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DIGITAL SEMIGROUPS

Horst Brunotte1

Abstract. The well-known expansion of rational integers in an arbitrary integer base different from
0, 1,−1 is exploited to study relations between numerical monoids and certain subsemigroups of the
multiplicative semigroup of nonzero integers.

Mathematics Subject Classification. 11N25, 20M14, 11D07.

1. Introduction

Recently, Rosales et al. [7] investigated sets of positive integers and their relations to the number of dec-
imal digits. More precisely, they introduced and thoroughly studied digital semigroups which are defined as
follows. A digital semigroup D is a subsemigroup of the semigroup (N \ {0} , ·) such that for all d ∈ D the set
{n ∈ N : �(n) = �(d)} is contained in D; here N is the set of nonnegative rational integers and �(n) denotes
the number of digits of n in the usual decimal expansion. Among other things, the smallest digital semigroup
containing a set of positive integers is determined, and for this purpose a bijective map θ between the set of
digital semigroups and a certain subset L of numerical monoids, namely LD-semigroups, is constructed. Recall
that a numerical monoid is a submonoid of (N, +) whose complement in N is finite, and an LD-semigroup S is
a numerical monoid such that there exists a digital semigroup D with the property S = {�(d) : d ∈ D} ∪ {0}.
It is shown that L is a Frobenius variety and that the elements of L can be arranged in a tree. Moreover,
LD-semigroups are characterized by the fact that the minimum element in each interval of nongaps belongs to
the minimal set of generators. Finally, it is observed that certain combinatorial configurations introduced by
Bras–Amorós and Stokes [1] are in fact LD-semigroups.

It is well-known that every positive integer can be represented in an arbitrary integer base larger than
one. Expansions of integers in negative integer bases have apparently been introduced by Grünwald [3] and
rediscovered by several authors; the reader is referred to Knuth [4] for more details. In view of these facts we
extend the notions of digital semigroups and LD-semigroups coined by Rosales, Branco and Torrão for decimal
expansions to expansions of integers in an arbitrary integer base, i.e., instead of the base b = 10 we consider
an integer base b �= 0, 1,−1. Consequently, we replace the digit set {0, 1, . . . , 9} by the canonically chosen set
{0, 1, . . . , |b| − 1} and simply apply the prefix b (subscript b, respectively) at appropriate places; clearly, by
omitting b the original notions are recovered.

It turns out that for positive base b essentially all results coincide with the respective results presented by
Rosales et al. [8]; however, for negative base b some modifications have to be taken. In particular, bijective maps
θb between the set of certain b-digital semigroups and specified subsets of L play an important role here.
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2. b-digital semigroups

In this article we always let b ∈ Z\{−1, 0, 1} and denote by Nb := {0, 1, . . . , |b| − 1} the set of all nonnegative
integers less than |b|. It is well-known that for positive b every positive integer z can uniquely be represented in
the form

z =
n∑

i=0

uib
i (u0, . . . , un ∈ Nb, un �= 0); (2.1)

similarly, if b is negative then every non-zero integer z can uniquely be written in the form (2.1). Putting2

Zb := N \ {0} for b > 0 (Zb := Z \ {0} for b < 0, respectively) the positive integer

�b(z) := n + 1

is called the length of the representation of z ∈ Zb in base b, and we consistently set �b(0) := 1. Thus, for every
z ∈ Zb∪{0} the integer �b(z) denotes the number of digits of the representation of z in base b. Some elementary
properties of the length function are collected in the last section.

We now generalize the fundamental notion of a digital semigroup in the sense explained in the introduction.
Further, for these new objects we present some examples and properties which will be used in the sequel.

Definition 2.1. A b-digital semigroup D is a subsemigroup of (Zb, ·) such that Δb(�b(d)) ⊆ D for all d ∈ D.
Here we introduce the notation

Δb(n) := {z ∈ Zb : �b(z) = n} (n ∈ N \ {0}).
Following [7] we let

Lb(A) := {�b(a) : a ∈ A}
for the set A ⊆ Zb, and we apply the commonly used abbreviation

{z1, . . . , zk,→} := {z1, . . . , zk} ∪ {z ∈ Z : z > zk}
for integers z1 < . . . < zk.

Before listing some properties of b-digital semigroups we present several examples. In particular, these exam-
ples show that the analogue of ([7], Prop. 2) does not hold unrestrictedly.

Example 2.2.

(i) Let D := {1} be the trivial subgroup of (Z \ {0} , ·). If |b| = 2 then D is a b-digital semigroup; however,
Lb(D) is not additively closed. Trivially, if |b| > 2 then D is not a b-digital semigroup.

(ii) The set Zb \ Nb is a b-digital semigroup, and Lb(Zb \ Nb) = {2,→} is a subsemigroup of (N, +).
(iii) Let b < −1, �0 ≥ 3 and D := {d ∈ Z \ {0} : �b(d) odd, �b(d) ≥ �0} . Then D ⊂ N\ {0} by Proposition 6.1

below, D is a b-digital semigroup by Lemma 6.7, but

Lb(D) = {2n + 1 : n ∈ N, n ≥ (�0 − 1)/2}
is not additively closed.

(iv) The set
D := {z ∈ Z : �−2(z) ≥ 3} = Z \ (Δ−2(1) ∪ Δ−2(2) ∪ {0})

is a (−2)-digital semigroup, and L−2(D) = {3,→} is additively closed.

The essential ideas for the proof of the following statements are taken from ([7], Prop. 2).

2 Obviously, this and some other notions in the sequel depend only on the sign of b. However, our notion facilitates subsequent
formulations.
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Lemma 2.3. Let D be a b-digital semigroup.

(i) If x ∈ Lb(D) and u ∈ Nb \ {0} then ubx−1 ∈ D.
(ii) If x, y ∈ Lb(D) then x + y − 1 ∈ Lb(D).
(iii) There exist x, y ∈ Lb(D) such that gcd(x, y) = 1.
(iv) Let x, y ∈ Lb(D). If b ≥ 3 then x + y ∈ Lb(D), and if b ≤ −3 then x + y + 1 ∈ Lb(D).

Proof.

(i) By definition we have �b(ubx−1) = x ∈ Lb(D), hence ubx−1 ∈ D.
(ii) By (i) we have bx−1, by−1 ∈ D, hence bx+y−2 ∈ D which yields

x + y − 1 = �b(bx+y−2) ∈ Lb(D).

(iii) Pick x ∈ Lb(D) such that x > 0. By (ii) we have y := 2x − 1 ∈ Lb(D), and clearly gcd(x, y) = 1.
(iv) Pick u, v ∈ Nb such that |b| ≤ uv < 2 |b|. Then there exists w ∈ Nb such that

uv = |b| + w.

By (i) we have ubx−1, vby−1 ∈ D, hence

d := (|b| + w)bx+y−2 = uvbx+y−2 = (ubx−1)(vby−1) ∈ D.

If b > 0 we deduce
x + y = �b(bx+y−1) = �b(b · bx+y−2) = �b(d) ∈ Lb(D),

and if b < 0 we have

x + y + 1 = �b(bx+y) = �b(b2 · bx+y−2) = �b(((|b| − 1)b + b2) · bx+y−2)
= �b(d) ∈ Lb(D),

since
|b| + w = b2 + (|b| − 1)b + w. �

Our interest concerns the structure of the set of the lengths of the b-adic representations of the elements of
a b-digital semigroup.

Proposition 2.4. Let D be a b-digital semigroup. Then Lb(D) ∪ {0} is a numerical monoid provided that one
of the following conditions holds.

(i) Lb(D) is additively closed.
(ii) b ≥ 3.
(iii) b = 2 and 2 · min(L2(D)) ∈ L2(D).
(iv) For all n, m ∈ N the relation bn, bm ∈ D implies bn+m+1 ∈ D.

Proof. Set S := Lb(D) ∪ {0}.
(i) Pick x ∈ S \ {0}. Then Lemma 2.3 yields 2x − 1 ∈ S. In view of gcd(x, 2x − 1) = 1 our assertion now

follows from ([7], Lem. 1).
(ii) Lemma 2.3 shows that S is additively closed, and then (i) implies our assertion.
(iii) Let n, m ∈ S \ {0}.

Case 1 n = 1 or m = 1

Then we have min(S \ {0}) = 1 ∈ D. By assumption this yields �2(d) = 2 for some d ∈ D, thus 2 ∈ D and
further 2k ∈ D for all k ∈ N. But then we have S = N, and we are done.
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Case 2 n, m > 1

In view of Proposition 6.3 we have 2n − 1, 2m − 1 ∈ D, thus

d := (2n − 1) (2m − 1) ∈ D.

We easily check
2n+m−1 ≤ d < 2n+m,

and we conclude
n + m = �2(d) ∈ S

by Proposition 6.3, and again we are done by (i).
(iv) Clear by Lemma 2.3 and (i). �

3. b-LD-semigroups

In this section we adapt the notion of an LD-semigroup introduced in [7]. We characterize b-LD-semigroups
and construct a correspondence between b-digital semigroups and b-LD-semigroups. Further, several examples
and properties of b-LD-semigroups for negative b are listed.

Definition 3.1. Let S be a submonoid of (N, +). We call S a b-LD-semigroup if there exists a b-digital semigroup
D such that S = Lb(D) ∪ {0}.

Now we are in a position to extend ([7], Thm. 4) and provide the crucial characterization of b-LD-semigroups.
For ease of notation, we put Eb := {−1} for b > 1 and Eb := {−3,−1, 1} for b < −1.

Theorem 3.2. Let S be a submonoid of (N, +). Then the following statements are equivalent:

(i) S is a b-LD-semigroup.
(ii) S �= {0} and s + t + e ∈ S for all s, t ∈ S \ {0, 1} and e ∈ Eb.

Proof. (i) =⇒ (ii) Let D be a b-digital semigroup such that S = Lb(D) ∪ {0}. Then we clearly have S �= {0}.
Let s, t ∈ S \ {0, 1} and e ∈ Eb. By Lemma 6.7 there exist a, c ∈ Zb such that s = �b(a), t = �b(c) and
�b(ac) = s + t + e. By the properties of D we know that a, c ∈ D, thus

s + t + e = �b(ac) ∈ Lb(D) ⊂ S.

(ii) =⇒ (i) Since S �= {0} the set
Db := {z ∈ Zb : �b(z) ∈ S}

is nonempty, and we immediately convince ourselves that S = Lb(Db)∪{0} . By construction we have Δb(�b(d)) ⊆
Db for all d ∈ Db. Therefore we are left to show that Db is multiplicatively closed.

Let a, c ∈ Db, thus s := �b(a), t := �b(c) ∈ S. If s = 1 or t = 1 then N ⊆ S, and we are done. Therefore we
may assume s, t > 1. If b > 1 then our prerequisites and Lemma 6.7 yield some e ∈ {−1, 0} such that

�b(ac) = s + t + e ∈ S. (3.1)

Similarly, if b < −1 then there is some e ∈ Eb such that (3.1) holds. Thus, in both cases we have shown
ac ∈ Db. �

Let us list some direct consequences of this result.

Corollary 3.3. Let S be a b-LD-semigroup.

(i) If b > 1 then S is a c-LD-semigroup for all c > 1.
(ii) If b < −1 then S is a c-LD-semigroup for all c ∈ Z \ {−1, 0, 1}.
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Corollary 3.4. Every b-LD-semigroup is a numerical monoid.

Proof. Using Theorem 3.2 the proof is analogous to ([7], Prop. 2) and left to the reader. �

Remark 3.5.

(i) Let b > 1 and S be a b-LD-semigroup. Then S need not be a c-LD-semigroup for c < −1, e.g., consider
S = {0, 4, 7,→}.

(ii) Let b < −1, D be a b-digital semigroup, n, m ∈ Lb(D). Then there do not exist d, e ∈ D such that
�b(d) = n, �b(e) = m and �b(de) = n + m. Indeed, if n + m is even then either both n, m are odd or both
n, m are even. In any case the product de is positive, hence �b(de) is odd (cf. Prop. 6.1). We similarly
argue in the case n + m odd.

In view of Theorem 3.2 we let

L := {S submonoid of N : S �= {0} , s + t − 1 ∈ S for all s, t ∈ S \ {0, 1}}

be the set of all b-LD-semigroups for b > 1, and

L− := {S submonoid of N : S �= {0} , s + t − 3, s + t − 1, s + t + 1 ∈ S

for all s, t ∈ S \ {0, 1}}
be the set of all b-LD-semigroups for b < −1. By what we have seen above, L coincides which the respective set
in ([7], Sect. 2). Moreover, L− is a proper subset of L (see Ex. 3.6 below), and by ([7], Prop. 12) the set L is
a Frobenius variety which has been investigated in detail in [7]. Recall that a Frobenius variety is a nonempty
set V of numerical semigroups with the following properties:

(i) If S, T ∈ V , then S ∩ T ∈ V .
(ii) If S ∈ V and S �= N, then S ∪ {F (S)} ∈ V .

Here, for A ⊆ N such that Card (N \ A) < ∞ we let F (A) denote the Frobenius number of A, i.e., the greatest
integer which does not belong to A.

In view of our remark above, we now mainly concentrate on the subset L− of the Frobenius variety L.
Some examples which also illustrate subsequent results seem appropriate. As usual, we denote by msg(S) the

(unique) minimal set of generators of the numerical monoid S.

Example 3.6.

(i) Let n ∈ N \ {0}. The LD-semigroups Sn := {0, n,→} appear as the left-most branch in the tree of LD-
semigroups presented in ([7], Fig. 1); note that Sn ∈ L− if and only if n �= 2 since 2 + 2− 3 /∈ S2. Clearly,
msg(Sn) = {n, . . . , 2n − 1}, and for n ≥ 2 we have F (Sn) = n − 1 and Sn \ {n} = Sn+1 ∈ L−, but
Sn \ {2n − 1} = {0, n, . . . , 2n − 2, 2n,→} /∈ L.

(ii) < 3, 5, 7 >, < 4, 5, 7 >∈ L−, but < 4, 6, 7, 9 >∈ L \ L− since 4 + 4 − 3 = 5 /∈< 4, 6, 7, 9 >.
(iii) Trivially, we have N ∈ L−. By (i) we have S := S3 ∈ L−, and we easily check msg(S) = {3, 4, 5} and

S \ {5} = {0, 3, 4, 6,→} /∈ L, since 3 + 3− 1 /∈ S \ {5}. Further, we have S ∪ {F (S)} = S2 /∈ L. We remark
in passing that L− is not a Frobenius pseudo-variety (see [6] for details).

Motivated by the last example we establish the following observation.

Proposition 3.7. L− \ {{0, 3,→}} is a Frobenius variety.
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Proof. The proof follows the same lines as ([7], Prop. 12). Set S3 := {0, 3,→}. Clearly, V := L− \{S3} �= ∅ since
N ∈ V .

It is immediate that S, T ∈ V implies S ∩ T ∈ V . Indeed, S ∩ T ∈ L− by Theorem 3.2, and by ([7], Sect. 3)
the assumption S ∩ T = S3 implies S = S3 or T = S3 which is impossible.

Now, let S ∈ V such that S �= N. Note that 2 /∈ S, since otherwise 1 = 2 + 2 − 3 ∈ S which we excluded.
Let e ∈ {−3,−1, 1} and s, t ∈ S ∪ {F (S)} such that s, t > 1. If s, t ∈ S then certainly s + t + e ∈ S. Therefore
it remains to consider the case F (S) ∈ {s, t}. If F (S) = s then s > 2 because otherwise F (S) = 2 and S = S3

which is impossible. Thus we may assume s, t ≥ 3, hence s + t + e ≥ F (S), and we are done. �

Applying the ideas of ([7], Prop. 14) we can derive the following result without difficulty.

Proposition 3.8. Let S ∈ L− such that 3 /∈ S, and let s ∈ msg(S). Then S \ {s} ∈ L− if and only if
s − 1, s + 1, s + 3 ∈ (N \ S) ∪ msg(S).

Proof. Note that S ∩ {−1, 1, 3} = ∅ by our prerequisites.
Let S \ {s} ∈ L− and assume s + e /∈ (N \ S)∪ msg(S) for some e ∈ {−1, 1, 3}. Then s + e ∈ S \ msg(S) and

there exist t, r ∈ S such that s + e = t + r. In view of

t + r − e = s /∈ S \ {s}

we infer S \ {s} /∈ L− from Theorem 3.2: Contradiction.
Conversely, let t, r ∈ S \ {0, s}, thus in particular t, r �= 1. Using Theorem 3.2 again we see t + r − e ∈ S for

each e ∈ {−1, 1, 3}. The assumption t+ r− e = s leads to s+ e = t+ r ∈ S \ {s} which implies the contradiction
s + e /∈ (N \ S) ∪ msg(S). Thus we have shown t + r ∈ S \ {s}, and we are done by Theorem 3.2. �

Analogously as ([7], Cor. 15) we can formulate:

Corollary 3.9. Let S ∈ L− such that 3 /∈ S, and let s ∈ msg(S) with s > F (S). Then S \ {s} ∈ L− if and only
if s − 1 ∈ (N \ S) ∪ msg(S) and s + 1, s + 3 ∈ msg(S).

Remark 3.10. Note that we cannot renounce the assumption 3 /∈ S in our two last results. Indeed, choose
s = 3 and consider the semigroups < 3, 5, 7 > for Proposition 3.8 and < 3, 4, 5 > for Corollary 3.9.

Let Db be the set of all b-digital semigroups which satisfy the condition stated in Proposition 2.4 (iii). An
inspection of the proof of Theorem 3.2 immediately yields the following extensions of the respective results
of ([7], Sect. 2).

Corollary 3.11. The correspondence θb : L → Db given by

θb(S) := {z ∈ Zb : �b(z) ∈ S}

is a bijective map, and its inverse ϕb : Db → L is defined by

ϕb(D) := Lb(D) ∪ {0} .

Corollary 3.12. For every D ∈ Db the set Zb \ D is finite.

Proof. By what we have seen so far we know that S := ϕb(D) is a numerical monoid. If b > 1 then analogously
as in the proof of ([7], Cor. 8) we show that

{
bF (S),→} ⊆ D. Now, let b < −1 and n ∈ N be even such

that n ≥ F (S). Then Corollary 6.4 yields {bn,→} ⊆ D. Moreover, b2n+1 ∈ D by Proposition 2.4, hence
(−∞, b2n−1) ∩ Z ⊆ D by Lemma 6.5, and we are done. �

Example 3.13. We have Zb ∈ Db, but N \ {0} ∈ Db if and only if b > 1.
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Recall that a (v, b, r, k)-configuration is an incidence structure with v points, b lines, r lines through each point
and k points on each line. Let S(r,k) be the set of all integers d such that there exists a (d· k

gcd (r,k) , d· r
gcd (r,k) , r, k)-

configuration. Bras–Amorós and Stokes ([1], Thm. 2) showed that S(r,k) is a numerical monoid provided r, k ≥ 2.
By ([7], Introduction) S(r,r) is an LD-semigroup if r ≥ 2, and this statement is slightly sharpened now.

Theorem 3.14. If r ≥ 2 then S(r,r) belongs to L−.

Proof. Let S := S(r,r) and s, t ∈ S \ {0, 1}. By ([9], Sect. 2) we know that s + t− 1, s + t + 1 ∈ S. Therefore, in
view of Theorem 3.2 it suffices to show that s + t − 3 ∈ S.

If r = 2 then we infer S =< 3, 4, 5 > from ([1], Cor. 1), and we easily deduce our claim. Now, let r > 2 and
m be the multiplicity of S, i.e., the least positive integer belonging to S. Then we have

m ≥ r2 − r + 1 ≥ 3

by ([9], Lem. 1). Since we may assume s ≥ t ≥ m we find s + t − 3 ∈ S by ([9], Thm. 9). �

4. Generating b-digital semigroups

This section is devoted to a description of the set Db which is very closely related to the respective result
in [7]. Let us start with the analogue of ([7], Lem. 16) which can immediately be verified.

Lemma 4.1. The intersection of b-digital semigroups which belong to Db is a b-digital semigroup in Db.

In view of this result, given A ⊆ Zb the set

Db(A) :=
⋂

D∈Db, A⊆D

D

is the smallest element of Db which contains A.
For A ⊆ N \ {0} we let Lb(A) denote the intersection of all b-LD-semigroups which contain A. Analogously

as ([7], Prop. 17, Cor. 18) we write down the following result based on Theorem 3.2 and ([7], Lem. 1).

Proposition 4.2. If A ⊆ N \ {0} is nonempty then Lb(A) is the smallest b-LD-semigroup which contains A.

Now we straightforwardly extend ([7], Prop. 19).

Proposition 4.3. Let S ∈ L and A ⊆ N \ {0} be nonempty. Then S is the smallest b-LD-semigroup containing
Lb(A) if and only if θb(S) is the smallest element of Db which contains A.

Let A be a subset of the b-digital semigroup D. Following ([7], Sect. 4) we call A a Db-system of generators
of D if Db(A) = D; we say that A is a minimal Db-system of generators of D if no proper subset of A is a Db-
system of generators of D. Analogously as ([7], Thm. 21) we can prove the following theorem using Lemma 4.1,
Corollary 3.11, Corollary 3.4 and Proposition 4.3.

Theorem 4.4. We have
Db = {Db(A) : A finite nonempty subset of Zb} .

5. b-LD-semigroups containing prescribed integers

In this section we treat b-LD-semigroups which contain a prescribed set of positive integers. In particular, we
derive an algorithm calculating the smallest element of L− which contains given positive integers. Due to the
fact that Eb may contain a positive element we present a restricted b-adic version of ([7], Prop. 28).
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Proposition 5.1. Let S �= N be a numerical monoid and msg(S) = {n1, . . . , np}. Then the following statements
are equivalent:

(i) S is a b-LD-semigroup.
(ii) If e ∈ Eb and i, j ∈ {1, . . . , p} then ni + nj + e ∈ S.
(iii) If e ∈ Eb and s ∈ S \ {0, n1, . . . , np} then s + e ∈ S.

Proof.

(i) =⇒ (ii): Clear by Theorem 3.2.
(ii) =⇒ (iii): Let t ∈ S and i, j ∈ {1, . . . , p} such s = ni + nj + t. Then we clearly have

s + e = (ni + nj + e) + t ∈ S.

(iii) =⇒ (i): Let s, t ∈ S \ {0, 1}. Then s + t ∈ S \ {0, n1, . . . , np}, hence s + t + e ∈ S, and we are done by
Theorem 3.2. �

It does not seem obvious how ([7], Prop. 28 (iv)) can be modified for a characterization of the semigroups
in L−. In fact, both numerical monoids S := 〈3, 4, 5〉 and T := 〈4, 5, 7〉 belong to L− and satisfy the conditions
given in Proposition 5.1 and ([7], Prop. 28 (iv)). Furthermore, we have

3 ∈ S, 3 − (P (3) + 1) = 1 /∈ S, 3 − (P (3) − 3) = 5 ∈ S,

but
4 ∈ T, 4 − (P (4) + 1) = 2 /∈ T, 4 − (P (4) − 3) = 6 /∈ T ;

here we set
P (s) := max {c1 + · · · + cp : c1, . . . , cp ∈ N and s = c1n1 + · · · + cpnp}

where s is an element of the numerical monoid with minimal system of generators {n1, . . . , np} .
On the other hand, for U := < 2, 3 >∈ L \ L− we have

2 ∈ U and 2 − (P (2) − 3), 2 − (P (2) − 1), 2 − (P (2) + 1) ∈ U.

Clearly, in view of Proposition 5.1, Theorem 3.2 and ([7], Prop. 28 (iv)) we can immediately formulate the
following result.

Proposition 5.2. Let S be a numerical monoid and b > 1. Then S is a b-LD-semigroup if and only if s −
{0, . . . , P (s) − 1} ⊂ S for all s ∈ S \ {0}.

The algorithm below computes the smallest element of L− containing a given finite set of integers larger than 1.
After choosing a large heuristic bound the algorithm closely follows ([7], Algorithm 32) for the determination
of the smallest LD-semigroup containing a set of positive integers, and in view of our previous results the
justification of its behavior is analogous to the one in ([7], Sect. 5).

Let us illustrate this algorithm by an easy example.

Example 5.3. We determine the minimal system of generators of the smallest element S of L− containing 8.
Our algorithm requires the following three steps:

• B = {8} , A = B ∪ {13, 15, 17}.
• B = {8, 13, 15, 17} , A = B ∪ {18, 20, 22, 27}.
• B = {8, 13, 15, 17, 18, 20, 22, 27} , A = B.

Therefore
S = 〈8, 13, 15, 17, 18, 20, 22, 27〉 = {0, 8, 13, 15, 16, 17, 18, 20,→} .

It seems worthwile to remark that S is not an Arf numerical semigroup (see [8]), because 2× 16− 13 = 19 /∈ S.
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Algorithm 1. Computation of the smallest element of L− containing given positive integers.
Input: Non-void finite subset A ⊂ N \ {0, 1} , bound ∈ N.
Output: The minimal system of generators of the smallest element of L− containing A or “overflow”

k ← 0
E ← {−3,−1, 1}
repeat

k ← k + 1
B ← msg(A)
A← B ∪ {x + y + e : x, y ∈ B, e ∈ E, x + y + e /∈< B >}

until k > bound or B = A
if k > bound then

return “overflow”
else

return “Minimal system of generators:” B
end if

6. Auxiliary results on the lengths of b-adic representations

The considerations presented in the previous sections are based on the knowledge of some facts on the lengths
of b-adic representations of integers. These facts are certainly well-known, but are collected here for the sake of
completeness. First we recall a fundamental observation which is tacitly used in this paper.

Proposition 6.1 ([2], Prop. 3.1). Let b < −1 and z ∈ Z. If z > 0 then �b(z) is odd, and if z < 0 then �b(z) is
even.

Example 6.2. Let b < −1 and u ∈ Nb \ {0}. Then we have −u = b + v with some v ∈ Nb, thus �b(−u) = 2. In
particular, we have −1 = b + (|b| − 1), hence the base b representation of |b| is

|b| = (−1) · b = b2 + (|b| − 1) b,

and we have �b(|b|) = 3.

Using ([5], Lem. 7) the following bounds for the length of the b-adic representation of an integer z can
immediately be derived:

log |z| − log(|b| − 1)
log |b| ≤ �b(z) ≤ log |z|

log |b| + 4. (z ∈ Zb).

However, our purposes require bounds which depend on the signs of the integers b and z. Note that the next
result yields an explicit description of the sets Δb(n).

Proposition 6.3. Let b ∈ Z \ {−1, 0, 1} and a ∈ Z.

(i) If b > 1 and a > 0 then �b(a) = � if and only if

b�−1 ≤ a ≤ b� − 1.

In this case we have
log a

log b
< � ≤ log a

log b
+ 1.

(ii) If b < −1 and a > 0 then �b(a) = � if and only if

b(b�−2 − 1)
1 − b

≤ a ≤ b�+1 − 1
1 − b

·
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In this case we have

log
(
(|b| + 1)a + 1

)
log |b| − 1 ≤ � ≤ log

(
(1 + 1/ |b|)a − 1

)
log |b| + 2.

(iii) If b < −1 and a < 0 then �b(a) = � if and only if

b(b� − 1)
1 − b

≤ a ≤ b�−1 − 1
1 − b

·

In this case we have
log

(
(1 + 1/ |b|) |a| + 1

)
log |b| ≤ � ≤ log

(
(1 + |b|) |a| − 1

)
log |b| + 1.

Proof.

(i) This is well-known and easy to check.
(ii) We observe

a ≤ (|b| − 1)
(�−1)/2∑

i=0

b2i = −(b + 1)
b2((�−1)/2+1) − 1

b2 − 1
= −b�+1 − 1

b − 1

and

a ≥ b2·(�−1)/2 + (|b| − 1)
(�−1)/2∑

i=1

b2i−1

= b�−1 − b + 1
b

(b2((�−1)/2+1) − 1
b2 − 1

− 1
)

=
b(1 − b�−2)

b − 1
,

from which the estimates for � are derived straightforwardly.
(iii) Noting

(|b| − 1)
(
b2·�/2−1 +

�/2−1∑
i=1

b2i−1
) ≤ a ≤ b�−1 + (|b| − 1)

�/2−1∑
i=0

b2i

we complete the proof as above. �

Corollary 6.4. Let b < −1 and a, n ∈ N. If n is even and a ≥ bn then we have �b(a) > n.

Proof. Assume the contrary. Then Proposition 6.1 yields �b(a) ≤ n−1, hence n ≥ 2 and we infer the impossible
inequality bn ≤ (bn − 1)/(1 − b) from the Proposition. �

Now we compare the sizes of integers to the lengths of their b-adic representation.

Lemma 6.5. Let a, c ∈ Z.

(i) If 0 ≤ a < c then �b(a) ≤ �b(c).
(ii) If a, c ≥ 0 and �b(a) < �b(c) then a < c.
(iii) If b < −1 and a > 0 then we have �b(−a) = �b(a) + 1.
(iv) Let b < −1.

(a) a < c < 0 =⇒ �b(a) ≥ �b(c).
(b) a, c ≤ 0 and �b(a) > �b(c) =⇒ a < c.

Proof.

(i) This is well-known and easy to check.
(ii) – (iv) This is straightforwardly derived from Proposition 6.3. �
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Lemma 6.6. Let b < −1 and n, m be even positive integers such that n ≤ m. If

b(bm − 1)
1 − b

≤ z ≤ bn−1 − 1
1 − b

then we have
n ≤ �b(z) ≤ m.

Proof. Let y ∈ Z such that �b(y) = n and assume n > �b(z). Then Proposition 6.3 and Lemma 6.5 yield

b(bn − 1)
1 − b

≤ y < z ≤ bn−1 − 1
1 − b

and then n = �b(z) : Contradiction.
The second inequality is proved analogously. �

Further, we need the length of the b-adic representation of the product of two elements.

Lemma 6.7.

(i) Let b > 1 and a, c ∈ N \ {0}. Then we have

�b(ac) = �b(a) + �b(c) + e (6.1)

for some e ∈ {−1, 0} .
(ii) Let b < −1 and a, c ∈ Z \ Nb. Then there exists some e ∈ {−3,−1, 1} such that (6.1) holds.
(iii) If n, m ≥ 2 and e ∈ Eb then there exist a, c ∈ Zb such that �b(a) = n, �b(c) = m and (6.1) holds.

Proof.

(i) For b = 2 this is immediately checked using Proposition 6.3, and for b > 2 the proof of ([7], Lem. 3) can
easily be extended.

(ii) Set n := �b(a) and m := �b(c). Certainly it suffices to consider the subsequent cases.

Case 1 a > 0

Then n is odd and we infer
b(bn−2 − 1)

1 − b
≤ a ≤ bn+1 − 1

1 − b

from Proposition 6.3.

Case 1.1 c > 0

Then m is odd and as above we have

b(bm−2 − 1)
1 − b

≤ c ≤ bm+1 − 1
1 − b

·

Now we easily verify

b(bn+m−5 − 1)
1 − b

≤ b2(bn+m−4 − bn−2 − bm−2 + 1)
(1 − b)2

≤ ac

≤ bn+m+2 − bn+1 − bm+1 + 1
(1 − b)2

≤ bn+m+2 − 1
1 − b

·
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Then Proposition 6.3 yields
n + m − 3 ≤ �b(ac) ≤ n + m + 1,

and our assertion follows from Proposition 6.1.

Case 1.2 c < 0

As above we verify
b(bn+m+1 − 1)

1 − b
≤ b(bn+m+1 − bn+1 − bm + 1)

(1 − b)2
≤ ac

≤ bn+m−3 − bn−2 − bm−1 + 1
(1 − b)2

≤ bn+m−4 − 1
1 − b

keeping in mind that m is even, and then we conclude using Lemma 6.6.

Case 2 a < 0

We may suppose c < 0 and proceed as in Case 1.1.
(iii) The case b > 1 is well-known. Now, let b < −1. For the positive integers

a =
b2n − 1
1 − b

and c =
b2m − 1
1 − b

we have
�b(ac) = �b(a) + �b(c) + 1.

Similarly, for the negative integers

a =
b2n−1 − 1

1 − b
and c =

b(b2m − 1)
1 − b

we verify
�b(ac) = �b(a) + �b(c) − 1,

and for

a =
b(b2n−3 − 1)

1 − b
and c =

b(b2m−1 − 1)
1 − b

we see
�b(ac) = �b(a) + �b(c) − 3. �

We close this section by an easy application of Proposition 6.3 the details of which we leave to the reader
(cf. the special case b = 10 in [7], proof of Cor. 9).

Proposition 6.8. For n ∈ N \ {0} we have

Card (Δb(n)) =

⎧⎪⎨
⎪⎩

(b − 1) bn−1 (b > 1),
−(b + 1) bn−1 (b < −1, n odd),
(b + 1) bn−1 (b < −1, n even).
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[8] J.C. Rosales, P.A. Garćıa-Sánchez, J.I. Garćıa-Garćıa and M.B. Branco, Arf numerical semigroups. J. Algebra 276 (2004) 3–12.
[9] K. Stokes and M. Bras-Amorós, Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semi-

groups associated to combinatorial configurations. Semigroup Forum 88 (2014) 11–20.

Communicated by D. Jamet.
Received March 24, 2016. Accepted March 24, 2016.


	Introduction
	b-digital semigroups
	b-LD-semigroups
	Generating b-digital semigroups
	b-LD-semigroups containing prescribed integers
	Auxiliary results on the lengths of b-adic representations
	References

