
RAIRO-Theor. Inf. Appl. 48 (2014) 61–84 Available online at:

DOI: 10.1051/ita/2014001 www.rairo-ita.org

ON THE CLASSES OF LANGUAGES ACCEPTED
BY LIMITED CONTEXT RESTARTING

AUTOMATA ∗, ∗∗, ∗∗∗

Friedrich Otto1, Peter Černo2 and Frantǐsek Mráz2

Abstract. In the literature various types of restarting automata have
been studied that are based on contextual rewriting. A word w is ac-
cepted by such an automaton if, starting from the initial configura-
tion that corresponds to input w, the word w is reduced to the empty
word by a finite number of applications of these contextual rewritings.
This approach is reminiscent of the notion of McNaughton families
of languages. Here we put the aforementioned types of restarting au-
tomata into the context of McNaughton families of languages, relating
the classes of languages accepted by these automata in particular to
the class GCSL of growing context-sensitive languages and to the class
CRL of Church–Rosser languages.

Mathematics Subject Classification. 68Q45.

Keywords and phrases. Restarting automaton, contextual rewriting, McNaughton family of

languages.

∗ Some of the results of this paper have been announced at NCMA 2012 in Fribourg, Switzer-
land, August 2012. An extended abstract appeared in the proceedings of that conference [24].
∗∗ This paper was prepared while the first author was visiting at Charles University in Prague.
He gratefully acknowledges the hospitality of the Faculty of Mathematics and Physics.
∗∗∗ The second and the third authors were supported by the Grant Agency of the Czech
Republic under the projects P103/10/0783 and P202/10/1333 and by the Grant Agency of
Charles University under project 272111/A-INF/MFF.
1 Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany.
otto@theory.informatik.uni-kassel.de

2 Charles University, Faculty of Mathematics and Physics, Department of Computer Science,
Malostranské nám. 25, 11800 Praha 1, Czech Republic.
petercerno@gmail.com; mraz@ksvi.ms.mff.cuni.cz

Article published by EDP Sciences c© EDP Sciences 2014

http://dx.doi.org/10.1051/ita/2014001
http://www.rairo-ita.org
http://www.edpsciences.org

62 F. OTTO ET AL.

1. Introduction

Restarting automata have been introduced to model the linguistic technique of
analysis by reduction [14]. By now many different types of restarting automata
have been defined and studied intensively, see for example [23]. The deterministic
context-free languages, the context-free languages, the Church–Rosser languages
and the growing context-sensitive languages have all been characterized by cer-
tain types of restarting automata. Further, it has been shown that also some
interesting languages, like the copy language Lcopy = {wcw | w ∈ {a, b}∗ } and
the Gladkij language LGlad = {wcwRcw | w ∈ {a, b}∗ }, which are not growing
context-sensitive, are accepted by certain types of restarting automata. Interest-
ingly, a restarting automaton is not only useful for accepting a language, but in
addition, a restarting automaton (“analysis by reduction”) enables error localiza-
tion in rejected words/sentences (see, e.g. [15]).

Therefore, several attempts for learning restarting automata by genetic algo-
rithms have been made [8, 13]. Unfortunately, the results are far from being ap-
plicable. Another method based on the concept of identification in the limit from
positive data was proposed in [19]. This method uses positive samples of simplifi-
cations (reductions) and positive samples of so-called simple words (sentences) of
the language to be learnt. It applies to learning a subclass of restarting automata
called strictly locally testable restarting automata. Their definition as well as the
protocol for learning them is based on the notion of strictly locally testable lan-
guages. As it turned out, the strictly locally testable restarting automata are quite
expressive, as they accept a proper superclass of the growing context-sensitive
languages.

In [9] an even simpler version of the restarting automaton was introduced: the
so-called clearing restarting automaton. While in general a restarting automaton
scans its tape content from left to right until it detects a position to which a
rewrite operation applies, the rewriting done by a clearing restarting automaton
only depends on the context of a fixed size around the subword to be rewritten. In
fact, a clearing restarting automaton can only delete symbols. For these automata a
simple learning algorithm exists, but not surprisingly, clearing restarting automata
are quite limited in their expressive power. They accept all regular languages and
even some languages that are not context-free, but they do not even accept all
context-free languages. Accordingly, they were extended to the so-calledΔ-clearing
restarting automata and theΔ∗-clearing restarting automata that can use a marker
symbol Δ in their rewrite operations. It turned out that these types of restarting
automata only accept languages that are growing context-sensitive [24], but that
they can accept all context-free languages [10]. However, it is still open whether
or not there is a growing context-sensitive language that is not accepted by any
Δ- or Δ∗-clearing restarting automaton.

Finally, in [2] limited context restarting automata were defined as an extension
of the clearing restarting automaton. Also these automata apply rewrite steps only
based on context information, but their rewrite rules are more general. In fact, the

LIMITED CONTEXT RESTARTING AUTOMATA 63

most general form of these automata accepts exactly the growing context-sensitive
languages. In addition, in [2] a special version of a genetic algorithm is proposed
to learn these automata from positive and negative samples.

As a limited context restarting automaton applies its rewrite operations based
on context information, it can be interpreted as executing reductions with respect
to a finite string-rewriting system. Furthermore, a word w belongs to the lan-
guage L(M) that is accepted by a given limited context restarting automaton M ,
if and only if M can reduce w to the empty word λ, that is, if and only if w
can be rewritten to λ by the induced string-rewriting system. This is essentially
the same concept as the one that underlies the notion of McNaughton families
of languages studied in [3]. Accordingly, a detailed study of the correspondence
between the various types of limited context restarting automata on the one hand
and the various McNaughton families of languages of [3] on the other hand is
called for. Here we present such a study. For this we first repeat the definitions
of the concept of a McNaughton family of languages and of the various types of
limited context restarting automata. Then we relate the language classes accepted
by these automata to the classes of the classical Chomsky hierarchy and to cer-
tain McNaughton families of languages, among which the class GCSL of growing
context-sensitive languages [7,11], the class CRL of Church–Rosser languages [18],
and the class con-gen-mon-McNL of confluent generalized monadic McNaughton
languages [17] will appear prominently.

Notation. In the following all alphabets considered will be finite. For an alpha-
bet Σ, Σ∗ is used to denote the set of all words over Σ including the empty word λ.
For w ∈ Σ∗, |w| denotes the length of w, and wR is used to denote the reversal
(or mirror image) of w. Accordingly, for a language L ⊆ Σ∗, LR denotes the lan-
guage LR = {wR | w ∈ L }. By N we denote the set of non-negative integers.
A weight function is a mapping g : Σ → N that assigns a positive weight g(a)
to each letter a of Σ. It is extended to arbitrary words by taking g(λ) = 0 and
g(wa) = g(w) + g(a) for all words w ∈ Σ∗ and all a ∈ Σ. Finally, for any type A
of automaton, L(A) is used to denote the class of languages accepted by automata
of this type.

2. McNaughton families of languages

A string-rewriting system S on an alphabet Σ consists of (finitely many) pairs
of strings from Σ∗, called rewrite rules, which are written as (�→ r). By dom(S)
we denote the set dom(S) = { � | ∃r ∈ Σ∗ : (� → r) ∈ S } of left-hand sides of
rules of S. The reduction relation ⇒∗

S on Σ∗ that is induced by S is the reflexive
and transitive closure of the single-step reduction relation

⇒S = { (u�v, urv) | (�→ r) ∈ S, u, v ∈ Σ∗ }.

For a string u ∈ Σ∗, if there exists a string v such that u ⇒S v holds, then
u is called reducible mod S. If such a string v does not exist, then u is called

64 F. OTTO ET AL.

irreducible mod S. By Δ∗
S(u) we denote the set of all descendants of u, that is,

Δ∗
S(u) = { v | u ⇒∗

S v }, ∇∗
S(v) = { u | u ⇒∗

S v } is the set of all ancestors of v,
and IRR(S) denotes the set of all irreducible strings mod S. It is easily seen that
IRR(S) is a regular language for each finite string-rewriting system S. By ⇔∗

S

we denote the Thue congruence on Σ∗ that is induced by S. It is the smallest
equivalence relation on Σ∗ containing the single-step reduction relation ⇒S .

Here we are interested in certain restricted types of string-rewriting systems. A
string-rewriting system S is called

• terminating, if there is no infinite sequence of reduction steps w ⇒S w1 ⇒S

w2 ⇒S . . .,
• weight-reducing, if there exists a weight function g satisfying g(�) > g(r) for

each rule (�→ r) ∈ S,
• length-reducing, if |�| > |r| for each rule (�→ r) ∈ S,
• generalized monadic, if |�| ≥ |r| and |r| ≤ 1 for each rule (�→ r) ∈ S,
• monadic, if |�| > |r| and |r| ≤ 1 for each rule (�→ r) ∈ S,
• confluent, if, for all u, v ∈ Σ∗, u ⇔∗

S v implies that there exists some z ∈ Σ∗

such that u⇒∗
S z and v ⇒∗

S z hold, and
• convergent, if it is both terminating and confluent.

Obviously, each weight-reducing system is terminating, and each length-reducing
system is weight-reducing. For a convergent system S, the set IRR(S) of irreducible
strings is a complete set of unique representatives for the Thue congruence ⇔∗

S

(see, e.g., [4]).
While it is undecidable in general whether a finite string-rewriting system is con-

fluent (see, e.g., [4]), confluence is a decidable property for finite string-rewriting
systems that are terminating. Let S be a string-rewriting system on Σ. If there are
two rules (�→ r) and (�′ → r′) in S such that � = u�′v for some u, v ∈ Σ∗, then the
word � can be rewritten by either of the two rules: �⇒S r and � = u�′v ⇒S ur

′v.
If the system S is to be confluent, then the words r and ur′v must have a common
descendant. Accordingly, the pair (r, ur′v) is called a critical pair of S. Further-
more, if � = uv and �′ = vw for some words u, v, w ∈ Σ+, then the word uvw can
be rewritten by either rule: uvw = �w ⇒S rw and uvw = u�′ ⇒S ur

′. Hence, also
(rw, ur′) is a critical pair of S.

Proposition 2.1 [16]. A terminating string-rewriting system is confluent if and
only if, for each critical pair (p, q) of S, p and q have a common descendant mod S.

If S is finite, then it has only finitely many critical pairs, which can be computed.
Hence, it follows immediately that confluence is decidable for finite terminating
string-rewriting systems.

Next we come to the notion of McNaughton family of languages. A language
L ⊆ Σ∗ is called a McNaughton language, if there exist a finite alphabet Γ strictly
containing Σ, a finite string-rewriting system S on Γ , strings t1, t2 ∈ (Γ �Σ)∗ ∩
IRR(S), and a letter Y ∈ (Γ �Σ)∩IRR(S) such that, for all w ∈ Σ∗, w ∈ L if and
only if t1wt2 ⇒∗

S Y . Here the symbols of Σ are terminals, while those of Γ � Σ

LIMITED CONTEXT RESTARTING AUTOMATA 65

can be seen as nonterminals. We say that the McNaughton language L is specified
by the four-tuple (S, t1, t2, Y). This fact will be expressed as L = L(S, t1, t2, Y).

We illustrate this definition by a simple example.

Example 2.2. Let Σ = {a}, let Γ = {a, c, $, F, Y }, and let S be the following
finite and length-reducing string-rewriting system on Γ :

S = {caaaa→ caaF, Faa→ aF, F$ → $, caa$ → Y, ca$ → Y }.

This system does not have any critical pairs, and hence, it is confluent. Now, for
all m ∈ N, cam$ ⇒∗

S Y if and only if m = 2n for some n ≥ 0, which implies that
the McNaughton language L(S, c, $, Y) is the language Lexpo = { a2n | n ∈ N }.

By placing restrictions on the finite string-rewriting systems used we obtain cer-
tain families of McNaughton languages. A McNaughton language is called weight-
reducing (length-reducing), if it is defined using a finite string-rewriting system that
is weight-reducing (length-reducing). The resulting class of languages is denoted
by wr-McNL (lr-McNL). A McNaughton language is called (generalized) monadic,
if it is defined using a finite string-rewriting system that is (generalized) monadic.
The resulting language classes are denoted by gen-mon-McNL and mon-McNL.
By requiring, in addition, that the string-rewriting system is confluent, we obtain
the McNaughton families con-wr-McNL, con-lr-McNL, con-gen-mon-McNL, and con-
mon-McNL. Thus, Example 2.2 shows that Lexpo ∈ con-lr-McNL. Concerning these
families the following results are known.

Theorem 2.3 [3, 17].
(a) GCSL = wr-McNL = lr-McNL.
(b) CRL = con-wr-McNL = con-lr-McNL.
(c) CFL = gen-mon-McNL = mon-McNL.
(d) REG � con-mon-McNL ⊆ con-gen-mon-McNL � symDCFL.

Here REG and CFL denote the classes of regular and context-free languages, and
symDCFL = DCFL∩DCFLR, that is, a language L belongs to symDCFL, if both, L
and LR, are deterministic context-free. It is still open whether the second inclusion
in (d) is proper. In fact, it is shown in [17] that the families con-mon-McNL and con-
gen-mon-McNL coincide, if and only if the former is closed under inverse strictly
alphabetic morphisms.

3. Limited context restarting automata

The limited context restarting automaton, abbreviated as lc-R-automaton, was
introduced in [2] as a generalization of the clearing restarting automaton. Here we
introduce a slightly generalized version which uses weight-reducing rules instead
of length-reducing ones.

Definition 3.1. A limited context restarting automaton M is defined through a
triple M = (Σ,Γ, I), where Σ is an input alphabet, Γ is a working alphabet

66 F. OTTO ET AL.

containing Σ, and I is a finite set of instructions of the form (u |x → y | v),
where x, y ∈ Γ ∗ such that g(x) > g(y) for some weight function g : Γ ∗ → N,
u ∈ {λ, c} · Γ ∗, and v ∈ Γ ∗ · {λ, $}. Here c and $ are the left and right sentinels,
which are not elements of Γ .

The lc-R-automaton M = (Σ,Γ, I) induces a reduction relation �c
M on Γ ∗ that

is defined as follows: for each w, z ∈ Γ ∗, w �c
M z, if there exist words w1, w2 ∈ Γ ∗

and an instruction (u |x → y | v) in I such that w = w1xw2, z = w1yw2, u is a
suffix of cw1 and v is a prefix of w2$. Thus, the factor x is rewritten into y, if
it appears within the context uxv. By �c∗

M we denote the reflexive and transitive
closure of �c

M . The language accepted by the lc-R-automaton M is L(M) = {w ∈
Σ∗ | w �c∗

M λ }.
An lc-R-automaton M accepts exactly the set of input words which can be

reduced to λ. Obviously, λ is in L(M) for each lc-R-automaton M . Accordingly, if
L is a language that does not contain λ as an element, then L is not accepted by
any lc-R-automaton. In order to overcome this problem, we will consider equality
of languages only up to the empty word, that is, we will say that two languages L
and L′ on Σ are equal, denoted as L =̇L′, if L ∩Σ+ = L′ ∩Σ+ holds.

Example 3.2. Let M = ({a, b, c}, {a, b, c}, I) be the lc-R-automaton that is de-
fined by the set of instruction I = {(λ | acbb → c |λ), (c | c → λ | $)}. Then
aaacbbbbbb � c

M aacbbbb � c
M acbb � c

M c � c
M λ, and so the word a3cb6 belongs

to L(M). It is easily seen that L(M) = { ancb2n | n ≥ 0 }.
Recall from Definition 3.1 that all instructions of an lc-R-automaton are nec-

essarily weight-reducing. These most general lc-R-automata are said to be of
type R′

0. We now define some restricted types of lc-R-automata by putting addi-
tional restrictions on the form of their instructions. We say that an lc-R-automaton
M = (Σ,Γ, I) is of type

• R0, if I only contains instructions of the form (u |x→ y | v), where |x| > |y|;
• R′

1, if I only contains instructions of the form (u |x→ y | v), where |y| ≤ 1, and
x ∈ Γ+;

• R1, if I only contains instructions of the form (u |x→ y | v), where |y| ≤ 1, and
x ∈ Γ+ such that |x| > |y|;

• R′
2, if I only contains instructions of the form (u |x → y | v), where |y| ≤ 1,
u ∈ {λ, c}, v ∈ {λ, $}, and x ∈ Γ+;

• R2, if I only contains instructions of the form (u |x → y | v), where |y| ≤ 1,
u ∈ {λ, c}, v ∈ {λ, $}, and x ∈ Γ+ such that |x| > |y|;

• R′
3, if I only contains instructions of the form (u |x → y | $), where |y| ≤ 1,
u ∈ {λ, c}, and x ∈ Γ+;

• R3, if I only contains instructions of the form (u |x → y | $), where |y| ≤ 1,
u ∈ {λ, c}, and x ∈ Γ+ such that |x| > |y|.

For any R ∈ {R0,R′
0,R1,R′

1,R2,R′
2,R3,R′

3}, we will refer to lc-R-automata
of type R as lc-R[R]-automata. In [1], Basovńık studied length-reducing lc-R-
automata, obtaining the following three characterizations.

LIMITED CONTEXT RESTARTING AUTOMATA 67

Theorem 3.3 [1].
(a) L(lc-R[R0]) = GCSL. (b) L(lc-R[R2]) = CFL. (c) L(lc-R[R3]) = REG.

In the current section we complete these results by also studying the other five
types of lc-R-automata.

Let M = (Σ,Γ, I) be an lc-R-automaton. With M we can associate the finite
string-rewriting system R(M) = { uxv → uyv | (u |x → y | v) ∈ I }. Then R(M)
induces a reduction relation ⇒∗

R(M) on the set of bordered words c · Γ ∗ · $, which
is the reflexive and transitive closure of the single-step reduction relation ⇒R(M)

(see Sect. 2). Thus, for all w, z ∈ Γ ∗, we have cw$ ⇒R(M) cz$ iff w �c
M z holds.

Accordingly, we see that

L(M) = {w ∈ Σ∗ | w �c∗
M λ } = {w ∈ Σ∗ | cw$ ⇒∗

R(M) c$ }.

By taking S(M) = R(M) ∪ {c$ → Y }, where Y is a new letter, we obtain a
finite string-rewriting system on Γ ′ = Γ ∪ {c, $, Y } such that L(M) = {w ∈ Σ∗ |
cw$ ⇒∗

S(M) Y } holds. It follows that L(M) is the McNaughton language that is
specified by the four-tuple (S(M), c, $, Y).

If M is of type R′
0, then the string-rewriting system S(M) is weight-reducing.

Hence, it follows from Theorem 2.3(a) that L(M) ∈ GCSL. Together with
Theorem 3.3(a), this yields the following characterization, as each lc-R-automaton
of type R0 is obviously also of type R′

0.

Theorem 3.4. L(lc-R[R′
0]) = L(lc-R[R0]) = GCSL.

In the proof of Theorem 3.3(a) in [1], the author constructs an lc-R[R0]-automa-
ton M for the language L(G) from a given growing context-sensitive grammar G.
Basovńık’s thesis [1] is difficult to access. Therefore, we present a full proof for
Theorem 3.4 using a construction that is based on the two-pushdown automata
of [7], as we will refer back to this proof later.

Proof of Theorem 3.4. Because of the above observation, it suffices to show that
each growing context-sensitive language is accepted by some lc-R-automaton of
type R0. Hence, assume that L ⊆ Σ∗ is growing context-sensitive. We construct
an lc-R[R0]-automaton M for L. As L is growing context-sensitive, there exists
a length-reducing two-pushdown automaton (TPDA, for short, see, e.g., [7]) T =
(Q,Σ, Γ, δ, q0,⊥, λ, λ, {qf}) that accepts L. Here Γ is the tape alphabet of T that
includes the input alphabet Σ as well as the special bottom marker ⊥ for the
pushdowns. Thus, for all w ∈ Σ∗, w ∈ L if and only if T accepts starting from the
initial configuration ⊥q0w⊥, that is, if and only if ⊥q0w⊥ �∗

T qf holds (see [20]
Lems. 3.4 and 4.1). Actually, we may even assume without loss of generality that
the initial step of a computation of T that starts from an initial configuration of
the form ⊥q0w⊥ reduces the overall length of the configuration by at least two,
and that T never enters its initial state q0 during a computation.

Let Γ = { a | a ∈ Γ } be a new alphabet in one-to-one correspondence to Γ such
that Q, Γ , and Γ are pairwise disjoint, let : Γ ∗ → Γ

∗
denote the corresponding

68 F. OTTO ET AL.

isomorphism that is induced by a �→ a (a ∈ Γ), and let Δ = Q∪Γ ∪Γ . In analogy
to the proof of [20] Lemma 4.1, we can construct a finite length-reducing string-
rewriting system R on Δ such that, for all w ∈ Σ∗, w ∈ L iff ⊥q0w⊥ ⇒∗

R qf . Here
the final state qf is introduced by specific rules of the form ⊥uqv⊥ → qf . Now
from R we obtain an lc-R-automaton M = (Σ,Δ, I) by taking

I = { (λ | �→ r | λ) | (�→ r) ∈ R, |�|⊥ = |�|⊥ = 0 } ∪
{ (c | u→ v | λ) | (⊥u→ ⊥v) ∈ R, |u|⊥ = 0 = |u|q0 } ∪
{ (c | u→ v | λ) | (⊥q0u→ ⊥v) ∈ R, |u|⊥ = 0 } ∪
{ (λ | u→ v | $) | (u⊥ → v⊥) ∈ R, |u|⊥ = 0 } ∪
{ (c | u→ v | $) | (⊥u⊥ → ⊥v⊥) ∈ R, |u|q0 = 0 } ∪
{ (c | u→ v | $) | (⊥q0u⊥ → ⊥v⊥) ∈ R } ∪
{ (c | u→ λ | $) | (⊥q0u⊥ → qf) ∈ R, |u| > 0} ∪
{ (c | u→ λ | $) | (⊥u⊥ → qf) ∈ R, |u|q0 = 0 }.

Then M is of type R0, and for all w ∈ Σ+,

w ∈ L(M) iff w �c∗
M λ iff cw$ ⇒∗

R(M) c$ iff ⊥q0w⊥ ⇒∗
R qf iff w ∈ L.

Thus, L(M) =̇L. This completes the proof of Theorem 3.4. �

Let G = (N,T, S, P) be a weight-increasing context-sensitive grammar, that is,
there exists a weight function g such that g(�) < g(r) for each rule (� → r) of P ,
and in addition, each rule (� → r) has the form � = uAv and r = uxv for some
A ∈ N , u, v ∈ (N ∪ T)∗, and x ∈ (N ∪ T)+. By taking

I(G) = { (u |x→ A | v) | (uAv → uxv) ∈ P } ∪ { (c | r → λ | $) | (S → r) ∈ P },
we obtain an lc-R-automaton M(G) = (T,N ∪ T, I(G)). It is easily seen that
M(G) is of type R′

1, and that L(M(G)) = L(G) ∪ {λ} holds. Thus, ignoring
the special case of the empty word we see that all languages that are gener-
ated by weight-increasing context-sensitive languages are accepted by lc-R[R′

1]-
automata. However, the class of languages that are generated by weight-increasing
context-sensitive grammars, which is known as the class ACSL of acyclic context-
sensitive languages, coincides with the class GCSL of growing context-sensitive
languages [21]. Hence, we obtain the following characterization.

Theorem 3.5. L(lc-R[R′
1]) = GCSL.

If M = (Σ,Γ, I) is an lc-R[R1]-automaton, then the rules of R(M) have the
form (uxv → uyv), where |x| > |y| and |y| ≤ 1. By replacing each instruction
of the form (u |x → λ | v) ∈ I by finitely many rules with a revised context, the
following technical result can be derived.

Lemma 3.6. If M = (Σ,Γ, I) is an lc-R[R1]-automaton, then there exists an
equivalent lc-R-automaton M ′ = (Σ,Γ, I ′) of type R1 such that |y| = 1 for all
instructions (u |x→ y | v) ∈ I ′ satisfying u �= c or v �= $. In fact, for all w, z ∈ Γ ∗,
w �c

M z if and only if w �c
M ′ z.

LIMITED CONTEXT RESTARTING AUTOMATA 69

Proof. To obtain M ′ from M , we simply replace each instruction of the form
i = (u |x → λ | v) ∈ I. If u = u1A for some A ∈ Γ , then we replace i by the
instruction i′ = (u1 |Ax → A | v); if u = λ or u = c and v = Bv1 for some
B ∈ Γ , then we replace i by the instruction i′ = (u |xB → B | v1); if u = c and
v = λ, then we replace i by the set of instructions I ′(i) = { (c |xA → A |λ) |
A ∈ Γ } ∪ {(c |x → λ | $)}; if u = λ and v = $, then we replace i by the set
of instructions I ′(i) = { (λ |Ax → A | $) | A ∈ Γ } ∪ {(c |x → λ | $)}; and if
u = λ = v, then we replace i by the set of instructions I ′(i) = { (λ |xA →
A |λ), (λ |Ax → A |λ) | A ∈ Γ } ∪ {(c |x → λ | $)}. Then, for all w, z ∈ Γ ∗,
if w �c

M z using instruction i, then w �c
M ′ z by instruction i′ or by one of the

instructions of I ′(i), and conversely, if w �c
M ′ z by instruction i′ or by one of the

instructions of I ′(i), then w �c
M z by instruction i. �

Now let M = (Σ,Γ, I) be an lc-R[R1]-automaton that satisfies the properties
of Lemma 3.6, let R(M) be the corresponding string-rewriting system, and let
R(M)−1 denote the system R(M)−1 = { (v → u) | (u → v) ∈ R(M) }. From
R(M)−1 we can construct a length-increasing context-sensitive grammar G(M) =
(Γ ′, Σ′, S,R′) that generates the language L(G(M)) = c · L(M) · $. Thus, the
language c ·L(M) ·$ is a growing acyclic context-sensitive language (see, e.g., [21]).
It is known from [6] that the class GACSL of growing acyclic context-sensitive
languages is closed under the operations of removing left and right end markers.
Hence, the language L(M) is growing acyclic context-sensitive, too. Conversely, if
G = (N,T, S, P) is a length-increasing context-sensitive grammar, then by taking

I(G) = { (u |x→ A | v) | (uAv → uxv) ∈ P } ∪ { (c | r → λ | $) | (S → r) ∈ P },
we obtain an lc-R-automaton M(G) = (T,N ∪ T, I(G)) of type R1 such that
L(M(G)) = L(G) ∪ {λ} holds. Thus, we have the following characterization.

Theorem 3.7. L(lc-R[R1]) = GACSL.

It is known that the class GACSL properly contains the class CFL of context-free
languages, and it is obviously contained in ACSL = GCSL. However, it is an open
problem whether this containment is strict or not.

LetM = (Σ,Γ, I) be an lc-R[R′
2]-automaton. Then, for each instruction (u |x→

y | v) ∈ I, we have u ∈ {λ, c}, v ∈ {λ, $}, |x| ≥ 1, |y| ≤ 1, and g(x) > g(y) for a
fixed weight function g. Hence, the corresponding string-rewriting system R(M)
can be split into four disjoint subsystems:

(a) Rbif = { cx$ → cy$ | (c |x→ y | $) ∈ I }, the bifix rules of R(M),
(b) Rpre = { cx→ cy | (c |x→ y |λ) ∈ I }, the prefix rules of R(M),
(c) Rsuf = { x$ → y$ | (λ |x→ y | $) ∈ I }, the suffix rules of R(M),
(d) Rinf = { x→ y | (λ |x→ y |λ) ∈ I }, the infix rules of R(M).

Let B(M) = {α ∈ Γ ∗ | cα$ ∈ dom(Rbif) and cα$ ⇒∗
R(M) c$ } ∪ {λ}. As R(M) is

finite, so is the set B(M). Let R′ = Rpre ∪Rsuf ∪Rinf . Then

L(M) = {w ∈ Σ∗ | cw$ ⇒∗
R(M) c$ } = {w ∈ Σ∗ | ∃α ∈ B(M) : cw$ ⇒∗

R′ cα$ },

70 F. OTTO ET AL.

that is, c · L(M) · $ = ∇∗
R′(c · B(M) · $) ∩ (c ·Σ∗ · $). Recall that ∇∗

R′(α) denotes
the set of ancestors of α mod R′, and ∇∗

R′(B) =
⋃

α∈B ∇∗
R′(α) for any set B. Now

we define a mixed rewriting system (see, e.g., [12]) P (M) = Ppre ∪ Psuf ∪ Pinf by
taking the prefix-rewriting system3 Ppre = { x→ y | (cx→ cy) ∈ Rpre }, the suffix-
rewriting system4 Psuf = { x → y | (x$ → y$) ∈ Rsuf }, and the string-rewriting
system Pinf = Rinf . Then L(M) = ∇∗

P (M)(B(M)) ∩ Σ∗. As P (M) only contains
generalized monadic rules (see, e.g., [17]), it follows that the set ∇∗

P (M)(B(M)) is
context-free, which in turn implies that L(M) is a context-free language.

Conversely, if L ⊆ Σ∗ is a context-free language, then there exists a context-free
grammar G = (N,Σ, S, P) for L ∩Σ≥2 such that, for each rule (� → r) of P , we
have |�| = 1 and |r| = 2. We now obtain an lc-R-automaton M(G) = (Σ,N ∪Σ, I)
by taking

I = { (λ | r → � |λ) | (�→ r) ∈ P } ∪ { (c | a→ λ | $) | a ∈ (Σ ∩ L) ∪ {S} }.
Then M(G) is of type R2, and L(M(G)) =̇L. Thus, we have the following char-
acterization.

Theorem 3.8. L(lc-R[R′
2]) = L(lc-R[R2]) = CFL.

Finally, let M = (Σ,Γ, I) be an lc-R[R′
3]-automaton, that is, for all instructions

(u |x → y | v) ∈ I, we have u ∈ {λ, c}, v = $, |x| ≥ 1, |y| ≤ 1, and g(x) > g(y) for
a fixed weight function g. Hence, the corresponding string-rewriting system R(M)
can be split into two disjoint subsystems:

(a) Rbif = { cx$ → cy$ | (c |x→ y | $) ∈ I }, the bifix rules of R(M),
(b) Rsuf = { x$ → y$ | (λ |x→ y | $) ∈ I }, the suffix rules of R(M).

As above, the set B(M) = {α ∈ Γ ∗ | cα$ ∈ dom(Rbif) and cα$ ⇒∗
R(M) c$ } ∪ {λ}

is finite, and

L(M) = {w ∈ Σ∗ | cw$ ⇒∗
R(M) c$ } = {w ∈ Σ∗ | ∃α ∈ B(M) : cw$ ⇒∗

Rsuf
cα$ },

that is, c · L(M) · $ = ∇∗
Rsuf

(c · B(M) · $) ∩ (c · Σ∗ · $). For the suffix-rewriting
system P (M) = { y → x | (x$ → y$) ∈ Rsuf }, we obtain L(M) = Δ∗

P (M)(B(M))∩
Σ∗. As B(M) is finite, and, hence, regular, it follows that the set of descendants
Δ∗

P (M)(B(M)) of this set with respect to the suffix rewriting system P (M) is
regular [5], which in turn implies that L(M) is regular.

Conversely, if L ⊆ Σ∗ is a regular language, then there exists a regular grammar
G = (N,Σ, S, P) for L∩Σ≥2 such that, for each rule (�→ r) of P , we have � ∈ N
and r ∈ Σ ·N ∪Σ2. We now obtain an lc-R-automaton M(G) = (Σ,N ∪Σ, I) by
taking

I = { (λ | r → � | $) | (�→ r) ∈ P } ∪ { (c | a→ λ | $) | a ∈ (L ∩Σ) ∪ {S} }.
Then M(G) is of type R3, and L(M(G)) =̇L. Thus, we have the following char-
acterization.

3The rules of a prefix-rewriting system can only be applied to the prefix of a word.
4The rules of a suffix-rewriting system can only be applied to the suffix of a word.

LIMITED CONTEXT RESTARTING AUTOMATA 71

L(lc-R[R0]) L(lc-R[R′
0]) GCSL lr-McNL wr-McNL

L(lc-R[R′
1])

L(lc-R[R1])

?
��

GACSL

?

��

L(lc-R[R2]) L(lc-R[R′
2]) CFL

��

mon-McNL gen-mon-McNL

L(lc-R[R3]) L(lc-R[R′
3]) REG

��

Figure 1. Hierarchy of language classes that are accepted by the
various types of limited context restarting automata. Question
marks indicate inclusions not known to be proper.

Theorem 3.9. L(lc-R[R′
3]) = L(lc-R[R3]) = REG.

The results on the various lc-R-automata are summarized by the diagram in
Figure 1.

4. Confluent limited context restarting automata

As defined in Definition 3.1, an lc-R-automaton M = (Σ,Γ, I) is a nondeter-
ministic device. A word w ∈ Σ∗ belongs to the language L(M) accepted by M ,
if and only if there exists a computation of M that transforms the initial con-
figuration with tape content cw$ into the configuration with tape content c$. In
general, there will be many different computations of M that start from the con-
figuration with tape content cw$, and only some of them will derive the tape
content c$. As this phenomenon complicates the problem of deciding membership
in L(M), we are interested in lc-R-automata for which all computations from cw$
lead to c$, if w ∈ L(M). Actually, as the reduction relation �c

M corresponds to
the single-step reduction relation ⇒R(M) that is induced by the string-rewriting
system R(M) on the set of bordered words c ·Γ ∗ ·$, this would lead to considering
lc-R-automata M for which the string-rewriting system R(M) is confluent on the
congruence class [c$]R(M). Unfortunately, it is undecidable in general whether a
finite string-rewriting system is confluent on a given congruence class, even if the
given finite system only contains length-reducing rules [22]. Therefore, we turn
to lc-R-automata that satisfy an even stronger restriction than confluence on a
particular congruence class.

Definition 4.1. An lc-R-automaton M = (Σ,Γ, I) is called confluent if the cor-
responding string-rewriting system R(M) is confluent.

As R(M) is a finite and terminating string-rewriting system for each lc-R-
automaton, confluence is a decidable property of lc-R-automata (see Prop. 2.1

72 F. OTTO ET AL.

and the subsequent paragraph). We illustrate the above definition by a simple
example.

Example 4.2. Let Σ = {a}, let Γ = {a, F}, and let I = {(c | aaaa → aaF |λ),
(λ |Faa → aF |λ), (λ |F → λ | $), (c | aa → λ | $), (c | a → λ | $)}. Then M =
(Σ,Γ, I) is an lc-R-automaton of type R0 that accepts the language Lexpo, and it
is easily checked that M is confluent.

We will use the prefix con- to denote types of confluent lc-R-automata. Further,
for each type R ∈ {R′

i,Ri | i ∈ {0, 1, 2, 3} }, lc-R[con-R] will denote the class of
lc-R-automata of type R that are confluent.

In the following we study the expressive power of the various types of confluent
lc-R-automata. As in the previous section we consider the various types in turn,
from the most general one to the most restricted one.

If M = (Σ,Γ, I) is an lc-R[con-R′
0]-automaton, then S(M) = R(M)∪{c$ → Y }

is a finite weight-reducing string-rewriting system that is confluent, and L(M) is
simply the McNaughton language that is specified by (S(M), c, $, Y). Thus, L(M)
is a Church–Rosser language [18]. On the other hand, if L ⊆ Σ∗ is a Church–Rosser
language, then it is accepted by a length-reducing deterministic two-pushdown
automaton [20]. Following the proof of Theorem 3.4, a confluent lc-R-automaton of
type R0 can be constructed for L. Hence, we obtain the following characterization.

Theorem 4.3. L(lc-R[con-R′
0]) = L(lc-R[con-R0]) = CRL.

In [25] Woinowski introduced a normal form for presentations of Church–Rosser
languages, called context-splittable Church–Rosser language systems. Such a pre-
sentation is of the form (S, c, $, Y), where S is a finite, weight-reducing, and conflu-
ent string-rewriting system that consists of rules of the form (uxv → uyv), where
u, v ∈ Γ ∗, x ∈ Γ+, and |y| ≤ 1, and rules of the form (cx$ → Y), where x ∈ Γ+.
As each Church–Rosser language admits a presentation of this form [25], and as
a presentation of this form can immediately be translated into an lc-R-automaton
of type con-R′

1, this gives the following characterization.

Theorem 4.4. L(lc-R[con-R′
1]) = CRL.

For the class of languages that are accepted by confluent lc-R-automata of
type R1, we have no characterization result yet. On the one hand, these automata
can only accept (certain) Church–Rosser languages, and hence, they do not accept
all context-free languages. On the other hand, the languageLexpo5 = { a5n | n ≥ 0 }
is accepted by an lc-R[con-R1]-automaton, as shown in [24]. As this language is
not context-free, we can at least conclude the following.

Corollary 4.5. The language class L(lc-R[con-R1]) is incomparable to the class
CFL with respect to inclusion.

LIMITED CONTEXT RESTARTING AUTOMATA 73

It remains open whether lc-R-automata of type con-R1 accept all Church–Rosser
languages, in fact, it is even open whether they accept at least all deterministic
context-free languages.

Now we turn to the confluent lc-R-automata of type R′
2.

Theorem 4.6. L(lc-R[con-R′
2]) ⊆ con-gen-mon-McNL.

Recall from Section 2 that con-gen-mon-McNL denotes the family of confluent
generalized monadic McNaughton languages.

Proof. Let M = (Σ,Γ, I) be an lc-R[con-R′
2]-automaton. As in the discussion that

led to Theorem 3.8, the corresponding string-rewriting system R(M) can be split
into four disjoint subsystems:

(a) Rbif = { cx$ → cy$ | (c |x→ y | $) ∈ I }, the bifix rules of R(M),
(b) Rpre = { cx→ cy | (c |x→ y |λ) ∈ I }, the prefix rules of R(M),
(c) Rsuf = { x$ → y$ | (λ |x→ y | $) ∈ I }, the suffix rules of R(M),
(d) Rinf = { x→ y | (λ |x→ y |λ) ∈ I }, the infix rules of R(M).

Observe that together with R(M), also the string-rewriting system

S(M) = R(M) ∪ {c$ → Y }

is confluent, as the additional rule (c$ → Y) does not yield any additional crit-
ical pairs. In what follows, we will transform the system S(M) into a conflu-
ent generalized monadic string-rewriting system G on an extended alphabet Γ̂
such that L(M)=L(G, c, $, Y) holds. This transformation will be realized in three
steps. We use the notation nf(w) to denote the unique irreducible descendant
of the word w ∈ (Γ ∪ {c, $, Y })∗ with respect to the string-rewriting system
S(M). Recall that S(M) is convergent, as it is weight-reducing and confluent, and
hence, these normal forms exist. Furthermore, we take ρ to denote the number
ρ = max{ |x| | ∃u, y, v : (u |x→ y | v) ∈ I }.
Step 1. First we replace the subsystem Rbif ∪{c$ → Y } by a new set of bifix rules
R′

bif on Γ ′ = Γ ∪ {c, $, Y,N}, where N is another new letter. The system R′
bif is

defined as follows:

R′
bif = { cw$ → Y | w ∈ Γ ∗, |w| ≤ 2 · ρ, nf(cw$) = Y }∪

{ cw$ → N | w ∈ Γ ∗, |w| ≤ 2 · ρ, nf(cw$) �= Y }.

Then (c$ → Y) ∈ R′
bif , and for all (cw$ → N) ∈ R′

bif , we have |w| ≥ 1. Let

S1(M) = R′
bif ∪Rpre ∪Rsuf ∪Rinf . (4.1)

Obviously, S1(M) is a finite and weight-reducing string-rewriting system.

Claim 4.7. For all w ∈ Γ ∗, cw$ ⇒∗
S(M) Y iff cw$ ⇒∗

S1(M) Y .

74 F. OTTO ET AL.

Proof. For w ∈ Γ ∗, if cw$ ⇒∗
S(M) Y , then either cw$ ⇒∗

Rpre∪Rsuf∪Rinf
c$, or

there exists a rule (cx$ → cy$) ∈ Rbif such that cw$ ⇒∗
Rpre∪Rsuf∪Rinf

cx$ ⇒
cy$ ⇒∗

S(M) Y holds. As |x| ≤ ρ, we see that (cx$ → Y) is contained in R′
bif ,

and hence, cw$ ⇒∗
S1(M) Y follows. Conversely, if (cx$ → Y) is a rule of R′

bif ,
then cw$ ⇒∗

S(M) Y holds. Thus, for any w ∈ Γ ∗, if cw$ ⇒∗
S1(M) Y , then also

cw$ ⇒∗
S(M) Y . �

It follows that L(M) is the McNaughton language that is specified by the 4-tuple
(S1(M), c, $, Y).

Claim 4.8. The string-rewriting system S1(M) is confluent.

Proof. As the system S(M) is confluent, it follows immediately that the subsys-
tems Rpre ∪Rinf and Rsuf ∪Rinf of S1(M) are also confluent. Thus, it remains to
consider the critical pairs that result from overlapping a rule of Rpre with a rule
of Rsuf , and those that result from overlaps with rules from R′

bif .
First, let (cx → cy) ∈ Rpre and (x′$ → y′$) ∈ Rsuf such that x = x1x2 and

x′ = x2x3 for some non-empty factor x2. Then

cyx3$ ⇐Rpre cxx3$ = cx1x2x3$ = cx1x
′$ ⇒Rsuf cx1y

′$.

As S(M) is confluent, nf(cyx3$) = nf(cx1y
′$). Now |yx3|, |x1y

′| ≤ |x1x2x3| < 2 ·ρ,
and hence, R′

bif contains the rules (cyx3$ → Z) and (cx1y
′$ → Z) for some symbol

Z ∈ {Y,N}. Thus, the critical pair (cyx3$, cx1y
′$) resolves mod S1(M).

Obviously, there are no overlaps between different rules of R′
bif . Hence, it re-

mains to consider the cases that (cw$ → Z) ∈ R′
bif and (x → y) ∈ Rinf such that

w = w1xw2, or (cx → cy) ∈ Rpre such that w = xw2, or (x$ → y$) ∈ Rsuf such
that w = w1x. Here we only consider the first of these cases, as the other two are
dealt with in the same way. We have

cw1yw2$ ⇐Rinf cw1xw2$ = cw$ ⇒R′
bif
Z.

As S(M) is confluent, it follows that nf(cw1yw2$) = nf(cw$). Further, |w1yw2| ≤
|w| ≤ 2 · ρ, and hence, R′

bif also contains the rule (cw1yw2$ → Z). Thus, also
the critical pair (cw1yw2$, Z) resolves. It follows that the system S1(M) is indeed
confluent. �

Step 2. Next we separate those letters that are (prefix or suffix) reducible to λ
from the other ones. In this way we will transform the system S1(M) into a sys-
tem S2(M). This is done as follows. First the right-hand side of each rule of S1(M)
is replaced by its unique irreducible descendant mod S1(M). For the subsystem
R′

bif , nothing changes by this operation, but for a rule (x → y) ∈ Rinf , if |y| = 1,
then y may reduce to another letter y′ ∈ Γ or to λ, and analogously for the rules
of Rpre and Rsuf . The system obtained in this way is still confluent and equivalent
to S1(M) (see, e.g., [4] Lem. 2.2.11).

LIMITED CONTEXT RESTARTING AUTOMATA 75

Next, let Γ0 = {A ∈ Γ | (A → λ) ∈ Rinf }, that is, Γ0 is the set of letters
that reduce to λ. We now delete all rules from Rpre, Rsuf and Rinf that properly
contain an occurrence of a letter from Γ0 on their left-hand sides. It follows from
the confluence property that the resulting system is still confluent and equivalent
to S1(M) (see [4] Thm. 2.2.13 and the remark preceding Thm. 2.2.14).

Finally, let Γp = {A ∈ Γ�Γ0 | (cA→ c) ∈ Rpre }, that is, Γp is the set of letters
that are prefix reducible to λ. From Rpre we now delete all those rules for which
the left-hand sides have a proper prefix of the form cA for some letter A ∈ Γp.
Analogously, let Γs = {A ∈ Γ � Γ0 | (A$ → $) ∈ Rsuf }. From Rsuf we delete all
those rules for which the left-hand sides have a proper suffix of the form A$ for
some letter A ∈ Γs. By S2(M) we denote the system that is obtained by these
operations. It has the form

S2(M) = R′
bif ∪R′

pre ∪R′
suf ∪R′

inf , (4.2)

where R′
inf consists of two subsystems, Rinf,1 = {A → λ | A ∈ Γ0 } and Rinf,2 =

{ (x → y) ∈ Rinf | x ∈ (Γ � Γ0)+ }, R′
pre consists of two subsystems, Rpre,1 =

{ cA→ c | A ∈ Γp } and

Rpre,2 = { (cx→ cy) ∈ Rpre | x does not begin with a letter from Γp },
and R′

suf consists of Rsuf,1 = {A$ → $ | A ∈ Γs } and

Rsuf,2 = { (x$ → y$) ∈ Rsuf | x does not end with a letter from Γs }.
Again it follows from the confluence property of S1(M) that the system S2(M) is
still confluent and equivalent to S1(M). In particular, L(M) is the McNaughton
language that is specified by the tuple (S2(M), c, $, Y).

Step 3. The subsystem R′
bif ∪ R′

inf of S2(M) contains generalized monadic rules
only, but Rpre,2 and Rsuf,2 may contain some rules that are not generalized
monadic. Thus, we must replace these rules by some generalized monadic rules.
For doing so we introduce the alphabet

Γ̂ = Γ ′ ∪ { cA | A ∈ Γ � (Γ0 ∪ Γp) } ∪ {A$ | A ∈ Γ � (Γ0 ∪ Γs) }, (4.3)

that is, for each letter A that is not prefix reducible to λ, we add a letter cA, and
for each letter A that is not suffix reducible to λ, we add a letter A$. To simplify
the notation, we write cw to denote the word that is obtained from w by replacing
the first letter A of w by the symbol cA, and analogously for w$, and we define a
morphism ψ : Γ̂ ∗ → Γ ′∗ through A �→ A (A ∈ Γ), cA �→ cA (A ∈ Γ � (Γ0 ∪ Γp)),
A$ �→ A$ (A ∈ Γ � (Γ0 ∪ Γs)), and Z �→ Z (Z ∈ {c, $, Y,N}).

We define the system G as

G = R̂pre ∪ R̂suf ∪ R̂bif ∪R′
inf , (4.4)

76 F. OTTO ET AL.

where the subsystems R̂pre, R̂suf , and R̂bif are defined as follows:
(a) R̂pre = { cA→ cA | A ∈ Γ � (Γ0 ∪ Γp) } ∪ Rpre,1 ∪

{ cx→ cy | (cx→ cy) ∈ Rpre,2 and y ∈ Γ }∪
{ cx→ c | (cx→ c) ∈ Rpre,2 }∪

{ cx1x→ cy | (x1x→ y) ∈ Rinf,2, x1, y ∈ Γ � (Γ0 ∪ Γp) }∪
{ cx1x→ c | (x1x→ y) ∈ Rinf,2, x1 ∈ Γ � (Γ0 ∪ Γp), y ∈ Γp }∪
{ cx1x→ c | (x1x→ λ) ∈ Rinf,2, x1 ∈ Γ � (Γ0 ∪ Γp) }.

Observe that (cx→ cy) ∈ Rpre,2 implies that y �∈ Γp, as by construction the right-
hand side of each rule of S2(M) is irreducible. Hence, all the marked symbols
cx, cx1, and cy occurring in the definition of R̂pre are defined.
(b) R̂suf = {A$ → A$ | A ∈ Γ � (Γ0 ∪ Γs) } ∪ Rsuf,1 ∪

{ x$ → y$ | (x$ → y$) ∈ Rsuf,2 and y ∈ Γ }∪
{ x$ → $ | (x$ → $) ∈ Rsuf,2 }∪
{ xb$ → y$ | (xb→ y) ∈ Rinf,2, b, y ∈ Γ � (Γ0 ∪ Γs) }∪
{ xb$ → $ | (xb→ y) ∈ Rinf,2, b ∈ Γ � (Γ0 ∪ Γs), y ∈ Γs }∪
{ xb$ → $ | (xb→ λ) ∈ Rinf,2, b ∈ Γ � (Γ0 ∪ Γs) }.

As above, (x$ → y$) ∈ Rsuf,2 implies that y �∈ Γs. Hence, all the marked symbols
x$, b$, and y$ occurring in the definition of R̂suf are defined.
(c) R̂bif = R′

bif ∪{ cawb$ → Y, cawb$ → Y, cawb$ → Y | a ∈ Γ � (Γ0 ∪ Γp), w ∈ Γ ∗,
b ∈ Γ � (Γ0 ∪ Γs), 1 ≤ |awb| ≤ 2 · ρ, nf(cawb$) = Y }∪
{ cawb$ → N, cawb$ → N, cawb$ → N | a ∈ Γ � (Γ0 ∪ Γp), w ∈ Γ ∗,
b ∈ Γ � (Γ0 ∪ Γs), 1 ≤ |awb| ≤ 2 · ρ, nf(cawb$) �= Y }.

Here, for each letter A ∈ Γ , the rules (cA$ → Z), (cA$ → Z), and (cA$ → Z) are
in R̂bif for some symbol Z ∈ {Y,N}, provided cA and/or A$ are defined.

Then G is a finite generalized monadic string-rewriting system, and it is shown
easily that G is weight-reducing. Below we will prove that G is also confluent,
and that the tuple (G, c, $, Y) specifies the language L(M). In preparation for this
proof we first relate reduction sequences of S2(M) to reduction sequences of G and
vice versa.

Claim 4.9. Let A,B ∈ Γ and u, v ∈ Γ ∗ such that cAu ⇒∗
S2(M) cBv and cBv ∈

IRR(S2(M)). Then cAu ⇒∗
G cBv, and in addition, if A �∈ Γ0 ∪ Γp, then also

cAu⇒∗
G cBv.

Proof. We proceed by Noetherian induction based on the well-founded partial
ordering ⇒+

S2(M) on c · Γ ∗. If cAu is irreducible mod S2(M), then Au = Bv.
Hence, A = B �∈ Γ0 ∪ Γp, and cAu⇒G cAu = cBv follows.

Now assume that cAu ⇒S2(M) cDw, where D ∈ Γ and w ∈ Γ ∗. Then
cDw ⇒∗

S2(M) cBv, as S2(M) is confluent. Hence, from the induction hypothe-
sis we know that cDw ⇒∗

G cBv holds, and that also cDw ⇒∗
G cBv holds, if

D �∈ Γ0 ∪ Γp.
If cAu is rewritten into cDw by applying a rule (x → y) ∈ Rinf,2 to a factor

of u, then A = D is not touched in this step, and cAu⇒G cAw = cDw.
If cAu is rewritten into cDw by applying a rule (cAx → cy) ∈ Rpre,2, then

u = xz for some z ∈ Γ ∗, yz = Dw, and A �∈ Γ0 ∪ Γp. Hence, (cA → cA) ∈ R̂pre,

LIMITED CONTEXT RESTARTING AUTOMATA 77

and either (cAx → cy) ∈ R̂pre (if y ∈ Γ) or (cAx → c) ∈ R̂pre (if y = λ).
Thus, cAu = cAxz ⇒G cAxz ⇒G cyz = cDw in the former case, and cAu =
cAxz ⇒G cAxz ⇒G cz = cDw, in the latter case.

If cAu is rewritten into cDw by applying a rule (Ax→ y) ∈ Rinf,2 to the prefix
Ax of Au, then u = xz for some z ∈ Γ ∗, yz = Dw, and A �∈ Γ0. If A �∈ Γp, either,
then R̂pre contains the rule (cAx → cy), if y ∈ Γ � (Γ0 ∪ Γp), and it contains
the rule (cAx→ c), if y ∈ Γp ∪ {λ}. Hence, this case is analogous to the previous
one. If, however, A ∈ Γp, then the situation is different, as in this case R̂pre does
not contain any prefix rule that is derived from the infix rule (Ax→ y). However,
(cA → c) is a rule of Rpre,1, and hence, we obtain cAu = cAxz ⇒S2(M) cxz, and
as S2(M) is confluent, we have cxz ⇒∗

S2(M) cBv. Hence, by induction hypothesis
cxz ⇒∗

G cBv. It follows that cAu = cAxz ⇒G cxz ⇒∗
G cBv. �

In the same manner also the following technical result can be derived.

Claim 4.10. Let A ∈ Γ and u ∈ Γ ∗ such that cAu ⇒∗
S2(M) c. Then cAu ⇒∗

G c,
and in addition, if A �∈ Γ0 ∪ Γp, then also cAu⇒∗

G c.

By symmetry, statements corresponding to Claims 4.9 and 4.10 also hold for
S2(M)-reductions that begin with a word of the form uA$. These technical results
will now be used to prove the following fundamental property of G.

Claim 4.11. For all w ∈ Γ ∗, if cw$ ⇒∗
S2(M) Y , then cw$ ⇒∗

G Y.

Proof. Let w ∈ Γ ∗ such that cw$ ⇒∗
S2(M) Y holds. If |w| ≤ 2 · ρ, then we have

(cw$ → Y) ∈ R′
bif ⊆ R̂bif , and hence, cw$ ⇒G Y holds. If |w| > 2 · ρ, then the

above S2(M)-reduction can be replaced by a reduction of the following form:

cw$ ⇒∗
R′

pre∪R′
inf

cu$ ⇒∗
R′

suf∪R′
inf

cv$ ⇒R′
bif
Y,

where u is irreducible mod R′
pre ∪R′

inf , and |v| < 2 · ρ.
If u = λ, then by Claim 4.10 we have cw$ ⇒∗

G c$ ⇒G Y . If u = Ax for
some A ∈ Γ and x ∈ Γ ∗, then by Claim 4.9, cw$ ⇒∗

G cAx$. The reduction
cu$ = cAx$ ⇒∗

R′
suf∪R′

inf
cv$ can be written as

cAx$ ⇒∗
R′

suf∪R′
inf

cAz$ ⇒∗
R′

suf∪R′
inf

cv$,

where z$ is the irreducible descendant of x$ mod R′
suf ∪R′

inf .
If Az$ is reducible mod R′

suf ∪ R′
inf , then it follows from the form of the rules

of S2(M) that |z| ≤ ρ. If z = λ, then we have x$ ⇒∗
G $ by the suffix variant of

Claim 4.10, which yields cAx$ ⇒∗
G cA$ ⇒G Y . Further, if z = z′B for some

B ∈ Γ and z′ ∈ Γ ∗, then the suffix variant of Claim 4.9 shows that x$ ⇒∗
G z′B$,

and hence, we obtain cAx$ ⇒∗
G cAz′B$ ⇒G Y , as (cAz′B$ → Y) ∈ R̂bif . This

completes the proof of Claim 4.11. �

78 F. OTTO ET AL.

From the construction of the rules of G it follows immediately that, for each
rule (x → y) ∈ G, ψ(x) ⇒∗

S2(M) ψ(y) holds. Hence, together with Claim 4.11 this
yields the following statement.

Claim 4.12. For all w ∈ Γ ∗, cw$ ⇒∗
G Y iff cw$ ⇒∗

S2(M) Y.

As noted before, L(M) is the McNaughton language that is specified by the
tuple (S2(M), c, $, Y). Thus, Claim 4.12 shows that L(M) = L(G, c, $, Y) holds.
To complete the proof of Theorem 4.6 it remains to establish the following claim.

Claim 4.13. The string-rewriting system G is confluent.

Proof. Obviously, the subsystems R̂bif and R′
inf are confluent. Furthermore, it

follows as in the proof of Claim 4.8 above that all overlaps between a rule of R̂bif

and a rule from R̂pre ∪ R̂suf ∪ R′
inf resolve. Thus, it remains to consider the case

that a rule from R̂pre ∪ R̂suf overlaps with a rule from R̂pre ∪ R̂suf ∪R′
inf . As R̂pre

and R̂suf are defined in a symmetric way, it suffices to consider the case of a rule
of R̂pre.

If (cA→ cA) ∈ R̂pre, then A ∈ Γ � (Γ0 ∪Γp). Hence, cA does not overlap with
the left-hand side of any other rule of R̂pre. If (Ax → y) ∈ R′

inf , then (cAx →
cy) ∈ R̂pre, if y ∈ Γ � (Γ0 ∪ Γp), and (cAx → c) ∈ R̂pre, if y ∈ Γp ∪ {λ}. In the
former case, (cy → cy) ∈ R̂pre, and in the latter case we have cy ⇒∗

Rpre,1
c, that

is, the critical pair (cAx, cy) resolves. Finally, if (A$ → A$) ∈ R̂suf , then A �∈ Γs,
either. Hence, cA$ ⇐G cA$ ⇒G cA$, that is, (cA$, cA$) is a critical pair of G.
However, R̂bif then contains the two rules (cA$ → Z) and (cA$ → Z) for some
value of Z ∈ {Y,N}, which shows that the above critical pair resolves.

Next assume that (cAx → cy) ∈ R̂pre and that (cAx1 → cy′) ∈ R̂pre, where
x = x1x2 for some word x2 ∈ Γ ∗. Then cy ⇐G cAx = cAx1x2 ⇒G cy′x2, that
is, we obtain the critical pair (cy, cy′x2). As S2(M) is confluent, cy and cy′x2

have a common irreducible descendant mod R′
pre ∪ R′

inf , and hence, we see from
Claims 4.9 and 4.10 that this critical pair resolves.

In the same manner it can be shown that all other critical pairs that result
from overlapping a rule of R̂pre with a rule of R̂pre ∪ R′

inf resolve, too. Finally, if
(cAx → cy) ∈ R̂pre and (wB$ → z$) ∈ R̂suf such that x = x1x2 and w = x2x3

for a non-empty word x2 ∈ Γ ∗, then we obtain the critical pair (cyx3B$, cAx1z$).
However, as |yx3B|, |Ax1z| ≤ |Ax1x2x3B| ≤ 2 ·ρ, we see that R̂bif contains the two
rules (cyx3B$ → Z) and (cAx1z$ → Z) for the appropriate symbol Z ∈ {Y,N}.
Thus, also this critical pair resolves, and all other critical pairs that result from
overlapping a rule of R̂pre with a rule of R̂suf can be shown to resolve in the same
way. It follows that the system G is confluent. �

Thus, G is actually a finite, weight reducing, generalized monadic string-rewrit-
ing system that is confluent, and hence, Claim 4.12 shows that L(M) is indeed a
confluent generalized monadic McNaughton language. �

LIMITED CONTEXT RESTARTING AUTOMATA 79

If M = (Σ,Γ, I) is a confluent lc-R-automaton of type R2, then it turns out that
the string-rewriting system G constructed in the proof above is finite, monadic,
and confluent. Hence, we obtain the following inclusion.

Theorem 4.14. L(lc-R[con-R2]) ⊆ con-mon-McNL.

We continue with the converse of Theorem 4.6.

Theorem 4.15. con-gen-mon-McNL ⊆ L(lc-R[con-R′
2]).

Proof. Let L = L(S, t1, t2, Y), where S is a finite, confluent, generalized monadic
string-rewriting system on a finite alphabet Γ that properly contains the input
alphabet Σ, t1, t2 ∈ (Γ �Σ)∗ and Y ∈ Γ �Σ are irreducible mod S, and L ⊆ Σ∗.
According to [17] we can assume that S is terminating and interreduced, that is,
for each rule (x→ y) of S, y ∈ IRR(S) and x ∈ IRR(S � {x→ y}). Furthermore,
we can assume that S does not contain any rules with right-hand side λ. Actually,
it is quite easy to provide a weight function g such that S is weight-reducing with
respect to g. As S is terminating and confluent, each word w ∈ Γ ∗ has a unique
normal form in IRR(S), which we denote by nf(w) as before.

From S we now construct a confluent lc-R-automaton M of type R′
2 such that

L(M) =̇L holds. This automaton will work on an extended alphabet Γ̂ that is
defined as follows:

Γ̂ = Γ ∪ { [α〉, 〈α] | α ∈ IRR(S), |α| ≤ ρ+ 1 }
∪ { [α] | α ∈ IRR(S), |α| ≤ 3 · ρ+ 2 },

(4.5)

where ρ = max{ |w| | w ∈ {t1, t2} ∪ { x | (x→ y) ∈ S } }. A symbol of the form [α〉
will be used to encode the normal form α of a word beginning with t1, a symbol
of the form 〈α] will be used to encode the normal form α of a word ending in t2,
and finally, a symbol of the form [α] will be used to encode the normal form α of
a word that begins with t1 and ends in t2 (see the construction below).

The lc-R-automaton M = (Σ, Γ̂ , I) is defined by the following sets of instruc-
tions, where I = Iinf ∪ Ipre ∪ Isuf ∪ Ibif :

(a) Iinf = { (λ |x→ y |λ) | (x→ y) ∈ S }.
Observe that |x| ≥ |y| = 1 holds for each of these instructions.

(b) Ipre = { (c | a→ [nf(t1a)〉 |λ) | a ∈ Γ ∩ IRR(S) }∪
{ (c | [α〉u→ [nf(αu)〉 |λ) | u ∈ IRR(S), 1 ≤ |u| ≤ ρ− 1,

and |nf(αu)| ≤ ρ+ 1 },
(c) Isuf = { (λ | b→ 〈nf(bt2)] | $) | b ∈ Γ ∩ IRR(S) }∪

{ (λ |u〈α] → 〈nf(uα)] | $) | u ∈ IRR(S), 1 ≤ |u| ≤ ρ− 1,
and |nf(uα)| ≤ ρ+ 1 },

(d) Ibif = { (c | [α〉u→ [nf(αut2)] | $) | u ∈ IRR(S), 0 ≤ |u| ≤ ρ+ 1 }∪
{ (c |u〈α] → [nf(t1uα)] | $) | u ∈ IRR(S), 0 ≤ |u| ≤ ρ+ 1 }∪
{ (c | [α〉u〈γ] → [nf(αuγ)] | $) | u ∈ IRR(S), 0 ≤ |u| ≤ ρ }∪
{(c | [Y] → λ | $)}.

80 F. OTTO ET AL.

It is easily checked that M is of type R′
2. Observe that all subsystems of I will in

general contain some length-preserving instructions. The proof of Theorem 4.15
will now be completed by establishing the following two claims.

Claim 4.16. L(M) =̇L.

Claim 4.17. The string-rewriting system R(M) obtained from I is confluent.

Proof of Claim 4.16. Let w ∈ L such that |w| ≥ 1. Then w ∈ Σ+, and t1wt2 ⇒∗
S Y .

As S does not contain any rule with empty right-hand side, this reduction sequence
can be factored as t1wt2 ⇒∗

S t1nf(w)t2 ⇒∗
S x ⇒S Y for some rule (x → Y) of S.

Obviously, the automaton M can execute the sequence of cycles w �c∗
M nf(w) using

the instructions of Iinf .
If nf(w) = a ∈ Γ , then nf(w) = a �c

M [nf(t1a)〉 �c
M [Y] �c

M λ, as nf(t1at2) = Y .
If nf(w) = avb, where a, b ∈ Γ and v ∈ Γ ∗, then nf(w) = avb �c

M [nf(t1a)〉vb �c
M

[nf(t1a)〉v〈nf(bt2)]. If |v| ≤ ρ, then (c | [nf(t1a)〉v〈nf(bt2)] → [Y] | $) ∈ Ibif . Fi-
nally, if |v| > ρ, then nf(t1a) v or v nf(bt2) (or both) are reducible mod S, as
nf(t1a) v nf(bt2) reduces to the word x mod S, and |x| ≤ ρ. Hence, we obtain
[nf(t1a)〉v〈nf(bt2)] �c∗

M [nf(t1av1)〉v2〈nf(v3bt2)] using instructions from Ipre and/or
Isuf , where v = v1v2v3 and |v2| ≤ ρ. As nf(t1av1) v2 nf(v3bt2) ⇒∗

S Y , we can now
use an instruction from Ibif to obtain [nf(t1av1)〉v2〈nf(v3bt2)] �c

M [Y] �c
M λ. Thus,

in each case w is accepted by M , which proves that L ⊆ L(M) holds.
Conversely, let w ∈ L(M) such that |w| ≥ 1. Then w �c∗

M λ, and as M has only
a single instruction with empty right-hand side, we see that w �c∗

M [Y] holds. We
define a morphism ψ : (Γ̂∪{c, $})∗ → (Γ∪{c, $})∗ by taking a �→ a (a ∈ Γ∪{c, $}),
[α〉 �→ α, 〈α] �→ α, and [α] �→ α for all values of α. From the definition of the
instructions in I, the following properties are easily derived, where u, v, α, γ ∈ Γ ∗:
(a) If u �c

M [α〉v, then t1u⇒∗
S αv.

(b) If u �c
M v〈α], then ut2 ⇒∗

S vα.
(c) If [α〉u �c

M [α〉v〈γ], then αut2 ⇒∗
S αvγ.

(d) If u〈γ] �c
M [α〉v〈γ], then t1uγ ⇒∗

S αvγ.
(e) If u �c

M v, where either both, u and v, begin with a letter of the form [α〉
or none of them does, and where either both end with a letter of the form
〈γ] or none of them does, then ψ(u) ⇒∗

S ψ(v).
(f) If [α〉u �c

M [γ], then αut2 ⇒∗
S γ.

(g) If u〈α] �c
M [γ], then t1uα⇒∗

S γ.
(h) If [α〉u〈γ] �c

M [v], then αuγ ⇒∗
S v.

By induction on the number of cycles in the computation w �c∗
M [Y] it can now be

shown easily that t1wt2 ⇒∗
S Y holds, which implies that w ∈ L.

Thus, in summary we have shown that L(M) = L ∪ {λ}. This completes the
proof of Claim 4.16. �

Proof of Claim 4.17. The string-rewriting system R(M) consists of four subsystems
Rinf , Rpre, Rsuf , and Rbif that are obtained by turning the corresponding sets of
instructions into rewrite rules.

LIMITED CONTEXT RESTARTING AUTOMATA 81

By our hypothesis, the subsystemRinf , which coincides with the string-rewriting
system S, is confluent.

Next we consider the subsystem Rpre. Assume that (c[α〉u → c[nf(αu)〉) and
(c[α〉uv → c[nf(αuv)〉) are both rules of Rpre, where 1 ≤ |u| < |uv| ≤ ρ− 1. Then
(c[nf(αu)〉v → c[nf(αuv)〉) is also a member of Rpre, which shows that the critical
pair (c[nf(αu)〉v, c[nf(αuv)〉) resolves. Hence, the subsystem Rpre is confluent, and
by symmetry also Rsuf is confluent. Finally, as there are no non-trivial overlaps
between rules of Rbif , also Rbif is confluent.

Thus, it remains to consider those critical pairs that result from overlapping
rules of different subsystems. Let (ca → c[nf(t1a)〉) ∈ Rpre and (ax → y) ∈ Rinf .
From these two rules we obtain the critical pair (c[nf(t1a)〉x, cy). As S is strictly
monadic and interreduced, we have y ∈ Γ ∩ IRR(S). Hence, Rpre contains the rule
(cy → c[nf(t1y)〉). Further, x ∈ IRR(S), |x| ≤ ρ− 1, and nf(t1ax) = nf(t1y), that
is, |nf(t1ax)| ≤ ρ+1. Thus, Rpre also contains the rule (c[nf(t1a)〉x→ c[nf(t1ax)〉),
which shows that the critical pair above resolves.

If (c[α〉uv → c[nf(αuv)〉) ∈ Rpre and (vw → y) ∈ Rinf for some non-empty
word v, then we obtain the critical pair (c[nf(αuv)〉w, c[α〉uy). As S is confluent,
we know that nf(αuvw) = nf(αuy). So let this normal form be z = z1 . . . zk,
where k ≥ 1 and z1, . . . , zk ∈ Γ . If k ≤ ρ + 1, then (c[nf(αuv)〉w → c[z〉) ∈ Rpre

and (c[α〉nf(uy) → c[z〉) ∈ Rpre, and so the critical pair resolves. If, however,
k > ρ + 1, then c[nf(αuv)〉w ⇒∗

Rpre
c[z1 . . . zρ+1〉zρ+2 . . . zk and c[α〉uy ⇒∗

Rinf

c[α〉nf(uy) ⇒∗
Rpre

c[z1 . . . zρ+1〉zρ+2 . . . zk, as for all rules (c1 | � → r | c2) ∈ I, we
have |r| ≤ 1. Thus, the critical pair above also resolves in this case. It follows
that the subsystem Rpre ∪Rinf is confluent, and by symmetry also the subsystem
Rsuf ∪Rinf is confluent.

Finally, let (ca → c[nf(t1a)〉) ∈ Rpre. If (a$ → 〈nf(at2)]$) ∈ Rsuf , this yields
the critical pair (c[nf(t1a)〉$, c〈nf(at2)]$). As nf(nf(t1a)t2) = nf(t1 nf(at2)), we
see that Rbif contains the rules (c[nf(t1a)〉$ → c[nf(t1at2)]$) and (c〈nf(at2)]$ →
c[nf(t1at2)]$), that is, the critical pair resolves. Further, if Rsuf contains the rule
(au〈α]$ → 〈nf(auα)]$), then the critical pair (c[nf(t1a)〉u〈α]$, c〈nf(auα)]$) is ob-
tained. As |u| < ρ, and as nf(nf(t1a)uα) = nf(t1 nf(auα)), we see that this critical
pair resolves mod Rbif . It follows analogously that also the other critical pairs that
result from overlapping a rule of Rpre with a rule of Rsuf resolve mod Rbif .

It remains to consider those critical pairs that result from overlapping a rule
of Rbif with a rule of the other three subsystems. First, observe that there are
no such overlaps with rules of Rinf . Now let (c[α〉uv$ → c[nf(αuvt2)]$) ∈ Rbif

and (c[α〉u→ c[nf(αu)〉) ∈ Rpre. These rules yield the critical pair (c[nf(αuvt2)]$,
c[nf(αu)〉v$). But then Rbif also contains the rule (c[nf(αu)〉v$ → c[nf(αuvt2)]$),
which resolves this critical pair. All other critical pairs that result from an overlap
with a rule of Rpre also resolve mod Rbif , and by symmetry the same holds for the
critical pairs that result from overlaps with a rule of Rsuf . Thus, we have shown
that the system R(M) is indeed confluent. �

This completes the proof of Theorem 4.15. �

82 F. OTTO ET AL.

GCSL

L(lc-R[con-R0]) L(lc-R[con-R′
0]) CRL

��������
CFL

��

L(lc-R[con-R′
1]) DCFL

�� ��������

L(lc-R[con-R1])
?

���������
symDCFL

��

L(lc-R[con-R′
2])

���������

��

LIN

��

con-gen-mon-McNL

L(lc-R[con-R2])
?

��

��

con-mon-McNL

?
��

L(lc-R[con-R3])

��

L(lc-R[con-R′
3]) REG

��

�����������������

Figure 2. Hierarchy of language classes that are accepted by the
various types of confluent limited context restarting automata.
Question marks indicate inclusions not known to be proper.

Together Theorems 4.6 and 4.15 yield the following equivalence.

Corollary 4.18. L(lc-R[con-R′
2]) = con-gen-mon-McNL.

It currently remains open whether the converse of Theorem 4.14 holds as well.
Observe that the lc-R-automaton M constructed in the proof of Theorem 4.15
contains length-preserving instructions even when the string-rewriting system S is
length-reducing.

Finally, we turn to the confluent lc-R-automata of types R′
3 and R3. If M

is an lc-R[con-R′
3]-automaton, then L(M) is a regular language by Theorem 3.9.

Conversely, if L ⊆ Σ∗ is a regular language, then there exists a deterministic finite-
state acceptor A = (Q,Σ, q0, F, δ) that accepts LR. We define an lc-R-automaton
M = (Σ,Q ∪Σ, I) as follows, where a, b ∈ Σ and q, q′ ∈ Q:

I = { (c | ab→ q |λ) | δ(q0, ab) = q } ∪ { (c | qa→ q′ |λ) | δ(q, a) = q′ }∪
{ (c | q → λ | $) | q ∈ F } ∪ { (c | a→ λ | $) | a ∈ Σ ∩ LR }.

It is easily seen that L(M) =̇LR, and that the string-rewriting system R(M) is
confluent. By taking M ′ = (Σ,Q ∪Σ, I ′), where I ′ = { (λ |uR → vR | $) | (c |u→
v |λ) ∈ I } ∪ { (c |uR → vR | $) | (c |u → v | $) ∈ I }, we obtain a confluent lc-R-
automaton of type R3 that accepts the language L. Thus, we have the following
characterization.

Theorem 4.19. L(lc-R[con-R′
3]) = L(lc-R[con-R3]) = REG.

The diagram in Figure 2 summarizes our results on confluent lc-R-automata.

LIMITED CONTEXT RESTARTING AUTOMATA 83

5. Concluding remarks

We have studied the relationship between various classes of limited context
restarting automata on the one hand and certain McNaughton families of languages
on the other hand. We have seen that the class GCSL of growing context-sensitive
languages is an upper bound for all the types of limited context restarting au-
tomata considered, and that this upper bound is attained by three classes of these
automata. Under the additional requirement of confluence, the Church–Rosser lan-
guages form an upper bound, which is reached by the three most general types of
these automata. On the other hand, for the most restricted types of lc-R-automata,
we just obtain the regular languages, both in the confluent and the non-confluent
case. However, for most of the intermediate systems, the question for an exact char-
acterization of the classes of languages accepted remains open. In fact, for these
types of systems it even remains unsolved whether weight-reducing lc-R-automata
are more expressive than length-reducing lc-R-automata of the same type.

References

[1] S. Basovńık, Learning restricted restarting automata using genetic algorithm. Master’s the-
sis, Charles University. Faculty of Mathematics and Physics, Prague, Czech (2010).

[2] S. Basovńık and F. Mráz, Learning limited context restarting automata by genetic algo-
rithms, in Theorietag, edited by J. Dassow and B. Truthe. Otto-von-Guericke-Universität,
Magdeburg (2011) 1–4.

[3] M. Beaudry, M. Holzer, G. Niemann and F. Otto, McNaughton families of languages. The-
oret. Comput. Sci. 290 (2003) 1581–1628.

[4] R.V. Book and F. Otto, String-Rewriting Systems. Springer, New York (1993).
[5] J.R. Büchi, Regular canonical systems. Arch. f. Math. Logik Grundlagenf. 6 (1964) 91–111.
[6] G. Buntrock, Wachsende kontext-sensitive Sprachen. Habilitationsschrift. Fakultät für

Mathematik und Informatik, Universität Würzburg (1996).
[7] G. Buntrock and F. Otto, Growing context-sensitive languages and Church-Rosser lan-

guages. Inf. Comput. 141 (1998) 1–36.
[8] J. Čejka, Learning correctness preserving reduction analysis. BSc Project, Charles Univer-

sity. Faculty of Mathematics and Physics, Prague, Czech (2003).
[9] P. Černo and F. Mráz, Clearing restarting automata. Fund. Inf. 104 (2010) 17–54.

[10] P. Černo and F. Mráz, Δ-clearing restarting automata and CFL, in edited by G. Mauri and
A. Leporati. DLT 2011, in vol. 6795 of Lect. Notes Comput. Sci. Springer, Berlin (2011)
153–164.

[11] E. Dahlhaus and M. Warmuth, Membership for growing context-sensitive grammars is poly-
nomial. J. Comput. System Sci. 33 (1986) 456–472.

[12] D. Hofbauer and J. Waldmann, Deleting string rewriting systems preserve regularity. The-
oret. Comput. Sci. 327 (2004) 301–317.

[13] P. Hoffmann, Learning restarting automata by genetic algorithms, in SOFSEM 2002: Stu-
dent Research Forum, edited by M. Bieliková. Masaryk University, Brno (2002) 15–20.

[14] P. Jančar, F. Mráz, M. Plátek and J. Vogel, Restarting automata, FCT’95, in vol. 965 of
Lect. Notes Comput. Sci., edited by H. Reichel. Springer, Berlin (1995) 283–292.

[15] P. Jančar, F. Mráz, M. Plátek and J. Vogel. On monotonic automata with a restart opera-
tion. J. Autom. Lang. Comb. 4 (1999) 287–311.

[16] D. Knuth and P. Bendix, Simple word problems in universal algebras, in Comput. Problems
in Abstract Algebra, edited by J. Leech. Pergamon Press, New York (1970) 263–297.

84 F. OTTO ET AL.

[17] P. Leupold and F. Otto, On McNaughton families of languages that are specified by some
variants of monadic string-rewriting systems. Fund. Inf. 112 (2011) 219–238.

[18] R. McNaughton, P. Narendran and F. Otto, Church-Rosser Thue systems and formal lan-
guages. J. Assoc. Comput. Mach. 35 (1988) 324–344.

[19] F. Mráz, F. Otto and M. Plátek, Learning analysis by reduction from positive data, in ICGI
2006, in vol. 4201 of Lect. Notes Comput. Sci., edited by Y. Sakakibara, S. Kobayashi, K.

Sato, T. Nishino and E. Tomita. Springer, Berlin (2006) 125–136.
[20] G. Niemann and F. Otto, The Church-Rosser languages are the deterministic variants of

the growing context-sensitive languages. Inform. Comput. 197 (2005) 1–21.
[21] G. Niemann and J.R. Woinowski, The growing context-sensitive languages are the acyclic

context-sensitive languages, in DLT 2002, in vol. 2295 of Lect. Notes Comput. Sci., edited
by W. Kuich, G. Rozenberg and A. Salomaa. Springer, Berlin (2002) 197–205.

[22] F. Otto, On deciding the confluence of a finite string-rewriting system on a given congruence
class. J. Comput. System Sci. 35 (1987) 285–310.

[23] F. Otto, Restarting automata, Recent Advances in Formal Languages and Applications, in
vol. 25 of Studies in Comput. Intelligence, edited by Z. Ésik, C. Martin-Vide and V. Mitrana.
Springer, Berlin (2006) 269–303.

[24] F. Otto, P. Černo and F. Mráz, Limited context restarting automata and McNaughton fam-
ilies of languages, in Fourth Workshop on Non-Classical Models for Automata and Appli-
cations (NCMA 2012), Proc., books@ocg.at, Band 290, edited by R. Freund, M. Holzer, B.
Truthe and U. Ultes-Nitsche. Oesterreichische Computer Gesellschaft, Wien (2012) 165–180.

[25] J. Woinowski, The context-splittable normal form for Church-Rosser language systems. In-
form. Comput. 183 (2003) 245–274.

Communicated by M. Holzer.
Received January 28, 2013. Accepted January 8, 2014.

	Introduction
	McNaughton families of languages
	Limited context restarting automata
	Confluent limited context restarting automata
	Concluding remarks
	References

