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INTEGERS IN NUMBER SYSTEMS WITH POSITIVE
AND NEGATIVE QUADRATIC PISOT BASE

Z. Masáková
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Abstract. We consider numeration systems with base β and −β, for
quadratic Pisot numbers β and focus on comparing the combinatorial
structure of the sets Zβ and Z−β of numbers with integer expansion
in base β, resp. −β. Our main result is the comparison of languages
of infinite words uβ and u−β coding the ordering of distances between
consecutive β- and (−β)-integers. It turns out that for a class of roots β
of x2 −mx−m, the languages coincide, while for other quadratic Pisot
numbers the language of uβ can be identified only with the language
of a morphic image of u−β . We also study the group structure of (−β)-
integers.
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Introduction

Numeration systems with negative non-integer base obtained a non-negligible
attention since the paper [12] of Ito and Sadahiro in 2009. Some of the articles
that followed point out that many properties of these systems are analogous to
those of systems with non-integer positive base defined by Rényi in 1957 [22], and
are easily derivable. On the other hand, there are interesting results showing that
the analogy is sometimes very non-trivial, and that negative base systems have
certain features very different from properties of Rényi systems. It is therefore
appealing to focus on the comparison of these two types of numeration systems.
The comparison of the dynamical aspects of these systems is the topic of [13]. The
present paper is another attempt in this direction, concentrating on comparing the
combinatorial structure of the sets Zβ and Z−β of numbers with integer expansion
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in base β, resp. −β. We perform the study for the case where β is a quadratic
Pisot number. For this purpose, we have to put β- and (−β)-integers into several
different contexts. Thus the first part of the paper can be viewed as a review on
properties of Zβ and Z−β found in [2,6,8,11,16,18,25] and others. In particular, we
use the cut-and-project scheme, that describes Zβ and Z−β for β being an algebraic
unit. We study the infinite words uβ and u−β coding the ordering of distances in
Zβ and Z−β and provide prescriptions for the morphisms/antimorphisms under
which these infinite words are invariant.

The main result of the paper is the comparison of languages of uβ and u−β. We
show that languages of these infinite words coincide if β is a root of x2−mx−m,
m ≥ 1. For all other quadratic Pisot numbers β one has to first apply a morphism
π to the infinite word coding (−β)-integers in order to obtain equality of the
corresponding languages. We use the notion of conjugate morphisms.

In the last part of the paper we concentrate on the arithmetical properties of Zβ
and Z−β . In particular, we generalize the result of [7], presenting a group operation
⊕ on Zβ , resp. Z−β , with which these sets are isomorphic to Z. The authors of [7]
define such an operation on Zβ for quadratic Pisot units β and show that such an
operation is compatible with ordinary addition, i.e. whenever the result of x+ y is
an element of Zβ , then x⊕y = x+y. By an easy combinatorial argument we show
that one can define an operation ⊕ compatible with addition on every discrete
set with finitely many distances between consecutive points which are linearly
independent over Q. We use again the cut-and-project scheme for determining the
possible outcomes of x+ y − (x⊕ y) for x, y ∈ Z−β for quadratic Pisot units β.

The organization of the paper is as follows. In Section 1 we recall necessary
notions from combinatorics on words, present the numeration systems with positive
and negative base and define the β- and (−β)-integers. In Section 2 we show the
simplest cut-and-project scheme that can be applied for studying β- and (−β)-
integers in the quadratic Pisot case. We cite the results identifying Zβ and Z−β
as cut-and-project sets. Section 3 introduces the infinite words uβ and u−β coding
the distances between consecutive β- and (−β)-integers. These words are invariant
under morphisms, resp. antimorphisms. We list the values of the distances and
provide the prescriptions of the corresponding morphisms, resp. antimorphisms, by
citing the known results and giving proofs where such are nowhere explicitly given.
The main results of this paper are in Sections 4 and 5. Section 4 demonstrates the
geometric and combinatorial relation of Zβ and Z−β . We compare the languages
of the infinite words uβ and u−β. Section 5 concentrates on arithmetical aspects
of (−β)-integers.

1. Preliminaries

An alphabet A is a finite set of symbols, called letters. By A∗ we denote the
monoid of all finite words over the alphabet A equipped with the empty word ε
and the operation of concatenation. The concatenation of k copies of a word w is
denoted by wk = w . . . w, for k ∈ N. The length of a finite word w = w1 . . . wn,
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wi ∈ A, is denoted by |w| = n. By |w|a we denote the number of occurrences
of a letter a in the word w. We will consider one-directional infinite words u =
u0u1u2 . . ., resp. u = . . . u−2u−1, but also pointed bidirectional infinite words
u = . . . u−2u−1|u0u1u2 . . .. The delimiter | marks the position of the origin. A
word w is a factor of a word u, if u = vwv′ for some (finite or infinite) words v, v′.
If v = ε, then w is a prefix of u, if v′ = ε, then w is a suffix of u. The language of
an infinite word u is the set L(u) of all factors of u. The factor complexity of the
word u is the function C : N→ N, where C(n) is defined as the number of factors
of u of length n.

The infinite repetition of a finite word w is denoted by wω = www . . . A one-
directional infinite word u is said to be eventually periodic if u = vwω = vwww . . .,
for some finite words v, w, otherwise it is called aperiodic. It is not difficult to
show that an aperiodic one-directional word must satisfy C(n) ≥ n+ 1 for n ∈ N.
Aperiodic one-directional infinite words of minimal complexity C(n) = n + 1 for
n ∈ N are called Sturmian words. Sturmian words are by definition binary words
(for C(1) = 2) and have many equivalent definitions, for a recent overview of them
see [3]. We will be interested in the following one. A one-directional infinite word
over an alphabet A is called balanced if

∣∣|w|a − |v|a∣∣ ≤ 1 for every pair of factors
w, v ∈ L(u) of the same length |w| = |v| and every a ∈ A. A binary aperiodic word
is Sturmian if and only if it is balanced, see [16].

The definition of Sturmian words can be extended to bidirectional infinite words,
by requiring aperiodicity and balance, see [9]. The language of such a Sturmian
bidirectional word u is the same as the language of any of its infinite suffix, which
is a Sturmian word in the original sense.

For finite alphabets A and B, a morphism σ : A∗ → B∗ satisfies σ(vw) =
σ(v)σ(w) for any v, w ∈ A∗. Its action can be extended to both one-directional
and pointed bidirectional infinite words by

σ(u0u1u2 . . .) = σ(u0)σ(u1)σ(u2) . . . ,
σ(. . . u−2u−1|u0u1u2 . . .) = . . . σ(u−2)σ(u−1)|σ(u0)σ(u1)σ(u2) . . .

If the morphism σ : A∗ → A∗ is non-erasing, i.e. σ(a) �= ε for all a ∈ A, and there
exists a letter a ∈ A such that σ(a) = aw for some non-empty word w, then it is
called a substitution. A substitution has always a fixed point, i.e. one-directional
infinite word u such that σ(u) = u, namely u = limj→∞ σj(a). Existence of a
bidirectional fixed point is ensured requiring moreover a letter b such that σ(b) = vb
for some non-empty word v. Then the fixed point is u = limn→∞ σn(b)|σn(a). The
limit is taken over the product topology on AN, resp. AZ.

In a similar way, one defines antimorphisms on A∗ by ←−σ (vw) =←−σ (w)←−σ (v) for
any v, w ∈ A∗. A fixed point of an antimorphism←−σ is a bidirectional infinite word
. . . u−2u−1|u0u1u2 . . . such that

←−σ (. . . u−2u−1|u0u1u2 . . .) = . . .←−σ (u2)←−σ (u1)←−σ (u0)|←−σ (−1)←−σ (−2) . . .

Note that a second iteration of an antimorphism is a morphism.
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Given a morphism σ overA = {a1, . . . , ad}, one defines its incidence matrix Mσ,
(Mσ)ij = |σ(aj)|ai . A morphism is called primitive, if there is a constant k ∈ N

such that Mk
σ > 0. The eigenvalues of the matrix Mσ predicate for example about

balance properties of the fixed point of σ.
We will be interested in properties of infinite words associated with the set of

numbers with integer expansion in an irrational base. Let α ∈ R, |α| > 1, and let
A be a finite subset of R. An (α,A)-representation of a real number x is the series

x =
∑
i≤k

xiα
i, xi ∈ A.

Sometimes we may write x equal to the sequence of digits xi, namely

x = xkxk−1 . . . x1x0•x−1x−2 . . .

A specific representation with the base α ∈ R, |α| > 1 is obtained as follows.
Consider the transformation T : I → I on an interval I = [l, l + 1), given by
T (x) = αx− 	αx − l
. For an x ∈ I set

x−i = 	αT i−1(x)− l
, for i ≥ 1;

the digits x−i take values in a finite set A of consetutive integers. Then

x =
x−1

α
+
x−2

α2
+
x−3

α3
+ . . .

The string of digits is then denoted by d(x) = x−1x−2x−3 . . .
A string y1y2y3 . . . of elements of the digit set A is called (α,A)-admissible, if

it is equal to the (α,A)-representation d(x) for some x ∈ I. One can derive for
example from [10] that a string y1y2y3 . . . of integers is (α,A)-admissible if and
only if every suffix yiyi+1yi+2 . . . satisfies

d(l) � yiyi+1yi+2 . . . ≺ lim
δ→0+

d(l + 1− δ), (1.1)

where � stands for the lexicographical order �lex when α > 0 and for the alternate
order �alt when α < 0. Recall that x1x2x3 . . . �alt y1y2y3 . . . if (−1)kxk < (−1)kyk,
where k = min{i | xi �= yi}.

It is not difficult to show that the corresponding order � reflects the natural
order on reals in the interval I, namely that

d(x) � d(y) ⇐⇒ x ≤ y.
The two specific choices of numeration systems which we consider here are the

β-expansions introduced by Rényi (cf. [22]) and (−β)-expansions considered by Ito
and Sadahiro (cf. [12]) which share many properties but display also important
differences.

First set α = β > 1 and I = [0, 1). The digits xi then take values in the set
A = Aβ = {d ∈ Z | 0 ≤ d < β}. For the sake of clarity, we denote d(x) = dβ(x)
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for x ∈ [0, 1). The admissibility condition (1.1) states that a string of integers
y1y2y3 . . . is admissible in this system if and only if for every i ≥ 1, we have

0ω �lex yiyi+1yi+2 . . . ≺lex lim
δ→0+

dβ(1− δ). (1.2)

This condition was first derived by Parry [21].
In order to expand any positive number x ∈ R, one uses the expansion of x/βk,

where k ∈ Z such that x/βk ∈ [0, 1). Then we have

dβ(x/βk) = x−1x−2x−3 . . . ⇒ x = x−1x−2 . . . x−k • x−k−1 . . .

This representation of x is called the β-expansion and is denoted 〈x〉β . We focus
on the set of numbers with integer β-expansion, namely the set

Zβ = Z+
β ∪ −Z+

β , where Z+
β = {x ≥ 0 | 〈x〉β = xk . . . x1x0 • 0ω}.

Negative base systems allow to expand every real number x (even negative) without
the use of a sign. Ito and Sadahiro considered α = −β < −1, I = [l, l+ 1), where
l = −β/(β + 1), i.e. I =

[ − β/(β + 1), 1/(β + 1)
)
. The digit set is now equal to

A = A−β = {d ∈ Z | 0 ≤ d ≤ β}. Here we denote d(x) = d−β(x) for x ∈ [l, l + 1).
A string of integers y1y2y3 . . . is admissible in this setting if and only if for every
i ≥ 1, we have

d−β(l) �alt yiyi+1yi+2 . . . ≺alt lim
δ→0+

d−β(l + 1− δ). (1.3)

In [12] it is shown that limδ→0+ d−β(l + 1 − δ) is strongly dependent on
the string d−β(l), namely limδ→0+ d−β(l + 1 − δ) =

(
0d1 . . . dq−1(dq − 1)

)ω
if d−β(l) = (d1 . . . dq−1dq)ω is purely periodic with odd period-length q, and
limδ→0+ d−β(l + 1− δ) = 0d−β(l) otherwise.

In order to expand any real number x ∈ R, take a suitable power of (−β) such
that x/(−β)k ∈ I◦ =

(− β/(β+ 1), 1/(β+ 1)
)
. If d−β(x/(−β)k) = x−1x−2x−3 . . .

then we put 〈x〉−β = x−1 . . . x−k • x−k−1 . . . . The set of (−β)-integers is defined
by

Z−β = {x ∈ R | 〈x〉−β = xk . . . x1x0 • 0ω}.
One can determine the distances between consecutive elements of Zβ and Z−β

and, in case that the distances take only finitely many values, one can code their
ordering by an infinite word over a finite alphabet. It is interesting to study com-
binatorial properties of these infinite words, such as invariance under morphism.
We will describe these infinite words for quadratic Pisot numbers β and use them
to relate Zβ and Z−β .

2. β- and (−β)-integers as cut-and-project sequences

A Pisot number β is the root > 1 of a monic irreducible polynomial with integer
coefficients whose other roots (the algebraic conjugates of β) are in modulus smaller
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than 1. In this paper we focus on the quadratic case. It can be easily shown that
quadratic Pisot numbers are precisely the larger roots of the polynomials

x2 −mx− n, m ≥ n ≥ 1,
x2 −mx+ n, m− 2 ≥ n ≥ 1.

(2.1)

A special role is played by quadratic Pisot units, i.e. roots of (2.1) with n = 1.
For any algebraic number β, the minimal subfield of C containing β is denoted

by Q(β). For quadratic β we have Q(β) = {a+ bβ | a, b ∈ Q}. The only non-trivial
automorphism over such a field is the Galois automorphism ′ : x = a+ bβ �→ x′ =
a+ bβ′, where β′ is the conjugate of β.

In many cases, it is advantageous to apply the Galois conjugation in the study
of numeration systems. In particular, we will find useful to study {x′ | x ∈ Zβ},
resp. {x′ | x ∈ Z−β}. Obviously, if β is a Pisot number, this set is bounded as
β-integers have in their β-expansion only non-negative powers of β. The same
holds for (−β)-integers. However, if β is a Pisot unit, one can say more, using the
so-called cut-and-project scheme.

For given irrational numbers ε, η, ε �= η, consider vectors x1 = 1
ε−η (ε,−1),

x2 = 1
η−ε (η,−1). Then, (a + bη)x1 + (a + bε)x2 = (a, b). Consequently, for a

given point (a, b) ∈ Z2, the value π1(a, b) = a + bη is its projection to the line
V1 = Rx1; the value π2(a, b) = a+ bε is its projection to the line V2 = Rx2. Since
ε, η are irrational, the mapping π1 restricted to Z2 is an injection, and we can
define ∗ : Z + Zη → Z + Zε by ∗ = π2 ◦ π−1

1 . We have thus the cut-and-project
scheme,

V1
π1←− R2 = V1 × V2

π2−→ V2

∪
Z + Zη

π1←− Z2 π2−→ Z + Zε.

For a bounded set Ω ⊂ R we define a cut-and-project set Σε,η(Ω) by

Σε,η(Ω) = {x ∈ Z + Zη | x∗ ∈ Ω}.
For our purposes, it suffices to consider Ω to be an interval.

In general, a cut-and-project set can be defined by projection of certain lattice
points z ∈ L ⊂ Rr+s = V1 × V2 to a suitably oriented r-dimensional subspace
V1, where the choice of points to be projected is directed by the projection to
the subspace V2. For details and a list of references, see [20]. For our purposes,
it is sufficient to limit our considerations to projection of Z2 to one-dimensional
subspaces. Such cut-and-project schemes are subject of [11]. One of the results
shown there is that the distances between consecutive points of Σε,η(Ω) take two
or three values and that the corresponding infinite word is a coding of exchange
of two or three intervals. In particular, we will use the following statement which
can be derived from [11].

Theorem 2.1. Let ε, η be distinct irrational numbers and let Ω be a non-
degenerated interval containing 0. If Σε,η(Ω) = {tj | j ∈ Z} ⊂ R, tj < tj+1,
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t0 = 0, then there exist positive values Δ0, Δ1 such that the distances between
consecutive elements of Σε,η(Ω) take values tj+1 − tj ∈ {Δ0, Δ1, Δ0 + Δ1}.
Moreover, if tj+1 − tj ∈ {Δ0, Δ1}, then the pointed bidirectional infinite word
uε,η(Ω) = . . . u−2u−1|u0u1u2 . . . over {0, 1} defined by uj = X if tj+1 − tj = ΔX

is a bidirectional Sturmian word.

In connection to β- and (−β)-integers we will need a special case of the set
Σε,η(Ω), namely for ε = β′ and η = β for a given quadratic Pisot unit β. Then
Z + Zη = Z[β] and Z + Zε = Z[β′] = Z[β], and the mapping ∗ coincides with the
Galois conjugation. For a bounded set Ω ⊂ R we thus have the cut-and-project
set

Σβ(Ω) = Σβ′,β(Ω) = {x ∈ Z[β] | x′ ∈ Ω},
where we simplify the notation in indices. We will need the following properties
of Σβ(Ω). The first of the statements of Proposition 2.2 would be trivially valid
for any cut-and-project set, the last two are specific for the algebraic choice of
parameters ε and η.

Proposition 2.2. Let α, x0 ∈ Z[β] and let α be an algebraic unit. Let Ω,Ω1, Ω2

be intervals such that Ω = Ω1 ∪Ω2. Then

(1) Σβ(Ω1) ∪Σβ(Ω2) = Σβ(Ω1 ∪Ω2);
(2) x0 +Σβ(Ω) = Σβ(x′0 +Ω);
(3) Σβ(α′Ω) = αΣβ(Ω).

Proof. The first statement follows directly from the definition. For the second
statement, we have

x0 +Σβ(Ω)={x0 + x ∈ Z[β] | x′ ∈ Ω} = {x ∈ Z[β] | (x− x0)′ ∈ Ω}=Σβ(x′0 +Ω).

For the third one, we have

Σβ(α′Ω) = {x ∈ Z[β] | x′ ∈ α′Ω} =
{
x ∈ Z[β] | (α−1x)′ ∈ Ω}

= {αx ∈ Z[β] | x′ ∈ Ω} = αΣβ(Ω),

where we have used that α is an algebraic unit and hence αZ[β] = Z[β]. This
means that αx ∈ Z[β] is equivalent to x ∈ Z[β]. �

As shown in [6], for quadratic Pisot units β, the positive part Z+
β of β-integers

can be identified with the positive part of a cut-and-project set. The reason why
one cannot write the equality in the following proposition for the entire set Zβ is
that Zβ is in some sense ‘artificially’ defined so that it is symmetric with respect
to zero.

Proposition 2.3. Let β > 1 be the root of x2 −mx− 1, m ≥ 1. Then

Z+
β = Σβ

(
(−1, β)

) ∩ R+ =
{
x ∈ Z[β]

∣∣x′ ∈ (−1, β)
} ∩R+.

Let β > 1 be the root of x2 −mx+ 1, m ≥ 3. Then

Z+
β = Σβ

(
[0, β)

) ∩ R+ =
{
x ∈ Z[β]

∣∣x′ ∈ [0, β)
} ∩ R+.
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Figure 1. The cut-and-project scheme for the set of τ -integers
(left) and (−τ)-integers (right). Every element x ∈ Zτ and y ∈
Z−τ can be written in the form x = a + bτ , y = c + dτ , where
a, b, c, d ∈ Z. The picture represents x and y as pairs (a, b) ∈ Z2,
resp. (c, d) ∈ Z2.

Unlike the case of positive base, with negative base one can represent negative
numbers without the use of a sign. This allows to identify the entire set Z−β as a
cut-and-project set. The difference between integers in positive and negative base
is illustrated in Figure 1 for the case β = τ = 1

2 (1 +
√

5), the golden ratio. The
following proposition appeared as Lemmas 5 and 9 in [17].

Proposition 2.4. Let β > 1 be the root of x2 −mx− 1, m ≥ 1. Then

Z−β =

{
Σβ

(
[0, β)

)
=

{
z ∈ Z[β] | z′ ∈ [0, β)

}
for m ≥ 2,

Σβ
(
[0, β2)

)
=

{
z ∈ Z[β] | z′ ∈ [0, β2)

}
for m = 1.

Let β > 1 be the root of x2 −mx+ 1, m ≥ 3. Then

Z−β = Σβ

((
−β−1
β+1 , β

β−1
β+1

))
=

{
z ∈ Z[β]

∣∣∣z′ ∈ (
−β−1
β+1 , β

β−1
β+1

)}
·

3. Combinatorial properties of (−β)-integers

Before starting to compare Zβ , resp. Z−β we shall state the necessary properties
of β- and (−β)-integers. We cite the known ones and provide proofs for the rest.

Recall that the distances between consecutive points of Zβ can be described
using the infinite word limδ→0+ dβ(1−δ) of (1.2), see [25]. They take finitely many
values if and only if this sequence is eventually periodic. Bases β, for which this



INTEGERS IN POSITIVE AND NEGATIVE QUADRATIC BASE 349

happens are called Parry numbers. Similarly, the distances between consecutive
points of Z−β can be described using the infinite word d−β(l) of (1.3), cf. [2].
They take finitely many values for the Ito–Sadahiro numbers β (in [24] called
Yrrap numbers), i.e. such that d−β(l) is eventually periodic.

Although the class of Parry numbers and the class of Ito–Sadahiro numbers
do not coincide, as shown in [14], Pisot numbers belong to both classes. In fact,
assuming that β is a quadratic number, the notions of Parry numbers, Ito–Sadahiro
numbers and Pisot numbers coincide [5, 18]. If β is a Pisot number, the distances
between consecutive points of Zβ , resp. Z−β take only finitely many values. In
particular, for quadratic Pisot numbers, the distances are only two. From [25], one
can easily derive the following statement.

Proposition 3.1. Let β > 1 be a quadratic Pisot number. Let Zβ = {tj | j ∈ Z},
where t0 = 0 and tj < tj+1. Then the distances between consecutive β-integers
take values tj+1 − tj ∈ {Δ+

0 , Δ
+
1 }, where

Δ+
0 = 1 and Δ+

1 =

{
n
β if β2 = mβ + n, m ≥ n ≥ 1,

1− n
β if β2 = mβ − n, m− 2 ≥ n ≥ 1.

The ordering of distances in Zβ can be coded by an infinite word uβ. Since Zβ
is symmetric with respect to 0, we define uβ as a one-sided infinite word

uβ = u0u1u2 . . . ∈ {0, 1}N, where uj = X if tj+1 − tj = Δ+
X . (3.1)

It is known that the infinite word uβ is a fixed point of the canonical
substitution [8].

Proposition 3.2. Let β > 1 be a quadratic Pisot number. Let ϕβ : {0, 1}∗ →
{0, 1}∗ be the canonical morphism

ϕβ(0) = 0m1, ϕβ(1) = 0n, if β2 = mβ + n, m ≥ n ≥ 1,

ϕβ(0) = 0m−11, ϕβ(1) = 0m−n−11, if β2 = mβ − n, m− 2 ≥ n ≥ 1.

Then the one-sided infinite word uβ coding the sequence of non-negative β-integers
Z+
β is a fixed point of ϕβ. In particular, we have uβ = limj→+∞ ϕjβ(0).

An infinite word uβ coding positive β-integers and the corresponding canonical
morphism ϕβ fixing uβ can be defined for every Parry number β. Among all such
words, exactly those corresponding to quadratic Pisot units are Sturmian.

Proposition 3.3. Let uβ be the one-directional infinite word coding Z+
β . Then uβ

is Sturmian if and only if β is a quadratic Pisot unit.

Statements similar to Propositions 3.1, 3.2 and 3.3 can be stated for (−β)-
integers. Before presenting these results, recall that the admissibility of digit strings
as (−β)-expansions is decided by the alternate order condition (1.3) using the
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expansion d−β(l) of the left-end point l = − β
β+1 of the interval I = [l, l + 1). In

case of quadratic Pisot numbers these strings are given as follows,

d−β(l) = m(m− n)ω, for β2 = mβ + n, m ≥ n ≥ 1, (3.2)

d−β(l) =
(
(m− 1)n

)ω
, for β2 = mβ − n, m− 2 ≥ n ≥ 1. (3.3)

For the class (3.2), one can use results of [2] in order to describe the distances be-
tween consecutive (−β)-integers and substitution properties of the corresponding
infinite word.

Proposition 3.4. Let β > 1 be the root of x2 −mx− n, m ≥ n ≥ 1. Let Z−β =
{tj | j ∈ Z}, where t0 = 0 and tj < tj+1. Then the distances between consecutive
(−β)-integers take values tj+1 − tj ∈ {Δ−

0 , Δ
−
1 }, where

Δ−
0 = 1 and Δ−

1 =

{
m
β if m = n,

1 + n
β if m < n.

Proof. If m > n, then the string d−β(l) = m(m − n)ω satisfies conditions of
Theorem 18 from [2] and the statement follows. For m = n, we have d−β(l) = m0ω

and we use Theorem 21 from [2]. �

Similarly as in case of positive base, one can code the sequence of (−β)-integers
by an infinite word, say u−β , over the alphabet {0, 1}, where the letter 0 is used
if distance Δ−

0 occurs, and 1 otherwise. Since negative numbers may have integer
(−β)-expansion with non-negative digits, the infinite word is pointed bidirectional,
where we denote the position of 0 by a delimiter |. Formally, we define

u−β = . . . u−2u−1|u0u1u2 . . . ∈ {0, 1}Z, where ui = X if ti+1 − ti = Δ−
X . (3.4)

For further use, let us denote the suffix of u−β starting at the delimiter by u+
−β =

u0u1u2 . . .

The results of [2] can be used to derive the following statement about invariance
of u−β under an antimorphism.

Proposition 3.5. Let β > 1 be the root of x2 −mx − n, m ≥ n ≥ 1. Then the
infinite word u−β is a fixed point of the antimorphism ←−ϕ-β : {0, 1}∗ → {0, 1}∗,
given by

←−ϕ-β(0) = 0m−11,
←−ϕ-β(1) = 0m+n−11,

for m > n, and
←−ϕ-β(0) = 0m1,
←−ϕ-β(1) = 0m,

for m = n.

In particular, we have

u−β = lim
n→+∞

←−ϕ-β
n(1)|←−ϕ-β

n(0).
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For the class of quadratic Pisot numbers β, which are not covered by Proposi-
tion 3.4, we have by (3.3) that d−β(l) =

(
(m−1)n

)ω. For such a case, results of [2]
cannot be used neither for deriving the distances, nor for determining invariance
under an antimorphism, thus we provide our own demonstration. For that, we need
to consider the admissibility condition (1.3) for this particular case, which reads
as follows: A string of integer digits y1y2y3 . . . is a (−β)-expansion of a number
x ∈ [− β

β+1 ,
1

β+1 ) if and only if every suffix yiyi+1yi+2 . . . satisfies(
(m− 1)n

)ω �alt yiyi+1yi+2 . . . ≺alt 0
(
(m− 1)n

)ω
.

In particular, for strings ending in 0ω, this results in requiring that the infinite word
y1y2y3 . . . does not contain a forbidden factor from the set {(m−1)A | 0 ≤ A < n}.

The following proposition is stated with more details than previous results about
distances in Zβ and Z−β , in order to facilitate the proof of Proposition 3.7.

Proposition 3.6. Let β > 1 be the root of x2 − mx + n, m − 2 ≥ n ≥ 1. Let
Z−β = {tj | j ∈ Z}, where t0 = 0 and tj < tj+1. Then the distances between
consecutive (−β)-integers take values tj+1 − tj ∈ {Δ−

0 , Δ
−
1 }, where

Δ−
0 = 1 and Δ−

1 = 2− n

β
·

In particular, let x < y be consecutive (−β)-integers.

(1) If 〈x〉−β = xk . . . x1A•, with A ≤ m− 3, then y − x = Δ−
0 = 1.

(2) If 〈x〉−β = xk . . . x1(m− 2)•, then y − x = Δ−
1 = 2− n

β ·
Proof. Since the natural order of reals corresponds to the alternate order of
their (−β)-expansions, it suffices to find, for every (−β)-integer x with 〈x〉−β =
xk . . . x1A•, the (−β)-integer y with the smallest alternately greater expansion.
We do not consider strings ending with the digit (m − 1), because they are not
admissible.

(1) Let A ≤ m− 3. Then y = x+Δ0 = x+ 1, because

x = xk . . . x1 A •
x+ 1 = xk . . . x1 (A+ 1) •

(2) Let A = (m − 2). Then y = x + Δ1, which can be justified as follows. The
(−β)-expansion of x is now of the form

〈x〉−β = . . . XY [(m− 1)n]k(m− 2)•
where k ∈ N0 and XY �= (m− 1)n. We distinguish two cases:

(a) Let X ≤ m− 2, Y ≥ 1 or X = m− 1, Y ≥ n+ 1. Then

x = . . . XY [(m− 1)n]k(m− 2)•
x+Δ−

1 = . . . X(Y − 1)0[(m− 1)n]k•
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(b) Let X ≤ m− 2, Y = 0. Then

x = . . . X0[(m− 1)n]k(m− 2)•
x+Δ−

1 = . . . X + 1m− 1[n(m− 1)]kn• �

Since the distances between consecutive (−β)-integers take two values, denoted
by Δ−

0 and Δ−
1 , we may define the pointed bidirectional infinite word u−β and

one-directional infinite word u+
−β for the class of quadratic Pisot numbers β, roots

of x2 − mx + n, in the same way as before, namely by (3.4). In the following
proposition we find the antimorphism fixing u−β.

Proposition 3.7. Let β > 1 be the root of x2 −mx + n, m − 2 ≥ n ≥ 1. Then
the infinite word u−β is a fixed point of the antimorphism ←−ϕ-β : {0, 1}∗ → {0, 1}∗,
given by

←−ϕ-β(0) = 0m−21
←−ϕ-β(1) = 0m−210m−n−21

In particular, we have

u−β = lim
n→+∞

←−ϕ-β
n(1)|←−ϕ-β

n(0).

Proof. From the definition, the set Z−β is self-similar, i.e. (−β)Z−β ⊂ Z−β . We
will determine the antimorphism←−ϕ-β under which u−β is invariant by showing that
between consecutive points of (−β)Z−β (which lie also in Z−β) we find always the
same configuration of elements of Z−β . More precisely, let x < y be consecutive
points in Z−β . Then −βy < −βx are consecutive points in (−β)Z−β . We will show
that there are only two types of the configurations [−βy,−βx]∩Z−β , according to
whether y−x = Δ−

0 or y−x = Δ−
1 . The sequence of distances in the configuration

obtained for y − x = Δ−
0 determines the word ←−ϕ-β(0); similarly, the sequence of

distances in the configuration obtained for y−x = Δ−
1 determines the word←−ϕ-β(1).

Recall that Δ−
0 = 1 is coded by the letter 0 and Δ−

1 = 2− n
β by the letter 1.

Consider consecutive (−β)-integers x, y such that y = x + 1 = x + Δ−
0 . By

Proposition 3.6, the expansions of x, y are of the form

〈x〉−β = xk . . . x1 A •
〈y〉−β = xk . . . x1 (A+ 1) •

Multiplying by (−β) we have

〈−βx〉−β = xk . . . x1 A 0 •
〈−βy〉−β = xk . . . x1 (A+ 1) 0 •

and we have −βx > −βy. From Proposition 3.6, we derive that (m − 2) right
neighbours of the point −βy are −βy+1, −βy+2, . . . , −βy+m−2. There are no
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other elements of Z−β in the interval (−βy,−βx). We have −βy + (m − 2)Δ−
0 +

Δ−
1 = −βx, and thus we may put ←−ϕ-β(0) = 0m−21.
Let now y = x+Δ−

1 . From the proof of Proposition 3.6, we can derive that the
number −βy may have two possible expansions, namely

〈−βy〉−β = . . . (m− 1) n 0 •
〈−βy〉−β = . . . X 0 0 •

In both cases, the neighbouring m−2 elements of Z−β are again −βy+1, −βy+2,
. . . , −βy +m− 2, and we have

〈−βy + (m− 2)Δ−
0 〉−β = . . . (m− 1) n (m− 2) •

〈−βy + (m− 2)Δ−
0 〉−β = . . . X 0 (m− 2) •

where X denotes an arbitrary digit in {0, 1, . . . ,m − 2}. By Proposition 3.6, the
neighbour is

〈−βy + (m− 2)Δ−
0 +Δ−

1 〉−β = . . . . . . (m− 1) n •
〈−βy + (m− 2)Δ−

0 +Δ−
1 〉−β = . . . (X + 1) (m− 1) n •

Necessarily, the (m−n−2) right neighbours are obtained by adding Δ−
0 . The last

one is of the form

−βy + (m− 2)Δ−
0 +Δ−

1 + (m− n− 2)Δ−
0 = −βx−Δ−

1 .

Hence there are no other points of Z−β in the interval (−βy,−βx) and the pre-
scription for the antimorphism is ←−ϕ-β(1) = 0m−210m−n−21. �

As a consequence of the above descriptions of distances in Z−β and antimor-
phisms fixing infinite words coding Z−β , we derive an analogue of Proposition 3.3,
characterizing Sturmian words among u−β, which is defined analogously to (3.4)
for any Ito–Sadahiro number β.

Corollary 3.8. Let β > 1 be an Ito–Sadahiro number and let u−β be the bi-
directional infinite word coding Z−β. Then u−β is Sturmian if and only if β is a
quadratic Pisot unit.

Proof. From Proposition 16 of [2] it follows that the infinite word u−β is binary only
if β is quadratic. As mentioned above, the only quadratic Ito–Sadahiro numbers are
quadratic Pisot numbers. For β a quadratic Pisot unit, Proposition 2.4 identifies
the set Z−β as a cut-and-project set Σβ(Ω) for certain interval Ω. Propositions 3.4
and 3.6 state that the distances between consecutive elements of Z−β take two
values. By Theorem 2.1, the infinite word u−β is a bidirectional Sturmian word.
On the other hand, if β is a quadratic Pisot number, but not a unit, then we use
the combinatorial characterization of Sturmian words as aperiodic balanced words
to exclude that u−β is Sturmian.
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Recall that words u−β are fixed points

u−β = lim
n→∞

←−ϕ-β
n(1)|←−ϕ-β

n(0)

of antimorphisms given in Propositions 3.5 and 3.7. We distinguish three cases
according to the prescription of the antimorphism.

(1) Let β2 = mβ +m, m ≥ 2. Then ←−ϕ-β(0) = 0m1, ←−ϕ-β(1) = 0m. Necessarily, u−β
contains the factors 10m1 and 02m, which contradicts the balance property of
Sturmian words.

(2) Let β2 = mβ+n, 2 ≤ n < m. Then←−ϕ-β(0) = 0m−11,←−ϕ-β(1) = 0m+n−11. Then
u−β contains the factors 10m−11 and 0m+n−1, which is a contradiction.

(3) Let β2 = mβ − n, 2 ≤ n ≤ m − 2. Then ←−ϕ-β(0) = 0m−21, ←−ϕ-β(1) =
0m−210m−n−21. Then u−β contains the factors 10m−n−21 and 0m−2, which
is again a contradiction. �

Remark 3.9. In fact, when showing that u−β is a Sturmian word for a quadratic
Pisot unit β one could avoid argumentation by cut-and-project scheme, providing
thus an alternative proof of one implication in Corollary 3.8. For that, if would
be sufficient to demonstrate that u−β is a fixed point of a primitive Sturmian
morphism. A morphism σ is called Sturmian, if for every Sturmian word u, the
infinite word σ(u) is Sturmian. A morphism over a binary alphabet is Sturmian if
and only if it is a composition of morphisms E,ϕ, ϕ̃, where

E : 0 �→ 1

1 �→ 0
ϕ : 0 �→ 01

1 �→ 0
ϕ̃ : 0 �→ 10

1 �→ 0.

The infinite word u−β is a fixed point of the morphism ←−ϕ-β
2, where ←−ϕ-β is the

antimorphism from Propositions 3.5 and 3.7. We can justify that←−ϕ-β
2 is Sturmian

by providing its decomposition into morphisms E,ϕ, ϕ̃. We have

(1) Let β2 = β + 1. Then β = τ = 1
2 (1 +

√
5), and u−β is a fixed point of the

Sturmian morphism ←−ϕ-β
2 = ϕ ◦ ϕ̃, hence it is a Sturmian word.

(2) Let β2 = mβ + 1, 1 < m. Then the second iteration ←−ϕ-β
2 is a morphism with

prescription

0 �→ 0m1(0m−11)m−1, 1 �→ 0m1(0m−11)m.

One can verify that
←−ϕ-β

2 = (ϕ ◦ E)m−1 ◦ (E ◦ ϕ̃)m ◦ ϕ ◦ E.
(3) Let β2 = mβ − 1. Then ←−ϕ-β

2 is given by the prescription

0 �→ 0m−210m−31
(
0m−21

)m−2
,

1 �→ 0m−210m−31
(
0m−21

)m−2
0m−31

(
0m−21

)m−2
.

This morphism is Sturmian since
←−ϕ-β

2 = (ϕ ◦ E)m−3 ◦ E ◦ ϕ̃ ◦ (ϕ̃ ◦ E)m−2 ◦ E ◦ ϕ̃ ◦ ϕ ◦ E.
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4. Relation of Zβ and Z−β

One of the main purposes of this paper is demonstrating the relation of β-
and (−β)-integers and thus continuing the study performed for the golden ratio τ
in [19]. There we have shown that

Z−τ ∩ R+ = Z+
τ2 . (4.1)

In fact, such an equality relating integers in base −β and β2 is exceptional, ensured
by the fact that Z[τ ] = Z[τ2]. This allows that

Zτ2 ∩ R+ = (Zτ + 1) ∩ R+. (4.2)

This can be seen for example from the fact that τ is a root of x2 − x− 1, and so
by the first statement of Proposition 2.3,

Z+
τ = Στ

(
(−1, τ)

) ∩ R+ =
{
x ∈ Z[τ ]

∣∣x′ ∈ (−1, τ)
} ∩ R+,

and similarly, τ2 is a root of x2 − 3x + 1, and so by the second statement of
Proposition 2.3,

Z+
τ2 = Στ2

(
[0, τ2)

) ∩ R+ =
{
x ∈ Z[τ2] = Z[τ ]

∣∣x′ ∈ [0, τ2)
} ∩R+

= Στ
(
[0, τ2)

) ∩ R+ = Z−τ ∩ R+.

We obviously have (−1, τ)+1 = (0, τ2), which according to statement 2 of Propo-
sition 2.2 and Proposition 3.6 justifies (4.2) and (4.1).

In [19] we have used a combinatorial approach for proving (4.1). Argumentation
using the cut-and-project scheme as above can be extended to clarify the relation
of Z−β and Zβ for all quadratic Pisot units β roots of x2 −mx− 1, m ≥ 1.

Theorem 4.1. Let β > 1 be the root of x2 −mx− 1, m ≥ 2. Then

Zβ ∩ R+ = (Z−β ∪ βZ−β) ∩ R+.

Proof. By Proposition 2.3 we have Zβ ∩ R+ = Σβ(−1, β) ∩ R+. Since β′ = − 1
β ,

we have from Proposition 2.2 that

Σβ(−1, β)=Σβ(−1, 0]∪Σβ[0, β)=Σβ
(− 1

β [0, β)
)∪Σβ[0, β)=βΣβ [0, β)∪Σβ [0, β).

By Proposition 2.4 we have Z−β = Σβ [0, β), and the statement of the theorem
follows. �

Note that Z−β ∩ βZ−β = {0}, as can be seen from the proof of Theorem 4.1.
If we try to obtain similar geometric relation for β > 1 root of x2 − mx + 1,

m ≥ 3, we do not succeed, for, the closures of {x′ | x ∈ Zβ}, resp. {x′ | x ∈ Z−β}
are shifted with respect to each other by a constant that does not belong to
Z[β′] = Z[β]. Even if we consider for example the set

(Zβ \ βZβ) ∩ R+ = Σβ[1, β) ∩R+,
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which has the same interval length as the cut and project set

Z−β = Σβ

((
−β−1
β+1 , β

β−1
β+1

))
,

we cannot identify them as a shift one of the other. Nevertheless, every finite piece
in Σβ

((
− β−1

β+1 , β
β−1
β+1

))
can be found translated in Σβ[1, β) and vice versa. This

suggests that we can still obtain an interesting combinatorial relation between Zβ
and Z−β when studying the corresponding infinite words uβ and u−β . In particular,
we will study the language of these infinite words, thus comparing the finite pieces
of Zβ and Z−β . In fact, such an approach allows us to give a relation between
the β- and (−β)-integers not only for quadratic Pisot units β, but also for other
quadratic Pisot numbers.

Since the language L(u−β) of u−β = . . . u−2u−1|u0u1u2 . . . is the same as the
one of its suffix u+

−β = u0u1u2 . . ., it is natural to compare L(uβ) and L(u+
−β).

The tool is to compare the morphisms under which the words are invariant. For
that, the notion of conjugation is useful. A morphism ψ is a right conjugate of a
morphism σ, if there is a finite word w, such that

σ(a)w = wψ(a) for all a ∈ A∗.

Incidence matrices Mσ and Mψ of conjugate morphisms coincide. The opposite
implication is obviously not satisfied. We will use the following lemma, which
appears to be a folklore, thus we include it without proof.

Lemma 4.2. Languages of fixed points of conjugate primitive morphisms
coincide.

In the terminology of dynamical systems, the fact that languages of two infinite
words coincide means that they belong to the same subshift. However, it does not
necessarily mean that one is a shift of the other.

Theorem 4.3. Let β > 1 be the root of x2 − mx − m, m ≥ 1. Then L(uβ) =
L(u−β). Moreover, if m = 1, then u+

−β = 0uβ. When m ≥ 2, then neither u+
−β is

a suffix of uβ, nor uβ is a suffix of u+
−β.

Proof. By Proposition 3.5, we have ←−ϕ-β(0) = 0m1, ←−ϕ-β(1) = 0m and thus

←−ϕ-β
2(0) = 0m(0m1)m, ←−ϕ-β

2(1) = (0m1)m .

The second iteration of the canonical substitution ϕβ , ϕβ(0) = 0m1, ϕβ(1) = 0m

is given by
ϕ2(0) = (0m1)m0m, ϕ2(1) = (0m1)m.

Therefore ←−ϕ-β
2 is a right conjugate of ϕ2 and the conjugation factor w is equal to

w = (0m1)m.
If m = 1, then β = τ and the statement u+

−τ = 0uτ is found in [19]. On the
other hand, if m ≥ 2, we can exclude that uβ is a suffix of u+

−β or vice versa. Recall
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that letters 0, 1 code the same distances Δ+
0 = Δ−

0 = 1, Δ+
1 = Δ−

1 = m
β in uβ

and u+
−β, cf. Propositions 3.1 and 3.4. If u+

−β = wuβ or wu+
−β = uβ for some finite

word w ∈ {0, 1}∗, then
(Z−β ± c) ∩ R+ = Z+

β , (4.3)

where c = |w|0Δ0+ |w|1Δ1 ∈ Z+Zm
β = Z[β]. Taking the Galois images, one would

have
{x′ | x ∈ Z−β ∩R+} ± c′ = {x′ | x ∈ Z+

β }.
However, this is not possible. We will show that by finding sup{x′ | x ∈ Z−β ∩
R+} and sup{x′ | x ∈ Z+

β }. It is easy to realize that supremum sup{x′ | x ∈
Z+
β } is approached by β-integers x =

∑k
i=0 aiβ

i ∈ Z[β] with β-expansion 〈x〉β =
m0m0 . . .m0m•. We have

x′ =
k∑
i=0

aiβ
′i =

k∑
i=0

ai

(
−m
β

)i
< m

∞∑
i=0

(
m

β

)2i

=
β3

β +m
·

Similarly, one can compute sup{x′ | x ∈ Z−β ∩ R+}, realizing that it is obtained
considering (−β)-integers of the form 〈x〉−β = mmm. . .m•,

x′ =
k∑
i=0

ai(−β′)i < m
∞∑
i=0

(m
β

)i
=

mβ

β −m = β2.

Thus the difference sup{x′ | x ∈ Z+
β }−sup{x′ | x ∈ Z−β∩R+} = β3

β+m−β2 /∈ Z[β],
and hence equality (4.3) cannot be valid for any c ∈ Z[β]. �

One cannot expect that morphisms corresponding to uβ and u−β will be conju-
gated for quadratic Pisot β other than roots of x2 −mx−m. This is because the
incidence matrices of morphisms ϕ2

β and ←−ϕ-β
2 do not coincide, compare Proposi-

tion 3.2 with Propositions 3.5 and 3.7. This is also in agreement with the fact that
the distances in Zβ and Z−β coincide only if β is a root of x2−mx−m. For other
quadratic Pisot numbers β, we have interestingly

Δ+
0 = Δ−

0 = 1, Δ+
1 =

n

β
= Δ−

1 − 1 if β2 = mx+ n, m > n ≥ 1,

Δ+
0 = Δ−

0 = 1, Δ+
1 = 1− n

β
= Δ−

1 − 1 if β2 = mx− n, m− 2 ≥ n ≥ 1,

which means that Δ−
1 = Δ+

0 +Δ+
1 . It is therefore appealing to see what happens

when adding to Z−β certain points which would split every distance Δ−
1 into two

distances of lengths Δ+
0 = Δ−

0 = 1 and Δ+
1 . Theorem 4.1 shows that at least for

one class of considered numbers, this splitting on the positive half-line gives the
same set as Z+

β . Note, however, that we can choose the order in which we split the
long distance into two.
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Realize that performing this procedure on the geometric representation of Z−β
corresponds to applying a suitable morphism on the infinite word u−β. Define
π, π̃ : {0, 1}∗ → {0, 1}∗ by

π : 0 �→ 0
1 �→ 10

and π̃ : 0 �→ 0
1 �→ 01.

(4.4)

As we shall prove, application of π, resp. π̃ on the infinite word u−β leads to an
infinite word with the same language as uβ. For showing that, we will use the
following easy statement.

Lemma 4.4. Let σ, ψ, π be morphisms such that σ : A∗ → A∗, ψ : B∗ → B∗,
π : A∗ → B∗ and π ◦ σ = ψ ◦ π. If u is a fixed point of σ, then v := π(u) is a fixed
point of ψ.

Proof. We have v = π(u) = π
(
σ(u)

)
= ψ

(
π(u)

)
= ψ(v). �

Theorem 4.5. Let π and π̃ be morphisms as in (4.4).
Let β > 1 be the root of x2 −mx− n, m > n ≥ 1. Then,

L(uβ) = L(
π̃(u−β)

)
.

Moreover, uβ = π(u+
−β) for n = 1.

Let β > 1 be the root of x2 −mx+ n, m− 2 ≥ n ≥ 1.

L(uβ) = L(
π(u−β)

)
.

Proof. Let β be the quadratic Pisot number satisfying β2 = mβ + n, m > n ≥ 1.
Define a morphism ψ : {0, 1}∗ → {0, 1} by

ψ : 0 �→ 0m+n1(0m1)m−1

1 �→ (0m1)n.

One can easily verify that the morphism ψ satisfies π̃ ◦ ←−ϕ-β
2 = ψ ◦ π̃. Therefore

by Lemma 4.4, π̃(u−β) is a fixed point of ψ. We can also verify that ψ is a right
conjugate of ϕ2

β , which is by Proposition 3.2 equal to

ϕ2
β : 0 �→ (0m1)m0n

1 �→ (0m1)n.

The conjugacy factor w is equal to w = (0m1)m. By Lemma 4.2, the infinite words
u+
β and π̃(u−β) have the same language.
Similarly, for the quadratic Pisot number satisfying β2 = mβ−n,m−2 ≥ n ≥ 1,

define ψ : {0, 1}∗ → {0, 1} by

ψ : 0 �→ (0m−21)0m−n−11(0m−11)m−20

1 �→ (0m−21)0m−n−11(0m−11)m−n−20.
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The morphism ψ satisfies π ◦←−ϕ-β
2 = ψ ◦ π and therefore π(u−β) is a fixed point of

ψ. We verify that ϕ2
β is a right conjugate of ψ, which is by Proposition 3.2 equal

to
ϕ2
β : 0 �→ (0m−11)m−10m−n−11

1 �→ (0m−11)m−n−10m−n−11.

The conjugacy factor w is equal to w = 0m−210m−n−11. Thus by Lemma 4.2, we
derive L(uβ) = L(

π(u−β)
)
.

It remains to justify that for β2 = mβ + 1 we have equality uβ = π(u+
−β). In

this case

ϕ2
β : 0 �→ (0m1)m0

1 �→ 0m1
and ←−ϕ-β

2 : 0 �→ 0m1(0m−11)m−1

1 �→ 0m1(0m1)m
(4.5)

and therefore one can verify that π ◦ ←−ϕ-β
2 = ϕ2

β ◦ π. By Lemma 4.4,
π(u+

−β) is a fixed point of ϕ2
β , but ϕ2

β has only one fixed point, namely
uβ = limj→∞ ϕjβ(0). �

5. Addition of (−β)-integers

In the following, let us focus on the arithmetical aspect of (−β)-integers. For
non-integer base −β, the set Z−β is not closed under addition and subtraction.
One can nevertheless define the operation ⊕ of addition on Z−β as tj ⊕ tk = tj+k,
with the neutral element t0 = 0 and opposite element �tj = t−j , so that Z−β
be an additive group isomorphic to Z. Such a definition is of course possible for
any countable set. Here we show that for every quadratic Pisot number β, the
‘sum’ tj ⊕ tk yields always a result which is not far from the ordinary sum of real
numbers tj and tk. More formally, we show that tj ⊕ tk − (tj + tk) is bounded
independently on j and k, and we determine the possible values of the distance
for quadratic Pisot units. We also show that the operation ⊕ is compatible with
ordinary addition of real numbers, namely that whenever the result tj + tk is a
(−β)-integer, then tj⊕tk = tj+tk. Note that for the case of positive base β, where
β is a quadratic Pisot unit, this was done in [7] by a technical arithmetic study.
Here we choose a combinatorial approach which allows us to derive a general result
about compatibility. We will show that for any discrete set Σ = {tj | j ∈ Z} ⊂ R,
tj < tj+1, with finitely many distances between consecutive points, i.e. values
tj+1 − tj , one can define a binary operation ⊕ so that (Σ,⊕) � (Z,+), which is
compatible with addition in R if the values of the distances are linearly independent
over Q.

Theorem 5.1. Let u = . . . u−2u−1|u0u1u2 . . . be a bidirectional infinite word over
a finite alphabet A = {0, 1, . . . , d − 1}. Let Δ0, . . . , Δd−1 be positive real values
linearly independent over Q. Set t0 = 0. For k ≥ 1, define tk =

∑d−1
i=0 |w|iΔi,

where w = u0u1 . . . uk−1. For k ≤ −1, define tk = −∑d−1
i=0 |w|iΔi, where w =

u−ku−k+1 . . . u−1. On the set Σ = {tk | k ∈ Z} define a binary operation ⊕,
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w︷ ︸︸ ︷
︸ ︷︷ ︸

v

w′︷ ︸︸ ︷
t0 = 0 tj tk tj+ktj + tk

Figure 2. Addition tj + tk in Σ.

by tj ⊕ tk = tj+k, for j, k ∈ Z. Then (Σ,⊕) is isomorphic to (Z,+) and ⊕ is
compatible with addition in R.

Proof. We have to show that whenever tj + tk = tl, then l = j + k. For the
contradiction, let us assume that tj + tk = tl, where l �= j + k. Suppose first that
0 ≤ j ≤ k which obviously implies l ≥ 0. Let tj correspond to a prefix w, tk to a
prefix v and tl to a prefix z of the word u0u1 . . . We have

tj + tk − tl = 0 ⇐⇒
d−1∑
i=0

(|w|i + |v|i − |z|i)Δi =
d−1∑
i=0

(|wv|i − |z|i)Δi = 0.

(5.1)
The last equality of (5.1) is a nontrivial combination of Δi’s which follows from
|wv| = j + k �= l = |z|. Here we have a contradiction with the linear independence
of Δ0, . . . , Δd−1 over Q.

The same argument can be applied when considering indices j ≤ 0 ≤ k or
j ≤ k ≤ 0. �

Let us derive the possible outcomes of tj + tk − tj+k. For 0 ≤ j ≤ k, let
tj correspond to the prefix w = u0 . . . uj−1, let tk correspond to the prefix v =
u0 . . . uk−1 and let tj+k correspond to the prefix z = vw′, where w′ = uk . . . uj+k−1,
see Figure 2. Then we have

tj + tk − tj+k =
d−1∑
i=0

(|w|i + |v|i − |vw′|i)Δi =
d−1∑
i=0

(|w|i − |w′|i)Δi. (5.2)

The same looking formula can be derived for other cases j ≤ k ≤ 0 or j ≤ 0 ≤ k,
only the factors w and w′ are dependent on the case, however, they are always of
the same length.

Equality (5.2) states that the distance of tj + tk from tj ⊕ tk = tj+k depends on
the difference of the number of occurrences of a specific letter in two factors w,w′

of the same length. This is captured by the notion of generalized balance defined
in [1]. An infinite word u over an alphabet A is called C-balanced for a C ∈ N, if∣∣|w|a − |w′|a

∣∣ ≤ C, for every a ∈ A and every pair w,w′ ∈ L(u), |w| = |w′|.
We sometimes say that u has bounded balances, if there exists C < +∞, such that
u is C-balanced. Obviously, u is balanced if it is 1-balanced.



INTEGERS IN POSITIVE AND NEGATIVE QUADRATIC BASE 361

Using (5.2), we derive that if the set Σ is defined by an infinite word with
bounded balances, then the result of tj ⊕ tk is not far from the actual sum of tj
and tk.

Corollary 5.2. Let u = . . . u−2u−1|u0u1u2 . . . be a bidirectional infinite word over
a finite alphabet A = {0, 1, . . . , d− 1} with bounded balances. Define (Σ,⊕) as in
Theorem 5.1. Then tj + tk − (tj ⊕ tk) is bounded independently of j, k ∈ Z.

Note that when Σ is coded by a binary word over the alphabet A = {0, 1}, we
can write |w|1 = |w| − |w|0. In this case, (5.2) can be rewritten as

tj+tk−tj+k =
(|w|0−|w′|0

)
Δ0+

(|w|1−|w′|1
)
Δ1 =

(|w|0−|w′|0
)
(Δ0−Δ1). (5.3)

Similarly, we would get

−t−j − tj =
(|w|0 − |w′|0

)
(Δ0 −Δ1), (5.4)

where w = u−ju−j+1 . . . u−1, w′ = u0u1 . . . uj−1 for j ≥ 0 and vice versa otherwise.
Let us apply Theorem 5.1 and Corollary 5.2 to β- and (−β)-integers in case

of quadratic Pisot β. For a positive base, we know that the infinite word uβ has
bounded balances, they have been determined explicitly in [4,26]. It is not difficult
to prove that also the infinite word u−β has bounded balances, if we use the result
of Adamczewski [1] about balance properties of fixed points of morphisms. He
shows that boundedness/unboundedness of balances is decided by the second (in
modulus) eigenvalue of the incidence matrix of the morphism.

Lemma 5.3. For every quadratic Pisot β there exist a constant C such that the
infinite word u−β is C-balanced. If β is a unit, then C = 1.

Proof. For any quadratic Pisot β, the infinite word u−β is a fixed point of a substi-
tution, which is a second iteration of the antimorphism←−ϕ given in Propositions 3.5
and 3.7. The incidence matrix of the substitution has β2 as its dominant eigen-
value. Necessarily, the second eigenvalue is β′2, which is in modulus smaller than 1.
Consequently, by [1], the fixed point of ←−ϕ 2

β has bounded balances. If β is a unit,
then Proposition 3.8 states that the infinite word u−β is a Sturmian word, and
thus it is balanced, i.e. C = 1. �

Relations (5.3) and (5.4) describe the possible outcomes of tj⊕ tk−(tj+ tk) and
�tj − (−tj). By Lemma 5.3, there exists a constant C such that for any pair of
factors w, v ∈ L(u−β) we have

∣∣|v|0−|w|0∣∣ ≤ C. This, together with (5.3) and (5.4)
shows that tj ⊕ tk − (tj + tk) and �tj − (−tj) are bounded independently of j, k,
and that when β is a unit, then C = 1 and thus

tj ⊕ tk − (tj + tk),�tj − (−tj) ∈
{
0,±(Δ0 −Δ1)

}
. (5.5)

Corollary 5.4. Let β > 1 be the root of x2 −mx+ 1, m ≥ 3. Then

tj ± tk = tj±k + {−η, 0, η}, where η = 1− 1
β
·
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For the second class of quadratic Pisot units, one can observe even stronger
properties. This is given by the fact that the prefixes of u+

−β = u0u1u3 . . . are
‘light’, or in other words, contain at least as many letters 0 as any factor of u−β
of the same length. In fact, by Corollary 3.8, u−β is a Sturmian word, i.e. it is
balanced. Hence for any given length k ∈ N, the number |w|0 in factors w ∈
L(u−β), |w| = k, takes only two possible values. Factors having the larger number
of 0’s are called light, the other ones are called heavy.

Lemma 5.5. Let β > 1 be the root of x2 − mx − 1, m ≥ 1. Let u−β =
. . . u−2u−1|u0u1u2 . . . be the infinite word coding the set of (−β)-integers. Let
w = u0u1 . . . un−1 and let w′ be any factor in L(u−β) of length |w′| = |w| = n.
Then |w|0 − |w′|0 ∈ {0, 1}. In other words, every prefix of u+

−β is light.

Proof. When β > 1 is the root of x2 − mx − 1, m ≥ 1, we use Proposition 2.4,
which states that Z−β = Σβ

(
[0, β2)

)
for m = 1 and Z−β = Σβ

(
[0, β)

)
otherwise.

Consider first the case m > 1. The infinite word u+
−β codes the non-negative part

of Z−β , and in fact, coincides with the Sturmian word arising as coding of 0 in the
exchange of intervals [0, β − 1), [β − 1, 1). By rescaling, it can be viewed also as
a coding of 0 under a rotation by the angle α = 1

β on the unit interval, thus u+
−β

is in fact what is called a Sturmian word with null intercept. As a consequence of
the proof of Theorem 8 in [23], any prefix of such a Sturmian word is light. �

Proposition 5.6. Let β > 1 be the root of x2 −mx− 1, m ≥ 1. Then

tj + tk = tj+k + {0, ξ}, tj − tk = tj−k − {0, ξ} for all j, k ∈ Z

and
−tj = t−j − ξ for j ∈ Z \ {0},

where

ξ = Δ−
0 −Δ−

1 =

{
− 1
β for m ≥ 2,

1
β2 for m = 1.

Moreover, if m ≥ 2, then tj ⊕ tk is the closest (−β)-integer to tj + tk.

Proof. Let us first prove −tj = t−j − ξ for all j ∈ Z \ {0}. According to (5.5) we
have that −tj = t−j + {0,±(Δ−

0 −Δ−
1 )}, where Δ−

0 −Δ−
1 = ξ. We take the Galois

images of those three possible cases, namely

−t′j = t′−j , −t′j = t′−j + ξ′ or − t′j = t′−j − ξ′, (5.6)

where ξ′ = β2 and ξ′ = β for m = 1 and m ≥ 2, respectively. Proposition 2.4
states that tj ∈ Z−β implies t′j ∈ Ω, where Ω = [0, β2) for m = 1 and Ω = [0, β)
otherwise (note that 0 corresponds to t0 = 0 which is not considered in this
statement). Therefore −t′j ∈ −Ω and substituting together with t′−j ∈ Ω into
(5.6) we get that the only possible option is −t′j = t′−j − ξ′.
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w′︷ ︸︸ ︷
︸ ︷︷ ︸

z

w︷ ︸︸ ︷
tj tj+k

tj + tk

t0 = 0 tk

Figure 3. Addition tj + tk in the case j ≤ 0 ≤ k with |j| ≥ k.

Let 0 ≤ j ≤ k. Using (5.2) and the fact that the factor w = u0 . . . uj−1 is light,
we obtain tj + tk − tj+k = (|w|0 − |w′|0)(Δ−

0 −Δ−
1 ) ∈ {0, ξ}. When k ≤ j ≤ 0 we

can write

−(tj + tk − tj+k) = t−j − ξ + t−k − ξ − t−j−k + ξ

= t−j + t−k − t−j−k︸ ︷︷ ︸
∈{0,ξ}

−ξ ∈ {−ξ, 0}. (5.7)

The first equality follows from −tj = t−j + ξ and then we used already proven
case 0 ≤ j ≤ k. Thus is holds tj + tk − tj+k ∈ {0, ξ}.

Consider the case j ≤ 0 ≤ k with |j| ≥ k. Let w = u0u1 . . . uk−1, w′ =
uju−j+1 . . . uj+k−1, and z = uj+kuj+k+1 . . . u−1, i.e. tk correspond to the pre-
fix w, tj correspond to the suffix v = w′z, and tj+k to the suffix z, see Figure 5.
Then we have

tj + tk − tj+k =
1∑
i=0

(−|w′z|i + |w|i + |z|i)Δ−
i

= (|w|0 − |w′|0)(Δ−
0 −Δ−

1 ) = (|w|0 − |w′|0)ξ.
Since w is light and factors w,w′ are of the same length, we have |w|0 − |w′|0 ∈
{0, 1}.

When j ≤ 0 ≤ k with |j| < k we use the same approach as in (5.7) to get the
statement.

Substituting j = p, k = q− p, into tj + tk = tj+k + {0, η}, one gets tp + tq−p =
tq + {0, η}, and thus tq − tp = tq−p − {0, η}.

If β > 1 is the root of x2−mx−1,m ≥ 2, then the distances between consecutive
(−β)-integers take values Δ−

0 = 1 and Δ−
1 = 1 + 1

β , and thus Δ−
0 − Δ−

1 = − 1
β .

Moreover, since 	β
 = m ≥ 2, we have 1
β <

1
2 . Therefore both tj ⊕ tk − (tj + tk)

and �tj − (−tj) are in modulus smaller than 1
2 < min(Δ−

0 /2, Δ
−
1 /2). �

In the above proposition, we show that tj ⊕ tk is the closest (−β)-integer to
tj+k only for β root of x2 −mx− 1 with m ≥ 2. We can show that if m = 1, i.e.
when β is the golden ratio, then similar statement does not hold.

Example 5.7. Let β be the golden ratio, root of x2 − x − 1. Then tj ⊕ tk is not
always the closest (−β)-integer to tj + tk. The situation is illustrated in Figure 4.
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t5 + t5t5︷ ︸︸ ︷Δ−
0 Δ−

0 Δ−
10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 · · ·

Figure 4. Addition in (−β)-integers for β = 1
2 (1 +

√
5).

Since the distances between consecutive (−β)-integers are Δ−
0 = 1 and Δ−

1 = 1
β ,

we can see in Figure 4 that t5 + t5 = 2(4+ 1
β ) = 8+ 2

β , t10 = 7+ 3
β and t11 = 7+ 4

β ,
so that

t5 + t5 − t10 = 1− 1
β
≈ 0.38 but t5 + t5 − t11 = 1− 2

β
≈ −0.24,

which means that
∣∣t5 + t5 − (t5 ⊕ t5)

∣∣ > ∣∣t5 + t5 − t11
∣∣.

The following example shows that also for β root of x2 −mx + 1, m ≥ 3, the
‘sum’ tj ⊕ tk is not always the closest (−β)-integer to tj + tk.

Example 5.8. Using the morphism←−ϕ−β from Proposition 3.7, one can list several
letters of u−β around the delimiter marking the origin, namely

u−β = . . . 1
(
0m−21

)m−2|0m−210m−31
(
0m−21

)m−2
0m−210m−31

(
0m−21

)m−2
. . .

Taking into account that Δ−
0 = 1 and Δ−

1 = 2− n
β , we derive the following.

(1) For the case m = 3 we have t6 = 3Δ−
0 + 3Δ−

1 = 9 − 3
β and t6 + t6 = 18− 6

β .

The closest (−β)-integer to t6 + t6 is t11 = 4Δ−
0 + 7Δ−

1 = 18 − 7
β instead of

t12 = t11 +Δ−
1 = 20− 7

β ·
(2) When m ≥ 4 we have t2 = 2Δ−

0 = 2 and tm−2 = (m − 2)Δ−
0 = m − 2 and

hence t2 + tm−2 = m while tm = (m− 1)Δ−
0 +Δ−

1 = m+ 1 − 1
β . The closest

(−β)-integer to t2 + tm−2 is tm−1 = m− 1
β ·

There is an interesting consequence of Proposition 5.6. The relation −tj = t−j − ξ
implies

−
(
tj − ξ

2

)
= t−j − ξ

2
for all j ∈ Z \ {0}.

The geometrical interpretation of this fact is following.

Corollary 5.9. Let β > 1 be the root of x2−mx−1,m ≥ 1. Then the set Z−β\{0}
is symmetrical with respect to ξ = Δ−

0 −Δ−
1 .

The fact that the compatibility of the operations ⊕ and addition in R does not
always hold is illustrated in the next example.
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Δ+
0 Δ+

1 Δ+
2 Δ+

3 Δ+
4 Δ+

0 Δ+
0 Δ+

1

t1︷ ︸︸ ︷0

t0 t1 t2 t3 t4 t5 t6 t7 t8 · · ·

Figure 5. Operation ⊕ in Zβ is not compatible with addition in
R for minimal Pisot number β.

Example 5.10. Let β > 1 be the minimal Pisot number, zero of the polynomial
x3−x+1. Let us show that in this case the group operation⊕ defined on β-integers
by tj ⊕ tk = tj+k is not compatible with addition in R.

The Rényi expansion of 1 is equal to dβ(1) = 10001, and thus the distances
between consecutive β-integers take the values

Δ+
0 = 1, Δ+

1 = β−4, Δ+
2 = β−3, Δ+

3 = β−2, Δ+
4 = β−1.

These values are not linearly independent over Q. In particular, we have Δ+
0 =

Δ+
2 +Δ+

3 .
The canonical substitution ϕβ for β is of the form 0 �→ 01, 1 �→ 2, 2 �→ 3, 3 �→ 4,

4 �→ 0. The infinite word uβ coding the set Zβ is the fixed point of ϕβ , namely

lim
n→∞ϕn(0) = 012340010120123012340123 . . .

The first few β integers can be written as

t0 = 0, t1 = Δ+
0 = 1, t2 = Δ+

0 +Δ+
1 = 1 +

1
β4
,

t3 = Δ+
0 +Δ+

1 +Δ+
2 = 1 +

1
β4

+
1
β3
,

t4 = Δ+
0 +Δ+

1 +Δ+
2 +Δ+

3 = 1 +
1
β4

+
1
β3

+
1
β2

. . .

We have t1 ⊕ t2 = t3, while t1 + t2 = 2Δ+
0 +Δ+

1 = Δ+
0 +Δ+

1 +Δ+
2 +Δ+

3 = t4.

The last example illustrates that compatibility does not enforce that the dis-
tance |tj + tk − tj+k| is bounded.

Example 5.11. Let β > 1 be the zero of the irreducible polynomial x6 − x5 − 1.
Such β has conjugates outside of the unit circle, so it is not a Pisot number.
However, it is a Parry number. The Rényi expansion of 1 is dβ(1) = 100001. The
distances between consecutive β-integers take the values

Δ+
0 = 1, Δ+

1 = β−5, Δ+
2 = β−4, Δ+

3 = β−3, Δ+
4 = β−2, Δ+

5 = β−1,

which are now linearly independent over Q. By Theorem 5.1, the operation ⊕ de-
fined on Zβ by tj⊕tk = tj+k is compatible with addition in R. However, the infinite
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word uβ is fixed by a non-Pisot substitution ϕβ . The second largest eigenvalue λ2

of its incidence matrix is in modulus greater than 1, and thus by [1], the infinite
word uβ has unbounded balances. In particular, it means that tj + tk can be arbi-
trarily far from the ordinary sum tj ⊕ tk. Nevertheless, by Theorem 5.1, whenever
tj + tk is a β-integer, it coincides with tj ⊕ tk. Moreover, since the word uβ is re-
current, i.e. each factor of uβ (and the prefix of uβ in particular) occurs infinitely
many times, one can find arbitrarily large indices j, k such that tj + tk = tj+k.
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