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FURTHER RESULTS ON GENERALIZED CONDITIONAL
ENTROPIES

Alexey E. Rastegin1

Abstract. We further examine some properties of the conditional
Rényi and Tsallis–Havrda–Charvát (THC) entropies. Such properties
are interesting from the viewpoint of applications in studying protocols
of quantum information science and foundations of quantum mechan-
ics. In particular, we consider properties of the conditional Rényi and
THC entropies with respect to conditioning on more. We also exem-
plify that the desired property can be violated with the conditional
min-entropy. Applications of such results to the TCH entropy rate are
considered. Connections between generalized conditional entropies and
error probability are examined. Several relations between various con-
ditional entropies are obtained. It is shown that such relations can be
used for bounding the conditional Rényi and TCH entropies.

Mathematics Subject Classification. 94A17, 62B10, 39B62.

1. Introduction

The concept of entropy is fundamental in both information theory and statistical
physics. This very fruitful idea is widely used in many theoretical and applied dis-
ciplines. The traditional entropy is known as the Shannon entropy in information
theory and as the Gibbs entropy in statistical physics. Other entropic forms have
been shown to be useful. The Rényi entropy [39] and the Tsallis–Havrda–Charvát
entropy [24, 43] are important one-parameter extensions of the Shannon entropy.
These measures are used in global thresholding approach to image processing [41].
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Applications of the Rényi entropy in quantum physics are discussed in [28]. The
Tsallis–Havrda–Charvát entropy is extensively adopted in nonextensive statistical
mechanics [20]. Both the mentioned entropies have been used in studying quan-
tum entanglement and related topics [4]. An axiomatic approach to generalized
entropies is reviewed in [11].

Several entropic functions are widely used in analyzing problems of theoretical
informatics. One of such quantities is known as the conditional entropy [12,17]. As
discussed in [26], studies of communication systems concern the interplay between
the conditional entropy and error probability including the Fano inequality [17].
This issue is also related to the notion of relative entropy, or the Kullback–Leibler
divergence [30]. The conditional entropy plays a key role in applying information-
theoretic ideas to combinatorial problems [34]. This issue is closely related to the
famous probabilistic method [1]. Generalized varieties of the conditional entropy
are also of interest. In the literature, various conditional forms of the Rényi en-
tropy [16, 22, 29] and the Tsallis–Havrda–Charvát entropy [13, 19, 35] have been
considered. Many fruitful generalizations of the Kullback–Leibler divergence are
covered by the family of Csiszár’s f -divergences [10]. Quantum f -divergences and
their role in quantum information theory are reviewed in [25].

In last years, quantum information science has shown advances in both the-
ory [2,15] and experiment [21]. Studies in quantum information processing inspire
renewed interest to foundations of quantum theory. In particular, conceptual ques-
tions were considered in information-theoretic terms. The authors of [5] proposed
entropic version of Bell’s theorem. This approach has been developed for other
tests related to non-locality and contextuality [8]. Such topics stimulated stud-
ies of the so-called marginal scenarios [9]. Recently, noise-disturbance trade-off
relations have been formulated within the entropic approach [6]. Advantages of
information-theoretic formulations are discussed in [6, 8, 37, 38]. As was shown
in [38], the use of generalized entropies give new possibilities in analyzing data of
tests for quantum non-locality and contextuality. To apply generalized entropies in
the mentioned topics, we should previously establish certain properties. Properties
of such a kind are usually not treated in typical questions of statistical physics.

The aim of the present work is to examine some properties of generalized con-
ditional entropies. Considered properties are assumed to be used in theoretical
studying protocols of quantum information science and foundations of quantum
mechanics. Obtained results may also be useful in other topics including analysis
of communicating systems in computer science, combinatorial problems in discrete
mathematics, and characterization of multipartite systems in physics. The paper
is organized as follows. In Section 2, the notation and definitions are introduced.
In Section 3, we consider entropic properties related to conditioning on more and
additivity. Applications to entropy rate are discussed and exemplified. In Section 4,
we examine relations between generalized conditional entropies and error probabil-
ity. In particular, we derive improved lower bounds in the case of TCH entropies.
Relations between various versions of generalized conditional entropies are also of
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interest. Some of such relations are obtained in Section 5. In Section 6, we conclude
the paper with a summary of results.

2. Conditional entropies and their varieties

In this section, we recall definitions of the Tsallis–Havrda–Charvát and Rényi
entropies including their conditional forms. Let discrete random variable X take
values on a finite set ΩX of cardinality #ΩX . The Tsallis–Havrda–Charvát entropy
of degree α > 0 �= 1 is defined by [43]

Hα(X) :=
1

1 − α

( ∑
x∈ΩX

pX(x)α − 1

)
. (2.1)

With the factor
(
21−α − 1

)−1 instead of (1 − α)−1, this function was studied by
Havrda and Charvát [24] and later by Daróczy [13]. In statistical physics, the
entropy (2.1) is used due to Tsallis [43]. Following [28], we will call (2.1) the
Tsallis–Havrda–Charvát (TCH) entropy.

The entropy (2.1) is concave for all α > 0. We can rewrite this entropy as

Hα(X) = −
∑

x∈ΩX

pX(x)α lnα pX(x) =
∑

x∈ΩX

pX(x) lnα

(
1

pX(x)

)
· (2.2)

Here, the α-logarithm is defined for α > 0 �= 1 and ξ > 0 by

lnα(ξ) =
ξ1−α − 1

1 − α
· (2.3)

In the limit α → 1, we obtain lnα(ξ) → ln ξ and the standard Shannon entropy

H1(X) = −
∑

x∈ΩX

pX(x) ln pX(x)· (2.4)

For each q ∈ [0; 1], the binary TCH entropy is defined as

hα(q) := − qα lnα(q) − (1 − q)α lnα(1 − q). (2.5)

The maximal value lnα(#ΩX) of the entropy (2.1) is reached with the uniform
distribution. Let us introduce the index of coincidence [4, 23]

C(X) :=
∑

x∈ΩX

pX(x)2. (2.6)

Using information diagrams leads to interesting relations between the Shannon
entropy and the index of coincidence [23]. In the case α = 2, we obtain the so-
called quadratic entropy

H2(X) = 1 − C(X). (2.7)
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In [44], this entropic function has been used for estimating the minimal error
probability in hypotheses testing.

For α > 0 �= 1, the Rényi α-entropy is defined as [39]

Rα(X) :=
1

1 − α
ln

( ∑
x∈ΩX

pX(x)α

)
. (2.8)

This entropy is a non-increasing function of order α [39]. Other properties related
to the parametric dependence are discussed in [45]. In the limit α → ∞, we obtain
the so-called min-entropy

R∞(X) := − ln
(
max pX(x)

)
. (2.9)

For α �= 1, the entropies (2.1) and (2.8) are connected as

(1 − α)Rα(X) = ln
(
1 + (1 − α)Hα(X)

)
. (2.10)

Despite of a direct relation, the entropies (2.1) and (2.8) differ in properties. If
the random variables X and Y are independent, then the entropy (2.8) has an
additivity

Rα(X, Y ) = Rα(X) + Rα(Y ), (2.11)

whereas the entropy (2.1) is pseudo-additive [19]:

Hα(X, Y ) = Hα(X) + Hα(Y ) + (1 − α)Hα(X)Hα(Y ). (2.12)

Further, the entropy (2.1) is a concave function of probability distribution for all
α. The right-hand side of (2.8) is certainly concave only for α ∈ (0; 1). Convexity
properties of Rα(X) with orders α > 1 depend on dimensionality of probabilistic
vectors [3, 4]. For instance, for every α > 1 there exist an m′ such that the en-
tropy (2.8) is neither convex nor concave for all m > m′ [3]. The maximal value
ln(#Ω) of the Rényi entropy is reached with the uniform distribution. Like the
THC entropy, the entropy (2.8) recovers the Shannon entropy (2.4) in the limit
α → 1. Quantum counterparts of the entropies (2.1) and (2.8) are discussed in [4].
Upper bounds on the entropy of a random variable with countable range are con-
sidered in [14, 33].

In the present paper, we will focus on conditional entropies. For brevity, we
usually omit the symbols of the sets ΩX and ΩY in entropic sums. The conditional
form of entropies is widely used in information theory [12] as well as in applied
disciplines. The standard conditional entropy is defined by [12]

H1(X |Y ) :=
∑

y
pY (y)H1(X |y) = −

∑
x

∑
y
pXY (x, y) ln pX|Y (x|y). (2.13)

Here, we use the particular function

H1(X |y) = −
∑

x
pX|Y (x|y) ln pX|Y (x|y), (2.14)
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and Bayes’ rule pX|Y (x|y) = pXY (x, y)/pY (y). In the context of quantum mechan-
ics, the conditional entropy (2.13) was used in information-theoretic formulations
of Bell’s theorem [5] and noise-disturbance uncertainty relations [6].

In the literature, two kinds of the conditional THC entropy are used [19]. These
forms are respectively inspired by the two expressions shown in (2.2). The first is
defined as [19]

Hα(X |Y ) :=
∑

y
pY (y)α Hα(X |y), (2.15)

where
Hα(X |y) :=

1
1 − α

(∑
x

pX|Y (x|y)α − 1
)

. (2.16)

We will also use equivalent expressions

Hα(X |y) = −
∑

x
pX|Y (x|y)α lnα pX|Y (x|y) (2.17)

=
∑

x
pX|Y (x|y) lnα

(
1

pX|Y (x|y)

)
· (2.18)

The conditional entropy (2.15) is, up to a factor, the quantity originally introduced
by Daróczy [13]. For any α > 0, we have the chain rule written as [13]

Hα(X, Y ) = Hα(X |Y ) + Hα(Y ). (2.19)

In [19], the chain rule (2.19) has been extended to more than two variables. Namely,
it holds that

Hα(X1, X2, . . . , Xn) =
∑n

j=1
Hα(Xj |X1, . . . , Xj−1). (2.20)

In the case α = 1, we have the chain rule with the standard conditional en-
tropy (2.13). The chain rule is very essential in many derivations.

Using the particular functional (2.17), the second form of conditional THC
entropy is introduced as [19]

H̃α(X |Y ) :=
∑

y
pY (y)Hα(X |y). (2.21)

It should be noted that this form of conditional entropy does not share the chain
rule of usual kind [19]. We can only write the relation

H̃α(X |Y )
{≤, α ∈ (0; 1)
≥, α ∈ (1;∞)

}
Hα(X, Y ) − Hα(Y ) = Hα(X |Y ). (2.22)

Here, we used pY (y) ≤ pY (y)α for α ∈ (0; 1) and pY (y) ≥ pY (y)α for α ∈ (1;∞).
If H̃α(X |Y ) �= 0 and the variable Y is not deterministic, the inequalities (2.22) are
actually strict. Although the chain rule is not applicable here, the entropy (2.21)
has found to be useful at least as an auxiliary quantity [19, 35]. Taking α = 2
in (2.21), we obtain the conditional quadratic entropy

H̃2(X |Y ) =
∑

y
pY (y)

(
1 −

∑
x
pX|Y (x|y)2

)
. (2.23)
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This entropic function was utilized for estimating the minimal error probabil-
ity [44]. In the limit α → 1, both the entropies (2.15) and (2.21) coincide
with (2.13).

The conditional form of Rényi’s entropy is used in various topics. There is no
generally accepted definition of conditional Rényi entropy [42]. Its first version is
defined by [7, 16, 29]

Rα(X |Y ) :=
∑

y
pY (y)Rα(X |y), (2.24)

where
Rα(X |y) :=

1
1 − α

ln
(∑

x
pX|Y (x|y)α

)
. (2.25)

The conditional entropy (2.24) was used in studying problems of classification [16]
and interpretation [29].

The limit α → ∞ gives the conditional min-entropy. For given value y, we define
a value

x̂(y) := Arg max
{
pX|Y (x|y) : x ∈ ΩX

}
, (2.26)

maximizing pX|Y (x|y), i.e., pX|Y (x|y) ≤ pX|Y (x̂|y) for all x ∈ ΩX . Note that a
value (2.26) may be not unique. Any of such values corresponds to the standard
decision in the Bayesian approach [40]. We then write

R∞(X |y) = − ln pX|Y (x̂|y). (2.27)

The conditional min-entropy R∞(X |Y ) is defined according to (2.24) and (2.27).
Basic properties of the conditional entropy (2.24) are examined in [16,29]. However,
this form of conditional entropy does not share the chain rule. Instead of the
functional (2.24), the authors of [22] proposed another form written as

R̃α(X |Y ) := Rα(X, Y ) − Rα(Y ). (2.28)

Thus, the chain rule is satisfied by definition. Third version of conditional entropy
is obtained from smooth Rényi entropies by removing the smoothing [42]. In the
present work, we will deal with the first version (2.24) only. In fact, the particular
functions (2.17) and (2.25) are clearly connected. Hence, we will obtain some useful
relations between the conditional entropies (2.21) and (2.24).

A final remark concerns notation. In the following, we will often deal with func-
tions of conditional probabilities such as pYn+1|Y1...Yn

(yn+1|y1, . . . , yn). To shorten
formulas, we will tacitly left out subscripts and merely write p(yn+1|y1, . . . , yn),
and so on.

3. Conditioning on more and additivity properties

In this section, we will analyze some properties of the conditional en-
tropies (2.15), (2.21), and (2.24). First, we examine the case when the entropies
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are conditioned on more variables. Then the obtained results are applied to the
THC entropy rate. Additivity properties will be discussed as well. Properties con-
sidered seem to be useful in applications of generalized entropies in some questions
of quantum information science. There exist several reasons for considering more
general entropic forms in such a context. A utility of entropic bounds with a para-
metric dependence was emphasized in [31]. Such bounds may allow to find more
exactly the domain of acceptable values for unknown probabilities with respect to
known ones. Posing inequalities of the Bell type in terms of generalized conditional
entropies, we significantly expand a class of probability distributions, for which the
non-locality or contextuality are testable [38]. The mentioned approach also allow
to reduce an amount of required detection efficiency. In this regard, further studies
of generalized conditional entropies are of interest.

We begin with properties related to conditioning on more. For the standard
conditional entropy, we have

H1(X |Y1, . . . , Yn, Yn+1) ≤ H1(X |Y1, . . . , Yn). (3.1)

For α ≥ 1, the conditional entropy (2.15) satisfies [13]

Hα(X |Y ) ≤ Hα(X). (3.2)

The author of [19] pointed out an immediate extension of (3.2). For α ≥ 1 and
integer n ≥ 0, we have

Hα(X |Y1, . . . , Yn, Yn+1) ≤ Hα(X |Y1, . . . , Yn). (3.3)

For instance, relations of the form (3.1) have been used in deriving entropic Bell
inequalities [5] and entropy-based approach in counting [34]. We now consider the
question for the conditional entropy (2.21). The following statement takes place.

Proposition 3.1. For real α > 0 and integer n ≥ 0, the conditional entropy (2.21)
satisfies

H̃α(X |Y1, . . . , Yn, Yn+1) ≤ H̃α(X |Y1, . . . , Yn). (3.4)

Proof. For brevity, we introduce the function

ηα(ξ) :=
ξα − ξ

1 − α
(α �= 1), η1(ξ) := − ξ ln ξ. (3.5)

This function is concave for all α > 0. First, we prove the claim for n = 0. Using
Jensen’s inequality and

∑
y pY (y) pX|Y (x|y) = pX(x), one gets

H̃α(X |Y ) =
∑

x

∑
y

pY (y) ηα

(
pX|Y (x|y)

) ≤∑
x

ηα

(
pX(x)

)
= Hα(X). (3.6)

In the case n ≥ 1, we write two relations∑
yn+1

p(yn+1|y1, . . . , yn) p(x|y1, . . . , yn, yn+1) = p(x|y1, . . . , yn) (3.7)
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and
∑

yn+1
p(yn+1|y1, . . . , yn) = 1. Similarly to (3.6), for all α > 0 we obtain∑

yn+1

p(yn+1|y1, . . . , yn)Hα(X |y1, . . . , yn, yn+1) ≤ Hα(X |y1, . . . , yn). (3.8)

Multiplying (3.8) by p(y1, . . . , yn) and summing with respect to y1, . . . , yn, we
obtain the claim (3.4). �

For α ≥ 1, we have Hα(X |Y ) ≤ H̃α(X |Y ) due to pY (y)α ≤ pY (y). So, the pre-
vious result (3.2) follows from (3.6). In the same manner, our relation (3.8) could
lead to (3.3). According to (3.3) and (3.4), conditioning on more can only reduce
the entropy. The corresponding property of the standard conditional entropy is tac-
itly used without explicit formulation. It is generally valid for the entropy (2.15)
with α ≥ 1 and for the entropy (2.21) with α > 0. Thus, we will rather use the
quantity (2.21) in some questions such as an information-theoretic formulation
of noise-disturbance trade-off relations. Indeed, the result (3.1) is essential in the
argumentation given in [6].

In principle, the conditional entropy (2.15) with α ∈ (0; 1) may sometimes
satisfy the inequality (3.3). Suppose that a random variable Y is deterministic,
i.e., one of probabilities pY (y) is equal to 1 and other are all zero. For all α > 0,
we then obtain

Hα(X |Y ) = H̃α(X |Y ) ≤ Hα(X). (3.9)

The relation (3.9) is a particular case of (3.3), but its scope covers α ∈ (0; 1) in our
specific example. We also ask for a possible size of positive values of the difference
Hα(X |Y ) − Hα(X). It is instructive to consider an example.

Example 3.2. Let us consider joint probabilities pXY (0, 0) = 1/2 and
pXY (0, 1) = pXY (1, 0) = pXY (1, 1) = 1/6. For conditional entropies pX|Y (x|y),
calculations give values pX|Y (0|0) = 3/4, pX|Y (1|0) = 1/4, and pX|Y (0|1) =
pX|Y (1|1) = 1/2. In the case α = 1/2, we have H1/2(X |0) =

√
3 − 1 ≈ 0.732

and H1/2(X |1) = 2
(√

2 − 1
) ≈ 0.828, whence the conditional entropy is

H1/2(X |Y ) =

√
2
3

H1/2(X |0) +

√
1
3

H1/2(X |1) ≈ 1.076. (3.10)

This values is significantly larger than H1/2(X) = 2
(√

2/3 +
√

1/3 − 1
) ≈ 0.788.

As our example shows, for α ∈ (0; 1) the conditional entropy Hα(X |Y ) can
essentially exceed Hα(X). In principle, this issue deserves further studies. We now
consider the case of conditional Rényi’s entropy (2.24).

Proposition 3.3. For 0 < α ≤ 1 and integer n ≥ 0, the conditional entropy (2.24)
satisfies

Rα(X |Y1, . . . , Yn, Yn+1) ≤ Rα(X |Y1, . . . , Yn). (3.11)
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Proof. We will assume α �= 1. For α ∈ (0; 1), the function ξ 
→ (1 − α)−1 ln ξ is
both increasing and concave, whereas the function ξ 
→ ξα is concave. Thus, the
right-hand side of (2.8) is concave in its probabilistic vector. It follows from this
property and the relation (3.7) that∑

yn+1

p(yn+1|y1, . . . , yn) Rα(X |y1, . . . , yn, yn+1) ≤ Rα(X |y1, . . . , yn). (3.12)

Multiplying (3.12) by p(y1, . . . , yn) and summing with respect to y1, . . . , yn, we
obtain the claim (3.11). �

According to Proposition 3.3, conditioning on more can only reduce the con-
ditional Rényi entropy (2.24) of order α ∈ (0; 1). As pointed out in Section 2.3
of [4], the Rényi entropy (2.8) is not concave for α > α∗ > 1, where α∗ depends on
m = #ΩX . In fact, the binary Rényi entropy is strictly concave for 0 < α ≤ 2 [3].
In the binary case, therefore, the discussed property also holds for α = 2. Without
specifying the dimensionality of probabilistic vectors, we can use (3.11) only for
0 < α ≤ 1.

For some special distributions, the inequality (3.11) may be valid for orders
α ∈ (1;∞). In the case n = 0, this property reads

Rα(X |Y ) ≤ Rα(X). (3.13)

Let X be a random variable supported on m points with uniform distribution,
i.e., pX(x) = 1/m for all x ∈ ΩX . Then the relation (3.13) is valid for all α > 0.
The authors of [22] noticed the same behavior for the form (2.28). In the case of
entropy (2.24), we actually have

Rα(X |y) ≤ ln m = Rα(X). (3.14)

Hence, we yield (3.13) after multiplying (3.14) by pY (y) and summing with respect
to y ∈ ΩY . Meantime, the case of uniformly distributed X is very specific. For
α ∈ (1;∞), we will obtain an upper bound on Rα(X |Y ) in terms of only the
entropy Rα(X) and the cardinality m = #ΩX . Upper bounds of such a kind will
follow from the results of Section 5.

The min-entropy is widely used in cryptography as a measure of security. So,
studies of its properties are of specific interest. There exist several ways to define
the notion of conditional min-entropy [42]. We will consider the entropic func-
tion (2.27) solely. In general, this entropy violates the property formulated as (3.11)
and (3.13). The counterexample is posed as follows.

Example 3.4. We consider the same joint probabilities pXY (x, y) as in Exam-
ple 3.2. In this case, we obtain R∞(X |0) = ln(4/3), R∞(X |1) = ln 2, and

R∞(X |Y ) =
2
3

ln
4
3

+
1
3

ln 2 ≈ 0.423. (3.15)
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At the same time, max pX(x) = pX(0) = 2/3 and R∞(X) = ln(3/2) ≈ 0.405 that
is less than (3.15). In other words, this example enjoys

R∞(X |Y ) > R∞(X). (3.16)

We can generalize a situation, in which the result (3.16) takes place. Since the
second derivative of the function ξ 
→ − ln ξ is strictly positive, this function is
strictly convex. If pY (y) < 1 for all y ∈ ΩY and the probabilities pX|Y (x̂|y) are
not all equal, then the strict convexity gives

R∞(X |Y ) =
∑

y
pY (y)

(− ln pX|Y (x̂|y)
)

> − ln
(∑

y
pY (y) pX|Y (x̂|y)

)
. (3.17)

When probability distributions are such that x̂ can be chosen the same for all
y ∈ ΩY , we have ∑

y
pY (y) pX|Y (x̂|y) = max pX(x). (3.18)

Combining this with (3.17) at once leads to the conclusion (3.16). We see, there-
fore, that the conditional min-entropy does not share the property considered in
Propositions 3.1 and 3.3.

Since the conditional entropy (2.21) satisfies the property (3.4) for all α > 0,
it may be used in studying the TCH entropy rate. The THC entropy rate of a
stochastic process X = {Xj} is defined by [19]

Hα(X) := lim
n→∞

1
n

Hα(X1, . . . , Xn), (3.19)

whenever the limit exists. For α = 1, it gives the standard Shannon entropy rate
defined as [12]

H1(X) := lim
n→∞

1
n

H1(X1, . . . , Xn). (3.20)

The THC entropy rate (3.19) with α > 1 certainly exists for a stationary stochastic
process [19]. In this case, the entropy rate (3.19) also coincides with the limit [19]

lim
n→∞Hα(Xn|X1, . . . , Xn−1). (3.21)

Using the conditional entropy (2.21), we will obtain some results on the THC
entropy rate for α ∈ (0; 1). For all α > 0, we introduce another quantity for
entropy rate, namely

H̃ ′
α(X) := lim

n→∞ H̃α(Xn|X1, . . . , Xn−1), (3.22)

when the limit exists. In the case α = 1, the quantity (3.22) is reduced to a quantity
defined via the standard conditional entropy [12]:

H̃ ′
1(X) := lim

n→∞H1(Xn|X1, . . . , Xn−1). (3.23)
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The quantities H1(X) and H̃ ′
1(X) correspond to two different notions of entropy

rate. The first is the per symbol entropy of the n random variables, and the second
is the conditional entropy of the last random variable given the past [12]. A similar
treatment can be applied to the quantities (3.19) and (3.22). As is well known [12],
for a stationary process the limits (3.20) and (3.23) exist and are equal. The
following result holds for the quantity (3.22).

Proposition 3.5. Let a stochastic process X = {Xj} be stationary. For all α > 0,
the second TCH entropy rate H̃ ′

α(X) exists. If the first TCH entropy rate Hα(X)
exists, then it satisfies

Hα(X) ≥ H̃ ′
α(X) (0 < α < 1). (3.24)

Hα(X) ≤ H̃ ′
α(X) (1 < α < ∞). (3.25)

Proof. Due to the stationarity of the process and the property (3.4), for α > 0 we
obtain

H̃α(Xn|X1, . . . , Xn−1) = H̃α(Xn+1|X2, . . . , Xn)

≥ H̃α(Xn+1|X1, X2, . . . , Xn). (3.26)

The sequence
{
H̃α(Xn|X1, . . . , Xn−1)

}
is monotonically non-increasing and con-

tains positive elements. Thus, the limit (3.22) exists for all α > 0.
Let us prove the claims (3.24) and (3.25). Using the chain rule (2.20), for α ∈

(0; 1) we further write

1
n

Hα(X1, . . . , Xn) =
1
n

n∑
j=1

Hα(Xj |X1, . . . , Xj−1)

≥ 1
n

n∑
j=1

H̃α(Xj |X1, . . . , Xj−1). (3.27)

Due to the properties of Cesáro’s mean (see, e.g., Thm. 4.2.3 in [12]), the right-
hand side of (3.27) tends to H̃ ′

α(X) in the limit n → ∞. The left-hand side of (3.27)
tends to Hα(X), if the latter exists. The result (3.24) is proved.

For α > 1, the entropy rate Hα(X) exists and coincides with the limit (3.21).
In view of the definitions (2.15) and (2.21), for α > 1 we have

Hα(Xn|X1, . . . , Xn−1) ≤ H̃α(Xn|X1, . . . , Xn−1). (3.28)

In the limit n → ∞, the relation (3.28) leads to (3.25). �

Thus, for a stationary process the second TCH entropy rate (3.22) exists for
all α > 0. Due to (3.24) and (3.25), this quantity is somehow related to the first
form (3.19). Thus, the quantity (3.22) is a suitable measure of TCH entropy rate,
at least for the range α ∈ (0; 1). Moreover, the quantity (3.22) seems to be more
appropriate than (3.21). We will illustrate this opinion with an example.
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Example 3.6. Let us consider a Markov chain {Xn}n≥1 with two possible states
s ∈ {1, 2} and the transition matrix

P =
(

1 − q q
r 1 − r

)
, (3.29)

where 0 < q < 1 and 0 < r < 1. This chain is time invariant and irreducible [12].
The stationary distribution is represented as (see, e.g., Example 4.1.1 in [12]):

μ(1) =
r

q + r
, μ(2) =

q

q + r
· (3.30)

Using this distribution as initial, we obtain a stationary process. Due to the Markov
property, we have

p(xn|x1, . . . , xn−1) = p(xn|xn−1). (3.31)

Hence, for arbitrary n ≥ 2 one gets

Hα(Xn|x1, . . . , xn−2, 1) = hα(q), Hα(Xn|x1, . . . , xn−2, 2) = hα(r). (3.32)

For the given value s of the variable Xn−1, we obviously have∑
x1...xn−2

p(x1, . . . , xn−2, s) = μ(s). (3.33)

Due to (3.32) and (3.33), for all α > 0 we obtain

H̃ ′
α(X) =

r

q + r
hα(q) +

q

q + r
hα(r). (3.34)

The right-hand side of (3.34) remains valid for α = 1, when gives the standard
entropy rate of the two-state Markov chain (see, e.g., Example 4.2.1 in [12]). The
following point should be noted here. In general, the two limits n → ∞ and α → 1
are not always commuting. An instance of non-commutativity will be shown with
the quantity (3.21). Nevertheless, the resulting formula (3.34) for the rate (3.22)
covers the standard case α = 1 in the considered example.

Let us consider the quantity (3.21). For the sake of simplicity, we focus on the
case q = r. We then have μ(s) = 1/2 and H1(X) = h1(q). Combining the Markov
property with Bayes’ rule leads to the following result. For integer m ≥ 2, the
corresponding joint probability

p(x1, . . . , xm) =
1
2

m∏
j=2

fj, (3.35)

where each factor fj is either q or q̃ = 1 − q. Taking into account the number of
related choices, we have

∑
x1...xm

p(x1, . . . , xm)α = 2
m−1∑
k=0

(
m − 1

k

)
qkα q̃(m−1−k)α

2α
= 21−α

(
qα + q̃α

)m−1
.

(3.36)
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Using this answer with m = n − 1 and the result (3.32), we finally obtain

Hα(Xn|X1, . . . , Xn−1) = 21−α (qα + q̃α)n−2 hα(q). (3.37)

As 0 < q < 1, we have qα + (1 − q)α > 1 for α ∈ (0; 1), and qα + (1 − q)α < 1 for
α ∈ (1;∞). Hence, the limit (3.21) does not exist for α ∈ (0; 1). Further, we obtain
Hα(X) = 0 for α ∈ (1;∞). In both the cases, it hardly tells us anything about
the process. When α → 1+, the quantity Hα(X) does not cover the standard fact
H1(X) = h1(q). Here, we explicitly see non-commutativity of the limits n → ∞
and α → 1. In opposite, the quantity (3.22) exists for all α > 0 and also reproduces
the standard result.

We complete this section with a brief discussion of additivity properties of the
conditional entropies (2.15) and (2.21). Subadditivity is one of basic properties of
the Shannon entropy. The joint entropy satisfies [12]

H1(X, Y ) ≤ H1(X) + H1(Y ), (3.38)

with equality if and only if the random variables are independent. It is not the case
generally for the TCH entropy (2.1). For the joint distribution p(x, y) = p(x) p(y),
we directly have a pseudo-additivity (2.12). The third term in the right-hand side
of (2.12) is positive for α ∈ (0; 1) and negative α ∈ (1;∞). Such properties are
useful in nonextensive statistical mechanics [20]. For α ≥ 1, we can write (3.38)
with the TCH α-entropies instead of the Shannon ones. That is, the TCH entropy
is subadditive for α ≥ 1. A similar result holds for the conditional entropy (2.15).
For α ≥ 1, one obeys [19]

Hα(X, Y |Z) ≤ Hα(X |Z) + Hα(Y |Z). (3.39)

We now consider this question for the conditional entropy (2.21).

Lemma 3.7. Let random variables X, Y , Z take values on finite sets. For α ≥ 1
and each z ∈ ΩZ , the entropic function (2.16) satisfies

Hα(X, Y |z) ≤ Hα(X |z) + Hα(Y |z). (3.40)

The result (3.40) can be proved similarly to the inequality (3.39). We refrain
from presenting the details here. Multiplying our result (3.40) by pZ(z) and sum-
ming with respect to z, we obtain the following. For α ≥ 1, the conditional en-
tropy (2.21) satisfies

H̃α(X, Y |Z) ≤ H̃α(X |Z) + H̃α(Y |Z). (3.41)

Thus, the conditional entropy (2.21) shares an additivity property similarly to the
conditional entropy (2.15).
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4. Error probability and conditional entropies

In this section, we consider lower and upper bounds on generalized conditional
entropies. Let random variables X and Y describe the input and output of a
communication channel over an alphabet Ω. The conditional entropy H1(X |Y ) can
be treated as a measure of quality of information transmission. The classical Fano
inequality is a relation between H1(X |Y ) and error probability. We use random
variable E with possible values from the set {¬e, e}. The average probability of
error is expressed as

Pe =
∑
y∈Ω

pY (y) pE|Y (e|y), pE|Y (e|y) =
∑
x∈Ω
x �=y

pX|Y (x|y). (4.1)

The value Pe gives an average probability that the input symbol has been mistaken
through the transmission. For the standard decision (2.26), the error probability
is equal to

P̂e = 1 −
∑
y∈Ω

pY (y) pX|Y (x̂|y). (4.2)

In the context of communications, the value P̂e is attained by the so-called “max-
imum a posteriori estimator” [18].

Entropic functions are basic measures of uncertainty used in information theory.
On the other hand, channel coding theorems are usually stated in terms of the
error probability [12]. In this regard, relations between entropies and the error
probability are of great interest [18]. The Fano inequality states that

H1(X |Y ) ≤ h1(Pe) + Pe ln(m − 1), (4.3)

where the binary entropy h1(q) = − q ln q − (1 − q) ln(1 − q) and m = #Ω. The
fact (4.3) shows that Pe → 0 implies H1(X |Y ) → 0. Further, if H1(X |Y ) is large
then the probability of making an error in inference must be large as well.

For the conditional Rényi entropy (2.24), some inequalities of the Fano type
with applications were considered in [16]. In particular, the right-hand side of (4.3)
gives an upper bound on the conditional entropy (2.24) for all α > 1. This claim
follows from the fact that the function (2.25) cannot increase with growth of α.
For orders α ∈ (0; 1), bounds of the Fano type can be written in terms of the error
probability (4.2). The following statement takes place.

Proposition 4.1. Let #Ω = m; for α ∈ (0; 1), the conditional entropy (2.24)
obeys

Rα(X |Y ) ≤ 1
1 − α

ln
(
(1 − P̂e)α + (m − 1)1−αP̂α

e

)
. (4.4)

Proof. For the standard decision, we have pE|Y (e|y) = 1 − pX|Y (x̂|y). It follows
from (Thm. 6 of [3]) that, for all α > 0 �= 1,

Rα(X |y) ≤ 1
1 − α

ln
{(

1 − pE|Y (e|y)
)α + (m − 1)1−αpE|Y (e|y)α

}
. (4.5)
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For α ∈ (0; 1), the function ξ 
→ (1 − α)−1 ln ξ is both increasing and concave,
whereas the function ξ 
→ (1 − ξ)α + (m − 1)1−αξα is concave. Hence, the right-
hand side of (4.5) is concave in pE|Y (e|y). Multiplying (4.5) by pY (y) and summing
with respect to y, we get the claim (4.4) due to Jensen’s inequality. �

For the conditional THC entropy (2.15), bounds of the Fano type were derived
in [19] and improved in [36]. We shall now consider the question for the conditional
entropy (2.21). Our result is formulated as follows.

Proposition 4.2. Let #Ω = m; then the conditional entropy (2.21) satisfies

H̃α(X |Y ) ≤ hα(Pe) + Pα
e lnα(m − 1) (0 < α < 1). (4.6)

H̃α(X |Y ) ≤ hα(Pe) + Pe lnα(m − 1) (1 < α < ∞). (4.7)

Proof. We will follow the original scheme of derivation of the book [17]. It follows
from Lemma 4 of [36] that

Hα(X |y) ≤ hα

(
pE|Y (e|y)

)
+ pE|Y (e|y)α lnα(m − 1), (4.8)

where α > 0. For α ∈ (0; 1), the function ξ 
→ ξα is concave, whence∑
y
pY (y) pE|Y (e|y)α ≤

(∑
y
pY (y) pE|Y (e|y)

)α

= Pα
e . (4.9)

Multiplying (4.8) by pY (y) and summing with respect to y, we obtain the
claim (4.6) due to (4.9). For α > 1, we have pE|Y (e|y)α ≤ pE|Y (e|y). Substituting
this into (4.8), we similarly prove the claim (4.7). �

The statement of Proposition 4.2 provides Fano type inequalities for the con-
ditional entropy (2.21). In the limit α → 1, the relations (4.6) and (4.7) both
lead to the standard Fano inequality (4.3). The author of [19] presented the
bound (4.7) with Hα(X |Y ) instead of H̃α(X |Y ). So our result is stronger, since
Hα(X |Y ) ≤ H̃α(X |Y ) for α > 1. As was shown in [36], for α > 1 the conditional
entropy (2.15) actually obeys a stronger bound

Hα(X |Y ) ≤ hα(Pe) + Pα
e lnα(m − 1). (4.10)

In the range α ∈ (0; 1), Fano type bounds on the conditional entropy (2.15) were
derived in [36]. For a two-sided estimation of conditional entropies, lower bounds
are also required. Another fact is that inequalities of Fano type involves cardinality
of the set Ω [26]. Hence, results of such a kind are not applicable in the case of
countably infinite alphabets. It is possible in such situations that H1(X |Y ) does
not tend to 0 as Pe vanishes [26]. This phenomenon is connected with an entropic
discontinuity considered in [27].

Lower bounds on the standard conditional entropy (2.13) were considered by
Rényi [40]. He showed that such bounds are expressed in terms of the probability
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error of the standard decision. In [35], this issue was developed for all the con-
ditional entropies (2.15), (2.21), and (2.24). In the case of finite alphabets, we
have

lnα

(
1

1 − P̂e

)
≤ H̃α(X |Y ) (0 < α ≤ 2). (4.11)

− ln(1 − P̂e) ≤ Rα(X |Y ) (0 < α < ∞), (4.12)

For α ≥ 2, lower bounds on H̃α(X |Y ) also involve cardinality of the alphabet [35].
Improved lower bounds on the standard conditional entropy were derived in [26].
In particular, the authors of [26] have proved that

(2 ln 2) P̂e ≤ H1(X |Y ). (4.13)

This bound also holds for the conditional Rényi entropy Rα(X |Y ) of order
α ∈ (0; 1). We shall consider the question for the conditional THC entropies.
Following [26], our results are based on considering entropies of truncated distri-
butions.

Lemma 4.3. Suppose that probabilities pX(x) are arranged in non-increasing or-
der, i.e., pX(i) ≥ pX(j) for i < j. We now define an integer

� =
⌊

1
pX(1)

⌋
· (4.14)

Let random variable W take values on {1, . . . , � + 1} with probabilities

pW (w) =

{
pX(1) , if w = 1, . . . , � ,

1 − � pX(1) , if w = � + 1.
(4.15)

For all α > 0, the TCH entropies satisfy

Hα(W ) ≤ Hα(X). (4.16)

Proof. It follows from the definition (4.15) that for all integer k ≥ 1 we have [26]∑k

j=1
pX(j) ≤

∑k

j=1
pW (j). (4.17)

Thus, the probabilistic vector pX is majorized by pW . We also recall that if the
function ξ 
→ g(ξ) is concave, then the sum

∑
j g(ξj) is Schur-concave [32]. Com-

bining this with concavity of the function (3.5) and the fact (4.17) immediately
gives the claim (4.16). �

In the case α = 1, the result (4.16) gives a relation between the Shannon
entropies, namely H1(W ) ≤ H1(X). This relation was derived and further applied
in [26]. Some of these results can be extended to the THC entropies. We now
establish a useful lower bound on lnα(n).
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Lemma 4.4. For all real α ∈ (0; 2] and integer n ≥ 1, we have

lnα(n) ≥ 2 lnα(2)
(

1 − 1
n

)
· (4.18)

Proof. We first note that the inequality (4.18) is obviously saturated for n = 1.
To prove (4.18) for integer n ≥ 2, we will use the following. For all α ∈ (0; 2], one
has

21−α ≥ lnα(2). (4.19)

It holds for α = 1 due to 1 > ln 2. For α �= 1, we write the difference

21−α − lnα(2) = 21−α − 21−α − 1
1 − α

=
2α − 2α

2α(1 − α)
· (4.20)

For α ∈ [0; 1], we have b(α) = 2α − 2α ≥ 0 due to b′(α) = 2α ln 2 − 2 < 0 and
b(1) = 0. Hence, the right-hand side of (4.20) is non-negative for α ∈ (0; 1). We
further note that the function α 
→ 2α − 2α is concave and vanishes at the end
points of the interval α ∈ [1; 2]. Thus, the right-hand side of (4.20) is non-negative
for α ∈ (1; 2]. This completes the proof of (4.19).

We now introduce the function

gα(ξ) := lnα

(
1
ξ

)
=

ξα−1 − 1
1 − α

, (4.21)

including g1(ξ) = − ln ξ. We consider (4.21) on the interval ξ ∈ [ε; 1/2] with
arbitrarily small ε > 0 (we can take ε = 0 for α > 1). By inspection of the second
derivative, the function gα(ξ) is convex for α ∈ (0; 2]. By the Taylor formula with
remainder written in Lagrange’s form, with ε < c < 1/2, we have

gα(ξ) = gα(1/2) + g′α(1/2) (ξ − 1/2) +
1
2

g′′α(c) (ξ − 1/2)2

≥ lnα(2) + 21−α (1 − 2ξ) ≥ 2 lnα(2) (1 − ξ). (4.22)

Here, we also used (4.19) for α ∈ (0; 2]. The claim (4.22) merely says that the graph
of convex gα(ξ) goes over its tangent line drawn at the point ξ = 1/2. Substituting
ξ = 1/n with integer n ≥ 2 into (4.22) provides the claim (4.18). �

When α = 1, the result (4.18) gives ln n ≥ 2 ln 2
(
1−1/n

)
for integer n ≥ 1. The

latter was also used in [26] for estimating the Shannon entropy from below. In a
similar manner, for α ∈ (0; 2] we can obtain lower bounds on the THC entropies.

Proposition 4.5. For all α ∈ (0; 2], the TCH entropy (2.2) satisfies

2 lnα(2)
(
1 − max pX(x)

) ≤ Hα(X). (4.23)
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Proof. Due to (4.16), we only need to prove that

2 lnα(2)
(
1 − max pX(x)

) ≤ Hα(W ). (4.24)

In the proof, we will assume that max pX(x) = pX(1). Let us introduce a parameter

λ := pX(1) �(� + 1) − �. (4.25)

From the definition (4.14), we then have

� ≤ 1
pX(1)

< � + 1, 0 < λ ≤ 1. (4.26)

Following [26], we represent the probabilistic vector pW as a mixture of two other
ones:

pW (j) = λ pU (j) + (1 − λ) pV (j). (4.27)

Here, we mean pU (j) = �−1 for j = {1, . . . , �} and pU (� + 1) = 0, and also
pV (j) = (� + 1)−1 for j = {1, . . . , � + 1}. Obviously, we have Hα(U) = lnα(�) and
Hα(V ) = lnα(� + 1). It follows from (4.27) that

Hα(W ) ≥ λ lnα(�) + (1 − λ) lnα(� + 1) (4.28)

≥ 2 lnα(2)
(

1 − λ + �

�(� + 1)

)
· (4.29)

Here, the step (4.28) is due to concavity of the THC entropy (2.21) for α > 0; the
step (4.29) is due to (4.18) for α ∈ (0; 2]. Substituting (4.25) into (4.29) completes
the proof. �

For α ∈ (0; 2], the statement of Proposition 4.5 provides a lower bound on the
TCH entropy in terms of the maximum probability. This result is important in own
rights as well as in estimating conditional TCH entropies from below. Using (4.23),
we now obtain an improved lower bound on the conditional entropy (2.21).

Proposition 4.6. For all α ∈ (0; 2], the conditional entropy (2.21) satisfies

2 lnα(2) P̂e ≤ H̃α(X |Y ). (4.30)

Proof. We first note that
∑

x pX|Y (x|y) = 1. Applying (4.23) to the entropic func-
tion (2.17), for α ∈ (0; 2] we have

Hα(X |y) ≥ 2 lnα(2)
(
1 − pX|Y (x̂|y)

)
H̃α(X |Y ) ≥

∑
y∈Ω

pY (y) 2 lnα(2)
(
1 − pX|Y (x̂|y)

)
. (4.31)

Recall that the value x̂(y) is defined in (2.26). Combining (4.31) with (4.2) com-
pletes the proof. �
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For α ∈ (0; 1), the results (4.30) also holds with Hα(X |Y ) instead of H̃α(X |Y ).
In the binary case, the lower bound (4.30) has already been given in [35]. It was an
extension of the previous result of Rényi [40]. In the binary case, Rényi pointed out
an improved lower bound on the standard conditional entropy (2.13). We now see
that the lower bound (4.30) remains valid with any finite alphabet. The distinction
is that Proposition 4.6 assumes α ∈ (0; 2]. In the binary case, the bound (4.30)
takes place for all α > 0 [35].

5. Relations between different conditional entropies

In this section, we will derive relations between various conditional entropies.
In general, the quadratic entropies (2.7) and (2.23) are relatively easy to evaluate.
For many special types of quantum measurements, we can calculate or estimate
the index of coincidence. For a symmetric informationally complete measurement
and any quantum state, the index of coincidence was exactly found in [37]. Hence,
entropic uncertainty bounds for a single measurement follow. Thus, relations be-
tween the quadratic conditional entropy and other conditional entropies could be
useful. Bounds on the conditional TCH entropies are formulated in the following
way.

Proposition 5.1. For α ∈ (0; 2], the conditional entropy (2.21) satisfies

lnα

{(
1 − H̃2(X |Y )

)−1}
≤ H̃α(X |Y ). (5.1)

For α ≥ 2, the conditional entropy (2.21) satisfies

H̃α(X |Y ) ≤ lnα

{(
1 − H̃2(X |Y )

)−1
}

. (5.2)

Proof. Let us begin with the claim (5.1). For brevity, we introduce an analog of
the index of coincidence, namely

C(X |y) :=
∑

x
pX|Y (x|y)2 = 1 − H2(X |y). (5.3)

The second derivative of lnα(1/ξ) is equal to (2 − α) ξα−3 and positive for α ≤ 2.
Thus, the function itself is convex. Applying Jensen’s inequality to (2.18) and
using (5.3), for α ∈ (0; 2] we have

Hα(X |y) ≥ lnα

(
1

C(X |y)

)
· (5.4)

Using this inequality and Jensen’s inequality again, one gives

H̃α(X |Y ) ≥
∑

y
pY (y) lnα

(
1

C(X |y)

)
≥ lnα

{(∑
y
pY (y)C(X |y)

)−1
}

. (5.5)
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The right-hand side of (5.5) coincides with the left-hand side of (5.1). The above
formulas are all suitable in the case α = 1 as well.

For α ∈ [2;∞), the function ξ 
→ lnα(1/ξ) is concave. Similarly to (5.4), we then
have

Hα(X |y) ≤ lnα

(
1

C(X |y)

)
· (5.6)

Substituting (5.6) into (2.21) and using Jensen’s inequality again, we rewrite the
inequality (5.5) in reversed direction. This gives the claim (5.2). �

Note that for α = 2 both the relations (5.1) and (5.2) are reduced to a trivial
identity. Recalling (2.22), we see the following. For α ∈ (0; 1), the conditional
entropy Hα(X |Y ) is bounded from below by the left-hand side of (5.1). For α ∈
[2;∞), this entropy is bounded from above by the right-hand side of (5.2). Let us
proceed to bounds on the conditional Rényi entropy.

Proposition 5.2. For α ∈ (0; 2], the conditional entropy (2.24) satisfies

− ln
(
1 − H̃2(X |Y )

)
≤ Rα(X |Y ). (5.7)

For α ≥ 2, the conditional entropy (2.24) satisfies

Rα(X |Y ) ≤ m ln m

m − 1
H̃2(X |Y ). (5.8)

where m = #ΩX .

Proof. As the standard case α = 1 is already known, we further assume α �= 1.
For α ∈ (0; 1), the function ξ 
→ ξα−1 is convex, whence∑

x
pX|Y (x|y) pX|Y (x|y)α−1 ≥ C(X |y)α−1. (5.9)

Since the function ξ 
→ (1 − α)−1 ln ξ increases for α ∈ (0; 1), the inequality (5.9)
implies

Rα(X |y) ≥ − lnC(X |y) = − ln
(
1 − H2(X |y)

)
. (5.10)

Multiplying this by pY (y) and summing with respect to y, we obtain

Rα(X |Y ) ≥
∑

y
pY (y)

{
− ln

(
1 − H2(X |y)

)}
≥ − ln

(
1 −

∑
y
pY (y)H2(X |y)

)
. (5.11)

At the last step, we used convexity of the function ξ 
→ − ln(1 − ξ). The re-
lation (5.11) provides the claim for α ∈ (0; 1). When α ∈ (1; 2], the function
ξ 
→ ξα−1 is concave. Instead of (5.9), therefore, we have∑

x
pX|Y (x|y) pX|Y (x|y)α−1 ≤ C(X |y)α−1. (5.12)
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The function ξ 
→ (1−α)−1 ln ξ decreases for α ∈ (1; 2]. Combining this with (5.12),
we obtain (5.10) and (5.11) as well.

Let us proceed to the claim (5.8). For α ∈ [2;∞), the function ξ 
→ ξα−1 is
convex. Hence, we again have the inequality (5.9). Combining this with decreasing
of the function ξ 
→ (1 − α)−1 ln ξ gives

Rα(X |y) ≤ − ln C(X |y). (5.13)

If m positive numbers pX|Y (x|y) satisfy
∑

x pX|Y (x|y) = 1, the sum C(X |y) of
their squares obeys

m−1 ≤ C(X |y) ≤ 1. (5.14)

Let f(ξ) be a convex function such that f(1) = 0, and let ξ be varied between ξ0

and 1. For ξ ∈ [ξ0; 1], we have

f(ξ) ≤ f(ξ0)
1 − ξ

1 − ξ0
· (5.15)

Indeed, the difference
{
f(ξ) − f(ξ0)(1 − ξ0)−1(1 − ξ)

}
is convex and vanishes for

both the points ξ = ξ0 and ξ = 1. So, this difference is negative in the interval
ξ ∈ [ξ0; 1] everywhere. Using (5.15) with f(ξ) = − ln ξ and ξ0 = m−1, we obtain
from (5.13) that

Rα(X |y) ≤ m ln m

m − 1
H2(X |y). (5.16)

Multiplying this by pY (y) and summing with respect to y, we get (5.8). �

With the result (5.7), we keep in mind the following. Due to (2.23) and (5.14),
the quadratic entropy H̃2(X |Y ) does not exceed 1 − 1/m. Using ξ ≤ − ln(1 − ξ),
for α ∈ (0; 2] the relation (5.7) gives

H̃2(X |Y ) ≤ Rα(X |Y ). (5.17)

This is a simple lower bound on the conditional Rényi entropy in terms of the
quadratic conditional entropy. The result (5.8) provides an upper bound on con-
ditional Renyi’s entropies of order α ≥ 2. For the case α = 2, we further write

− ln
(
1 − H̃2(X |Y )

)
≤ R2(X |Y ) ≤ m ln m

m − 1
H̃2(X |Y ). (5.18)

It is a two-sided estimate on the conditional entropy R2(X |Y ). As the right-hand
side of (5.8) is independent of α, this upper bound also holds for the conditional
min-entropy R∞(X |Y ). We will now formulate a lower bound on R∞(X |Y ).

Proposition 5.3. Let #ΩX = m; then the conditional min-entropy is bounded
from below as

ln m − ln
(

1 +
√

m − 1
√

m − 1 − m H̃2(X |Y )
)

≤ R∞(X |Y ). (5.19)
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Proof. We first note that m positive numbers pX|Y (x|y) satisfy the following two
conditions: ∑

x
pX|Y (x|y) = 1,

∑
x
pX|Y (x|y)2 = C(X |y). (5.20)

For given y ∈ ΩY , the maximal probability pX|Y (x̂|y) is then bounded from above
as (see Lem. 3 of the paper [37])

pX|Y (x̂|y) ≤ 1
m

(
1 +

√
m − 1

√
m C(X |y) − 1

)
. (5.21)

Since the function ξ 
→ − ln ξ is convex and decreasing, we then obtain

R∞(X |Y ) ≥ − ln
(∑

y
pY (y)pX|Y (x̂|y)

)
≥ ln m − ln

(
1 +

√
m − 1

∑
y
pY (y)

√
m C(X |y) − 1

)
. (5.22)

By concavity, we also obtain∑
y
pY (y)

√
m C(X |y) − 1 ≤

(
m
∑

y
pY (y)C(X |y) − 1

)1/2

. (5.23)

Combining this with (5.22) and decreasing of ξ 
→ − ln ξ finally gives (5.19). �

If H̃2(X |Y ) = 0, then the left-hand side of (5.19) vanishes. When H̃2(X |Y )
reaches its maximal value ln2(m) = (m − 1)/m, the left-hand side of (5.19) also
gives the correct value ln m. The idea recalled in the above proof has been ap-
plied to deriving uncertainty bounds for any set of mutually unbiased bases [37].
Such measurement bases are used in some efficient protocols of quantum cryptog-
raphy. The result (5.19) could be useful in studies of security of these protocols.
Together the bounds (5.8) and (5.19) give a two-sided estimate on the conditional
min-entropy. These bounds are expressed in terms of the conditional quadratic
entropy (2.23) and the cardinality of support set ΩX . We shall now proceed to
other relations of such a kind. They may give convenient tools, when number of
used symbols is sufficiently small, say, in the binary case.

Proposition 5.4. Let #ΩX = m; then the conditional entropies (2.21) and (2.24)
satisfy

Rα(X |Y ) ≥ ln m

lnα(m)
H̃α(X |Y ) (0 < α < 1), (5.24)

Rα(X |Y ) ≤ ln m

lnα(m)
H̃α(X |Y ) (1 < α < ∞). (5.25)

Proof. If m positive numbers pX|Y (x|y) obey the condition
∑

x pX|Y (x|y) = 1,
then we have

1 ≤
∑

x
pX|Y (x|y)α ≤ m1−α (0 < α < 1), (5.26)

m1−α ≤
∑

x
pX|Y (x|y)α ≤ 1 (1 < α < ∞). (5.27)
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Let us take powers pX|Y (x|y)α with equal weights. Then the upper bound of (5.26)
and the lower bound of (5.27) follow from Jensen’s inequality.

We begin with the case α ∈ (0; 1), in which the function ξ 
→ (1 − α)−1 ln ξ is
concave. Let g(ξ) be a concave function such that g(1) = 0, and let ξ be varied
between 1 and ξ1. For ξ ∈ [1; ξ1], we have

g(ξ) ≥ g(ξ1)
ξ − 1
ξ1 − 1

· (5.28)

In fact, the difference
{
g(ξ) − g(ξ1)(ξ1 − 1)−1(ξ − 1)

}
is concave and vanishes for

both the points ξ = 1 and ξ = ξ1. Hence, this difference is positive in the interval
ξ ∈ [1; ξ1] everywhere. Using (5.28) with g(ξ) = (1 − α)−1 ln ξ and ξ1 = m1−α, we
obtain

Rα(X |y) ≥ ln m

m1−α − 1

(∑
x

pX|Y (x|y)α − 1
)

=
ln m

lnα(m)
Hα(X |y). (5.29)

Multiplying (5.29) by pY (y) and summing with respect to y, we get (5.24).
In the case α ∈ (1;∞), the function ξ 
→ (1 − α)−1 ln ξ is convex. Using (5.15)

with f(ξ) = (1 − α)−1 ln ξ and ξ0 = m1−α, we obtain

Rα(X |y) ≤ ln m

1 − m1−α

(
1 −

∑
x

pX|Y (x|y)α
)

=
ln m

lnα(m)
Hα(X |y). (5.30)

In a similar manner, the inequality (5.30) leads to the claim (5.25). �

The statement of Proposition 5.4 describes a relationship between the condi-
tional Rényi entropy (2.24) and the conditional entropy (2.21) of THC type. Note
that both the results (5.24) and (5.25) remain valid in the limit α → 1. Then we
have a trivial relation with the standard conditional entropy. The relation (5.25)
also allows to resolve the question mentioned right after (3.14).

For α ≥ 1, we have H̃α(X |Y ) ≤ Hα(X). Combining this with (5.25) finally
gives

Rα(X |Y ) ≤ ln m

lnα(m)
lnα

{
exp
(
Rα(X)

)}
, (5.31)

where α ∈ (1;∞). Here, we used the relations (2.3) and (2.10). The latter imme-
diately follows from (2.1) and (2.8). The inequality (5.31) gives an upper bound
on Rα(X |Y ) in terms of only the quantities Rα(X) and m = #ΩX . This bound
may be useful in cases with enough small m. For instance, it is applicable in the
binary case, which is of primary importance in information theory and practice. In
the limit α → 1+, the inequality (5.31) gives H1(X |Y ) ≤ H1(X), i.e., a particular
case of (3.1).
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6. Concluding remarks

We have discussed properties of the conditional entropies of the Rényi and
Tsallis–Havrda–Charvát types. Such entropies are both fruitful one-parameter
extensions of the Shannon entropy. In particular, considered properties may be
interesting in studying protocols of quantum information science. We examined
entropic properties with respect to conditioning on more. It is natural to expect
that conditioning on more can only reduce the entropy. We have exemplified that
the mentioned property can be violated with the conditional min-entropy. A new
definition of the TCH entropy rate is introduced and compared with the definition
previously given in the literature. Some advances of the proposed notion are re-
vealed. We examined lower and upper bounds on generalized conditional entropy
in terms of the error probability corresponding to the standard decision. Relations
between various conditional entropies are also of interest. We have obtained some
interesting inequalities of such a kind. Information-theoretic methods are widely
used in computer science, discrete mathematics, and quantum physics. There is a
stable interest to applications of the Rényi and THC entropies in mentioned topics.
The presented results may be used in extending scope of generalized entropies.
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rate. Inf. Sci. 179 (2009) 2426–2433.
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