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ANALYSIS OF A LOCAL SEARCH ALGORITHM
FOR THE k-FACILITY LOCATION PROBLEM
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Abstract. In the k-facility location problem we are given the possible
locations for a group of at most k facilities that are to provide some
service to a set of clients. Each location has an associated cost for
building a facility there. The goal is to select the locations for the
facilities that minimize the sum of the cost for building the facilities
and the total cost for servicing the clients. In this paper we analyse
a local-search heuristic with multiple swaps for the metric k-facility
location problem and prove that it has locality gap of 2+

√
3+ε for any

constant ε > 0. This matches the bound obtained by Zhang [Theoret.
Comput. Sci. 384 (2007) 126–135.] for a local search algorithm that
uses insertions and deletions in addition to swaps. We also prove a
second, tight, bound for the locality gap of our algorithm which is
better than the above one in many cases. For example, when the ratio
between the highest and lowest facility cost is bounded by p+1, where
p is the maximum number of facilities that can be exchanged in a
swap operation, the locality of our algorithm is 3 + 2

p
; this matches

the locality gap of the algorithm of Arya et al. [SIAM J. Comput. 33
(2004) 544–562.] for the k-median problem.
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1. Introduction

In the k-facility location problem we are given set F of facilities, a set C of
clients and an integer value k > 0. Each facility j ∈ F has an opening cost fj and
if facility j is opened it can serve client i ∈ C at cost cij . The goal is to select a
subset S of at most k facilities that minimizes the cost of serving all the clients
plus the cost of opening the facilities in S. Let σ(j) represent the facility in S that
serves client j ; then the goal is to minimize

cost(S) = Σi∈Sfi + Σj∈Ccjσ(j).

Let costs(S) = Σj∈Ccjσ(j) and costf (S) = Σi∈Sfi denote the service cost and
facility cost of solution S respectively; then cost(S) = costs(S) + costf (S).

If the service costs satisfy the triangle inequality, the problem is known as the
metric k-facility location problem. If we eliminate the constraint on the number
of facilities, the problem is called the facility location problem. Another special
case of the k-facility location problem is when all the facility costs are zero, then
the problem is known as the k-median problem. The k-facility location problem
and its variants have applications in a large number of areas, such as banking [5],
distributed systems [9], web services [11] and network design [2].

The facility location, k-median and k-facility location problems are known to
be NP-hard. Therefore, extensive research has been done on designing approxi-
mation algorithms for these problems. For the metric k-facility location problem
Jain and Vazirani [7] obtained a 6-approximation algorithm using a primal-dual
technique; this approximation ratio was improved to 4 by Jain et al. [8] us-
ing a dual fitting technique, and later Zhang [13] used a local search approach
to improve the approximation ratio to 2 +

√
3 + ε for any constant ε > 0. For

the metric facility location problem Shmoys et al. [12] obtained the first con-
stant approximation algorithm by using a linear programming-based technique.
Jain and Vazirani [7] obtained a better result using a primal-dual technique yield-
ing an algorithm with approximation ratio 3. The currently best known algo-
rithm for the problem is by Li [10] with approximation ratio 1.488. For the
metric k-median problem Charikar et al. [4] used a linear programming-based
technique to design the first constant ratio approximation algorithm. Charikar
and Guha [3] combined a primal-dual technique with a greedy approach and de-
signed an improved algorithm with approximation ratio 4. Arya et al. [1] utilized a
local search heuristic to design an algorithm with approximation ratio 3+ε for any
constant ε > 0.

1.1. Contributions

In this paper we focus on the metric k-facility location problem and show that
a local search approach in which the only allowed operation is multi-swaps, where
we can simultaneously swap p ≥ 1 facilities in the solution with p facilities not in
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the solution, has approximation ratio max{3, 5 − 2 p−1
q−1}, where q is a parameter

whose value depends on the instance and it will be defined in Section 3.2. For
those instances when q is close to p the approximation ratio is close to 3. We
present an example showing the tightness of our bound. Using scaling we get
a second bound for the approximation ratio of our local search algorithm. This
bound, 2 + 1

p +
√

3 + 2
p + 1

p2 , matches the bound of the local search algorithm of
Zhang [13], which uses insertions and deletions in addition to swaps.

Our local search model is simpler than the one used by Zhang, as it uses only
swaps; therefore, our algorithm always considers solutions of the same size, and as
a result the search space that our algorithm explores is smaller than the one defined
by Zhang’s model. It is interesting that our algorithm with its more restricted set
of operations achieves the same performance as that of Zhang’s algorithm which
makes use of a richer set of operations. As a result of using a simpler model our
analysis is also simpler than that in [13]. Furthermore, with some minor changes
our algorithm could find approximate solutions with the same above approximation
ratio for all instances of the k′-facility location problem with k′ < k. Our first
bound is better than the second one when q ≤ (1+

√
3

3 )p−
√

3
3 . In addition, for the

special case when the ratio of the largest facility cost to the smallest facility cost
is less than p + 1 our first bound reduces to 3 + 2

p the same approximation ratio
the algorithm of Arya et al. [1] for the k-median problem.

1.2. Organization of the paper

The rest of the paper is organized in the following way. In Section 2 we propose
a local search algorithm for the k-facility location problem that uses multi-swap
operations. In Section 3 we analyse the local optimal solution produced by our algo-
rithm and compute the first upper bound for its approximation ratio. In Section 4
we present an example showing the tightness of the bound. In Section 5 we present
a different analysis of the algorithm and show that its approximation ratio matches
that of Zhang’s algorithm.

2. A local search algorithm with multiple swaps

Let S be a set of at most k facilities. We present below a local search algo-
rithm for the metric k-facility location problem based on the following multi-swap
operation:

swap <A,B> :=(S \ A) ∪ B

where A ⊆ S, B ⊆ F \ S, and |A| = |B| ≤ p, for a constant p ≥ 1.
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Algorithm 1. Local-Search (F , C, k).
1: Input: Set of facilities, set of clients and integer value k
2: Output: Local optimum solution
3: S ← any set of k facilities from F
4:

5: for i← 1 to k do
6: S′ ← any subset of i facilities from F
7:

8: while ∃ a multi-swap operation 〈A, B〉 for S′ such that cost((S′\A)∪B) < cost(S′)
do

9: S′ ← (S′ \ A) ∪ B
10: end while
11: if cost(S) > cost(S′) then
12: S ← S′

13: end if
14: end for
15: return S

In steps 8–10 algorithm Local-Search repeatedly tries to improve on the current
solution S′ by performing multi-swap operations. This process continues until no
multi-swap operation can further improve the cost of the solution; therefore the
algorithm finds a local optimal solution of size i for each 1 ≤ i ≤ k. At the end
the algorithm returns the local optimal solution S of minimum cost.

Let S∗ be an optimal solution, where |S∗| = l ≤ k. Let Sf be the final set of
facilities selected by Local Search and let Si be the set selected by the algorithm
for each i = 1, . . . , k. Since cost(Sf ) ≤ cost(Sl), if we could prove that cost(Sl) ≤
α cost(S∗) for some value α then we would have proven that cost(Sf ) ≤ α cost(S∗);
thus showing that the approximation ratio of algorithm Local-Search is α. We, of
course, do not know the value of l and that is why the “for” loop in the algorithm
tries all possible values for l. We show that for all integers i = 1, . . . , k there exists
a value α > 0 for which cost(Si) ≤ α cost(S∗

i ), where S∗
i is an optimal solution

that uses i facilities. This will prove that cost(Sl) ≤ α cost(S∗
l ) = α cost(S∗), and

so cost(Sf ) ≤ α cost(S∗). Therefore, without loss of generality, in the sequel we
analyse only the case when the local optimal solution and global optimal solution
have the same size.

The locality gap of a local search algorithm for a minimization problem is defined
as the maximum ratio of the value of any local optimum solution produced by the
algorithm to the corresponding global optimum value. The locality gap of Local
Search is then equal to its approximation ratio.

To compute the locality gap of algorithm Local-Search we will consider a set
Q of swap operations involving the facilities in the local optimum solution S and
facilities from a global optimum solution S∗. Since S is a local optimum solution,
then for each swap operation 〈Ai, Bi〉 ∈ Q, where Ai ∈ S and Bi ∈ S∗,

cost((S \ Ai) ∪ Bi) ≥ cost(S). (2.1)
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Note that algorithm Local-Search might not run in time that is polynomial in
the size of the input as every iteration of the “while” loop might only provide a
marginal improvement in the cost of the solution so it might require a very large
number of iterations to find a local optimum solution. We can proceed as in [1] to
ensure a polynomial running time: Replace the condition of the “while” loop as
follows:

while ∃ a multi-swap operation 〈A, B〉 for S′ such that cost((S′ \ A) ∪ B) ≤
(1 − ε

|Q|)cost(S′) do
where ε > 0 is a constant. Every iteration of this loop decreases the value of the
solution by at least a factor of ε

|Q| , hence the total number of iterations is at most

log(cost(S)) − log(cost(S∗))

log( |Q|
|Q|−ε)

≤ log(k) + log(fmax) + log(n) + log(cmax)

log( |Q|
|Q|−ε )

where fmax = max {fi | i ∈ F}, n = |C| and cmax = max {cji | i ∈ F, j ∈ C}.
The above inequality holds because cost(S) ≤ k fmax + n cmax and without loss of
generality we can assume cost(S∗) ≥ 1.

In the following sections we will show that

0 ≤
∑

〈Ai,Bi〉∈Q

[cost((S \ Ai) ∪ Bi) − cost(S)] ≤ α cost(S∗) − cost(S) (2.2)

for some constant α. Therefore, the locality gap of algorithm Local-Search is α.
The set Q that we consider contains no more than k2 + k multi-swap operations
as explained in Sections 3.2 and 4.2, so the total number of iterations performed
by Local-Search is at most

[log(k) + log(fmax) + log(n) + log(cmax)] / log
(

1 +
ε

k2 + k − ε

)
.

Each iteration of the “while” loop needs to consider at most (k|F |)p different sets
A and B, which is polynomial for p constant. Therefore, the time complexity of
the algorithm is polynomial in the size of the input.

Note that with the new termination condition of the “while” loop we could not
use inequality (2.2) to bound the locality gap, as the modified algorithm would not
produce a local optimum solution, but only a solution S for which for any A ⊆ S
and B ⊆ F , cost((S \ A) ∪ B) > (1 − ε

|Q|)cost(S).
Note that if we can prove (2.2) for any local optimum solution S′ then cost(S′) ≤

α cost(S∗). However, for the solution S obtained by the modified algorithm we
know that cost((S \ Ai) ∪ Bi) > (1 − ε

|Q|)cost(S) for each 〈Ai, Bi〉 ∈ Q; therefore,
we have to modify (2.2) as follows:

α cost(S∗) − cost(S) ≥
∑

〈Ai,Bi〉∈Q

[cost((S \ Ai) ∪ Bi) − cost(S)]

> − ε

|Q|
∑

〈Ai,Bi〉∈Q

cost(S) = −ε cost(S).

Hence cost(S) ≤ α
1−εcost(S∗).
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Figure 1. Mapping π maps each o ∈ S∗ to its closest facility
π(o) ∈ S.

In the rest of the paper we will prove inequality (2.2) for any local optimum
solution and some value α. Then, by the above argument we will have proven that
our algorithm with the modified “while” condition has approximation ratio α

1−ε .

3. First bound for the locality gap

Since in a local optimum solution S no multi-swap operation can improve its
cost, then for any multi-swap operation 〈A, B〉 the following inequality is satisfied:

cost((S \ A) ∪ B) ≥ cost(S). (3.1)

We define a mapping π similar as the mapping η in [6] as follows: π : S∗ → S maps
each facility o in the optimum solution to its closest facility π(o) ∈ S breaking ties
arbitrarily; hence, coπ(o) ≤ cos for all s ∈ S. The map π can be represented as a
bipartite graph as shown in Figure 1. For each facility s ∈ S, let the (in-)degree of
s in this bipartite graph be deg(s) = |π−1(s)|. If deg(s) ≥ 2 then we call s a bad
facility otherwise we call it a good facility.

3.1. Pairing

To bound the cost of the local optimum solution S produced by our algorithm
we will use several sets of multi-swap operations involving facilities from S and
facilities from S∗. These sets of multi-swap operations are chosen so that combining
the local optimality condition (3.1) for all of them allows us to bound the cost of
S in terms of the cost of S∗. To this end we first use algorithm Partition below to
divide S and S∗ into subsets of facilities that will participate in the swaps. More
specifically, S and S∗ are partitioned into sets A1, A2, . . . , Ar and B1, B2, . . . , Br

respectively, where |Ai| = |Bi| for all 1 ≤ i ≤ r and r − 1 is equal to the number
of bad facilities.

Note the following facts:

I. In step 4 there are enough facilities s with degree 0 since |S| = |S∗|.
II. For any sets Ai and Bi, where 1 ≤ i < r if o ∈ S∗ \ Bi, then π(o) �∈ Ai.

III. For each facility s ∈ Ar, π−1(s) = o ∈ Br. To see this note that for each
facility o ∈ Br it must be that π(o) ∈ Ar because if π(o) ∈ Ai for i �= r, then
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Algorithm 2. Partition (S, S∗).
Input: Local optimum solution S and global optimum solution S∗

Output: Partition (A1, A2, . . . , Ar) of S and (B1, B2, . . . , Br) of S∗

for i← 1 to r − 1 do
Ai ← {b} ∪ {any deg(b) − 1 facilities of S with degree 0}, where b ∈ S is any bad
facility
Bi ← π−1(b)
S ← S \ Ai

S∗ ← S∗ \ Bi

end for
Ar ← S
Br ← S∗

return (A1, A2, . . . , Ar), (B1, B2, . . . , Br)

o would belong to Bi. Since |Ar| = |Br| and Ar only includes good facilities,
then for all s ∈ Ar, deg(s) = 1 and so π−1(s) ∈ Br.

We pair the facilities in S with those in S∗ as follows:

• For 1 ≤ i ≤ r − 1 each set Ai is paired with set Bi.
• Each facility s ∈ Ar is paired with o ∈ Br, where o = π−1(s).

Note that if we consider multi-swaps 〈Ai, Bi〉 for 1 ≤ i ≤ r− 1 and single swaps
〈s, π−1(s)〉 for all s ∈ Ar, then each facility in S and S∗ would participate in one
swap operation and adding all inequalities (3.1) for these swaps would allow us to
bound the cost of S in terms of the cost of S∗. However, since we are only allowed
to swap at most p facilities simultaneously, then the above multi-swap operations
would not be allowed for those sets Ai and Bi whose size exceeds p. Therefore,
we need to consider a different approach for these pairs. Algorithm Partition-2
further splits those sets Ai and Bi, where |Ai| = |Bi| > p, and constructs core
subsets Âi ⊂ Ai and B̂i ⊂ Bi, where |Âi| = |B̂i| = p; Âi includes the bad facility
in Ai and B̂i is built by finding a closest facility to each one of the facilities in Âi.

For sets Ai and Bi, where 1 ≤ i < r and |Ai| = |Bi| > p, we pair their facilities
as follows:

• Âi is paired with B̂i.
• Each facility in Ai \ Âi is paired with a facility in Bi \ B̂i so that each facility

is paired once.

In the following sections, we will bound the cost of the local optimum solution S
produced by our algorithm in terms of the cost of a global optimum solution S∗

by considering swap operations involving the above pairs of facilities.

The idea behind the pairings. As mentioned above π maps each facility in S∗

to its closest facility in S. To get some intuition as to why this is done, consider
that facility s ∈ S is close to exactly one facility o ∈ S∗ and far away from rest
of facilities in S∗. Then if we swap s and o, we close facility s and open facility
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Algorithm 3. Partition-2 (A1, A2, . . . , Ar, B1, B2, . . . , Br).
1: Input: Partition (A1, A2, . . . , Ar) of S and (B1, B2, . . . , Br) of S∗

2: Output: Core subsets Âi and B̂i for all those sets Ai and Bi for which |Ai| = |Bi| > p

3: for i← 1 to r − 1 do
4:

5: if |Ai| > p then

6: Âi ← {b} ∪ {any p − 1 facilities of Ai − b}, where b ∈ Ai is the bad facility in
Ai

7: B̂i ← {}
8: A′

i ← Âi

9:

10: for i← 1 to p do
11: ai ← any facility from A′

i

12: bi ← nearest facility to ai, where bi ∈ Bi

13: B̂i ← {bi} ∪ B̂i

14: A′
i ← A′

i \ {ai}
15: end for
16: end if
17: end for
18: return (Â1, Â2, . . . , Âr−1), (B̂1, B̂2, . . . , B̂r−1)

o reassigning the clients of s to o; this does not change the cost the solution too
much, which means that the contribution of facility s to the cost of the solution
is similar to the contribution of facility o to the cost of the optimum solution.
However, if s is close to several facilities in S∗ then performing a swap between s
and the closest facility o ∈ S∗ might suggest a large difference between the cost
of S and the cost of (S \ {s})∪ {o} because re-assigning a client j of s to o might
have a much larger cost than assigning j to its closest facility in S∗. That is the
reason why we call the facilities in S with degree larger than one bad and others
“good” and why a “bad” facility b is not swapped in our analysis with a single
facility from S∗, but instead a set of facilities containing b is swapped with a set
of nearby facilities from S∗.

3.2. Analysing the swaps

Let sj = cjσ(j) and oj = cjσ∗(j) be the service costs of client j in solutions S
and S∗ respectively, where σ(j) is the facility closest to j in S and σ∗(j) is the
facility closest to j in S∗. Let NS(s) = {j | σ(j) = s} be the set of clients that are
served by facility s in the local optimal solution and N∗

S(o) = {j | σ∗(j) = o} is
the set of clients that are served by o in the global optimal solution. We extend
these definitions to sets Ai ⊆ S and Bi ⊆ S∗, so NS(Ai) is the set of clients that
are served by facilities in Ai in S and N∗

S(Bi) are those clients that are served by
Bi in S∗.
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All the lemmas of this section are about bounding the cost increase caused by
a swap operation 〈A, B〉, where A ⊆ S and B ⊆ F \ S, and they are all based
on the fact that cost((S \ A) ∪ B) − cost(S) ≥ 0. In these lemmas we introduce
a new assignment of client to facilities after the swap 〈A, B〉 is performed and
bound the service cost of this assignment. More specifically, some of the clients j
are re-assigned to π(σ∗(j)). The following lemma bounds the cost of serving client
j by π(σ∗(j)).

Lemma 3.1 (Cost bounding). cjπ(σ∗(j)) ≤ 2oj + sj.

Proof.

cjπ(σ∗(j)) ≤ cjσ∗(j) + cσ∗(j)π(σ∗(j)) (3.2)
≤ cjσ∗(j) + cσ∗(j)σ(j) (3.3)
≤ cjσ∗(j) + cjσ∗(j) + cjσ(j) = 2oj + sj . (3.4)

Inequalities (6) and (8) follow from the triangle inequality and (7) is true since
π(σ∗(j)) is the nearest facility in S to σ∗(j) (see Fig. 2). �

3.2.1. Multi-swaps for sets Ai and Bi where |Ai| = |Bi| ≤ p

Lemma 3.2. For each swap 〈Ai, Bi〉 where |Ai| = |Bi| ≤ p and 1 ≤ i < r,
∑
o∈Bi

fo −
∑
s∈Ai

fs +
∑

j∈NS∗ (Bi)

(oj − sj) +
∑

j∈NS(Ai)

2oj ≥ 0. (3.5)

Proof. By performing swap 〈Ai, Bi〉, facilities in Ai are closed and those in Bi are
opened. Therefore, the clients j ∈ NS(Ai) need to be re-assigned to the facilities
in (S \Ai)∪Bi. To bound the cost of the new solution let us consider the following
assignment of clients to facilities:

1. Assign all the clients in N∗
S(Bi) to facilities in Bi in the same way in which

they are assigned in S∗.
2. Assign each client j in NS(Ai) \ N∗

S(Bi) to ŝ = π(o), where o = σ∗(j) is the
facility closest to j in S∗. Note that π(o) is the closest facility to o in S and
π(o) �∈ Ai by fact II in Section 3.1 (see Fig. 2).

3. The assignment of all other clients to facilities remains unchanged.

The difference in cost between solution S and (S \Ai)∪Bi caused by re-assigning
client j ∈ N∗

S(Bi) to σ∗(j) is oj − sj. Adding these cost changes over all clients
in N∗

S(Bi) we obtain the third term in (3.5). For clients j ∈ NS(Ai) \ N∗
S(Bi)

using Lemma 3.1 the cost change is bounded by 2oj . Adding these changes over
all clients in NS(Ai)\N∗

S(Bi) gives
∑

j∈NS(Ai)\N∗
S(Bi)

2oj . The fourth term in (3.5)
is obtained by considering the fact that

∑
j∈NS(Ai)\N∗

S(Bi)
2oj ≤ ∑

j∈NS(Ai)
2oj .

Finally, the first two terms in (3.5) are the result of adding the costs of the opened
facilities in Bi and subtracting the costs of the closed facilities in Ai. �



294 N. SAMEI AND R. SOLIS-OBA

Figure 2. Client j ∈ NS(Ai)\N∗
S(Bi) is assigned to ŝ = π(σ∗(j)).

Note that σ∗(j) �∈ Bi and π(σ∗(j)) �∈ Ai.

3.2.2. Swaps for sets Ai and Bi where |Ai| = |Bi| > p

If |Ai| = |Bi| = qi > p, we perform three different sets of swaps involving these
facilities. First, we perform the swap 〈Âi, B̂i〉.

Lemma 3.3. For each swap 〈Âi, B̂i〉,

∑
o∈B̂i

fo −
∑
s∈Âi

fs +
∑

j∈NS∗(B̂i)

(oj − sj) +
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j))∈Âi

(oj + sj)

+
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j)) �∈Âi

2oj ≥ 0. (3.6)

Proof. Since Âi and B̂i are subsets of Ai and Bi respectively, then fact II in
Section 3.1 might not hold for them. In other words for some clients j ∈ NS(Âi) \
N∗

S(B̂i) it might be that π(σ∗(j)) ∈ Âi. Therefore, if we want to proceed similarly
as in the proof of Lemma 3.2 we need to define a new re-assignment for clients
j ∈ NS(Âi) \ N∗

S(B̂i) for which π(σ∗(j)) ∈ Âi. Consider the following assignment
of clients to facilities in (S \ Âi) ∪ B̂i:

1. Assign client j ∈ N∗
S(B̂i) to σ∗(j) ∈ B̂i; this changes the cost of S by oj −

sj . Adding these cost changes over all clients in N∗
S(B̂i) gives the third term

in (3.6).
2. Assign each client j in NS(Âi) \ N∗

S(B̂i) such that π(σ∗(j)) �∈ Âi to π(σ∗(j)).
Using Lemma 3.1 the cost increase per client j for this reassignment is 2oj .
Adding these cost increases over all these clients gives us the fifth term in (3.6).

3. Consider a client j ∈ NS(Âi) \ N∗
S(B̂i) for which π(σ∗(j)) ∈ Âi. Let s ∈ Âi

be the facility serving j in S and o ∈ B̂i be the closest facility to s; client j is



LOCAL SEARCH ALGORITHM FOR K-FACILITY LOCATION 295

assigned to o. Let o′ be the facility serving j in S∗. The change in cost caused
by reassigning client j to o is cjo − sj . Note that

cjo − sj ≤ cjs + cso − sj (3.7)
≤ cjs + cso′ − sj (3.8)
≤ cjs + cjs + cjo′ − sj = oj + sj . (3.9)

Inequalities (3.7) and (3.9) hold because of the triangle inequality and (3.8) is
true because o is closer to s than o′. Adding these cost increases over all client
in NS(Âi)\N∗

S(B̂i) for which π(σ∗(j)) ∈ (Âi) gives us the fourth term in (3.6).
4. The assignment of the rest of the clients to facilities remains unchanged.

Finally, the first two terms in (3.6) are the result of adding the costs of all the
opened facilities in B̂i and subtracting the cost of the closed ones in Âi. �

Note that the fourth term in inequality (3.6) includes the service cost sj for some
clients as a positive term. Since our goal is to find an upper bound for the cost of
the local optimum solution S, the appearance of these positive service costs sj on
the left side of (3.6) is problematic. To get rid of these terms we perform a second
set of swaps for pairs 〈s, o〉, where s ∈ Ai \ Âi and o ∈ Bi \ B̂i.

Corollary 3.4. For each swap 〈s, o〉 where s ∈ Ai \ Âi and o ∈ Bi \ B̂i,

fo − fs +
∑

j∈NS∗ (o)∩NS(Âi),

π(σ∗(j))∈Âi

(oj − sj) +
∑

j∈NS(s)

2oj ≥ 0. (3.10)

Proof. In Lemma 3.2 replace Ai with s and Bi with o and change the first and
second re-assignment of clients to facilities as follows:

1. Assign all clients j ∈ NS∗(o) ∩ NS(Âi) such that π(σ∗(j)) ∈ Âi to o.
2. Assign all clients j ∈ NS(s) to π(σ∗(j)). Note that this is a valid assignment

because s is a good facility with degree 0; therefore, π(o) �= s for every facility
o ∈ S∗. �

Lemma 3.5. For each i = 1, . . . , r − 1 such that |Ai| = |Bi| > p,

∑
o∈Bi\B̂i

fo−
∑

s∈Ai\Âi

fs+
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j))∈Âi

(oj−sj)+
∑

j∈NS(Ai)\NS(Âi)

2oj ≥ 0. (3.11)

Proof. By fact II in Section 3.1, for any sets Ai and Bi, where 1 ≤ i < r, if
o ∈ S∗ \ Bi then π(o) �∈ Ai; thus, if π(o) ∈ Ai then o ∈ Bi. Consequently, for a
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client j ∈ NS(Âi) if π(σ∗(j)) ∈ Âi then j belongs to N∗
S(Bi); therefore, {j | j ∈

NS(Âi), π(σ∗(j)) ∈ Âi} ⊆ N∗
S(Bi) and so {j | j ∈ N∗

S(Bi) ∩ NS(Âi), π(σ∗(j)) ∈
Âi} = {j | j ∈ NS(Âi), π(σ∗(j)) ∈ Âi}. Hence,

{j | j ∈ [N∗
S(Bi) \ N∗

S(B̂i)] ∩ NS(Âi), π(σ∗(j)) ∈ Âi} =

{j | j ∈ [N∗
S(Bi) ∩ NS(Âi)] \ N∗

S(B̂i), π(σ∗(j)) ∈ Âi} = {j | j ∈ NS(Âi) \ N∗
S(B̂i),

π(σ∗(j)) ∈ Âi}. (3.12)

Adding inequality (3.10) over all facilities o ∈ Bi \ B̂i and s ∈ Ai \ Âi and us-
ing (3.12) we get (3.11). �

As mentioned before since we do not want the positive service cost sj in the left
side of (3.6), we add (3.6) and (3.11) to discard the undesired terms

∑
o∈Bi

fo −
∑
s∈Ai

fs +
∑

j∈NS∗ (B̂i)

(oj − sj) +
∑

j∈NS(Ai)

2oj ≥ 0. (3.13)

To get the fourth term in (3.13) note that adding the third term in (3.11) and the
fourth term in (3.6) we get∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j))∈Âi

(oj − sj) +
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j))∈Âi

(oj + sj) =
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j))∈Âi

2oj .

Adding the right hand side of the above equality and the fifth term in (3.6) yields∑
j∈NS(Âi)\N∗

S(B̂i),

π(σ∗(j))∈Âi

2oj +
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j)) �∈Âi

2oj =
∑

j∈NS(Âi)\N∗
S(B̂i)

2oj .

Finally, adding the right hand side of the above equality and the fourth term
in (3.11) we get ∑

j∈NS(Âi)\N∗
S(B̂i)

2oj +
∑

j∈NS(Ai)\NS(Âi)

2oj ≤
∑

j∈NS(Ai)

2oj .

As our goal is to find an upper bound for cost(S), we note that the left hand side
of inequality (3.13) is missing the service cost of the clients that are served by
facilities in Bi \ B̂i. To include this missing cost we perform a third set of swaps,
where each good facility in Ai is swapped with every facility in Bi \ B̂i.

Corollary 3.6. For each swap 〈s, o〉 where s is a good facility in Ai and o ∈ Bi,

fo − fs +
∑

j∈NS∗(o)

(oj − sj) +
∑

j∈NS(s)

2oj ≥ 0. (3.14)

Proof. In Lemma 3.2 replace Ai with s and Bi with o and note that assigning all
clients j ∈ NS(s) \ NS∗(o) to π(σ∗(j)) is a valid assignment because s is a good
facility and so s �= π(o) for all o ∈ S∗. �
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Let bi be the bad facility in Ai and let qi = |Ai| = |Bi|. Adding the inequal-
ity (3.14) for all pairs 〈s, o〉 ∈ (Ai − bi) × (Bi \ B̂i), we get

(qi − 1)
∑

o∈Bi\B̂i

fo − (qi − p)
∑

s∈Ai−bi

fs + (qi − 1)
∑

j∈N∗
S(Bi)\N∗

S(B̂i)

(oj − sj)

+ (qi − p)
∑

j∈NS(Ai−bi)

2oj ≥ 0. (3.15)

Observe that each facility o ∈ Bi is swapped qi − 1 times, therefore facility cost
fo and service cost change oj − sj for clients j ∈ NS∗(Bi) \ NS∗(B̂i) are added
qi − 1 times. In addition, each good facility s ∈ Ai is swapped qi − p times,
therefore facility cost −fs and service cost 2oj (the fourth term in (3.14)) for
clients j ∈ NS(s) are added qi − p times.

Multiplying (3.15) by 1
qi−1 and adding to (3.13) we get

∑
o∈Bi

fo+
∑

o∈Bi\B̂i

fo−
∑
s∈Ai

fs− qi − p

qi − 1

∑
s∈Ai−bi

fs+
∑

j∈NS∗(Bi)

(oj−sj)+
∑

j∈NS(Ai)

2oj

+
qi − p

qi − 1

∑
j∈NS(Ai−bi)

2oj ≥ 0. (3.16)

Using
∑

o∈Bi\B∗
i

fo ≤ ∑
o∈Bi

fo, qi−p
qi−1

∑
s∈Ai−bi

fs > 0 and
∑

j∈NS(bi)
2oj > 0

in (3.16) we get

2
∑
o∈Bi

fo −
∑
s∈Ai

fs +
∑

j∈NS∗(Bi)

(oj − sj) +
(

2 − p − 1
qi − 1

) ∑
j∈NS(Ai)

2oj ≥ 0. (3.17)

3.2.3. Single swaps for facilities in sets Ar and Br

Corollary 3.7. For each swap 〈s, o〉, where s ∈ Ar has been paired with o ∈ Br,

fo − fs +
∑

j∈NS∗(o)

(oj − sj) +
∑

j∈NS(s)

2oj ≥ 0. (3.18)

Proof. In Lemma 3.2 replace Ai with s and Bi with o and note that assigning all
clients j ∈ NS(s) \ NS∗(o) to π(σ∗(j)) is a valid assignment since if j �∈ NS(o)
then π(σ∗(j)) �= s as s = π(o) for each pair (s, o) in sets Ar and Br. �

Adding the inequalities (3.18) for all pairs (s, o) in sets Ar and Br we get

∑
o∈Br

fo −
∑

s∈Ar

fs +
∑

j∈NS∗ (Br)

(oj − sj) +
∑

j∈NS(Ar)

2oj ≥ 0. (3.19)
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3.2.4. Putting it all together

Let G ⊆ S be the set of facilities in all sets Ai, 1 ≤ i < r for which |Ai| > p.
These facilities are swapped with some facilities in S∗ as explained in Section 3.2.2;
let G∗ ⊆ S∗ be this set of facilities. Let I = {i | 1 ≤ i < r, |Ai| > p} and
Ic = {i | 1 ≤ i < r, |Ai| ≤ p}. Adding inequalities (3.5) for all sets Ai, i ∈ Ic,
inequalities (3.17) for all sets Ai, i ∈ I, and inequality (3.19) we get

∑
o∈S∗

fo +
∑

o∈G∗
fo −

∑
s∈S

fs +
∑
j∈C

(oj − sj) +
∑

j∈C\NS(G)

2oj

+
∑
i∈I

⎡
⎣
(

2 − p − 1
qi − 1

) ∑
j∈NS(Ai)

2oj

⎤
⎦ ≥ 0. (3.20)

Lemma 3.8.

∑
i∈I

⎡
⎣(

2 − p − 1
qi − 1

) ∑
j∈NS(Ai)

2oj

⎤
⎦ ≤

(
2 − p − 1

q − 1

) ∑
j∈NS(G)

2oj

where q = max {qi| i ∈ I}.
Proof. The lemma follows since 2oj is positive. �

Using Lemma 3.8 inequality (3.20) can be rewritten as follows:

∑
o∈S∗

fo +
∑

o∈G∗
fo −

∑
s∈S

fs +
∑
j∈C

(oj − sj) +
∑
j∈C

2oj +
(

1 − p − 1
q − 1

) ∑
j∈NS(G)

2oj ≥ 0.

(3.21)
The fifth term in (3.21) is obtained by adding

∑
j∈NS(G) 2oj to the fifth term

of (3.20) and the sixth term in (3.21) is obtained by subtracting
∑

j∈NS(G) 2oj

from the last term of (3.20).
Since

∑
j∈NS(G) 2oj ≤ ∑

j∈C 2oj , G ⊆ S, and all the facility and service costs
are positive then

0 ≤ 2
∑
o∈S∗

fo −
∑
s∈S

fs +
∑
j∈C

(oj − sj) +
(

2 − p − 1
q − 1

) ∑
j∈C

2oj

= 2costf (S∗) +
[
5 − 2

(
p − 1
q − 1

)]
costs(S∗) − costf (S) − costs(S).

Therefore, since p < q and so
[
5 − 2

(
p−1
q−1

)]
> 2, then

[
5 − 2

(
p − 1
q − 1

)]
(costf (S∗) + costs(S∗)) ≥ costf (S) + costs(S).
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Notice that if no set Ai has size larger than p then the swaps considered in Section
3.2.3 are not needed and in that case it can be shown that

3(costf (S∗) + costs(S∗)) ≥ costf (S) + costs(S).

Theorem 3.9. The locality gap of the local search algorithm where the only oper-
ation allowed is multiple swaps is max{3, 5 − 2

(
p−1
q−1

)
}, where q is the size of the

largest set Ai.

The total number of multi-swap operations considered in Lemmas 3.2 and 3.3
and Corollaries 3.6 and 3.7 is at most k. The number of multi-swap operations
considered in Corollary 3.7 is at most k2. Therefore, the number of multi-swap
operations considered by our analysis is at most k2 + k.

3.3. Special case when the ratio of the biggest facility cost

to the smallest facility cost is less than p + 1

Add inequality (3.14) for all pairs 〈s, o〉 ∈ (Ai − bi) × Bi and then multiply by
1

qi−1 to get

∑
o∈Bi

fo − qi

qi − 1

∑
s∈Ai−bi

fs +
∑

j∈N∗
S(Bi)

(oj − sj)+
qi

qi − 1

∑
j∈NS(Ai−bi)

2oj ≥ 0. (3.22)

Since the ratio of the biggest facility cost to the smallest facility cost is less than
p + 1 then

∑
o∈Bi

fo − fbi ≥ 0. Also, since qi ≥ p + 1 then p+1
p ≥ qi

qi−1 . There-
fore, if we add the following non-negative terms

∑
o∈Bi

fo − fbi,
1

qi−1

∑
s∈Ai−bi

fs,
qi

qi−1

∑
j∈NS(bi)

2oj to (3.22) and replace qi

qi−1 with p+1
p we get

2
∑
o∈Bi

fo −
∑
s∈Ai

fs +
∑

j∈NS∗(Bi)

(oj − sj) +
p + 1

p

∑
j∈NS(Ai)

2oj ≥ 0. (3.23)

If we proceed similarly as in Section 3.2.4 and add inequalities (3.5) for all sets
Ai, i ∈ Ic, inequalities (3.23) for all sets Ai, i ∈ I, and inequality (3.19), we get

[
3 +

2
p

]
(costf (S∗) + costs(S∗)) ≥ costf (S) + costs(S).

Theorem 3.10. The locality gap of the local search algorithm where the only op-
eration allowed is multiple swaps for the special case when the ratio of the biggest
facility cost to the smallest facility cost is less than p + 1 is 3 + 2

p .
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Figure 3. Tight example for p = 2 and q = 5.

3.4. Tight example

Figure 3 illustrates an instance of the k-facility location problem showing a
locality gap of 4.5 for p = 2 and q = 5, matching the locality gap stated
in Theorem 3.9. In Figure 3 the pentagonal nodes form the global optimal so-
lution S∗ = {o1, o2, . . . , ok}, the square nodes are the local optimal solution
S = {s1, s2, . . . , sk}, and the circular nodes are the clients. The facility costs are
the integers inside the nodes and the service costs are equal to the lengths of the
shortest paths between the corresponding nodes. The length of each edge is shown
beside the edge and if there is no path between two nodes the distance between
them is infinity.

In the instance shown in Figure 3, cost(S) = 18k−52
5 and cost(S∗) = 4k+4

5 ,
therefore the locality gap is 18k−52

4k+4 which approaches 4.5 as k grows. We now prove
that S is locally optimal by considering all possible swaps. Let set {si, sj} ⊂ S be
swapped with {ol, om} ⊂ S∗.

1. If i, j ≤ u = k−4
5 , then ol and om should lie in the same connected components

containing si and sj , so this swap increases the cost by 4.
2. If i ≤ u < j, then one of ol, om should lie in the same connected component as

si. Without loss of generality, consider that ol lies in the same component as si.
If om lies in the same component also, the cost remains unchanged. If m ≤ k−4
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Figure 4. Tight example for arbitrary p and q.

and om lies in a different component than si the cost increases by 2. If m > k−4
the cost increases by 3.5.

3. If i, j > u, there are three cases that need to be considered. First, if l, m ≤ k−4
the cost remains unchanged. Second, if l ≤ k − 4 < m then the cost increases
by 1. Third, if k − 4 < l, m the cost increases by 2.
The example can be generalized to arbitrary values of p ≥ 2 and q ≥ p + 3
as shown in Figure 4. The local optimal solution is S = {s1, s2, . . . , sk}
and the global optimal solution is S∗ = {o1, o2, . . . , ok}. The cost of S is
[5(q−1)−2(p−1)]k−[(q−1)(4q−2p−3)]

q and the cost of S∗ is (q−1)k+(q−1)
q , so the local-

ity gap is 5(q−1)−2(p−1)
q−1 = 5− 2

(
p−1
q−1

)
. Note that in our tight example k must

be much larger than q.
The proof that S is locally optimal is similar as that for the case p = 2 and
q = 5, but it involves many more cases.

4. Scaling the costs

We now perform a different analysis of our algorithm which yields the same
bound for the locality ratio as that of the algorithm by Zhang [13] which uses
facility insertions and removals in addition to swaps. The idea is to multiply each
facility cost by some value β > 0 and then compute a local optimal solution for the
new problem. By carefully choosing the value of β and some set of swap operations
involving facilities from the local optimum solution and a global optimum solution
we can prove a locality ratio that matches that of [13].
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4.1. Bounding the facility cost

This time we consider the following swap operations:

1. Swap 〈Ai, Bi〉, where |Ai| ≤ p.
2. Swap 〈Âi, B̂i〉, where |Ai| > p, and swaps 〈〈Ai \ Âi, Bi \ B̂i〉〉, where 〈〈Ai \

Âi, Bi \ B̂i〉〉 denotes the set of single swaps for each pair of facilities in Ai \ Âi

and Bi \ B̂i.
3. Swaps 〈〈Ar , Br〉〉, where 〈〈Ar , Br〉〉 denotes a set of single swaps for each pair

of facilities in Ar and Br.

Corollary 4.1. For swap 〈Ai, Bi〉, where |Ai| ≤ p and 1 ≤ i < r,

∑
o∈Bi

fo −
∑
s∈Ai

fs +
∑

j∈NS(Ai)

2oj ≥ 0. (4.1)

Proof. The corollary follows from Lemma 3.2. Note that as pointed out at the end
of the proof of Lemma 3.2 we can replace in (3.5) the last term

∑
j∈NS(Ai)

2oj with∑
j∈NS(Ai)\NS(Bi)

2oj . In addition, since oj − sj ≤ 2oj the third term in (3.5) can
be replaced by

∑
NS(Bi)

2oj . The third term in (4.1) is then obtained by adding∑
j∈NS(Ai)\NS(Bi)

2oj to
∑

NS(Bi)
2oj . �

Corollary 4.2. For swap 〈Âi, B̂i〉, where |Ai| > p and 1 ≤ i < r,

∑
o∈B̂i

fo−
∑
s∈Âi

fs+
∑

j∈N∗
S(B̂i)

2oj+
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j))∈Âi

(oj+sj)+
∑

j∈NS(Âi)\NS∗(B̂i)

π(σ∗(j)) �∈Âi

2oj ≥ 0.

(4.2)

Proof. The corollary follows from Lemma 3.3 by noting that oj − sj ≤ 2oj for all
clients j, and using this inequality in the third term of (3.6).

�

Lemma 3.5 bounds the cost increase caused by swaps 〈s, o〉, where s ∈ Ai \ Âi,
and o ∈ Bi \ B̂i. Adding (4.2) and (3.11) we get

∑
o∈Bi

fo −
∑
s∈Ai

fs +
∑

j∈NS(Ai)

2oj ≥ 0. (4.3)

The third term in (4.3) is obtained from the following equalities: adding the third
term of (3.11) and the fourth term in (4.2) we get

∑
j∈NS(Âi)\N∗

S(B̂i),

π(σ∗(j))∈Âi

(oj − sj) +
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j))∈Âi

(oj + sj) =
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j))∈Âi

2oj .
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Adding the right hand side of this equation and the last term in (4.2) we have
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j))∈Âi

2oj +
∑

j∈NS(Âi)\N∗
S(B̂i),

π(σ∗(j)) �∈Âi

2oj =
∑

j∈NS(Âi)\N∗
S(B̂i)

2oj .

Finally, adding the right hand side of this equation to the third term in (4.2) and
the last term in (3.11) we get

∑
j∈NS(Âi)\N∗

S(B̂i)

2oj +
∑

j∈N∗
S(B̂i)

2oj +
∑

j∈NS(Ai)\NS(Âi)

2oj =
∑

j∈NS(Ai)

2oj .

In Corollary 4.1 if we replace Ai with s and Bi with o, then for each swap 〈s, o〉,
where s ∈ Ar and o ∈ Br, we have

fo − fs +
∑

j∈NS(s)

2oj ≥ 0. (4.4)

Adding all the cost increase inequalities for swaps 〈s, o〉, where s ∈ Ar and o ∈ Br,
we get ∑

o∈Br

fo −
∑

s∈Ar

fs +
∑

j∈NS(Ar)

2oj ≥ 0. (4.5)

Adding inequalities (4.1) for all subsets Ai, where |Ai| ≤ p, inequalities (4.3) for
all subsets Ai, where |Ai| > p, and inequality (4.5) we get

∑
o∈S∗

fo −
∑
s∈S

fs + 2
∑
j∈C

oj ≥ 0. (4.6)

Therefore,
costf (S) ≤ costf (S∗) + 2costs(S∗). (4.7)

4.2. Bounding the service cost

For bounding the service cost of the local optimum solution S we consider the
following swaps:

1. Swap 〈Ai, Bi〉, where |Ai| ≤ p.
2. For each set Ai with qi = |Ai| > p, 1 ≤ i < r, we pair each of the qi − 1 good

facilities in Ai with all qi facilities in Bi; this produces (qi−1)qi different pairs.
For set Ar we select any qr −1 = |Ar|−1 good facilities in Ar and we pair each
one of them with all facilities in Br. For each i = 1, 2, . . . , r, we swap each one
of the (qi − 1)qi pairs of facilities.

By Lemma 3.2, for each swap 〈Ai, Bi〉, where |Ai| ≤ p,
∑
o∈Bi

fo −
∑
s∈Ai

fs +
∑

j∈NS∗ (Bi)

(oj − sj) +
∑

j∈NS(Ai)

2oj ≥ 0. (4.8)
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By Lemma 3.6, for each swap 〈s, o〉, where s ∈ Ai is a good facility, o ∈ Bi,
1 ≤ i < r and |Ai| > p,

fo − fs +
∑

j∈N∗
S(o)

(oj − sj) +
∑

j∈NS(s)

2oj ≥ 0. (4.9)

Adding all the cost increase inequalities related to swapping all qi(qi − 1) pairs
〈s, o〉, where s ∈ Ai is a good facility and o ∈ Bi, and then multiplying by 1

qi−1

we get
∑
o∈Bi

fo − qi

qi − 1

∑
s∈Ai\bi

fs +
∑

j∈NS∗ (Bi)

(oj − sj) +
qi

qi − 1

∑
j∈NS(Ai)

2oj ≥ 0, (4.10)

where bi ∈ Ai is a bad facility.
Since qi

qi−1 ≤ p+1
p and 2oj ≥ 0, inequality (4.10) can be rewritten as

∑
o∈Bi

fo − qi

qi − 1

∑
s∈Ai\bi

fs +
∑

j∈NS∗ (Bi)

(oj − sj) +
p + 1

p

∑
j∈NS(Ai)

2oj ≥ 0. (4.11)

Let I = {i | 1 ≤ i ≤ r, |Ai| > p} and Ic = {i | 1 ≤ i ≤ r, |Ai| ≤ p}. Adding
inequalities (4.8) for all sets Ai, where i ∈ Ic, and inequalities (4.11) for all Ai,
where i ∈ I, we get

∑
o∈S∗

fo −
∑
i∈Ic

∑
s∈Ai

fs −
∑
i∈I

⎡
⎣(

qi

qi − 1

) ∑
s∈Ai\bi

fs

⎤
⎦ +

∑
j∈C

oj −
∑
j∈C

sj

+
(

p + 1
p

) ∑
j∈C

2oj ≥ 0. (4.12)

The sixth term is obtained by noting that
∑

i∈Ic

(
p+1

p

)∑
j∈NS(Ai)

2oj ≥∑
i∈Ic

∑
j∈NS(Ai)

2oj .
Therefore,

costf (S∗) −
∑
i∈Ic

∑
s∈Ai

fs −
∑
i∈I

⎡
⎣

(
qi

qi − 1

) ∑
s∈Ai\bi

fs

⎤
⎦ + costs(S∗) − costs(S)

+
(

p + 1
p

)
2costs(S∗) ≥ 0

⇒
∑
i∈Ic

∑
s∈Ai

fs +
∑
i∈I

⎡
⎣(

qi

qi − 1

) ∑
s∈Ai\bi

fs

⎤
⎦ + costs(S) ≤ costf (S∗)

+
(

3 +
2
p

)
costs(S∗). (4.13)
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Since the term
∑

i∈Ic

∑
s∈Ai

fs +
∑

i∈I

[(
qi

qi−1

)∑
s∈Ai\bi

fs

]
is positive, we can

omit it from inequality (4.13) and we get

costs(S) ≤ costf (S∗) +
[
3 +

2
p

]
costs(S∗). (4.14)

Theorem 4.3. Algorithm local search has locality gap 2 + 1
p +

√
3 + 2

p + 1
p2 .

Proof. Consider an instance (F, C) of the k-facility location problem. Multiply
the cost of each facility in F by some value β > 0 and compute a local optimum
solution S for the new instance. Let cost′f (X) and cost′s(X) denote respectively the
facility and service cost of solution X in the new scaled problem, and let costf (X)
and costs(X) be the facility and service cost of solution X with the original costs.
Using inequalities (4.7) and (4.14) we get

cost′f (S) ≤ cost′f (S∗) + 2cost′s(S
∗)

and

cost′s(S) ≤ cost′f (S∗) +
(

3 +
2
p

)
cost′s(S

∗).

Since

costf (S) + costs(S) =
cost′f (S)

β
+ cost′s(S)

then

costf (S) + costs(S) ≤ cost′f (S∗) + 2cost′s(S
∗)

β
+ cost′f (S∗) +

(
3 +

2
p

)
cost′s(S

∗)

=
(

1 +
1
β

)
cost′f (S∗) +

(
3 +

2
p

+
2
β

)
cost′s(S

∗)

= (β + 1)costf (S∗) +
(

3 +
2
p

+
2
β

)
costs(S∗).

By setting β = 1 + 1
p +

√
3 + 2

p + 1
p2 we get

cost(S) ≤
[
2 +

1
p

+
√

3 +
2
p

+
1
p2

]
cost(S∗). �

The total number of multi-swap operations considered in Sections 4.1 and 4.2 is
at most k2 + k.
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