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ROOT CLUSTERING OF WORDS ∗

Gerhard Lischke1

Abstract. Six kinds of both of primitivity and periodicity of words,
introduced by Ito and Lischke [M. Ito and G. Lischke, Math. Log. Quart.
53 (2007) 91–106; Corrigendum in Math. Log. Quart. 53 (2007) 642–
643], give rise to defining six kinds of roots of a nonempty word. For 1 ≤
k ≤ 6, a k-root word is a word which has exactly k different roots, and
a k-cluster is a set of k-root words u where the roots of u fulfil a given
prefix relationship. We show that out of the 89 different clusters that
can be considered at all, in fact only 30 exist, and we give their quasi-
lexicographically smallest elements. Also we give a sufficient condition
for words to belong to the only existing 6-cluster. These words are also
called Lohmann words. Further we show that, with the exception of a
single cluster, each of the existing clusters contains either only periodic
words, or only primitive words.

Mathematics Subject Classification. 68Q45, 68R15.

1. Preliminaries

In the algebraic theory of codes and formal languages, the set Q of all primitive
words over some alphabet X has received special interest (see, for instance, [6,8,9]).
A nonempty word is primitive if and only if it is not periodic. And a word p is
periodic if and only if it is a concatenation of two or more copies of the same word v,
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p = vn, n ≥ 2.2 Instead of the usual concatenation of words, Ito and Lischke in [1]
took into consideration a more general kind of concatenation (concatenation with
overlaps or folding) and generalized both the notions of primitivity and periodicity
to six kinds of both of primitivity and periodicity. Whereas the shortest word v
such that p = vn for some natural number n is denoted as the root of p, our
generalizations give rise to define five further kinds of roots of a nonempty word.
These are the topic of this paper.

First, let us repeat the most important notions about words.
X should be a fixed alphabet, which means, it is a finite and nonempty set of

symbols, also called letters. Further, we assume that it is a nontrivial alphabet,
which means that it has at least two symbols which we will denote by a and b,
a �= b (otherwise, all of our results become trivial or meaningless), and that we
have a fixed order on X , a < b. X∗ is the free monoid generated by X or the set of
all words over X . The number of letters of a word p, with their multiplicities, is the
length of the word p, denoted by |p|. The order on X will be quasi-lexicographically
extended to an order on X∗, this means, we order the words first by their lengths
and lexicographically for words of equal length. If |p| = 0, then p is the empty
word, denoted by e (in other papers also by ε or λ). The set of words of length
n over X is denoted by Xn. Then X∗ =

⋃
n∈IN Xn and X0 = {e}. For the set of

nonempty words over X we will use the notation X+ = X∗ \ {e}.
The concatenation of two words p = x1x2 . . . xm and q = y1y2 . . . yn, xi, yj ∈

X , is the word pq = x1x2 . . . xmy1y2 . . . yn which has the length |pq| = |p| + |q|.
The powers of a word p ∈ X∗ are defined inductively: p0 = e, and pn = pn−1p for
n ≥ 1.

For words p, q ∈ X∗, p is a prefix of q, in symbols p � q, if there exists r ∈ X∗

such that q = pr. p is a strict prefix of q, in symbols p � q, if p � q and p �= q.
Pr(q) =Df {p : p � q} is the set of all strict prefixes of q (including e if q �= e). p
is a suffix of q, if there exists r ∈ X∗ such that q = rp.

For sets A, B, A ⊆ B denotes their inclusion and A ⊂ B denotes their strict
inclusion.

2. Folding of words

Instead of the usual concatenation of words, we also consider the concatenation
with overlaps or folding operation: For p, q ∈ X∗,

p ⊗ q =Df

{
{p} if q = e

{w1w2w3 : w3 �= e ∧ w1w2 = p ∧ w2w3 = q} otherwise,

p⊗0 =Df {e}, p⊗n =Df

⋃{
w ⊗ p : w ∈ p⊗n−1

}
for n ≥ 1.

For sets A, B ⊆ X∗, A ⊗ B =Df

⋃{p⊗ q : p ∈ A ∧ q ∈ B}.
2Remark that in some papers, the term periodic has a more general meaning which for instance

in [1–3] is covered by the term semi-periodic.
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The following example illustrates this operation.
Let p = aabaa. Then p ⊗ p = p⊗2 = {aabaaaabaa, aabaaabaa, aabaabaa}.

This operation ⊗ does not fulfill the associative law. If for instance p = aa,
q = b and r = aba then p⊗ (q⊗ r) = {aababa} ⊂ (p⊗ q)⊗ r = {aababa, aaba} and
(r ⊗ q) ⊗ p = {ababaa} ⊂ r ⊗ (q ⊗ p) = {ababaa, abaa}. For each p ∈ X+, we have
p⊗2 ⊂ p⊗ (p⊗ p), but p⊗2 �⊆ (p⊗ p)⊗ p = p⊗3 and p⊗k = (. . . ((p⊗ p)⊗ p) . . .⊗ p)
for k > 3.

Remark that our definition of ⊗ in [1–3] was more general than the present one
but all results and proofs there remain unchanged under the new definition. The
reason for the new definition is that for the former one we have p⊗k ⊂ p⊗k+1 for
each k ≥ 2 and each word p ∈ X+ which is no more true for the present definition
(and this makes the formulation and proof of the forthcoming Lem. 4.11 easier).

If u ∈ p⊗m then we can say that any letter in u is covered by the word p, and
if m ≥ 2 and p is the shortest word with this property then we will call it the
hyperroot of u and show that it cannot be longer than 2|u|

3 (Lem. 4.11). Based
on the definitions of concatenation with or without overlaps in combination with
prefixes, six sets of words were defined which are periodic in different senses, and
also six sets of words were defined which are primitive in different senses. We don’t
want to repeat these definitions, and refer the interested reader to [1–3]. These sets
are deeply investigated in [1].

3. Roots and their clusters

Based on the definitions of different kinds of periodicity resp. primitivity of
words, we define the following kinds of roots of nonempty words.

Definition 3.1. Let u ∈ X+.
The shortest word v such that there exists a natural number n with u = vn is

called the root of u, denoted by root(u).
The shortest word v such that there exists a natural number n with u ∈ vn·Pr(v)

is called the strong root of u, denoted by sroot(u).
The shortest word v such that there exists a natural number n with u ∈ v⊗n is

called the hyperroot of u, denoted by hroot(u).
The shortest word v such that there exists a natural number n with

u ∈ {vn} ⊗ Pr(v) is called the super strong root of u, denoted by ssroot(u).
The shortest word v such that there exists a natural number n with

u ∈ v⊗n · Pr(v) is called the strong hyperroot of u, denoted by shroot(u).
The shortest word v such that there exists a natural number n with u ∈ v⊗n ⊗

Pr(v) is called the hyperhyperroot of u, denoted by hhroot(u).

root, sroot, hroot, ssroot, shroot and hhroot are word functions over X+, i.e.,
functions from X+ to X+. Generally, for word functions we define the following
partial ordering, also denoted by �. dom(f) for a function f denotes the domain
of f .
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Figure 1. Partial ordering of the root-functions.

Definition 3.2. For word functions f and g having the same domain, f � g =Df

∀u(u ∈ dom(f) → f(u) � g(u)).

Theorem 3.3. The partial ordering � for the functions from Definition 3.1 is
given in Figure 1.

The proof follows from the definition and can be done as a simple exercise. It
is also contained in [1, 3].

For most words u, some of the six roots coincide, and we have the question how
many roots of u are different, and whether there exist words u such that all the
six roots of u are different each other. This last question was raised in [1], and it
was first assumed that they do not exist. But in 2010 Georg Lohmann discovered
the first of such words [4].

Definition 3.4. Let k ∈ {1, 2, 3, 4, 5, 6}. A word u ∈ X+ is called a k-root word
if {root(u), sroot(u), hroot(u), ssroot(u), shroot(u), hhroot(u)} has exactly k ele-
ments.

A 6-root word is also called a Lohmann word.

If u is a k-root word and k �= 1 and k �= 6, it is interesting to know which of
the roots of u coincide and which do not. This is the question for classifying the
k-root words. To answer this question we introduce the following notions.

Definition 3.5. Let k ∈ {1, 2, 3, 4, 5, 6}.
A k-cluster is a set of the form [α11 . . . α1i1/α21 . . . α2i2/ . . . /αk1 . . . αkik

], where
i1 + i2 + . . . + ik = 6, {α11, . . . , α1i1} ∪ {α21, . . . , α2i2} ∪ . . . ∪ {αk1, . . . , αkik

} =
{hh, ss, sh, h, s, r} and [α11 . . . α1i1/ . . . /αk1 . . . αkik

] =Df {u : u ∈ X∗ ∧
α11root(u) = . . . = α1i1root(u) � α21root(u) = . . . = α2i2root(u) � . . . �
αk1root(u) = . . . = αkik

root(u)}.
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For α = r, αroot(u) means root(u). Thus, for instance, [hh sh h/ss/ s r ] denotes
the set of all words u satisfying hhroot(u) = shroot(u) = hroot(u) � ssroot(u) �
sroot(u) = root(u).

We will say, that a cluster exists if it is not empty.
For instance, clusters of the form [r/ . . .] or [. . . /hh . . .] cannot exist.
For different clusters C, C′ we have C ∩ C′ = ∅, ⋃

C is a
k-cluster

C is the set of all k-root

words, and
⋃{C : C is a k-cluster ∧ k ∈ {1, 2, 3, 4, 5, 6}} = X+.

Thus the k-clusters give a more detailed characterization for all k-root words.
Of course there is only one 1-cluster namely [hh ss sh h s r ]. It contains all 1-root
words. But there are periodic and primitive words in it, for instance (ab)n and abn

for n > 1. Therefore it is also interesting to characterize these words.

Definition 3.6. A cluster C is called a primitive cluster if it contains only primi-
tive words. A cluster C is called a periodic cluster if it contains only periodic words.
A cluster is called a mixed cluster if it contains both primitive and periodic words.

In the next section we shall prove some lemmas which we will use for a complete
overview of all k-clusters for 1 < k ≤ 6, and after that we make still some remarks
for Lohmann words.

4. Some lemmas

Lemma 4.1. For a nonempty word u, only one of the following relationships is
possible (where we will use hh, ss, sh, h, s, r, respectively, as shorthand expres-
sions instead of hhroot(u), ssroot(u), shroot(u), hroot(u), sroot(u), root(u), re-
spectively):

(1) hh � ss � sh � h � s � r;
(2) hh � ss � sh � s � h � r;
(3) hh � sh � h � ss � s � r;
(4) hh � sh � ss � h � s � r;
(5) hh � sh � ss � s � h � r.

The proof follows immediately from Theorem 3.3 and Figure 1.
For a nonempty word u and a nonempty prefix v of u we define three parameters

su,v, tu,v, and hu,v which are natural numbers between 0 and |u| − 1.
Assume, we have u ∈ v⊗n⊗Pr(v). Then su,v is the sum of all lengths of overlaps

occuring in this representation, tu,v is the length of the overlap between the last
complete v and the coupled strict prefix of v (the (n+1)st v), and hu,v is the length
of the overhanging part of the coupled (n+1)st v. More formally: Let u ∈ v⊗n⊗v′

where v′ ∈ Pr(v). Then su,v = n · |v|+ |v′|− |u|, tu,v = |u′|+ |v′|− |u| if u ∈ u′⊗ v′

and u′ ∈ v⊗n, and hu,v =
{

0 if v′ = e
|v| − |v′| if v′ �= e

.

The parameters su,v, tu,v, hu,v do not exist for each pair [u, v] with v � u. Let,
for instance, u = abaababa. For v ∈ {a, ab, abaa} ⊆ Pr(u), the parameters do not
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exist because there is no representation u ∈ v⊗n ⊗ Pr(v). For v = aba we get
[su,v, tu,v, hu,v] = [1, 0, 0], for v = abaab we get [0, 0, 2], for v = abaaba we get
[1, 1, 3], for v = abaabab we get [0, 0, 6] or [2, 2, 4], and for v = u we get [0, 0, 0] or
[1, 1, 7] or [3, 3, 5]. This also illustrates that the parameters are not unique in every
case.

Further, it is clear, that one of the parameters exists if and only if both of the
others exist, that always tu,v ≤ su,v, and that su,v = 0 or hu,v = 0 implies tu,v = 0.

Lemma 4.2. Let u ∈ X+.

v = hhroot(u) iff v is the shortest prefix of u where su,v exists.
v = shroot(u) iff v is the shortest prefix of u where su,v exists and tu,v = 0.

v = ssroot(u) iff v is the shortest prefix of u where su,v exists and su,v = tu,v.

v = hroot(u) iff v is the shortest prefix of u where su,v exists and hu,v = 0.

v = sroot(u) iff v is the shortest prefix of u where su,v exists and su.v = 0.

v = root(u) iff v is the shortest prefix of u where su,v exists and su,v = hu,v = 0.

The proof follows immediately from the definitions.
For the above example u = abaababa we get hhroot(u) = shroot(u) =

hroot(u) = aba, ssroot(u) = sroot(u) = abaab, and root(u) = u, and therefore it
belongs to the cluster [ hh sh h / ss s / r ].

Lemma 4.3. If shroot(u) = ssroot(u) for some u ∈ X+, then also sroot(u) =
shroot(u) = ssroot(u), and therefore there is no 5-cluster with sh = ss.

Proof. Let v = shroot(u) = ssroot(u). By Lemma 4.2, v is the shortest prefix of
u where tu,v = 0 and at the same time it is also the shortest prefix of u where
su,v = tu,v. By Theorem 3.3 or Lemma 4.1, v is a prefix of sroot(u). The latter is
the shortest prefix of u where su,v = 0. This must be v itself. �

Lemma 4.4. If sroot(u) = hroot(u) for some u ∈ X+, then also root(u) =
sroot(u) = hroot(u), and therefore there is no 5-cluster with s = h.

The proof follows immediately in the same way.

Lemma 4.5. If ssroot(u) = hroot(u) for some u ∈ X+, then also root(u) =
sroot(u) = ssroot(u) = hroot(u), and therefore there is no 4-cluster and no 5-
cluster with ss = h.

Proof. Let v = ssroot(u) = hroot(u). By Lemma 4.2, v is the shortest prefix of u
where hu,v = 0 and at the same time it is also the shortest prefix of u where su,v =
tu,v. hu,v = 0 implies tu,v = 0 and thus we have hu,v = tu,v = su,v = 0. v is a prefix
of root(u) which by Lemma 4.2 is the shortest prefix of u where su,v = hu,v = 0.
This must be v itself, and ssroot(u) = root(u) implies sroot(u) = root(u). �
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The next two lemmas are standard in the combinatorics of words, see for in-
stance [6, 8]. Lemma 4.7 was first proved by Lyndon and Schützenberger [7] for
elements of a free monoid, see also [3].

Lemma 4.6. If a word u ∈ X+ has a nonempty strict prefix which at the same
time is also a suffix of u then u = (αβ)mα for some α ∈ X+, β ∈ X∗ and m ≥ 1,
and the common prefix and suffix is (αβ)m−1α.

Lemma 4.7. If pq = qp for nonempty words p and q, then p and q are powers of
a common word.

Lemma 4.8. If u ∈ X+ is in a k-cluster with k > 1 and sroot(u) = root(u) then
u is periodic.

Proof. Let v = hhroot(u), and assume u = root(u) = sroot(u). Then u ∈ v⊗n ⊗ v′

for some n ≥ 1 and v′ � v. If u is in a k-cluster with k > 1 then v � u. If v′ = e
then v is also a suffix of u, otherwise v′ is a nonempty suffix of u. Thus u has a
common nonempty prefix and suffix. Therefore, by Lemma 4.6, u = (αβ)mα for
some α �= e and m ≥ 1. Then sroot(u) � αβ � root(u), a contradiction. �
Lemma 4.9. If ssroot(u) � root(u) for some u ∈ X+, then u is primitive.

Proof. Let v = ssroot(u) � p = root(u) � u for a periodic word u = pr, r ≥ 2.
Then u ∈ {vn} ⊗ Pr(v) with n ≥ r because of |v| < |p|, and u = vnv′′ for a strict
subword v′′ of v, and p = vkv′ for some v′ � v and k ≥ 1. It is v′ �= e and v′′ �= e
because otherwise root(u) � v, a contradiction. Now, v′ is a nonempty strict prefix
of p and at the same time a strict suffix of p. By Lemma 4.6, v′ = (αβ)m−1α and
p = (αβ)mα for some α ∈ X+, β ∈ X∗ and m ≥ 1. It is β �= e because otherwise
root(u) � α � p. We have p = vkv′ = (αβ)mα = vk(αβ)m−1α which implies
vk = αβ, and because of v′ = (αβ)m−1α � v � vk = αβ we get m = 1. Then
v′ = α, p = αβα = vkα and u = pr = (vkα)r = vnv′′, where n ≥ rk ≥ 2k.
Note that α = v′ � v, and omitting the prefix vk we get α(vkα)r−1 = vn−kv′′. If
n − k ≥ 2, this means αv . . . = vα . . ., and by Lemma 4.7, α and v and therefore
also p are powers of a common word x � α � v � p, contradicting p = root(u).

It remains the case that n−k < 2, which means k = 1, n = 2 and r = 2 because
of 2 ≤ 2k ≤ rk ≤ n < k+2 in this case. Now we have v′ = α, v = αβ, p = αβα and
u = p2 = αβααβα = v2v′′ = αβαβv′′ and therefore |v′′| = 2|α| and αβα = βv′′.
If v′′ � v then αβ = βα would follow and therefore by Lemma 4.7, α and β and
therefore also p are powers of a common word, the same contradiction as before.
Thus there must be a real overlap between v2 and a strict prefix of v yielding to
v′′, which means that 0 < |v′′| = 2|α| ≤ |v| − 2 = |α| + |β| − 2 and therefore
|α| ≤ |β| − 2. But then α must be a strict prefix of β, β = αα1 for some α1 ∈ X+.
Then from βv′′ = αβα follows αα1v

′′ = ααα1α and therefore α1v
′′ = αα1α = βα.

Hence α1 � β and β = α1α2 for some α2 ∈ X+. By Lemma 4.6 we get β = (γδ)lγ,
α1 = (γδ)l−1γ, α = γδ, α2 = δγ for some γ ∈ X+, δ ∈ X∗ and l ≥ 1. It is δ �= e and
δ �= γ since otherwise root(u) � p. We get βv′′ = α1α2v

′′ = αβα = αα1α2α. Hence
α2α = v′′ since |α| = |α2|. v′′ = α2α = δγγδ is a subword of v = αβ = (γδ)l+1γ.
Then we have four cases.
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(i) δγγδ = γδγδ. Then δγ = γδ, and by Lemma 4.7, δ and γ and therefore also
p are powers of a common word, a contradiction.

(ii) δγγδ = γ′′δγδγ′ where γ′γ′′ = γ. Then δγ′γ′′ = γ′′δγ′ = γ′γ′′δ, which means
δγ = γδ with the same conclusion as in (i).

(iii) δγγδ = δγδγ, as in (i).
(iv) δγγδ = δ′′γδγδ′ where δ′δ′′ = δ, as in (ii).

All cases yield to a contradiction which proves the lemma. �

A consequence of Lemmas 4.8 and 4.9 is

Lemma 4.10. There is no cluster with ss � s = r.

Lemma 4.11. If p is the shortest word such that u ∈ p⊗m for some m ≥ 2 then
the greatest overlap in the representation of u ∈ p⊗m is not longer than |p|

2 and
therefore |p| ≤ 2|u|

3 .

Proof. If there is an overlap w in p⊗ p then w is a common prefix and suffix of p
and therefore by Lemma 4.6, p = (αβ)rα for some α ∈ X+, β ∈ X∗ and r ≥ 1,
and w = (αβ)r−1α. Since p is the shortest word for the representation of u, r = 1
must follow. Therefore w = α and |w| ≤ |p|

2 . Then from u ∈ p⊗m with m ≥ 2 and
w is the longest overlap in this representation, we get |u| ≥ m|p| − (m − 1)|w| ≥
m+1

2 |p| ≥ 3
2 |p| or |p| ≤ 2

3 |u|. �

Lemma 4.12. If ssroot(u) � hroot(u) � root(u) for some u ∈ X+, then
ssroot(u) = sroot(u), and therefore there is no 6-cluster with ss � h.

Proof. Let v = ssroot(u) � p = hroot(u) � root(u) and ssroot(u) � sroot(u).
Then by Lemma 4.9, u is primitive and therefore u = root(u) ∈ p⊗m and u ∈ vn⊗v′

for some m ≥ 2, n ≥ 1 and v′ � v. There must be an overlap between vn and
v′ since otherwise sroot(u) � v = ssroot(u). This means, u = vnv′′ for a strict
subword v′′ of v, more exactly, v = vlv

′′vr with vl, vr �= e. If n = 1, then u = vv′′

with |u| ≤ 2|v|−2 and therefore |v| ≥ |u|
2 +1 and |p| ≥ |u|

2 +2. If m would be greater
than 2 then by Lemma 4.11, |u| ≥ m|p| − (m − 1) · |p|

2 = m+1
2 |p| ≥ 2|p| ≥ |u| + 4

which is not possible. Therefore m = 2 must follow and then we have p = wqw
and u = wqwqw ∈ p⊗2. But then ssroot(u) � sroot(u) � wq which means,
|v| ≤ |u|

2 , a contradiction. Now we must have u = vnv′′ ∈ p⊗m with m, n ≥ 2,
v � p. Let p = vkq for some q with |q| < |v| and 1 ≤ k ≤ n. It is q �= e because
otherwise hroot(u) � v. It is k < n because otherwise |p| > 2

3 |u| contradicting
Lemma 4.11. Then q � v because of p = vkq � u = vnv′′. Now we have v = qq′

for nonempty words q, q′, and p = (qq′)kq. p is the hyperroot of u, and therefore
k = 1 because otherwise qq′q would be a shorter candidate for the hyperroot.
Hence u = (qq′)nv′′ ∈ (qq′q)⊗m and v′′, which is shorter than v = qq′, is a suffix
of q′q. If |v′′| ≤ |q| then v′′ is a suffix of q and qq′v′′ = v′′q′q must follow. This
means, v′′ � q and sroot(u) � qq′ = ssroot(u), a contradiction. If |q| < |v′′| < |qq′|
then remember that v = qq′ = vlv

′′vr with vl, vr �= e and vl is a suffix of v. From
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[ hh / ss shh s r ] + [ hh sh h / ss s r ] +

[ hh ss / shh s r ] 10 [ hh ss shh / s r ] 3,5,10

[ hh sh / ss h s r ] + [ hh ss sh s / h r ] +

[ hh ss sh / h s r ] 3,10 [ hh ss shh s / r ] 4,5

Figure 2. 2-clusters.

u = (vlv
′′vr)nv′′ ∈ (vlv

′′vrq)⊗m we get v′′ = v1q for some v1 which is a strict
nonempty suffix of q′, and vlv1qvrv1q = . . . vlv1qvrq, therefore qvrv1 = v1qvr and
vl is a suffix of vlv1. By Lemma 4.7, qvr and v1 are powers of a common primitive
word x, v1 = xα, qvr = xβ for integers α, β ≥ 1. Then v = vlv1qvr = vlx

α+β . Since
vl is a suffix of vlv1 it follows from Lemma 4.6 that vl = yvs

1 for some s ≥ 0 and
a nonempty suffix y of v1. Since v1 = xα we can assume that vl = yxt for some
t ≥ 0 and y is a nonempty suffix of x. Now we have v = yxc with c = t+α+β ≥ 2
and p = vq = yxcq with e � q � xβ . Let q = xγq1 with 0 ≤ γ < β and
q1 � x. Then p = yxcq = yxc+γq1 has the hyperroot hroot(p) � yxq1 (since y
is a suffix of x and c ≥ 2) which is shorter than p. This is a contradiction with
hroot(u) = p. �

5. k-clusters for 2 ≤k ≤ 5

By Lemma 4.1, altogether 89 k-clusters are possible: 1 for k = 1, 8 for k = 2,
23 for k = 3, 32 for k = 4, 20 for k = 5, and 5 for k = 6. For k ∈ {2, 3, 4, 5}
they are listed in Figures 2 to 5. The only 1-cluster is [ hh ss sh h s r ]. Most of
the remaining clusters cannot exist by our Lemmas 4.3, 4.4, 4.5, 4.10, 4.12. In the
tables in Figures 2 to 5, the numbers of the lemmas proving the non-existence of
the clusters are indicated. Lemma 4.4, in this connection is unnecessary. The sign
+ means that the existence of the corresponding cluster is sure. The 28 existing
k-clusters for 2 ≤ k ≤ 5 are also listed in Theorems 5.1 to 5.4 together with
their smallest elements. The only existing 6-cluster will be considered in the next
section.

Theorem 5.1. There exist only the following 2-clusters which have the shown
quasi-lexicographic smallest elements (according to the order < on X = {a, b}):

aba ∈ [ hh ss sh s / h r ],

abaababaab ∈ [ hh sh / ss h s r ],

ababaababa ∈ [ hh sh h / ss s r ],

abaabababaabab ∈ [ hh / ss sh h s r ].
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[ hh / ss / sh h s r ] 10 [ hh ss sh / s / h r ] 3

[ hh / ss sh / h s r ] 3,10 [ hh ss sh s / h / r ] +

[ hh / ss sh h / s r ] 3,5,10 [ hh / sh / h ss s r ] +

[ hh / ss sh h s / r ] 4,5 [ hh / sh h / ss s r ] +

[ hh ss / sh / h s r ] 10 [ hh sh / h / ss s r ] +

[ hh ss / sh h / s r ] 10,12 [ hh sh / h ss / s r ] 5,10

[ hh ss / sh h s / r ] 4,12 [ hh sh / h ss s / r ] 4,5

[ hh ss sh / h / s r ] 3,10,12 [ hh sh h / ss / s r ] 10

[ hh ss sh / h s / r ] 3,4,12 [ hh sh h / ss s / r ] +

[ hh ss sh h / s / r ] 3,5 [ hh sh / ss / h s r ] 10

[ hh / ss sh s / h r ] + [ hh sh / ss s / h r ] +

[ hh ss / sh s / h r ] +

Figure 3. 3-clusters.

Theorem 5.2. There exist only the following 3-clusters which have the shown
quasi-lexicographic smallest elements:

ababa ∈ [ hh ss sh s / h / r ],
ababaa ∈ [ hh sh / ss s / h r ],

abaabab ∈ [ hh ss / sh s / h r ],
abaababa ∈ [ hh sh h / ss s / r ],

abaababab ∈ [ hh / ss sh s / h r ],
(abaabaab)2 ∈ [ hh sh / h / ss s r ],

(ababaabab)2 ∈ [ hh / sh / h ss s r ],

(abaababaabab)2 ∈ [ hh / sh h / ss s r ].

Theorem 5.3. There exist only the following 4-clusters which have the shown
quasi-lexicographic smallest elements:

abaabaabab ∈ [ hh ss / sh / s / h r ],
ababaababaa ∈ [ hh sh / ss s / h / r ],
ababaababab ∈ [ hh / ss / sh s / h r ],
abababaabab ∈ [ hh / sh / ss s / h r ],

aabaaabaabaa ∈ [ hh sh / h / ss s / r ],

abaababaabaa ∈ [ hh sh / ss / s / h r ],
abaababaabab ∈ [ hh / ss sh s / h / r ],
ababaabababa ∈ [ hh sh h / ss / s / r ],

abaababaabababaabab ∈ [ hh / sh h / ss s / r ],
(ababaababaabab)2 ∈ [ hh / sh / h / ss s r ].
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[ hh ss / sh h / s / r ] 12 [ hh sh / ss / h s / r ] 4,12

[ hh ss / sh / h s / r ] 4,12 [ hh sh / ss / h / s r ] 10,12

[ hh ss / sh / h / s r ] 10,12 [ hh sh / ss s / h / r ] +

[ hh / ss sh / h s / r ] 3,4,12 [ hh sh / ss / s / h r ] +

[ hh / ss sh / h / s r ] 3,10,12 [ hh / sh / ss s / h r ] +

[ hh / ss / sh h / s r ] 10,12 [ hh ss sh / h / s / r ] 3,12

[ hh ss / sh s / h / r ] 12 [ hh / ss shh / s / r ] 3,5

[ hh ss / sh / s / h r ] + [ hh / ss / sh h s / r ] 4,12

[ hh / ss sh / s / h r ] 3 [ hh / ss / sh / h s r ] 10

[ hh / ss / sh s / h r ] + [ hh ss sh / s / h / r ] 3,12

[ hh sh / h ss / s / r ] 5 [ hh / ss sh s / h / r ] +

[ hh sh / h / ss s / r ] + [ hh sh h / ss / s / r ] +

[ hh sh / h / ss / s r ] 10 [ hh / sh / h ss s / r ] 4,5

[ hh / sh h / ss s / r ] + [ hh / sh / h / ss s r ] +

[ hh / sh h / ss / s r ] 10 [ hh sh ss / h / s / r ] 3,12

[ hh / sh / h ss / s r ] 5,10 [ hh / sh / ss / h s r ] 10

Figure 4. 4-clusters.

[ hh ss / sh / h / s / r ] 12 [ hh / sh h / ss / s / r ] +

[ hh / ss sh / h / s / r ] 3,12 [ hh / sh / h ss / s / r ] 5

[ hh / ss / sh h / s / r ] 12 [ hh / sh / h / ss s / r ] +

[ hh / ss / sh / h s / r ] 4,12 [ hh / sh / h / ss / s r ] 10

[ hh / ss / sh / h / s r ] 10,12 [ hh sh / ss / h / s / r ] 12

[ hh ss / sh / s / h / r ] 12 [ hh / sh / ss / h s / r ] 4,12

[ hh / ss sh / s / h / r ] 3,12 [ hh / sh / ss / h / s r ] 10,12

[ hh / ss / sh s / h / r ] 12 [ hh sh / ss / s / h / r ] 12

[ hh / ss / sh / s / h r ] + [ hh / sh / ss s / h / r ] +

[ hh sh / h / ss / s / r ] + [ hh / sh / ss / s / h r ] +

Figure 5. 5-clusters.

Theorem 5.4. There exist only the following 5-clusters which have the shown
quasi-lexicographic smallest elements:

abaabaabaababaab ∈ [ hh sh / h / ss / s / r ],
ababaababaababab ∈ [ hh / ss / sh / s / h r ],
ababaabababaabab ∈ [ hh / sh / ss s / h / r ],

abaababaabaababaabab ∈ [ hh / sh / ss / s / h r ],
ababaababaabababaabab ∈ [ hh / sh / h / ss s / r ],

abaababaabababaababaababaabab ∈ [ hh / sh h / ss / s / r ].

Proofs. The membership of the elements is easy to see. That they are the appro-
priate smallest elements can be shown, for instance, by computer experiments [5].
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In the computer programs [5], Lemma 4.2 was exploited. The non-existence of the
remaining clusters follows by our lemmas as noted. �

6. Lohmann words

Up to the discovering of the first 6-root word by Georg Lohmann [4] it was
unknown whether 6-clusters exist. On March 25, 2010 [4], he discovered the first
6-root word which was ababaabababaababaababababaabab. Later on he found with
ababaababaababaabababaabab a smaller one. To give a sufficient condition for a
word to be a Lohmann word, we introduce the following notions.

Definition 6.1. For finite sequences (k1, . . . , kr) and (t1, . . . , tm) of natural num-
bers, let (k1, . . . , kr) � (t1, . . . , tm) =Df (k1, . . . , kr−1, kr + t1, t2, . . . , tm) and
(k1, . . . , kr)�0 =Df (0), (k1, . . . , kr)�s =Df (k1, . . . , kr)�s−1 � (k1, . . . , kr) for
s ≥ 1.
Let (k1, . . . , kr, t) be a sequence of natural numbers with r ≥ 2, 2 ≤ k1 ≤ ki ≤ 2k1

for each i ∈ {1, . . . , r} and 0 ≤ t ≤ k1, and let s ≥ 2 and (k1, . . . , kr, t)�s =
(k1, . . . , kr, kr+1, . . . , ks·r, t). If t �= 0 and k1 ≤ k′ < k1 + t then (k1, . . . , ks·r, k′)
is called an L-sequence with its producer (k1, . . . , kr, t); if t = 0 and k′ with
max{k1, . . . , kr} < k′ ≤ 2k1 exists then (k1, . . . , ks·r−1, k

′) is called an L-sequence
with its producer (k1, . . . , kr, 0).

Theorem 6.2. Let v and w be words such that e � v � w, wv �� pl for some
p � w and l > 1, let (k1, . . . , kn) be an L-sequence and k+ the greatest number
in this sequence, and let w′ be a word such that wk−1v � w′ � wkv for some
k ≥ 2 with k+ − k1 ≤ k ≤ k1 and w2 � w′. Then u = wk1vwk2v . . . wknvw′ is a
Lohmann word.

Proof. Let (k1, . . . , kr, t) be the shortest producer of the L-sequence (k1, . . . , kn).
Then the proof is done by verifying the roots:

hhroot(u) = wv,

shroot(u) = wk1v,

hroot(u) = wk1vw′,

ssroot(u) = wk1vwk2v . . . wkrvwt,

ssroot(u) � sroot(u) � wk1vwk2v . . . wkn−1vwkn−k1 ,

root(u) = u. �

Examples. (2,3,0), (2,2,0), (2,2,1), (2,4,1), (2,4,2), (3,4,4,2) are producer
of the L-sequences (2,3,2,4), (2,2,2,3), (2,2,3,2,2), (2,4,3,4,2), (2,4,4,4,3),
(3,4,4,5,4,4,5,4,4,3), respectively. (2,3,0) is also a producer of (2,3,2,3,2,4). From
(2,3,2,4) and (2,2,2,3) with w = ab, v = a, and w′ = (ab)2 we get the Lohmann
words mentioned above before Definition 6.1.
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The condition in Theorem 6.2 is not necessary for Lohmann words. For in-
stance, (2,1,3,1,3,1,3,1,2,1) produces Lohmann words as in Theorem 6.2 but it
is not an L-sequence according to Definition 6.1. In the same way, the sequence
(2,1,2,1,4,1,2,1,3,1) produces words belonging to the cluster [hh / sh h / ss / s / r ].
All Lohmann words belong to the 6-cluster [hh / sh / h / ss / s / r ]. The four forther
6-clusters which are possible by Lemma 4.1 cannot exist by Lemma 4.12.

7. Final remarks

The periodic k-root words are also called strong k-root words.
The next two theorems follow from Section 5, Section 6 and Lemmas 4.8 and 4.9.

Theorem 7.1 corrects Theorem 55 in [3].

Theorem 7.1. The quasi-lexicographic smallest k-root words are a for k = 1, aba
for k = 2, ababa for k = 3, abaabaabab for k = 4, abaabaabaababaab for k = 5,
and ababaababaababaabababaabab for k = 6.

The quasi-lexicographic smallest strong k-root words are aa for k = 1,
abaababaab for k = 2, (abaabaab)2 for k = 3, and (ababaababaabab)2 for k = 4.
There exist no strong k-root words for k = 5 and k = 6.

Theorem 7.2. There exists only one mixed cluster namely the 1-cluster
[ hh ss sh h s r ]. The clusters [ hh sh / ss h s r ], [ hh sh h / ss s r ], [ hh / ss sh h s r ],
[ hh sh / h / ss s r ], [ hh / sh / h ss s r ], [ hh / sh h / ss s r ] and [ hh / sh / h / ss s r ]
are periodic clusters, and all other existing clusters are primitive.

The following theorem was first conjectured by Georg Lohmann in a weaker
form.

Theorem 7.3. For an arbitrary nonempty word p holds true that αroot(pd) =
αroot(pd′

) for all d, d′ ≥ 2 and α ∈ {hh, sh, ss, h, s, r} and therefore all periodic
words which are powers of the same word are in the same cluster.

Proof. Let p be primitive and u = pd periodic, d ≥ 2. Then by Lemmas 4.9 and 4.1,
ssroot(u) = sroot(u) = root(u) = p and therefore also ssroot(pd′

) = sroot(pd′
) =

root(pd′
) = p for each d′ ≥ 2. Now we show that αroot(pd′

) = αroot(p2) for each
d′ ≥ 2 and α ∈ {h, sh, hh} by induction over d′.

Step from 2 to 3. Let αroot(p2) = v, v � p.
Then p2 = v1,1v1,2v2,1v2,2 . . . vk,1vk,2 . . . vl,1vl,2vl+1,1 where k < l, v1,1v1,2 =

v1,2v2,1v2,2 = . . . = vk−1,2vk,1vk,2 = . . . = vl−1,2vl,1vl,2 = v with vl+1,1 = e
if α = h, vl,2 = e and vl+1,1 � v if α = sh, vl,2vl+1,1 � v if α = hh,
and p = v1,1 . . . vk−1,2v

′ = v′′vk+1,1 . . . vl,2vl+1,1 with v′v′′ = vk,1vk,2. Let
p1 = v1,1 . . . v′ and p2 = v′′ . . . vl+1,1, p1 = p2 = p. Then p3 = p1p2p2 = p1p1p2

must be of the form v1,1v1,2v2,1v2,2 . . . vm,1vm,2vm+1,1 where m > l, v1,1v1,2 =
v1,2v2,1v2,2 = . . . = vm−1,2vm,1vm,2 = v and vm,2 = vl,2, vm+1,1 = vl+1,1. There-
fore αroot(p3) � v. If αroot(p3) would be shorter than v then removing of the
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middle p from an appropriate representation of ppp would yield to a shorter αroot
of p2. Thus αroot(p3) = v.

The step from d ≥ 2 to d + 1 is done analogously. �
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