NEW BOUNDS ON THE EDGE-BANDWIDTH OF TRIANGULAR GRIDS*

Lan Lin ${ }^{1,2}$ and Yixun Lin^{3}

Abstract

The edge-bandwidth of a graph G is the bandwidth of the line graph of G. Determining the edge-bandwidth $B^{\prime}\left(T_{n}\right)$ of triangular grids T_{n} is an open problem posed in 2006. Previously, an upper bound and an asymptotic lower bound were found to be $3 n-1$ and $3 n-o(n)$ respectively. In this paper we provide a lower bound $3 n-\lceil n / 2\rceil$ and show that it gives the exact values of $B^{\prime}\left(T_{n}\right)$ for $1 \leq n \leq 8$ and $n=10$. Also, we show the upper bound $3 n-5$ for $n \geq 10$.

Mathematics Subject Classification. 05C78, 68M10, 68R10.

1. Introduction

The bandwidth problem for graphs has been extensively studied due to its connections with theoretical and applied topics in sparse matrix computation, VLSI designs, network communications, and other areas (see surveys [6, 8]).

Given a simple graph G with vertex set $V(G)$ and edge set $E(G)$, a bijection $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ is called a labeling of G. For a given labeling f of G, the bandwidth of f for G is defined by

$$
B(G, f):=\max \{|f(u)-f(v)|: u v \in E(G)\} .
$$

[^0]The bandwidth of G, denoted $B(G)$, is $\min \{B(G, f): f$ is a labeling of $G\}$. A labeling f attaining this minimum value is called an optimal labeling.

The bandwidth problem is a well-known NP-complete problem in graph theory. Much work has been done for determining the bandwidth of special graphs. The bandwidth of triangular grids T_{n} was a difficult problem in this direction, posed by D. West in 1993. Here T_{n} is a graph with vertex set $\left\{(x, y, z) \in \mathbf{Z}^{3}: x+y+z=\right.$ $n, x, y, z \geq 0\}$ and two vertices (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ are joined by an edge if $\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|=2$ (they agree in one coordinate and differ by 1 in the other two coordinates). Hochberg et al. [11] have proven that $B\left(T_{n}\right)=n+1$. By a similar method of this paper, [13] determined the cutwidth of T_{n} (the cutwidth of G is the minimum, over all labelings, of the maximum number of pairwise overlapping edges).

As a special case of bandwidth, the edge-bandwidth $B^{\prime}(G)$ of G is the bandwidth of the line graph $L(G)$ of G. In other words, we consider an edge-labeling (bijection) $\eta: E(G) \rightarrow\{1,2, \ldots,|E(G)|\}$ and the edge-bandwidth of η for G is defined by

$$
B^{\prime}(G, \eta):=\max \left\{\left|\eta(e)-\eta\left(e^{\prime}\right)\right|: e, e^{\prime} \in E(G), e \text { and } e^{\prime} \text { are adjacent in } G\right\} .
$$

The edge-bandwidth of G, denoted $B^{\prime}(G)$, is $\min \left\{B^{\prime}(G, \eta): \eta\right.$ is an edge-labeling of $G\}$.

The edge-bandwidth problem is also NP-complete, which is implied by the inapproximation result for bandwidth (see [2]). Much interest on edge-bandwidth has been paid to several classes of graph-products and grids (see [2,3,14] for details). Besides, other special graphs were considered, for example, [12] for $K_{n}, K_{n, n}$, caterpillars and others; [9] for theta graphs; [5] for n-cubes, butterfly graphs, and complete k-ary trees. In particular, determining the edge-bandwidth of triangular grids T_{n} is an open problem [3]. Later, Akhtar, Jiang, and Pritikin [1] have shown that $3 n-o(n) \leq B^{\prime}\left(T_{n}\right) \leq 3 n-1$. Moreover, they have claimed that the upper bound can be improved to $3 n-5$ when $n \geq 18$.

The goal of this paper is to improve the lower and upper bounds on $B^{\prime}\left(T_{n}\right)$. The main results are as follows. First, we present a lower bound $3 n-\lceil n / 2\rceil$. Second, we establish a labeling algorithm that implies the upper bound $3 n-\lceil n / 2\rceil$ for $1 \leq n \leq 8$ and $n=10$. Consequently, we obtain the exact value $B^{\prime}\left(T_{n}\right)=$ $3 n-\lceil n / 2\rceil$ for $1 \leq n \leq 8$ and $n=10$. This should be a basic formula for the edgebandwidth of T_{n} of small n. As n increases, we can only obtain some estimations $3 n-\lceil n / 2\rceil \leq B^{\prime}\left(T_{n}\right) \leq 3 n-\lfloor n / 2\rfloor$ for $9 \leq n \leq 11$ and $B^{\prime}\left(T_{n}\right) \leq 3 n-5$ for $n \geq 10$. The latter improves the claim of [1]. More exact values and better bounds are worthy of further study.

2. TRIANGULAR GRIDS

We consider the triangular grid T_{n} for a given integer $n>0$. We may draw T_{n} on the plane by taking the vertex set as $V\left(T_{n}\right)=\left\{(x, y) \in \mathbf{Z}^{2}: x+y \leq n, x, y \geq 0\right\}$ and two vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are adjacent if $\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|=1$ or if $\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|=2$ and $x+y=x^{\prime}+y^{\prime}$ (see Fig. 1). Moreover, the three

Figure 1. Representation of T_{4}.
apices of the triangular region are denoted by O, X, Y, which are $(0,0),(n, 0),(0, n)$ respectively. Accordingly, the set of vertices on the horizontal side $O X$ is $V_{O X}=$ $\left\{(x, y) \in V\left(T_{n}\right): y=0\right\}$; the set of vertices on the vertical side $O Y$ is $V_{O Y}=$ $\left\{(x, y) \in V\left(T_{n}\right): x=0\right\}$; and that on the slant side $X Y$ is $V_{X Y}=\{(x, y) \in$ $\left.V\left(T_{n}\right): x+y=n\right\}$.

For the edge set $E\left(T_{n}\right)$, we denote by $a_{i j}$ the edge between $(j-1, i-1)$ and $(j, i-1)$, by $b_{i j}$ the edge between $(j-1, i-1)$ and $(j-1, i)$, and by $c_{i j}$ the edge between $(j-1, i)$ and $(j, i-1)$. They are partitioned into three parts according to three directions:

$$
\begin{aligned}
R_{i} & :=\left\{a_{i j}: 1 \leq j \leq n-i+1\right\}, 1 \leq i \leq n \\
Q_{j} & :=\left\{b_{i j}: 1 \leq i \leq n-j+1\right\}, 1 \leq j \leq n \\
L_{k} & :=\left\{c_{i j}: i+j=k+1\right\}, 1 \leq k \leq n,
\end{aligned}
$$

where R_{i} 's are called rows along the horizontal lines, Q_{j} 's are called columns along the vertical lines, and L_{k} 's are called diagonals along the slant lines. In particular, R_{1} is the horizontal side $O X, Q_{1}$ is the vertical side $O Y$, and L_{n} is the slant side $X Y$. Therefore, $\left|E\left(T_{n}\right)\right|=3(1+2+\ldots+n)=\frac{3}{2} n(n+1)$. Figure 1 is an example.

Moreover, we define

$$
\begin{aligned}
R_{i}^{\prime} & :=\left\{b_{i j}: 1 \leq j \leq n-i+1\right\} \cup\left\{c_{i j}: 1 \leq j \leq n-i+1\right\}, 1 \leq i \leq n \\
Q_{j}^{\prime} & :=\left\{a_{i j}: 1 \leq i \leq n-j+1\right\} \cup\left\{c_{i j}: 1 \leq i \leq n-j+1\right\}, 1 \leq j \leq n \\
L_{k}^{\prime} & :=\left\{a_{i j}: i+j=k+1\right\} \cup\left\{b_{i j}: i+j=k+1\right\}, 1 \leq k \leq n,
\end{aligned}
$$

Figure 2. 'Row by Row' labeling for T_{3}.
where $R_{i}^{\prime}, Q_{j}^{\prime}, L_{k}^{\prime}$ are also called rows, columns, and diagonals, respectively. Note that each row R_{i} or R_{i}^{\prime} (each column Q_{j} or Q_{j}^{\prime}, each diagonal L_{k} or L_{k}^{\prime}) induces a path in T_{n}.

For $1 \leq i \leq n$, let $\tilde{R}_{i}=R_{i} \cup R_{i}^{\prime}$, called the i th extended row. It forms a chain of $n-i+1$ edge-disjoint triangles. For example, \tilde{R}_{1} in Figure 1 shows the 4 edgedisjoint triangles. All extended rows $\tilde{R}_{i}(1 \leq i \leq n)$ constitute a partition of $E\left(T_{n}\right)$. Similarly, $\tilde{Q}_{j}=Q_{j} \cup Q_{j}^{\prime}$ for $1 \leq j \leq n$ is the j th extended column and they also constitute a partition of $E\left(T_{n}\right)$. In the same way, we define the extended diagonals $\tilde{L}_{k}=L_{k} \cup L_{k}^{\prime}$ for $1 \leq k \leq n$.

A simple labeling for T_{n} is the following 'Row by Row' labeling η : we label all edges in the order of $R_{1}, R_{1}^{\prime}, R_{2}, R_{2}^{\prime}, \ldots, R_{n}, R_{n}^{\prime}$ by integers $1,2, \ldots, e(n)$ where $e(n)=\left|E\left(T_{n}\right)\right|=\frac{3}{2} n(n+1)$. An example for $n=3$ is depicted in Figure 2. It is easy to see that $B^{\prime}\left(T_{n}, \eta\right)=\left|R_{1}^{\prime} \cup R_{2}\right|=3 n-1$. Thus we obtain an obvious upper bound $B^{\prime}\left(T_{n}\right) \leq 3 n-1[1]$. We shall see later that this upper bound is tight if and only if $n \leq 2$.

3. Lower bounds

We first state some traditional notations. For a graph G, let S be a subset of $E(G)$ and $\bar{S}=E(G) \backslash S$. The outer boundary or neighbor set of S is defined by $\partial^{+}(S):=\left\{e \in \bar{S}: e\right.$ is adjacent to some edge $\left.e^{\prime} \in S\right\}$. Likewise, the inner boundary of S is defined by $\partial^{-}(S):=\left\{e \in S: e\right.$ is adjacent to some edge $\left.e^{\prime} \in \bar{S}\right\}$. Clearly, $\partial^{+}(S) \subseteq \bar{S}, \partial^{-}(S) \subseteq S$, and $\partial^{-}(S)=\partial^{+}(\bar{S})$.

Moreover, for a subset $S \subseteq E(G)$, let $V(S)$ denote the set of vertices incident with the edges in S, which is the vertex set of the edge-induced subgraph $G[S]$. We define the vertex boundary of S by $\delta(S):=V\left(\partial^{-}(S)\right) \cap V\left(\partial^{+}(S)\right)$, that is, the set of vertices incident with the edges in the inner boundary $\partial^{-}(S)$ and with the edges in the outer boundary $\partial^{+}(S)$. Further, we define the total boundary of S by $\hat{\partial}(S):=\partial^{-}(S) \cup \partial^{+}(S)$, which is the set of edges covered by the vertices in $\delta(S)$.

Now we consider any edge-labeling $\eta: E(G) \rightarrow\{1,2, \ldots, m\}$ where $m=|E(G)|$. For $1 \leq i \leq m$, let $S_{i}:=\{e \in E(G): \eta(e) \leq i\}$, which denotes the set of edges
with the first i labels. The following is the well-known 'isoperimetric inequality' due to Harper [10] (see also [1, 3, 7, 14]).

Lemma 3.1 ([10]). For an edge-labeling $\eta: E(G) \rightarrow\{1,2, \ldots, m\}$ of G, it holds that

$$
B^{\prime}(G, \eta) \geq \max _{1 \leq i \leq m} \max \left\{\left|\partial^{-}\left(S_{i}\right)\right|,\left|\partial^{+}\left(S_{i}\right)\right|\right\} \geq \max _{1 \leq i \leq m}\left\lceil\frac{1}{2}\left|\hat{\partial}\left(S_{i}\right)\right|\right\rceil
$$

We shall apply this approach for determining lower bounds to the triangular $\operatorname{grid} T_{n}$. For a subset $S \subseteq E\left(T_{n}\right), S$ is called a condensed subset if the following property is satisfied: For the edge sequence $\sigma=\left(e_{1}, e_{2}, \ldots, e_{t}\right)$ of any row R_{i}, R_{i}^{\prime} or column Q_{j}, Q_{j}^{\prime} (which is the edge sequence of a path), if $e_{l} \in S$ for some l with $1 \leq l \leq t$, then $e_{h} \in S$ for all h with $1 \leq h \leq l$. That is to say, the edges in S are 'pressed' as close to the vertical side $O Y$ and to the horizontal side $O X$ as possible.

Lemma 3.2. For any subset $S \subseteq E\left(T_{n}\right)$, there exists a condensed subset \hat{S} such that $|\hat{S}|=|S|,\left|\partial^{-}(\hat{S})\right| \leq\left|\partial^{-}(S)\right|$ and $\left|\partial^{+}(\hat{S})\right| \leq\left|\partial^{+}(S)\right|$.

Proof. We show the assertion on the inner boundary $\partial^{-}(S)$ (the assertion on the outer boundary $\partial^{+}(S)$ is symmetric). For any subset $S \subseteq E\left(T_{n}\right)$, we first define a subset S^{\prime} by the following 'left-shift' operation (following the technique of [7]). Let $\sigma=\left(e_{1}, e_{2}, \ldots, e_{t}\right)$ be the edge sequence of any row R_{i} or R_{i}^{\prime}. If $|S \cap \sigma|=k$, then we define $S^{\prime} \cap \sigma:=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ (the edges of S in σ are transformed into the first k edges in σ). Carrying out this transformation in each row, the resulting subset S^{\prime} is called the 'left-shift' of S. Next, we define a subset \hat{S} from S^{\prime} by the following 'down-shift' operation. Let $\sigma=\left(e_{1}, e_{2}, \ldots, e_{t}\right)$ be the edge sequence of any column Q_{j} or Q_{j}^{\prime}. If $\left|S^{\prime} \cap \sigma\right|=k$, then we define $\hat{S} \cap \sigma:=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. In this way, \hat{S} is called the 'down-shift' of S^{\prime}. It can be seen that $|\hat{S}|=\left|S^{\prime}\right|=|S|$ and \hat{S} is condensed.

We proceed to prove $\left|\partial^{-}(\hat{S})\right| \leq\left|\partial^{-}\left(S^{\prime}\right)\right| \leq\left|\partial^{-}(S)\right|$. We first show $\left|\partial^{-}\left(S^{\prime}\right)\right| \leq$ $\left|\partial^{-}(S)\right|$ by induction on n. When $n=1$, the assertion is trivial. Assume now that $n>1$ and the assertion holds for smaller n. We start considering R_{1} and R_{1}^{\prime}.

Claim 1. $\left|\partial^{-}\left(S^{\prime}\right) \cap R_{1}\right| \leq\left|\partial^{-}(S) \cap R_{1}\right|$.
Suppose that $S^{\prime} \cap R_{1}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ and $S^{\prime} \cap R_{1}^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{h}^{\prime}\right\}$. If $h \geq 2 k$, then $\partial^{-}\left(S^{\prime}\right) \cap R_{1}=\left\{e_{k}\right\}$, thus $\left|\partial^{-}\left(S^{\prime}\right) \cap R_{1}\right|=1 \leq\left|\partial^{-}(S) \cap R_{1}\right|$, as required. So we may assume that $h<2 k$. Then $e_{j} \in \partial^{-}\left(S^{\prime}\right) \cap R_{1}$ if and only if $j \geq\left\lceil\frac{h}{2}\right\rceil$. Thus $\left|\partial^{-}\left(S^{\prime}\right) \cap R_{1}\right|=k-\left\lceil\frac{h}{2}\right\rceil+1$. An example is shown in Figure 3a, where the dotted lines in R_{1}^{\prime} represent the edges in $\partial^{+}\left(S^{\prime}\right) \cap R_{1}^{\prime}$, the heavy lines in R_{1} represent the edges in $\partial^{-}\left(S^{\prime}\right) \cap R_{1}$, and the black points stand for the vertices in the vertex boundary $\delta\left(S^{\prime}\right)$.

On the other hand, the edges in $S \cap R_{1}$ or $S \cap R_{1}^{\prime}$ are not necessarily consecutive. We may denote $R_{1}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $R_{1}^{\prime}=\left\{b_{1}, c_{1}, \ldots, b_{n}, c_{n}\right\}$. If $a_{i} \in S \backslash$ $\partial^{-}(S)$, then $b_{i}, c_{i} \in S$. Moreover, for the last edge $a_{i} \in S \backslash \partial^{-}(S)$ in this row, we

Figure 3. Two adjacent rows R_{1} and R_{1}^{\prime}.
have one more $b_{i+1} \in S$. Suppose $x=\left|\left(S \backslash \partial^{-}(S)\right) \cap R_{1}\right|$. Then $h=\left|S \cap R_{1}^{\prime}\right| \geq 2 x+1$, thus $x \leq\left\lfloor\frac{h-1}{2}\right\rfloor=\left\lceil\frac{h}{2}\right\rceil-1$. Therefore $\left|\partial^{-}(S) \cap R_{1}\right|=k-x \geq k-\left\lceil\frac{h}{2}\right\rceil+1=$ $\left|\partial^{-}\left(S^{\prime}\right) \cap R_{1}\right|$, and Claim 1 is proved.

Claim 2. $\left|\partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}\right| \leq\left|\partial^{-}(S) \cap R_{1}^{\prime}\right|$.
In fact, if $\left|\partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}\right| \leq 1$, then the claim is trivial. Otherwise, there are three cases:
(a) Each edge of $\partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}$ is adjacent to an edge in $\partial^{+}\left(S^{\prime}\right) \cap R_{1}$;
(b) Each edge of $\partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}$ is adjacent to an edge in $\partial^{+}\left(S^{\prime}\right) \cap R_{2}$;
(c) Each edge of $\partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}$ is adjacent to an edge in $\partial^{+}\left(S^{\prime}\right) \cap R_{2}^{\prime}$.

Here, Case (c) can be reduced to Case (b), since they are equivalent to that each edge is incident with a vertex in $\delta\left(S^{\prime}\right) \cup R_{2}$. Moreover, cases (a) and (b) are symmetrical. So we may only consider case (a). An example is shown in Figure 3b, where the dotted lines represent the edges in $\partial^{+}\left(S^{\prime}\right) \cap R_{1}$, the heavy lines represent the edges in $\partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}$, and the black points stand for the vertices in $\delta\left(S^{\prime}\right)$.

Suppose that $S^{\prime} \cap R_{1}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ and $S^{\prime} \cap R_{1}^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{h}^{\prime}\right\}$. Then $2 k<h$ and $e_{j}^{\prime} \in \partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}$ if and only if $j \geq 2 k$. Thus $\left|\partial^{-}\left(S^{\prime}\right) \cap R_{1}^{\prime}\right|=h-2 k+1$. On the other hand, denote $R_{1}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $R_{1}^{\prime}=\left\{b_{1}, c_{1}, \ldots, b_{n}, c_{n}\right\}$. If b_{i} or $c_{i} \in S \backslash \partial^{-}(S)$, then $a_{i} \in S$. Moreover, for the last edge $a_{i} \in S$ in this row, $c_{i} \in \partial^{-}(S)$. Suppose $y=\left|\left(S \backslash \partial^{-}(S)\right) \cap R_{1}^{\prime}\right|$. Then $y \leq 2 k-1$. Hence $\left|\partial^{-}(S) \cap R_{i}^{\prime}\right|=h-y \geq h-2 k+1=\left|\partial^{-}\left(S^{\prime}\right) \cap R_{i}^{\prime}\right|$, and Claim 2 follows.

Now we construct a graph T_{n-1} by deleting R_{1} from T_{n}. It follows from the induction hypothesis that $\left|\partial^{-}\left(S^{\prime}\right)\right| \leq\left|\partial^{-}(S)\right|$ for T_{n-1}. By combining Claim 1 and Claim 2, we show that $\left|\partial^{-}\left(S^{\prime}\right)\right| \leq\left|\partial^{-}(S)\right|$ for T_{n}.

Furthermore, $\left|\partial^{-}(\hat{S})\right| \leq\left|\partial^{-}\left(S^{\prime}\right)\right|$ can be shown symmetrically by considering the columns. This completes the proof.

Theorem 3.3. For the triangular grid T_{n}, it holds that $B^{\prime}\left(T_{n}\right) \geq 3 n-\lceil n / 2\rceil$.
Proof. By Lemma 3.1, it suffices to show that for any edge-labeling η, there exists an index i with $1 \leq i \leq e(n)$ such that $\max \left\{\left|\partial^{-}\left(S_{i}\right)\right|,\left|\partial^{+}\left(S_{i}\right)\right|\right\} \geq 3 n-\lceil n / 2\rceil$. As the index i increases from 1 to $e(n)$, we consider the first moment that S_{i} touches the slant side $X Y$ (except $X, Y)$. More precisely, we take $k=\min \left\{i: \delta\left(S_{i}\right) \cap\right.$ $\left.\left(V_{X Y} \backslash\{X, Y\}\right) \neq \emptyset\right\}$. By Lemma 3.2, we assume that such a set S_{k} is condensed. We proceed to show that $\max \left\{\left|\partial^{-}\left(S_{k}\right)\right|,\left|\partial^{+}\left(S_{k}\right)\right|\right\} \geq\left\lceil\frac{1}{2}\left|\hat{\partial}\left(S_{k}\right)\right|\right\rceil \geq 3 n-\lceil n / 2\rceil$. There are three cases to consider.

Figure 4. Three cases in the proof of Theorem 3.3.

Case 1: $X, Y \notin \delta\left(S_{k}\right)$. An example of $n=5$ is depicted in Figure 4a. In three cases of Figure 4, the edges in the subset S_{k} are shown by solid lines, the edges in $\partial^{-}\left(S_{k}\right)$ by heavy lines, those in $\partial^{+}\left(S_{k}\right)$ by dotted lines, and the vertices in $\delta\left(S_{k}\right)$ are represented by black points.

We evaluate the number of edges in $\hat{\partial}\left(S_{k}\right)=\partial^{-}\left(S_{k}\right) \cup \partial^{+}\left(S_{k}\right)$, namely the edges covered by $\delta\left(S_{k}\right)$. Suppose that $(i, j) \in \delta\left(S_{k}\right) \cap\left(V_{X Y} \backslash\{X, Y\}\right)$. Then $i+j=n$. It is evident that in each column from column Q_{1} to column Q_{i} and in each row from row R_{1} to row R_{j}, there is at least one vertex in $\delta\left(S_{k}\right)$. Hence $\left|\delta\left(S_{k}\right)\right| \geq n+1$. Without loss of generality, we assume that $\left|\delta\left(S_{k}\right)\right|=n+1$ (for otherwise we can get a greater lower bound). Now we consider the subgraph H of T_{n} induced by $\hat{\partial}\left(S_{k}\right)$. In this subgraph H, each vertex of $\delta\left(S_{k}\right)$ on the side $O X, O Y$, or $X Y$ has degree 4 , and the $n-2$ other vertices have degree 6 . Moreover, there are at most $n+1$ edges between the vertices of $\delta\left(S_{k}\right)$. Therefore, we have

$$
\begin{aligned}
\left\lceil\frac{1}{2}\left|\hat{\partial}\left(S_{k}\right)\right|\right\rceil & \geq\left\lceil\frac{1}{2}(4 \times 3+6(n-2)-n-1)\right\rceil \\
& =\left\lceil\frac{1}{2}(6 n-n-1)\right\rceil=3 n-\left\lfloor\frac{n+1}{2}\right\rfloor=3 n-\left\lceil\frac{n}{2}\right\rceil
\end{aligned}
$$

Case 2: $X, Y \in \delta\left(S_{k}\right)$. Then there is an index $i<k$ such that $X, Y \in \delta\left(S_{i}\right)$ and $\delta\left(S_{i}\right) \cap\left(V_{X Y} \backslash\{X, Y\}\right)=\emptyset$. We replace k by i. An example of $n=5$ is depicted in Figure 4b. In addition to X and Y, each row has at least one vertex in $\delta\left(S_{i}\right)$. Hence $\left|\delta\left(S_{i}\right)\right| \geq n+2$. We may assume $\left|\delta\left(S_{i}\right)\right|=n+2$. Then in the subgraph H induced by $\hat{\partial}\left(S_{i}\right)$, we have that X and Y have degree 2, each vertex on the side $O X$ or $O Y$ has degree 4 , and the $n-2$ other vertices have degree 6 . Besides, there are at most $n+1$ edges between the vertices of $\delta\left(S_{i}\right)$. Hence

$$
\left.\left\lceil\frac{1}{2}\left|\hat{\partial}\left(S_{i}\right)\right|\right\rceil \geq \frac{1}{2}(2 \times 2+4 \times 2+6(n-2)-n-1)\right\rceil=3 n-\left\lceil\frac{n}{2}\right\rceil .
$$

Case 3: $Y \in \delta\left(S_{k}\right)$ and $X \notin \delta\left(S_{k}\right)$. Suppose that $(i, j) \in \delta\left(S_{k}\right) \cap\left(V_{X Y} \backslash\{X, Y\}\right)$ as before. If $i, j>1$, then the proof is similar to that of Case 1 (we can even
get greater lower bound). Now we need only consider the case where $i=1$ and $j=n-1$. An example is depicted in Figure 4c. In the subgraph H induced by $\hat{\partial}\left(S_{k}\right)$, we have that $\left|\delta\left(S_{k}\right)\right|=n+1, Y$ has degree 2 , each vertex on the side $O X$ or $X Y$ has degree 4 , and the $n-2$ other vertices have degree 6 . Besides, there are at most n edges between the vertices of $\delta\left(S_{k}\right)$. Therefore, we have

$$
\begin{aligned}
\left\lceil\frac{1}{2}\left|\hat{\partial}\left(S_{k}\right)\right|\right\rceil & \geq\left\lceil\frac{1}{2}(2+4 \times 2+6(n-2)-n)\right\rceil \\
& =\left\lceil\frac{1}{2}(6 n-n-2)\right\rceil=3 n-\left\lfloor\frac{n}{2}\right\rfloor-1
\end{aligned}
$$

If $\left|\partial^{-}\left(S_{k}\right)\right| \neq\left|\partial^{+}\left(S_{k}\right)\right|$, then $\max \left\{\left|\partial^{-}\left(S_{k}\right)\right|,\left|\partial^{+}\left(S_{k}\right)\right|\right\}>\frac{1}{2}\left|\hat{\partial}\left(S_{k}\right)\right| \geq 3 n-n / 2-1$, thus we have $\max \left\{\left|\partial^{-}\left(S_{k}\right)\right|,\left|\partial^{+}\left(S_{k}\right)\right|\right\} \geq 3 n-\lceil n / 2\rceil$. Hence we are left to consider the case where $\left|\partial^{-}\left(S_{k}\right)\right|=\left|\partial^{+}\left(S_{k}\right)\right|=3 n-n / 2-1$ (where n is even), and try to increase the lower bound by 1 . In this situation, each row $R_{i}(1 \leq i \leq n)$ has exact one vertex in $\delta\left(S_{k}\right)$.

Let e_{i} be such that $\eta\left(e_{i}\right)=i(1 \leq i \leq e(n))$. Then $S_{k}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. By the choice of k, we have $e_{k}=a_{n, 1}$ or $e_{k}=b_{n-1,2}$. By symmetry, we consider that $e_{k}=a_{n, 1}=u v$ with $v=(1, n-1) \in \delta\left(S_{k}\right)$ and $b_{n-1,2} \notin S_{k}$. Now take the edge e_{k+1} into account. By assumption, S_{k} and S_{k+1} are condensed. Hence e_{k+1} must be contained in $\partial^{+}\left(S_{k}\right)$ and it is being taken from $\partial^{+}\left(S_{k}\right)$ to $\partial^{-}\left(S_{k+1}\right)$. If the vertex boundary $\delta\left(S_{k}\right)$ is unchanged, then we have $\left|\partial^{-}\left(S_{k+1}\right)\right|=\left|\partial^{-}\left(S_{k}\right)\right|+1=3 n-n / 2$, thus the desired lower bound is proved. For example, if $e_{k+1}=c_{i j}$ is a slant edge, then $a_{i j}, b_{i j} \in S_{k}$ (since S_{k+1} is condensed). Thus two ends of e_{k+1} are contained in $\delta\left(S_{k}\right)$. When e_{k+1} is added to S_{k+1}, then $\delta\left(S_{k}\right)$ is unchanged and the assertion follows. Consequently, we may assume that $e_{k+1}=u v$ is a horizontal edge (the case of vertical edge being symmetric). Herein, $u \in \delta\left(S_{k}\right)$ and when e_{k+1} is added to S_{k+1}, we have $u \notin \delta\left(S_{k+1}\right)$ and $v \in \delta\left(S_{k+1}\right)$. Then, while e_{k+1} is taken from $\partial^{+}\left(S_{k}\right)$ to $\partial^{-}\left(S_{k+1}\right)$, at least two edges incident with v are added to $\partial^{+}\left(S_{k+1}\right)$. Thus $\left|\partial^{+}\left(S_{k+1}\right)\right| \geq\left|\partial^{+}\left(S_{k}\right)\right|+1=3 n-n / 2$, the assertion follows.

4. UPPER BOUNDS AND EXACT VALUES

In order to show that the lower bound proved in Section 3 is tight, we present a labeling algorithm, called Slide Labeling, described as follows.

Step 1: Partitioning. We partition $E\left(T_{n}\right)$ into n subsets $E_{1}, E_{2}, \ldots, E_{n}$ as follows:

- For $1 \leq k<\lfloor n / 2\rfloor$, set $E_{k}=\tilde{L}_{k}$.
- For $k=\lfloor n / 2\rfloor$, set $E_{k}=\left(Q_{1} \cup \tilde{L}_{k}\right) \backslash\left(E_{1} \cup \ldots \cup E_{k-1}\right)$.
- For $k=\lfloor n / 2\rfloor+1$, set $E_{k}=\left(Q_{1}^{\prime} \cup L_{\tilde{k}}^{\prime}\right) \backslash\left(E_{1} \cup \ldots \cup E_{k-1}\right)$.
- For $\lfloor n / 2\rfloor+1<k<n$, set $E_{k}=\left(\tilde{Q}_{r} \cup L_{k-1} \cup L_{k}^{\prime}\right) \backslash\left(E_{1} \cup \ldots \cup E_{k-1}\right)$ where $r=k-\lfloor n / 2\rfloor$.
- Finally, set $E_{n}=\left(L_{n-1} \cup \tilde{L}_{n}\right) \backslash\left(E_{1} \cup \ldots \cup E_{n-1}\right)$.

Figure 5. Slide labelings for T_{3} and T_{4}.

We call each subset of $E_{1}, E_{2}, \ldots, E_{n}$ a level set. Roughly speaking, n levels $E_{1}, E_{2}, \ldots, E_{n}$ are divided into two parts: In the first half, each level $E_{k}(k \leq$ $\lfloor n / 2\rfloor$) consists of a slant row L_{k}^{\prime} with a straight-line L_{k} (boundary) on the right (only $E_{\lfloor n / 2\rfloor}$ has a part of $\left.Q_{1}\right)$. In the second half, each level $E_{k}(k>\lfloor n / 2\rfloor+1)$ consists of a column Q_{r}^{\prime} and a slant row L_{k}^{\prime} with straight-lines Q_{r} and L_{k-1} (boundary) on the left. The level $E_{\lfloor n / 2\rfloor+1}$ is a transition band which has no straight-lines as boundary. Take $n=4$ as an example (see Fig. 1), then $E_{1}=\left\{b_{11}, c_{11}, a_{11}\right\}$, $E_{2}=\left\{b_{41}, b_{31}, b_{21}, c_{21}, a_{21}, b_{12}, c_{12}, a_{12}\right\}, E_{3}=\left\{c_{41}, a_{41}, c_{31}, a_{31}, b_{22}, a_{22}, b_{13}, a_{13}\right\}$, and $E_{4}=\left\{b_{32}, c_{32}, a_{32}, c_{22}, b_{23}, c_{23}, a_{23}, c_{13}, b_{14}, c_{14}, a_{14}\right\}$.
Step 2: Labeling. We label all edges level by level in the order of $\left(E_{1}, E_{2}, \ldots, E_{n}\right)$ and in each level E_{k}, we label the edges from left to right and from top to bottom, in a way of sliding down a slope. Examples can be seen in Figures 5-10.

Theorem 4.1. $B^{\prime}\left(T_{n}\right) \leq 3 n-\lceil n / 2\rceil$ for $1 \leq n \leq 8$ and $n=10$.
Proof. When $n=1, T_{n}$ is a cycle and $B^{\prime}\left(T_{n}\right)=2=3 n-1$. When $n=2$, $B^{\prime}\left(T_{n}\right) \leq 5=3 n-1$ can be obtained by the Row by Row labeling of Figure 2. Consider $n \geq 3$ as follows.

We first show that $B^{\prime}\left(T_{n}\right) \leq 3 n-\lceil n / 2\rceil=3 n-2$ for $3 \leq n \leq 4$ by the slide labelings η shown in Figure 5, in which $B^{\prime}\left(T_{3}, \eta\right)=7$ and $B^{\prime}\left(T_{4}, \eta\right)=10$, respectively. For T_{3}, we have $\left|E_{1}\right|=5,\left|E_{2}\right|=6,\left|E_{3}\right|=7$ and so $B^{\prime}\left(T_{3}, \eta\right) \leq 7$. On the other hand, this maximum label-difference 7 is attainable. Here, we use the black points to represent the vertices for which two incident edges have the maximum label-difference. For T_{4}, we have $\left|E_{1}\right|=3,\left|E_{2}\right|=\left|E_{3}\right|=8,\left|E_{4}\right|=11$ and $B^{\prime}\left(T_{4}, \eta\right)=10$ by adjusting the last two labels.

We next show that $B^{\prime}\left(T_{n}\right) \leq 3 n-\lceil n / 2\rceil=3 n-3$ for $5 \leq n \leq 6$. The slide labelings η are shown in Figure 6, in which $B^{\prime}\left(T_{5}, \eta\right)=12$ and $B^{\prime}\left(T_{6}, \eta\right)=15$, respectively. For the former, $\left|E_{1}\right|=3,\left|E_{2}\right|=9,\left|E_{3}\right|=10,\left|E_{4}\right|=12,\left|E_{5}\right|=11$ and the maximum label-difference 12 can be checked directly (see the black points).

Figure 6. Slide labelings for T_{5} and T_{6}.

Figure 7. Slide labeling for T_{7}.

For the latter, $\left|E_{1}\right|=3,\left|E_{2}\right|=6,\left|E_{3}\right|=\left|E_{4}\right|=12,\left|E_{5}\right|=\left|E_{6}\right|=15$ and the maximum label-difference is 15 .

We further show that $B^{\prime}\left(T_{n}\right) \leq 3 n-\lceil n / 2\rceil=3 n-4$ for $7 \leq n \leq 8$, namely $B^{\prime}\left(T_{7}, \eta\right)=17$ and $B^{\prime}\left(T_{8}, \eta\right)=20$. However, the slide labelings should be modified slightly. For T_{7}, we have $\left|E_{1}\right|=3,\left|E_{2}\right|=6,\left|E_{3}\right|=13,\left|E_{4}\right|=14,\left|E_{5}\right|=18$, and $\left|E_{6}\right|=\left|E_{7}\right|=15$ originally (notice that $\left|E_{5}\right|=3(n-1)=18>17$). In order to make $\max _{1 \leq i \leq 7}\left|E_{i}\right| \leq 17$, we take out one edge (say $b_{\lfloor n / 2\rfloor+1,2}$) from E_{5} and add it to E_{4}. The slide labeling is almost the same as before, only the label of the new edge in E_{4} is adjusted (see Fig. 7). For T_{8}, we also have $\left|E_{6}\right|=3(n-1)=21>20$.

Figure 8. Slide labeling for T_{8}.

So we take out one edge (say $b_{\lfloor n / 2\rfloor+1,2}$) from E_{6} and add it to E_{5}, and the label of the new edge in E_{5} is adjusted (see Fig. 8).

We skip the case of $n=9$ and finally show that $B^{\prime}\left(T_{10}\right) \leq 3 n-\lceil n / 2\rceil=3 n-5=$ 25 for $n=10$. The slide labeling is shown in Figure 9, where we take out two edges $\left(b_{\lfloor n / 2\rfloor+1,2}\right.$ and $\left.c_{\lfloor n / 2\rfloor, 2}\right)$ from E_{7} and add them to E_{6}. Meanwhile, the labels of the new edges in E_{6} are adjusted. The edge-bandwidth $B^{\prime}\left(T_{10}, \eta\right)=3 n-5=25$ can be checked directly. This completes the proof.

By combining the lower bound in Theorem 3.3 and the upper bound in Theorem 4.1, we obtain the exact values as follows.

Theorem 4.2. $B^{\prime}\left(T_{n}\right)=3 n-\lceil n / 2\rceil$ for $1 \leq n \leq 8$ and $n=10$.
Furthermore, by the slide labeling of T_{10} (namely the one of Fig. 9), we can obtain that $B^{\prime}\left(T_{n}\right) \leq 3 n-5$ for $n \geq 10$. In fact, we partition $E\left(T_{n}\right)$ into n subsets $E_{1}, E_{2}, \ldots, E_{n}$, where $\left|E_{1}\right|=3,\left|E_{2}\right|=9, \ldots,\left|E_{\lfloor n / 2\rfloor}\right|=3\lfloor n / 2\rfloor+\lceil n / 2\rceil$, $\left|E_{\lfloor n / 2\rfloor+1}\right|=2 n,\left|E_{\lfloor n / 2\rfloor+2}\right|=3(n-1),\left|E_{\lfloor n / 2\rfloor+3}\right|=3(n-2), \ldots,\left|E_{n}\right|=3(\lfloor n / 2\rfloor+$ 1) $+\lfloor n / 2\rfloor$. Note that $\max _{1 \leq i \leq n}\left|E_{i}\right|=\left|E_{\lfloor n / 2\rfloor+2}\right|=3(n-1)$. As in the case of T_{10}, we take out two edges $\left(b_{\lfloor n / 2\rfloor+1,2}\right.$ and $\left.c_{\lfloor n / 2\rfloor, 2}\right)$ from $E_{\lfloor n / 2\rfloor+2}$ and add them to $E_{\lfloor n / 2\rfloor+1}$. Then the maximum size of the level sets E_{i} is $3(n-1)-2=3 n-5$.

Figure 9. Slide labeling for T_{10}.

When we label the edges level by level, the labeling process is similar to that of Figure 9. Thus we obtain the following.

Proposition 4.3. $B^{\prime}\left(T_{n}\right) \leq 3 n-5$ for $n \geq 10$.
This improves the claim of [1] that $B^{\prime}\left(T_{n}\right) \leq 3 n-5$ when $n \geq 18$.
Until now, we are left to consider the case of $n=9$. In fact, we can show the following.

Proposition 4.4. $B^{\prime}\left(T_{n}\right) \leq 3 n-\lfloor n / 2\rfloor$ for $9 \leq n \leq 11$.
Proof. This is true for $n=10$ since $\lfloor n / 2\rfloor=\lceil n / 2\rceil$ for even n. For $n=9$ and $B^{\prime}\left(T_{9}\right) \leq 3 n-4=23$, the slide labeling is shown in Figure 10, which is similar to that of T_{8} in Figure 8, where we take out one edge ($b_{\lfloor n / 2\rfloor+1,2}$) from E_{6} and add it to E_{5}. As to T_{11} with $B^{\prime}\left(T_{11}\right) \leq 3 n-5=28$, the labeling has been described before Proposition 4.3, which is similar to that of T_{10} in Figure 9.

To summarize, we have the exact value $B^{\prime}\left(T_{n}\right)=3 n-\lceil n / 2\rceil$ for $1 \leq n \leq 8$ (and $n=10$) and a variant $3 n-\lceil n / 2\rceil \leq B^{\prime}\left(T_{n}\right) \leq 3 n-\lfloor n / 2\rfloor$ for $9 \leq n \leq 11$.

Figure 10. Slide labeling for T_{9}.

It seems that the formula of edge-bandwidth $B^{\prime}\left(T_{n}\right)$ would change gradually as n increases, by the action of other unknown tight bounds.

Acknowledgements. The authors would like to thank the referees for their helpful comments on improving the presentation of the paper.

References

[1] R. Akhtar, T. Jiang and D. Pritikin, Edge-bandwidth of the triangular grid. Electron. J. Combin. 14 (2007) \#R67.
[2] R. Akhtar, T. Jiang and Z. Miller, Asymptotic determination of edge-bandwidth of grids and Hamming graphs. SIAM J. Discrete Math. 22 (2008) 425-449.
[3] J. Balogh, D. Mubayi and A. Pluhár, On the edge-bandwidth of graph products. Theoret. Comput. Sci. 359 (2006) 43-57.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory. Springer-Verlag, Berlin (2008).
[5] T. Calamoneri, A. Massiui and I. Vrťo, New results on edge-bandwidth. Theoret. Comput. Sci. 309 (2003) 503-513.
[6] P.Z. Chinn, J. Chvátalová, A.K. Dewdney and N.E. Gibbs, The bandwidth problem for graphs and matrices - A survey. J. Graph Theory 6 (1982) 223-254.
[7] J. Chvátalová, Optimal labeling of a product of two paths. Discrete Math. 11 (1975) 249253.
[8] J. Diaz, J. Petit and M. Serna, A survey of graph layout problems. ACM Comput. Surveys 34 (2002) 313-356.
[9] D. Eichhorn, D. Mubayi, K. O'Bryant and D. West, The edge-bandwidth of theta graphs. J. Graph Theory 35 (2000) 89-98.
[10] L.H. Harper, Optimal numbering and isoperimetric problems on graphs. J. Combin. Theory 1 (1966) 385-393.
[11] R. Hochberg, C. McDiarmid and M. Saks, On the bandwidth of triangulated triangles. Discrete Math. 138 (1995) 261-265.
[12] T. Jiang, D. Mubayi, A. Shastri and D. West, Edge-bandwidth of graphs. SIAM J. Discrete Math. 12 (1999) 307-316.
[13] L. Lin, Y. Lin and D. West, Cutwidth of triangulated grids. Discrete Math. 331 (2014) 89-92.
[14] O. Pikhurko and J. Wojciechowski, Edge-bandwidth of grids and tori. Theoret. Comput. Sci. 369 (2006) 35-43.

Communicated by C. de Figueiredo.
Received March 23, 2014. Accepted October 8, 2014.

[^0]: Keywords and phrases. Bandwidth, edge-bandwidth, triangular grid, lower bound, upper bound.

 * Supported by NSFC (11101383, 61373106) and 973 Program of China (2010CB328101).
 ${ }^{1}$ School of Electronics and Information Engineering, Tongji University, Shanghai 200092, P.R. China. linlan@tongji.edu.cn

 2 The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 200092, P.R. China.
 ${ }^{3}$ Department of Mathematics, Zhengzhou University, Zhengzhou 450001, P.R. China.
 linyixun@zzu.edu.cn

