When λ is inputted to an RA AM = (S,Σ,A,D0, f) with λ-input mode,
we consider that A′

M = (S ∪ {c}, Σ ∪ {c}, A,D0, f) and the special symbol c /∈ S
is inputted instead of λ. From the proof of Theorem 3.1, it obviously holds that
w = a1a2 . . . al ∈ Lλ

sq(AM) if and only if w′ = ci0a1c
i1a2c

i2 . . . alc
il ∈ Lsq(A′

M) for
some i0, i1, i2, . . . , il ≥ 0.

Using a projection h : Σ ∪ {c} → Σ which removes c, it is obtained that
Lλ

sq(AM) = h(Lsq(A′
M)). Hence, it holds that RAλ

sq = RE ⊆ PR(RAsq). The
other inclusion is straightforward. �

Corollary 3.4. RAsq ⊆ L1(LOG,NON).

Proof. Let A = (S,Σ,A,D0, f) be an RA and π = D0, D1, . . . ∈ IPsq(A, w) for
the input w ∈ Σ∗ with |w| = n. By the same way of the proof of “only if” part of
Theorem 3.1, we construct MA.

Then, it holds that |Di| ≤ ci + |D0|, where c = maxa∈A(|Pa − Ra|) and 1 ≤
i ≤ n. We can easily confirm that the workspace of MA after reading i symbols
of w is bounded by log(ci). Hence, A can be simulated by MA with L(MA) ∈
L1(LOG,NON). �

There are many related works on language acceptors based on multiset rewrit-
ing, such as a variant of P systems, called P automata investigated in the literature
(e.g., [2–4]). A P automaton is a finite automata-like computing model in which a
configuration comprises a tuple of multisets each of which consists of objects from
each membrane region. On receiving an input (a multiset) from the environment
at each step of computation, it changes its configuration by making region-wise
applications of the equipped rules. An input sequence of multisets is accepted if
the transition reaches a final state after reading the whole input, and the lan-
guage accepted by a P automaton is defined as a mapping image of those accepted
multiset sequences. In this sense, reaction automata may also be regarded as a
simplified variants of P automata with no membrane structure.

Let us denote the class of languages accepted by P automata with sequential
rule applications by PAsq. In [2], it is proved that L1(LOG,LOG) = PAsq. Hence,
the following corollary holds from Corollary 3.4.

Corollary 3.5. LRAsq ⊆ L1(LOG,LOG) = PAsq.

Next, we consider a necessary condition for a language to be in L1(LOG,NON)
and in RAsq. Let Σ be an alphabet with |Σ| ≥ 2 and h : Σ∗ → Σ∗ be an injection.
Then, the following lemma follows.

34 F. OKUBO

!!

!! !!

!!

Clogn

IDn(w1) IDn(w2)

IDn(w3)IDn(w4)

Figure 3. Proof sketch of Lemma 1.

Lemma 3.6. It holds that {wh(w) |w ∈ Σ∗} /∈ L1(LOG,NON).

Proof. Assume that there is a logn-restricted 1-way TM M = (Q,Γ,Σ, q0, F, δ)
such that L(M) = {wh(w) |w ∈ Σ∗}. Let |Q| = m1, |Γ | = m2, |Σ| = m3 ≥ 2 and
the input string be wh(w) with |w| = n.

We define Clog n as the set of all possible IDs of M before reading the input
string w. Recall that an ID of M is expressed as (w1qw2, x1qx2) with w = w1w2.
In the case where |w1| = i, the number of cases of the contents of the worktape
x1x2 is bounded by (m2)log i and the number of cases of the position of the head
for the worktape is bounded by log i+ 1. Hence, it holds that

|Clog n| ≤
n∑

i=1

(m1 · (m2)log i · (log i+ 1))

≤ n ·m1 · (m2)log n · (log n+ 1).

Since it holds that |Σn| = (m3)n, if n is sufficiently large, we obtain the inequality
|Clog n| < |Σn|.

For w ∈ Σ∗, let IDn(w) = {Cn ∈ Clog n |π = C0, . . . , Cn, . . . ∈ ID(M,w)},
i.e., IDn(w) is the set of IDs which appear as the nth elements of sequences in
ID(M,w). From the assumption that L(M) = {wh(w) |w ∈ Σ∗} and h is an
injection, we can show that for any two distinct strings w1, w2 ∈ Σn, IDn(w1)
and IDn(w2) are incomparable. This is because if IDn(w1) ⊆ IDn(w2), then the
string w2h(w1) is accepted byM , which means that h(w1) = h(w2) and contradicts
that h is an injection.

Since for any two distinct strings w1, w2 ∈ Σn, IDn(w1) and IDn(w2) are
incomparable and IDn(w1), IDn(w2) ⊆ Clog n, it holds the following inequality
(see Fig. 3):

|{IDn(w) |w ∈ Σn}| ≤ |Clog n| < |Σn|.
However, the inequality |{IDn(w) |w ∈ Σn}| < |Σn| contradicts that for any two
distinct strings w1, w2 ∈ Σn, it holds that IDn(w1) �= IDn(w2). �

REACTION AUTOMATA WORKING IN SEQUENTIAL MANNER 35

Corollary 3.7. It holds that {wh(w) |w ∈ Σ∗} /∈ RAsq.

Then, we consider the relation between the language classes accepted by RAs in
maximally parallel manner and ones in sequential manner. For the sake of compar-
ing the classes of languages LRAmp and RAsq, remind the following propositions
shown in [15, 16].

Proposition 3.8 [16]. For any context-sensitive language L ⊆ Σ∗, there exists a
linear-bounded RA A such that w ∈ L if and only if c2

n

w ∈ Lmp(A) (or c2
n

w ∈
Lmp(A)) with |w| = n and c /∈ Σ.

Proposition 3.9 [15]. It holds that {wwR |w ∈ Σ∗} /∈ LRAmp.

Theorem 3.10. LRAmp, RAsq and CF are pairwise incomparable.

Proof. (LRAmp − (RAsq ∪ CF) �= ∅) From Proposition 3.8, it holds that
L = {wwc22n |w ∈ Σ∗, |w| = n} ∈ LRAmp. Let h be an injection such that
h(w) = wc2

2n

with |w| = n. On the other hand, from Corollary 3.7 it obviously
holds that L /∈ RAsq ∪ CF .

(RAsq − (LRAmp ∪ CF) �= ∅) Let CM be the class of all commutative
languages. Using a vector of natural numbers V , a commutative language L can
be written as L = {w ∈ Σ∗ |ψ(w) ∈ V }. For w ∈ L, let us consider a computation
of a k-counter machine M accepting L such that after storing ψ(w) in the k
counters in the first |w| steps, M confirms that ψ(w) ∈ V . This computation can
be simulated by an RA AM with ordinary input mode, because

• in the first |w| steps, storing the number of each symbol appearing in w can
realize by AM without λ-move,

• after these steps, AM can simulate M as the proof of Theorem 1.

Hence, it holds that CM ⊂ RAsq.
On the other hand, CM and CS(⊃ LRAmp) is obviously incomparable. There-

fore, it holds that RAsq − (LRAmp ∪ CF) �= ∅.
(CF − (LRAmp ∪ RAsq) �= ∅) From Corollary 3.7 and Proposition 3.9, it holds
that {wwR |w ∈ {a, b}∗} ∈ CF − (LRAmp ∪RAsq). �

Corollary 3.11. It holds that LRAsq ⊂ RAsq and LRAsq ⊂ LRAmp.

Proof. From the definition, it is obviously holds that LRAsq ⊆ RAsq. For the
proof of LRAsq ⊆ LRAmp, let A = (S,Σ,A,D0, f) be a linear-bounded RA.
Construct a linear-bounded RA A′ = (S ∪ {s}, Σ,A′, D0 ∪ {s}, f), where

A′ = {a′ = (R+ s, I, P + s) | a = (R, I, P) ∈ A}.
Then, it holds that Lsq(A) = Lmp(A′) and LRAsq ⊆ LRAmp. Using
Theorem 3.10, it is shown that LRAsq ⊂ RAsq and LRAsq ⊂ LRAmp. �

36 F. OKUBO

= RAλ
sq

RAsq

LRAsq

LRAmp

L1(NON,LOG)

L1(LOG,LOG)

L1(LOG,NON)

REG

= PAsq

PR(RAsq)=

CF

CS = ERAmp = ERAλ
sq

= CRAmp = CRAsq

= PR(LRAmp)RE = RAmp

Figure 4. The diagram of the relation between the language
classes regarding RA. A proper inclusion relation is denoted by a
solid line and an inclusion relation is denoted by a broken line.

4. Conclusion

Based on the formal framework of reaction systems [5], reaction automata (RAs)
were introduced in [15] as language acceptors with multiset rewriting mechanism.
In this paper, we have continued the investigation of RAs with a focus on the
two ways of rule applications, maximally parallel manner and sequential manner.
Considering some restrictions on the workspace and λ-input mode, we have in-
troduced the classes of languages accepted by the variants of RAs, such as RAX ,
RAλ

X , LRAX , LRAλ
X with X ∈ {sq,mp}, and investigated the computation pow-

ers of them. In order to explore Turing machines (TMs) corresponding to those
classes of RAs, we have also introduced a new variant of TMs with restricted
workspace, called s(n)-restricted TMs.

Figure 4 summarizes the relationship among the classes of languages accepted
by various types of RAs, TMs and the Chomsky hierarchy. Specifically, we have
shown the following:

• a language L is accepted by an s(n)-bounded RA with λ-input mode in se-
quential manner if and only if L is accepted by an log s(n)-bounded one-way
TM;

• any recursively enumerable language can be expressed as a homomorphic image
of a language in RAsq;

• the class of languages LRAsq is included in the class of languages accepted by
P automata in sequential manner;

REACTION AUTOMATA WORKING IN SEQUENTIAL MANNER 37

• the three classes of languages LRAmp, RAsq and CF are pairwise incompara-
ble.

There are several subjects remaining to be investigated. First, it is open whether
or not the following proper inclusion relations hold:

• LRAmp ⊂ L1(NON,LOG);
• LRAsq ⊂ L1(LOG,LOG);
• RAsq ⊂ L1(LOG,NON).

Secondly, to explore the computation powers of deterministic reaction automata
and time-bounded reaction automata is open and important issues. Lastly, it would
be useful to develop a method for simulating a variety of chemical reactions in the
real world by the use of the framework based on reaction automata.

Acknowledgements. The author is grateful to Takashi Yokomori for helpful discussions
which improved the paper. The author gratefully acknowledges the anonymous referee
of this paper for helpful suggestions. Especially, the proof of Theorem 1 has been greatly
simplified by the useful comments.

References

[1] C. Calude, Gh. Păun, G. Rozenberg and A. Salomaa, Multiset Processing. In vol. 2235 of
Lect. Notes Comput. Sci. Springer (2001).

[2] E. Csuhaj-Varjú, O.H. Ibarra and Gy. Vaszil, On the computational complexity of P au-
tomata. Nat. Comput. 5 (2006) 109–126.

[3] E. Csuhaj-Varjú, M. Oswald and Gy. Vaszil, P automata, in The Oxford Handbook of Mem-
brane Computing (2010) 145–167.

[4] E. Csuhaj-Varjú and Gy. Vaszil, P automata or purely communicating accepting P systems.
In vol. 2597 of Lect. Notes Comput. Sci. Springer (2003) 219–233.

[5] A. Ehrenfeucht and G. Rozenberg, Reaction systems. Fund. Inform. 75 (2007) 263–280.
[6] A. Ehrenfeucht and G. Rozenberg, Events and modules in reaction systems. Theoret. Com-

put. Sci. 376 (2007) 3–16.
[7] A. Ehrenfeucht and G. Rozenberg, Introducing time in reaction systems. Theoret. Comput.

Sci. 410 (2009) 310–322.
[8] A. Ehrenfeucht, M. Main and G. Rozenberg, Combinatorics of life and death in reaction

systems. Int. J. Found. Comput. Sci. 21 (2010) 345–356.
[9] A. Ehrenfeucht, M. Main and G. Rozenberg, Functions defined by reaction systems. Int. J.

Found. Comput. Sci. 22 (2011) 167–178.
[10] P.C. Fischer, Turing Machines with Restricted Memory Access. Inform. Control 9 (1966)

364–379.
[11] M. Hirvensalo, On probabilistic and quantum reaction systems. Theoret. Comput. Sci. 429

(2012) 134–143.
[12] J.E. Hopcroft, T. Motwani and J.D. Ullman, Introduction to automata theory, language and

computation, 2nd edition. Addison-Wesley (2003).
[13] M. Kudlek, C. Martin-Vide and Gh. Păun, Toward a formal macroset theory, in Multiset

Processing, vol. 2235 of Lect. Notes Comput. Sci., edited by C. Calude, Gh. Păun, G.
Rozenberg and A. Salomaa. Springer (2001) 123–134.

[14] F. Okubo, On the Computational Power of Reaction Automata Working in Sequential Man-
ner, in Proc. of 4th Workshop on Non-Classical Models for Automata and Applications,
vol. 290 of book@ocg.at series. Öesterreichische Comput. Gesellschaft (2012) 149–164.

38 F. OKUBO

[15] F. Okubo, S. Kobayashi and T. Yokomori, Reaction Automata. Theoret. Comput. Sci. 429
(2012) 247–257.

[16] F. Okubo, S. Kobayashi and T. Yokomori, On the Properties of Language Classes Defined
by Bounded Reaction Automata. Theoret. Comput. Sci. 454 (2012) 206–221.

[17] A. Salomaa, Formal Languages. Academic Press, New York (1973).
[18] A. Salomaa, Functions and sequences generated by reaction systems. Theoret. Comput. Sci.

466 (2012) 87–96.

Communicated by M. Holzer.
Received January 29, 2013. Accepted December 11, 2013.

	Introduction
	Preliminaries
	Basic definitions
	Reaction automata
	Turing machines and variants

	Main results
	Conclusion
	References

