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DECISION ALGORITHMS FOR FIBONACCI-AUTOMATIC WORDS,
I: BASIC RESULTS
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Abstract. We implement a decision procedure for answering questions about a class of infinite words
that might be called (for lack of a better name) “Fibonacci-automatic”. This class includes, for example,
the famous Fibonacci word f = f0f1f2 · · · = 01001010 · · · , the fixed point of the morphism 0 → 01 and
1 → 0. We then recover many results about the Fibonacci word from the literature (and improve some
of them), such as assertions about the occurrences in f of squares, cubes, palindromes, and so forth.
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1. Decidability

As is well-known, the logical theory Th(N, +), sometimes called Presburger arithmetic, is decidable [51, 52].
Büchi [11] showed that if we add the function Vk(n) = ke, for some fixed integer k ≥ 2, where e = max{i : ki |n},
then the resulting theory is still decidable. This theory is powerful enough to define finite automata; for a survey,
see [9].

As a consequence, we have the following theorem (see, e.g., [58]):

Theorem 1.1. There is an algorithm that, given a proposition phrased using only the universal and existential
quantifiers, indexing into one or more k-automatic sequences, addition, subtraction, logical operations, and
comparisons, will decide the truth of that proposition.

Here, by a k-automatic sequence, we mean a sequence a computed by a deterministic finite automaton with
output (DFAO) M = (Q, Σk, Δ, δ, q0, κ). Here Σk := {0, 1, · · · , k − 1} is the input alphabet, Δ is the output
alphabet, and outputs are associated with the states given by the map κ : Q → Δ in the following manner: if
(n)k denotes the canonical expansion of n in base k, then a[n] = κ(δ(q0, (n)k)). The prototypical example of an
automatic sequence is the Thue-Morse sequence t = t0t1t2 . . ., the fixed point (starting with 0) of the morphism
0 → 01, 1 → 10.
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It turns out that many results in the literature about properties of automatic sequences, for which some
had only long and involved proofs, can be proved purely mechanically using a decision procedure. It suffices
to express the property as an appropriate logical predicate, convert the predicate into an automaton accepting
representations of integers for which the predicate is true, and examine the automaton. See, for example,
the recent papers [2, 34–37]. Furthermore, in many cases we can explicitly enumerate various aspects of such
sequences, such as subword complexity [15].

Beyond base k, more exotic numeration systems are known, and one can define automata taking represen-
tations in these systems as input. It turns out that in the so-called Pisot numeration systems, addition is
computable [32, 33], and hence a theorem analogous to Theorem 1.1 holds for these systems. See, for exam-
ple [10]. It is our contention that the power of this approach has not been widely appreciated, and that many
results, previously proved using long and involved ad hoc techniques, can be proved with much less effort by
phrasing them as logical predicates and employing a decision procedure.

We have implemented a decision algorithm for one such system; namely, Fibonacci representation. In this
paper we report on our results obtained using this implementation. We have reproved many results in the
literature purely mechanically, as well as obtained new results, using this implementation. In this paper we
focus on results on the infinite and finite Fibonacci words.

The paper is organized as follows. In Section 2, we briefly recall the details of Fibonacci representation. In
Section 3 we report on our mechanical proofs of properties of the infinite Fibonacci word; we reprove many old
results and we prove some new ones. In Section 4 we apply our ideas to prove results about the finite Fibonacci
words. Some details about our implementation are given in the last section.

This paper, and the two companion papers [24, 25], represent the full version of a paper presented at the
Journées Montoises on September 26 2014.

2. Fibonacci representation

Let the Fibonacci numbers be defined, as usual, by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2 (we
caution the reader that some authors use a different indexing for these numbers).

It is well-known, and goes back to Ostrowski [49], Lekkerkerker [44], and Zeckendorf [59], that every non-
negative integer can be represented, in an essentially unique way, as a sum of Fibonacci numbers (Fi)i≥2, subject
to the constraint that no two consecutive Fibonacci numbers are used. For example, 43 = F9 + F6 + F2. Also
see [12, 28].

Such a representation can be written as a binary string a1a2 · · · an representing the integer
∑

1≤i≤n aiFn+2−i.
For example, the binary string 10010001 is the Fibonacci representation of 43.

For w = a1a2 · · · an ∈ Σ∗
2 , we define [a1a2 · · ·an]F :=

∑
1≤i≤n aiFn+2−i, even if a1a2 · · ·an has leading zeroes

or consecutive 1’s. By (n)F we mean the canonical Fibonacci representation for the integer n, having no leading
zeroes or consecutive 1’s. Note that (0)F = ε, the empty string. The language of all canonical representations
of elements of N is ε + 1(0 + 01)∗.

Just as Fibonacci representation is the analogue of base-k representation, we can define the notion of
Fibonacci-automatic sequence [4] as the analogue of the more familiar notation of k-automatic sequence [3, 18].
We say that an infinite word a = (an)n≥0 is Fibonacci-automatic if there exists an automaton with output
M = (Q, Σ2, q0, δ, κ, Δ) that an = κ(δ(q0, (n)F )) for all n ≥ 0. Of course, there is a choice between reading the
representation starting with either the most-significant or least-significant digit; in this paper we always use the
former.

An example of a Fibonacci-automatic sequence is the infinite Fibonacci word,

f = f0f1f2 · · · = 01001010 · · ·
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which is generated by the following 2-state automaton:

q0/0 q1/1

0

1

0

Figure 1. Canonical Fibonacci representation DFAO generating the Fibonacci word.

To compute fi, we express i in canonical Fibonacci representation, and feed it into the automaton. Then fi

is the output associated with the last state reached (denoted by the symbol after the slash). Another charac-
terization of Fibonacci-automatic sequences can be found in [57].

A basic fact about Fibonacci representation is that addition can be performed by a finite automaton. To
make this precise, we need to generalize our notion of Fibonacci representation to r-tuples of integers for r ≥ 1.
A representation for (x1, x2, · · · , xr) consists of a string of symbols z over the alphabet Σr

2 , such that the
projection πi(z) over the ith coordinate gives a Fibonacci representation of xi. Notice that since the canonical
Fibonacci representations of the individual xi may have different lengths, padding with leading zeroes will often
be necessary. A representation for (x1, x2, · · · , xr) is called canonical if it has no leading [0, 0, · · ·0] symbols and
the projections into individual coordinates have no occurrences of 11. We write the canonical representation as
(x1, x2, · · · , xr)F . Thus, for example, the canonical representation for (9, 16) is [0, 1][1, 0][0, 0][0, 1][0, 0][1, 0].

Thus, our claim about addition in Fibonacci representation is that there exists a deterministic finite automa-
ton (DFA) Madd that takes input words of the form [0, 0, 0]∗(x, y, z)F , and accepts if and only if x + y = z.
Thus, for example, Madd accepts [0, 0, 1][1, 0, 0][0, 1, 0][1, 0, 1], since the three strings obtained by projection are
0101, 0010, 1001, which represent, respectively, 4, 2, and 6 in Fibonacci representation. This result is apparently
originally due to Berstel [6]; also see [1, 7, 30, 31].

Since this automaton does not appear to have been given explicitly in the literature and it is essential to our
implementation, we give it here. The states of Madd are Q = {0, 1, 2, · · · , 16}, the input alphabet is Σ2×Σ2×Σ2,
the final states are F = {1, 7, 11}, the initial state is q0 = 1, and the transition function δ is given below. This
automaton actually works even for non-canonical expansions having consecutive 1’s; an automaton working
only for canonical expansions can easily be obtained by intersection with the appropriate regular languages
(this latter one is used in the Walnut program). The state 0 is a “dead state” that can safely be ignored.

We briefly sketch a proof of the correctness of this automaton. States can be identified with certain sequences,
as follows: if x, y, z are the identical-length strings arising from projection of a word that takes Madd from the
initial state 1 to the state t, then t is identified with the integer sequence ([x0n]F + [y0n]F − [z0n]F )n≥0.
With this correspondence, we can verify Table 2 by a tedious induction. In the table Ln denotes the familiar
Lucas numbers, defined by Ln = Fn−1 + Fn+1 for n ≥ 0 (assuming F−1 = 1). If a sequence (an)n≥0 is the
sequence identified with a state t, then t is accepting iff a0 = 0.

Note that the state 0 actually represents a set of sequences, not just a single sequence. The set corresponds
to those representations that are so far “out of synch” that they can never “catch up” to have x + y = z, no
matter how many digits are appended.

Remark 2.1. We note that, in the spirit of the paper, this adder itself can, in principle, be checked mechanically
(in Th(N, 0), of course!), as follows:

Let A(x, y, z) denote the adder. First we check that

∀x ∀z A(x, 0, z) ⇐⇒ x = z.

Next, defining
succ(x, y) := (x < y) ∧ (∀z (z ≤ x) ∨ (z ≥ y)),



42 H. MOUSAVI ET AL.

Table 1. Transition table for Madd for Fibonacci addition.

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]
0 0 0 0 0 0 0 0 0
1 1 2 3 1 3 1 0 3
2 4 5 6 4 6 4 7 6
3 0 8 0 0 0 0 0 0
4 5 0 4 5 4 5 6 4
5 0 0 0 0 0 0 9 0
6 2 10 1 2 1 2 3 1
7 8 11 0 8 0 8 0 0
8 3 1 0 3 0 3 0 0
9 0 0 5 0 5 0 4 5
10 0 0 9 0 9 0 12 9
11 6 4 7 6 7 6 13 7
12 10 14 2 10 2 10 1 2
13 0 15 0 0 0 0 0 0
14 0 0 0 0 0 0 16 0
15 0 3 0 0 0 0 0 0
16 0 0 0 0 0 0 5 0

Table 2. Identification of states with sequences.

State Sequence
1 0
2 (−Fn+2)n≥0

3 (Fn+2)n≥0

4 (−Fn+3)n≥0

5 (−Fn+4)n≥0

6 (−Fn+1)n≥0

7 (Fn)n≥0

8 (Fn+1)n≥0

9 (−Ln+2)n≥0

10 (−2Fn+2)n≥0

11 (−Fn)n≥0

12 (−2Fn+1)n≥0

13 (Ln+1)n≥0

14 (−3Fn+2)n≥0

15 (2Fn+1)n≥0

16 (−2Fn − 3Ln)n≥0

we check that

∀x ∀y ∀z ∀u ∀v (succ(y, u) ∧ succ(z, v)) =⇒ (A(x, y, z) ⇐⇒ A(x, u, v)).

An induction on y now completes the proof.

Another basic fact about Fibonacci representation is that, for canonical representations containing no two
consecutive 1’s or leading zeroes, the radix order on representations is the same as the ordinary ordering on N.
It follows that a very simple automaton can, on input (x, y)F , decide whether x < y.

Quantifiers are handled as follows: for ∃, we use nondeterminism to “guess” and check a solution. For ∀, we
rephrase the predicate in terms of ∃ and complementation.

Putting this all together, we get the analogue of Theorem 1.1.
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Theorem 2.2. There is an algorithm that, given a proposition phrased using only the universal and existential
quantifiers, indexing into one or more Fibonacci-automatic sequences, addition, subtraction, logical operations,
and comparisons, will decide the truth of that proposition.

The algorithm uses a decision procedure as follows:

Procedure 2.3 (Decision procedure for Fibonacci-automatic words).
Input: m, n ∈ N, m DFAOs witnessing Fibonacci-automatic words w1,w2, . . . ,wm, a first-order proposition
with n free variables ϕ(v1, v2, . . . , vn) using constants and relations definable in Th(N, +) and indexing into
w1,w2, . . . ,wm.
Output: DFA with input alphabet Σn

2 accepting

{(k1, k2, . . . , kn)F : ϕ(k1, k2, . . . , kn)}.

We remark that there was substantial skepticism that any actual implementation of this decision procedure
for Fibonacci-automatic words would be practical, for two reasons:

• first, because the running time of the algorithm is bounded above by an expression of the form

22
.. .2

p(N)

where p is a polynomial, N is the number of states in the original automaton specifying the word in question,
and the number of exponents in the tower is the number of quantifier alternations in the logical formula
characterizing the property being checked. This bound comes from the need to determinize a nondeterministic
automaton before complementation can be done.

• second, because of the complexity of checking addition (17 states) compared to the analogous automaton
for base-k representation (2 states).

Nevertheless, we were able to carry out nearly all the computations described in this paper in a matter of a few
seconds on an ordinary laptop.

3. Mechanical proofs of properties of the infinite Fibonacci word

In what follows, we examine a large number of results about the infinite Fibonacci word f and prove them
using an implementation of the decision procedure sketched in the previous section. By f [i..j] we mean the
factor of f beginning at position i and ending at position j.

The implementation, called Walnut, is discussed in more detail in Section 5. For the moment, we briefly
mention the basic syntax: “F” refers to the sequence f . “E” is our abbreviation for ∃ and “A” is our abbreviation
for ∀. The symbol “=>” is logical implication, “&” is logical AND, and “|” is logical OR. Constant values
of sequences can be specified by preceding with the @ sign. The “?msd fib” asks the software to evaluate
the predicate in Fibonacci representation. Predicates can be defined and used in later work. For example, the
predicate

FibEqFact(i, j, n) := ∀t < n f [i + t] = f [j + t]

can be written in Walnut as

def fibeqfact "?msd fib At (t<n) => F[i+t] = F[j+t]":

This defines a macro, fibeqfact, that takes three arguments: i, j, n (in that order) that is true iff f [i..i+n−1] =
f [j..j + n − 1], that is, if the length-n factor beginning at position i in the Fibonacci word is the same as the
length-n factor beginning at position j. The macro is represented by a finite automaton that takes the Fibonacci
representation of (i, j, n) as input and accepts those inputs for which FibEqFact(i, j, n) evaluates to true.
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When the macro is used later in Walnut, it must be preceded by a dollar-sign. The order of arguments in the
macro is alphabetical order of the unbound variables that appear in it when it is defined.

We provide the Walnut command for each predicate we discuss. By downloading the Walnut software and
executing the appropriate commands, the reader can verify the results we present here.

3.1. Notation and definitions

Recall that a word x, whether finite or infinite, is said to have period p if x[i] = x[i + p] for all i for which
this equality is meaningful. Thus, for example, the English word alfalfa has period 3. The exponent of a finite
word x, written exp(x), is |x|/P , where P is the smallest period of x. Thus exp(alfalfa) = 7/3.

If x is an infinite word with a finite period, we say it is ultimately periodic. An infinite word x is ultimately
periodic if and only if there are finite words u, v such that x = uvω, where vω = vvv · · ·

A nonempty word of the form xx is called a square, and a nonempty word of the form xxx is called a cube.
More generally, a nonempty word of the form xn is called an n’th power. By the order of a square xx, cube
xxx, or n’th power xn, we mean the length |x|.

The infinite Fibonacci word f = 01001010 · · · = f0f1f2 · · · can be described in many different ways. In
addition to our definition in terms of automata, it is also the fixed point of the morphism ϕ(0) = 01 and
ϕ(1) = 0. This word has been studied extensively in the literature; see, for example, [5, 7].

In the next subsection, we use our implementation to prove a variety of results about repetitions in f .

3.2. Repetitions

Theorem 3.1. The word f is not ultimately periodic.

Proof. We construct a predicate asserting that the integer p ≥ 1 is a period of some suffix of f :

(p ≥ 1) ∧ ∃n ∀i ≥ n f [i] = f [i + p].

In Walnut this is

eval fibrep "?msd fib ((p >= 1) & Ai (i >= n) => (F[i]=F[i+p]))":

(Note: unless otherwise indicated, whenever we refer to a variable in a predicate, the range of the variable is
assumed to be N = {0, 1, 2, · · · }). From this predicate, using our program, we construct an automaton accepting
the language

L = 0∗ {(p)F : (p ≥ 1) ∧ ∃n ∀i ≥ n f [i] = f [i + p]}.
This automaton accepts the empty language, and so it follows that f is not ultimately periodic.

Here is the log of our program:

p>=1 has 3 states: 3ms
i>=n has 6 states: 1ms
F[i]=F[(i+p)] has 11 states: 75ms
(i>=n=>F[i]=F[(i+p)]) has 41 states: 53ms
(A i (i>=n=>F[i]=F[(i+p)])) has 2 states: 96ms
(p>=1&(A i (i>=n=>F[i]=F[(i+p)]))) has 1 states: 1ms
total computation time: 234ms

�

From now on, whenever we discuss the language accepted by an automaton, we will omit the 0∗ at the
beginning.

We recall an old result of Karhumäki ([42], Thm. 2):

Theorem 3.2. f contains no fourth powers.
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Figure 2. Automaton accepting orders and positions of all squares in f .

Proof. We create a predicate for the orders of all fourth powers occurring in f :

(n > 0) ∧ ∃i FibEqFact(i, i + n, 3n).

In Walnut this is

eval fib4 "?msd fib (n>0) & Ei $fibeqfact(i,i+n,3*n)":

The resulting automaton accepts nothing, so there are no fourth powers. �

Next, we move on to a description of the orders of squares occurring in f . An old result of Séébold [56] (also
see [29, 41]) states

Theorem 3.3. All squares in f are of order Fn for some n ≥ 2. Furthermore, for all n ≥ 2, there exists a
square of order Fn in f .

Proof. We create a predicate for the lengths of squares:

(n > 0) ∧ ∃i FibEqFact(i, i + n, n).

In Walnut this is

eval fibsquarelen "?msd fib (n>0) & Ei $fibeqfact(i,i+n,n)":

When we run this predicate, we obtain an automaton that accepts exactly the language 10∗. �

We can easily get much, much more information about the square occurrences in f . The positions of all
squares in f were computed by Iliopoulos et al. ([41], Sect. 2), but their description is rather complicated and
takes 5 pages to prove. Using our approach, we created an automaton accepting the language, which gives the
starting position and lengths of all squares.

{(i, n)F : (n > 0) ∧ FibEqFact(i, i + n, n)}.

In Walnut this is

eval fibsquareinfo "?msd fib (n>0) & $fibeqfact(i,i+n,n)":

This automaton has only 6 states and efficiently encodes the orders and starting positions of each square in f .
Thus we have proved

Theorem 3.4. The language

{(i, n)F : there is a square of order n beginning at position i in f}

is accepted by the automaton in Figure 2.
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Figure 3. Automaton accepting orders and positions of all cubes in f .

Next, we examine the cubes in f . Evidently Theorem 3.3 implies that any cube in f must be of order Fn for
some n. However, not every order occurs.

Theorem 3.5. The cubes in f are of order Fn for n ≥ 4, and a cube of each such order occurs.

Proof. We use the predicate
(n > 0) ∧ ∃i FibEqFact(i, i + n, 2n).

In Walnut this is

eval fibcube "?msd fib (n>0) & Ei $fibeqfact(i,i+n,2*n)"

When we run our program, we obtain an automaton accepting exactly the language (100)0∗, which corresponds
to Fn for n ≥ 4. �

Next, we encode the orders and positions of all cubes. Building a DFA accepting the language

{(i, n)F : (n > 0) ∧ ∀t < 2n FibEqFact(i, i + n, 2n)},

which is implemented in Walnut with

eval fibcubeinfo "?msd fib (n>0) & $fibeqfact(i,i+n,2*n)":

and we get the following new result:

Theorem 3.6. The language

{(i, n)F : there is a cube of order n beginning at position i in f}

is accepted by the automaton in Figure 3.

An antisquare is a nonempty word of the form xx, where x denotes the complement of x (1’s changed to 0’s
and vice versa). Its order is |x|. For a new (but small) result we prove

Theorem 3.7. The Fibonacci word f contains exactly four antisquare factors: 01, 10, 1001, and 10100101.

Proof. The predicate for having an antisquare of length n is

∃i ∀k < n f [i + k] �= f [i + k + n],

or, in Walnut,

eval fibantisquare "?msd fib Ei (Ak (k<n) => (F[i+k] != F[i+k+n]))":

When we run this we get the automaton depicted in Figure 4, specifying that the only possible orders are 1, 2,
and 4, which correspond to words of length 2, 4, and 8.

Inspection of the factors of these lengths proves the result. �
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Figure 4. Automaton accepting orders of antisquares in f .

Figure 5. Automaton accepting orders and positions of all nonempty palindromes in f .

3.3. Palindromes and antipalindromes

We now turn to a characterization of the palindromes in f .
First, we define a predicate stating that f [i..i + n − 1] is a nonempty palindrome:

FibPal(i, n) := (n > 0) ∧ ∀t < n f [i + t] = f [i + n − 1 − t].

In Walnut this is

def fibpal "?msd fib (n>0) & At (t<n) => F[i+t] = F[i+n-1-t]":

The resulting 20-state machine characterizes the positions and lengths of all nonempty palindromes in f . It
is not particularly enlightening, but is given to show the kind of complexity that can result from even simple
queries (Fig. 5).

Using the predicate
∃i FibPal(i, n)

we specify those lengths n for which there is a palindrome of length n. In Walnut this is

eval fibpallen "?msd fib Ei $fibpal(i,n)":

Our program then recovers the following result of Chuan [17].

Theorem 3.8. There exist nonempty palindromes of every length ≥ 1 in f .

Next, we prove a result of Droubay [23].

Theorem 3.9. The Fibonacci word f has exactly one palindromic factor of length n if n is even, and exactly
two palindromes of length n if n is odd.

Proof. First, we obtain an expression for the positive lengths n for which there is exactly one palindromic factor
of length n.

∃i FibPal(i, n) ∧ ∀j FibPal(j, n) =⇒ FibEqFact(i, j, n)
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Figure 6. Automaton accepting lengths with exactly one palindrome.

The first part of the predicate asserts that f [i..i + n − 1] is a palindrome, and the second part asserts that any
palindrome f [j..j + n − 1] of the same length must in fact be equal to f [i..i + n − 1]. In Walnut this is

eval fibonepalfac "?msd fib Ei ($fibpal(i,n) & Aj $fibpal(j,n)

=> $fibeqfact(i,j,n))":

When we run this predicate through our program we get the automaton depicted below in Figure 6.
It may not be obvious, but this automaton accepts exactly the Fibonacci representations of the positive even

numbers. The easiest way to check this is to use our program on the predicate ∃i (i > 0) ∧ n = 2i and verify
that the resulting automaton is isomorphic to that in Figure 6.

Next, we write down a predicate for the existence of exactly two distinct palindromes of length n. The
predicate asserts the existence of two palindromes x[i..i + n − 1] and x[j..j + n − 1] that are distinct and for
which any palindrome of the same length must be equal to one of them.

∃i ∃j FibPal(i, n) ∧ FibPal(j, n) ∧ (¬FibEqFact(i, j, n)) ∧
(∀u FibPal(u, n) =⇒ (FibEqFact(i, u, n) ∨ FibEqFact(j, u, n)))

In Walnut this is

eval fibtwopal "?msd fib Ei Ej $fibpal(i,n) & $fibpal(j,n) &
(~$fibeqfact(i,j,n)) & (Au $fibpal(u,n) =>
($fibeqfact(i,u,n)|$fibeqfact(j,u,n)))":

The interpretation of this predicate is that there are two indices i and j at which a palindrome of length n
starts; these palindromes are distinct; and every palindrome of length n is equal to one or the other.

Again, running this through our program gives us an automaton accepting the Fibonacci representations of
the odd numbers. We omit the automaton. �

The prefixes are factors of particular interest. Let us determine which nonempty prefixes are palindromes:

Theorem 3.10. The prefix f [0..n− 1] of length n > 0 is a palindrome if and only if n = Fi − 2 for some i ≥ 4.

Proof. We use the predicate
FibPal(0, n)

or, in Walnut,

eval fibpalpre "?msd fib $fibpal(0,n)":

obtaining an automaton accepting 1 + 10(10)∗(0 + 01), which are precisely the representations of Fi − 2 for
i ≥ 4. �
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Next, we turn to the property of “mirror invariance”. We say an infinite word w is mirror-invariant if whenever
x is a factor of w, then so is xR. We can check this for f by creating a predicate for the assertion that for each
factor x of length n, the factor xR appears somewhere else:

∀i ≥ 0 ∃j f [i..i + n − 1] = f [j..j + n − 1]R.

In Walnut this is

eval fibmirror "?msd fib Ai Ej At (t < n) => F[i+t]=F[j+n-1-t]":
When we run this through our program we discover that it accepts the representations of all n ≥ 0. Here is the
log:

t<n has 6 states: 0ms
F[(i+t)]=F[(((j+n)-1)-t)] has 263 states: 58582ms
(t<n=>F[(i+t)]=F[(((j+n)-1)-t)]) has 194 states: 27ms
(A t (t<n=>F[(i+t)]=F[(((j+n)-1)-t)])) has 34 states: 34ms
(E j (A t (t<n=>F[(i+t)]=F[(((j+n)-1)-t)]))) has 4 states: 1ms
(A i (E j (A t (t<n=>F[(i+t)]=F[(((j+n)-1)-t)])))) has 2 states: 0ms
total computation time: 58785ms

The time complexity arises from the large number of variables needed to make the assertion.
Thus we have reproved an old result (see, e.g., Fischler [27]).

Theorem 3.11. The word f is mirror invariant.

An antipalindrome is a word x satisfying x = xR. For a new (but small) result, we determine all possible
antipalindromes in f :

Theorem 3.12. The only nonempty antipalindromes in f are 01, 10, (01)2, and (10)2.

Proof. Let us write a predicate specifying that f [i..i + n − 1] is a nonempty antipalindrome:

FibAp(i, n) = (n > 0) ∧ ∀j < n f [i + j] �= f [i + n − 1 − j],

or, in Walnut,

def fibap "?msd fib (n>0) & (Aj (j<n) => (F[i+j] != F[i+n-1-j]))":

The resulting 6-state automaton encodes the starting positions and lengths of all nonempty antipalindromes.
Next, we write a predicate for f [i..i+n−1] to be an antipalindrome, with i the position of its first occurrence:

(n > 0) ∧ FibAp(i, n) ∧ ∀i′ < i ¬FibEqFact(i, i′, n),

or, in Walnut,

eval fibapfirst "?msd fib (n>0) & $fibap(i,n) & (Aip (ip<i) =>
~$fibeqfact(i,ip,n))":

When we run this through our program, the language of (i, n)F satisfying this predicate is accepted by the
following automaton (Fig. 7).

It follows that the only (i, n) pairs accepted are (0, 2), (1, 2), (3, 4), (4, 4), corresponding, respectively, to the
strings 01, 10, (01)2, and (10)2. �
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Figure 7. Automaton accepting orders and positions of first occurrences of nonempty an-
tipalindromes in f .

3.4. Special factors

Next we turn to special factors. It is well-known that f has exactly n + 1 distinct factors of length n for each
n ≥ 0. This implies that there is exactly one factor x of each length n with the property that both x0 and x1
are factors. Such a factor is called right-special or sometimes just special.

We first write a predicate that expresses the assertion that the factor f [i..i + n − 1] is a special factor:

FibSpec(i, n) := ∃j FibEqFact(i, j, n) ∧ f [i + n] �= f [j + n],

or, in Walnut,

def fibspec "?msd fib Ej ($fibeqfact(i,j,n) & (F[i+n]!=F[j+n]))":

Next, we check uniqueness by writing a predicate that asserts that there are two distinct special factors of
length n:

∃i ∃j FibSpec(i, n) ∧ FibSpec(j, n) ∧ ¬FibEqFact(i, j, n),

or, in Walnut,

eval fibspeccheck "?msd fib Ei Ej $fibspec(i,n) & $fibspec(j,n)
& (~$fibeqfact(i,j,n))":

This automaton accepts nothing, so every special factor of f is unique.
Finally, we can create an automaton that says that f [i..i + n − 1] is a special factor and i is the earliest

occurrence of this factor:

FibSpec(i, n) ∧ ∀i′ < i ¬FibSpec(i′, n),

or, in Walnut,

eval fibspecfirst "?msd fib $fibspec(i,n) & (Aip (ip < i) =>
~$fibspec(ip,n))":

Thus we have proved the following new result.

Theorem 3.13. The automaton depicted below in Figure 8 accepts the language

{(i, n)F : the factor f [i..i + n − 1] is the first occurrence of the unique special factor of length n}.
Furthermore it is known (e.g., [50], Lem. 5) that

Theorem 3.14. The unique special factor of length n is f [0..n − 1]R.
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Figure 8. Automaton accepting first positions and lengths of special factors in f .

Proof. We create a predicate that says that if a length-n factor is special then it matches f [0..n − 1]R:

∀iFibSpec(i, n) =⇒ (∀j < n f [i + j] = f [n − 1 − j]),

or, in Walnut,

eval fibspecmatch "?msd fib Ai $fibspec(i,n) => (Aj (j<n) => (F[i+j] = F[n-1-j]))":

When we run this we discover that all lengths are accepted. �

3.5. Least periods

We now turn to least periods of factors of f (see [53] and [26] and [20], Cor. 4).
Let FibPer denote the assertion that p is a period of the factor f [i..j], as follows:

FibPer(i, j, p) := (i ≤ j) ∧ (p ≥ 1) ∧ (p ≤ j − i + 1) ∧ f [i..j − p] = f [i + p..j]
= (p ≥ 1) ∧ ∀ t, i ≤ t ≤ j − p f [t] = f [t + p].

Using this, we can express the predicate FibLeastPer that n is the least period of f [i..j]:

FibLeastPer(i, j, n) := FibPer(i, j, n) and ∀n′ with 1≤n′<n¬FibPer(i, j, n′).

Finally, we can express the predicate that n is a least period as follows

FibLp(n) := ∃i, j ≥ 0 with 0 ≤ i + n ≤ j − 1 FibLeastPer(i, j, n).

In Walnut this can be done as follows:

def fibper "?msd fib (i <= j) & (p >= 1) & (p+i <=j+1) &
$fibeqfact(i,i+p,j+1-p-i)":
def fibleastper "?msd fib $fibper(i,j,n) &
(Anp ((1<=np)&(np<n)) => (~$fibper(i,j,np)))":
def fiblp "?msd fib Ei Ej $fibleastper(i,j,n)":

Using an implementation of this, we reprove the following theorem of Saari ([53], Thm. 2):

Theorem 3.15. If a word w is a nonempty factor of the Fibonacci word, then the least period of w is a Fibonacci
number Fn for n ≥ 2. Furthermore, each such period occurs.

Proof. We ran our program on the appropriate predicate and found the resulting automaton accepts 10∗,
corresponding to Fn for n ≥ 2. �
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Figure 9. Automaton encoding smallest period over all length-n factors in f .

We also have the following result, which seems to be new.

Theorem 3.16. Let n ≥ 1, and define 	(n) to be the smallest integer that is the least period of some length-n
factor of f . Then 	(n) = Fj for j ≥ 1 if Lj − 1 ≤ n ≤ Lj+1 − 2, where Lj is the j’th Lucas number defined in
Section 2.

Proof. We create an automaton accepting (n, p)F such that (a) there exists at least one length-n factor of period
p and (b) for all length-n factors x, if q is a period of x, then q ≥ p. The corresponding predicate is

(n ≥ 1) ∧ ∃i FibPer(i, i + n − 1, p) ∧ (∀j ∀q FibPer(j, j + n − 1, q) =⇒ q ≥ p),

or, in Walnut,

eval fiblpl "?msd fib (n>=1) & (Ei $fibper(i,i+n-1,p)) &
(Aj Aq $fibper(j,j+n-1,q) => (q >= p))":

This automaton is depicted in Figure 9 below.
The result now follows by inspection and the fact that (Lj − 1)F = 10(01)(j−2)/2 if j ≥ 2 is even, and

100(10)(j−3)/2 if j ≥ 3 is odd. �

Finally, we consider all the maximal repetitions in f . Let p(x) denote the length of the least period of x. If
x = a0a1 · · · , by x[i..j] we mean aiai+1 · · · aj . Following Kolpakov and Kucherov [43], we say that f [i..i + n− 1]
is a maximal repetition if

(a) p(f [i..i + n − 1]) ≤ n/2.
(b) p(f [i..i + n − 1]) < p(f [i..i + n]).
(c) If i > 0 then p(f [i..i + n − 1]) < p(f [i − 1..i + n − 1]).

Using the Walnut code

eval fibmaxrep "?msd fib Et Eu Ev $fibleastper(i,i+n-1,t) &
$fibleastper(i,i+n,u) & $fibleastper(i-1,i+n-1,v) & (2*t <= n) &
(t < u) & ((i>0) => (t<v))":

we obtain the following new result:

Theorem 3.17. The factor f [i..i + n − 1] is a maximal repetition of f iff (i, n)F is accepted by the automaton
depicted in Figure 10.
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Figure 10. Automaton accepting occurrences of maximal repetitions in f .

Figure 11. Automaton accepting lengths of prefixes of f that are quasiperiods.

3.6. Quasiperiods

We now turn to quasiperiods. An infinite word a is said to be quasiperiodic if there is some finite nonempty
word x such that a can be completely “covered” with translates of x. Here we study the stronger version of
quasiperiodicity where the first copy of x used must be aligned with the left edge of w and is not allowed to
“hang over”; these are called aligned covers in [16]. More precisely, for us a = a0a1a2 · · · is quasiperiodic if there
exists x such that for all i ≥ 0 there exists j ≥ 0 with i − n < j ≤ i such that ajaj+1 · · · aj+n−1 = x, where
n = |x|. Such an x is called a quasiperiod. Note that the condition j ≥ 0 implies that, in this interpretation, any
quasiperiod must actually be a prefix of a.

The quasiperiodicity of the Fibonacci word f was studied by Christou et al. [16], where we can (more or less)
find the following theorem (also see [45]):

Theorem 3.18. A nonempty length-n prefix of f is a quasiperiod of f if and only if n is not of the form Fk − 1
for k ≥ 3.

In particular, the following prefix lengths are not quasiperiods: 1, 2, 4, 7, 12, and so forth.

Proof. We write a predicate for the assertion that the length-n prefix is a quasiperiod:

∀i ≥ 0 ∃j with i − n < j ≤ i FibEqFact(0, j, n).

In Walnut this is

eval fibquasi "?msd fib Ai (Ej ((i < j+n) & (j <= i) &
$fibeqfact(0,j,n)))":

When we do this, we get the automaton in Figure 11. Inspection shows that this DFA accepts all canonical
representations, except those of the form

1(01)∗(ε + 0),

which are precisely the representations of Fk − 1 for k ≥ 3. �
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Figure 12. Automaton accepting positions and lengths of unbordered factors of f .

3.7. Unbordered factors

Next we look at unbordered factors. A word y is said to be a border of x if y is both a nonempty proper prefix
and suffix of x. A word x is bordered if it has at least one border. It is easy to see that a word y is bordered iff
it has a border of length 	 with 0 < 	 ≤ |y|/2. We now prove a result due to (Harju and Kärki [38], Lem. 3).

Theorem 3.19. The only unbordered nonempty factors of f are of length Fn for n ≥ 2, and there are two for
each such length. For n ≥ 3 these two unbordered factors have the property that one is a reverse of the other.

Proof. We can express the assertion that f [i..i + n − 1] is unbordered as follows:

FibUnbf(i, n) := (n > 0) ∧ ∀j, 1 ≤ j ≤ n/2, ∃t < j f [i + t] �= f [i + n − j + t].

In Walnut this is

def fibunbf "?msd fib (n>0) & Aj (((1 <= j) & (2*j <= n)) =>
Et Er (t<j) & (F[r] != F[r+n-j]) & (r = i+t))":

Note: the slightly convoluted expression is needed so that the program runs to completion in a reasonable length
of time. The result is depicted in Figure 12.

Once FibUnbf is defined, we can use it to obtain the lengths of all unbordered factors of f as follows:
∃i FibUnbf(i, n), or in Walnut

eval fibub "?msd fib Ei $fibunbf(i,n)":

The automaton produced accepts the Fibonacci representation of Fn for n ≥ 2.
Next, we make the assertion that there are exactly two such factors for each appropriate length. We can

do this by saying there is an unbordered factor of length n beginning at position i, another one beginning at
position k, and these factors are distinct, and for every unbordered factor of length n, it is equal to one of these
two.

∃i ∃k FibUnbf(i, n) ∧ FibUnbf(k, n) ∧ (¬FibEqFact(i, k, n)) ∧
(∀j FibUnbf(j, n) =⇒ (FibEqFact(i, j, n) ∨ FibEqFact(k, j, n)),

or in Walnut,

eval fib2unb "?msd fib Ei Ek $fibunbf(i,n) & $fibunbf(k,n) &
(~$fibeqfact(i,k,n)) & (Aj $fibunbf(j,n) => ($fibeqfact(i,j,n) |
$fibeqfact(k,j,n)))":

When we do this we discover that the representations of all Fn for n ≥ 2 are accepted.
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Figure 13. Automaton accepting positions and lengths of Lyndon factors of f .

Finally, we make the assertion that for any two unbordered factors of length n, either they are equal or one
is the reverse of the other.

We can achieve this with

∀i ∀k ((FibUnbf(i, n) ∧ FibUnbf(k, n)) =⇒ FibEqFact(i, k, n) ∨ (∀	 < n f [i + 	] = f [k + n − 	 − 1])),

or, in Walnut,

eval fib2unbrev "?msd fib Ai Ak ($fibunbf(i,n) & $fibunbf(k,n)) =>
($fibeqfact(i,k,n) | (Al (l<n) => (F[i+l] = F[k+n-l-1])))":

When we do this, we discover all lengths except length 1 are accepted (that is, for all lengths other than Fn,
n ≥ 2, the assertion is trivially true since there are no unbordered factors; for F2 = 1 it is false since 0 and 1 are
the unbordered factors and one is not the reverse of the other; and for all larger Fi the property holds). �

3.8. Lyndon words

Next, we turn to some results about Lyndon words. Recall that a nonempty word x is a Lyndon word if it
is lexicographically less than all of its nonempty proper prefixes3. We reprove some recent results of Currie and
Saari [20] and Saari [54].

Theorem 3.20. Every Lyndon factor of f is of length Fn for some n ≥ 2, and each of these lengths has a
Lyndon factor.

Proof. Here is the predicate specifying that the factor f [i..i + n − 1] is Lyndon:

∀j, 1 ≤ j < n, ∃t < n − j FibEqFact(i, i + j, t) ∧ f [i + t] < f [i + j + t],

or, in Walnut,

def fiblyndonfac "?msd fib (n>=1) & Aj ((1 <= j) & (j < n)) =>
Et (t+j < n) & $fibeqfact(i,i+j,t) & (F[i+t]=@0) & (F[i+j+t]=@1)":

When we run this we get the automaton depicted in Figure 13.
Next, with the predicate ∃iFibLyndonFac(i, n), or in Walnut,

eval fiblyndon "?msd fib Ei $fiblyndonfac(i,n)":

we specify those lengths that have a Lyndon factor. When we run this we get the representations 10∗, which
proves the result. �

3There is also a version where “prefixes” is replaced by “suffixes”.
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Recall that two words x, w are said to be conjugate if one is a cyclic shift of the other.

Theorem 3.21. For n ≥ 2, every length-n Lyndon factor of f is a conjugate of f [0..n − 1].

Proof. Using the predicate from the previous theorem as a base, we can create a predicate specifying that
f [i..i + n − 1] is a conjugate of f [0..n − 1]:

FibConjPre(i, n) := ∃k < n (FibEqFact(i, k, n− k) ∧ FibEqFact(0, i + n − k, k)),

or, in Walnut,

def fibconjpre "?msd fib Ek ((k<n) & $fibeqfact(i,k,n-k) &
$fibeqfact(0,i+n-k,k))":

Next, we create a predicate specifying that every length-n Lyndon factor is a conjugate of f [0..n − 1]:

∀i FibLyndonFac(i, n) => FibConjPre(i, n),

or, in Walnut,

def fibchecklyndon "?msd fib Ai $fiblyndonfac(i,n) => $fibconjpre(i,n)":

When we do this, we discover that all lengths except 1 are accepted. (The only lengths having a Lyndon factor
are Fn for n ≥ 2, so all but F2 have the desired property.) �

3.9. Recurrence, uniform recurrence, and linear recurrence

We now turn to various questions about recurrence. A factor x of an infinite word w is said to be recurrent
if it occurs infinitely often. The word w is recurrent if every factor that occurs at least once is a recurrent
factor. A factor x is uniformly recurrent if there exists a constant c = c(x) such that the starting positions of
two consecutive occurrences of x in w are always separated by at most c positions. If all factors are uniformly
recurrent then the word w is said to be uniformly recurrent. Finally, w is linearly recurrent if it is uniformly
recurrent, and the constant c(x) is O(|x|).

We now prove a well-known result (see, e.g., [14]) using our method:

Theorem 3.22. The word f is recurrent, uniformly recurrent, and linearly recurrent.

Proof. A predicate for all length-n factors being recurrent:

∀i ≥ 0 ∃j > i FibEqFact(i, j, n),

or, in Walnut,

eval fibrecur "?msd fib Ai Ej (j>i) & $fibeqfact(i,j,n)":

This predicate says that for every factor z = f [i..i + n − 1] and we can find another occurrence of z beginning
at a position j > i. When we run this we discover that the representations of all n ≥ 0 are accepted. So f is
recurrent.

A predicate for uniform recurrence:

∀i ∃	 ∀j ∃s, j ≤ s ≤ j + l − n FibEqFact(i, s, n),

or, in Walnut,

eval fibunirecur "?msd fib Ai El Aj Es (j<=s) & (s+n <= j+l)
& $fibeqfact(i,s,n)":

Once again, when we run this we discover that the representations of all n ≥ 0 are accepted. So f is uniformly
recurrent.
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Finally, a predicate for linear recurrence with constant C:

∀i ∃j (i < j ≤ i + Cn) FibEqFact(i, j, n),

or, in Walnut, with C = 3,

eval fiblinrec "?msd fib Ai Ej (i < j) & (j<=i+3*n) &
$fibeqfact(i,j,n)":

When we run this predicate on Walnut, the representations of all n ≥ 1 are accepted. However, if we change the
condition i < j ≤ i + Cn to i < j < i + Cn then we discover that predicate evaluates to true only for n ≥ 2. So
f is linearly recurrent, with optimal recurrence constant 3. �

Remark 3.23. We can decide the property of linear recurrence for Fibonacci-automatic sequences even without
knowing an explicit value for the constant C. The idea is to accept those pairs (n, t) such that there exists a
factor of length n with two consecutive occurrences separated by distance t. Letting S denote the set of such
pairs, then a sequence is linearly recurrent iff lim sup(n,t)∈S t/n < ∞, which can be decided using an argument
like that in ([55], Thm. 8).

Even further, we can prove that if a Fibonacci-automatic (resp., k-automatic) sequence is uniformly recurrent,
then it is linearly recurrent. To see this, note that if there is an upper bound un for the distance between
consecutive factors of length n, then an automaton accepting (n, un)F (resp., (n, un)k) exists, by the argument
above, and a simple argument using the pumping lemma now shows that un = O(n).

3.10. Critical exponents

Recall from Section 3.1 that exp(w) = |w|/P , where P is the smallest period of w. The critical exponent of
an infinite word x is the supremum, over all factors w of x, of exp(w).

A classic result of [46] is

Theorem 3.24. The critical exponent of f is 2 + α, where α = (1 +
√

5)/2.

Although it is known that the critical exponent is computable for k-automatic sequences [55], we do not yet
know this for Fibonacci-automatic sequences (and more generally Pisot-automatic sequences). However, with a
little inspired guessing about the maximal repetitions, we can complete the proof.

Proof. For each length n, the smallest possible period p of a factor is given by Theorem 3.16. Hence the critical
exponent is given by limj→∞(Lj+1 − 2)/Fj , which is 2 + α. �

We can also ask the same sort of questions about the initial critical exponent of a word w, which is the
supremum over the exponents of all prefixes of w.

Theorem 3.25. The initial critical exponent of f is 1 + α.

Proof. We create an automaton Mice accepting the language

L = {(n, p)F : f [0..n − 1] has least period p}
using the predicate FibLeastPer(0, n − 1, p), or, in Walnut,

eval fibice "?msd fib $fibleastper(0,n-1,p)":

It is depicted in Figure 14. By inspection of the automaton, it is easy to see that the least period of the prefix
of length n ≥ 1 is Fj for j ≥ 2 and Fj+1 − 1 ≤ n ≤ Fj+2 − 2. (Note that the Fibonacci representation of
{Fi − 1 : i ≥ 3} is given by the regular expression 1(01)∗(ε + 0).) Hence the initial critical exponent is given
by lim supj→∞(Fj+2 − 2)/Fj , which is 1 + α. �
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Figure 14. Automaton accepting least periods of prefixes of length n.

Figure 15. Automaton accepting lexicographically least sequence in shift orbit closure of f .

3.11. The shift orbit closure

The shift orbit closure of a sequence x is the set of all sequences t with the property that each prefix of t
appears as a factor of x. Note that this set can be much larger than the set of all suffixes of x.

The following theorem is well known ([8], Prop. 3, p. 34):

Theorem 3.26. The lexicographically least sequence in the shift orbit closure of f is 0f , and the lexicographically
greatest is 1f .

Proof. We handle only the lexicographically least, leaving the lexicographically greatest to the reader.
The idea is to create a predicate P (n) for the lexicographically least sequence b = b0b1b2 · · · which is true iff

bn = 1. The following predicate encodes, first, that bn = 1, and second, that if one chooses any length-(n + 1)
factor t of f , then b0 · · · bn is equal or lexicographically smaller than t:

∃j f [j + n] = 1 ∧ ∀k (FibEqFact(j, k, n + 1) ∨ (∃i ≤ n f [j + i] < f [k + i] ∧ FibEqFact(j, k, i))),

or, in Walnut,

eval fibll "?msd fib Ej (F[j+n] = @1) & (Ak $fibeqfact(j,k,n+1) |
(Ei (i<=n) & (F[j+i]=@0) & (F[k+i]=@1) & $fibeqfact(j,k,i)))":

When we do this, we get the automaton in Figure 15, which is easily seen to generate the sequence 0f , with 1
being the output associated with a final state and 0 for a non-final state (Fig. 15). �

3.12. Minimal forbidden words

Let x be an infinite word. A finite word z = a0 · · · an is said to be minimal forbidden if z is not a factor of x,
but both a1 · · ·an and a0 · · · an−1 are [21, 47].
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We can characterize all minimal forbidden words for f as follows: we create an automaton accepting the
language

{(i, n)F : f [i..i + n − 1] f [i + n] is not a factor of f and

f [i + 1..i + n − 1] f [i + n] is a factor and i is as small as possible }.
We achieve this with the two predicates

FibMinf(i, n) := (∀k FibEqFact(i, k, n) =⇒ (f [i + n] = f [k + n])) ∧
(∃	 FibEqFact(i + 1, 	 + 1, n − 1) ∧ f [i + n] �= f [	 + n])

FibMinf(i, n) ∧ ∀t FibMinf(t, n) =⇒ (t ≥ i),

or, in Walnut,

def fibminf "?msd fib (Ak $fibeqfact(i,k,n) => (F[i+n] = F[k+n])) &
(El $fibeqfact(i+1,l+1,n-1) & (F[i+n] != F[l+n]))":
eval fibmfw "?msd fib $fibminf(i,n) & (At $fibminf(t,n) => (t>=i))":

When we do so, we find the words accepted are

[1, 1]([0, 0][1, 1])∗(ε + [0, 0]).

This regular expression specifies the words

f [Fn − 1..2Fn − 3] f [2Fn − 2]

for n ≥ 3. The first few minimal forbidden words are therefore

11, 000, 10101, 00100100, 1010010100101, · · ·

3.13. Grouped factors

Cassaigne [13] introduced the notion of grouped factors. A sequence a = (ai)i≥0 has grouped factors if, for
all n ≥ 1, there exists some position m = m(n) such that a[m..m + ρ(n) + n− 2] contains all the ρ(n) length-n
blocks of a, each block occurring exactly once. One consequence of his results is that the Fibonacci word has
grouped factors.

We can write a predicate for the property of having grouped factors, as follows:

∀n ≥ 1 ∃m, s ≥ 0 ∀i ≥ 0
∃j m ≤ j ≤ m + s and a[i..i + n − 1] = a[j..j + n − 1] and

∀j′, m ≤ j′ ≤ m + s, j �= j′ we have a[i..i + n − 1] �= a[j′..j′ + n − 1].

The first part of the predicate says that every length-n block appears somewhere in the desired window, and
the second says that it appears exactly once.

(This five-quantifier definition can be viewed as a response to the question of Homer and Selman [39], “· · ·
in what sense would a problem that required at least three alternating quantifiers to describe be natural?”)

In the case of f, the infinite Fibonacci word, we can simplify the verification somewhat by using the classical
fact that f has subword complexity n + 1; that is, that there are exactly n + 1 distinct factors of length n [48].

We first create a predicate stating that there are grouped factors of length n beginning at position m:

FibGf(m, n) := ∀j with (m ≤ j ≤ m + n) ∀k with (m ≤ k ≤ m + n)
(j �= k) =⇒ ¬FibEqFact(j, k, n),
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Figure 16. Automaton for first occurrence of grouped length-n factors of f .

or, in Walnut,

def fibgf "?msd fib Aj Ak (((j>=m)&(k>=m)&(j<=m+n)&(k<=m+n)&(j!=k)) =>
(~$fibeqfact(j,k,n)))":

Next, we verify that there are grouped factors for all n by evaluating

∃mFibGf(m, n),

or, in Walnut,

eval fibgfcheck "?msd fib Em $fibgf(m,n)":

which verifies the assertion for all n.
For a new result, we create a predicate that specifies for each n, the smallest m such that there are grouped

factors beginning at position m of f :

FibGf(m, n) ∧ ∀m′ < m ¬FibGf(m′, n)

or, in Walnut,

eval fibgfm "?msd fib $fibgf(m,n) & (Amp (mp < m) => (~$fibgf(mp, n)))":

This gives the automaton depicted below in Figure 16.

Theorem 3.27. The automaton in Figure 16 specifies, for each n, the smallest m such that the grouped length-n
factors appear for the first time at position m.

4. Mechanical proofs of properties of the finite Fibonacci words

Although our program is designed to answer questions about the properties of the infinite Fibonacci word f ,
it can also be used to solve problems concerning the finite Fibonacci words (Xn), defined as follows:

Xn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε, if n = 0;

1, if n = 1;

0, if n = 2;

Xn−1Xn−2, if n > 2.

Note that |Xn| = Fn for n ≥ 1. (We caution the reader that there exist many variations on this definition in
the literature, particularly with regard to indexing and initial values.) Furthermore, we have ϕ(Xn) = Xn+1 for
n ≥ 1.
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Our strategy for the the finite Fibonacci words has two parts:

(i) Instead of phrasing statements in terms of factors, we phrase them in terms of occurrences of factors (and
hence in terms of the indices defining a factor).

(ii) Instead of phrasing statements about finite Fibonacci words, we phrase them instead about all length-n
prefixes of f . Then, since Xi = f [0..Fi − 1], we can deduce results about the finite Fibonacci words by
considering the case where n is a Fibonacci number Fi.

To illustrate this idea, consider one of the most famous properties of the Fibonacci words, the almost-
commutative property ([3], Thm. 7.1.2): letting

η(a1a2 · · · an) = a1a2 · · · an−2anan−1

be the map that interchanges the last two letters of a string of length at least 2, we have

Theorem 4.1. Xn−1Xn = η(XnXn−1) for n ≥ 2.

We can verify this, and prove even more, using our method.

Theorem 4.2. Let x = f [0..i − 1] and y = f [0..j − 1] for i > j > 1. Then xy = η(yx) if and only if i = Fn,
j = Fn−1 for n ≥ 3.

Proof. The idea is to check, for each i > j > 1, whether

f [0..i − 1]f [0..j − 1] = η(f [0..j − 1]f [0..i − 1]).

We can do this with the following predicate:

(i > j) ∧ (j > 1) ∧ FibEqFact(0, j, i − j) ∧
FibEqFact(0, i − j, j − 2) ∧ (f [j − 2] = f [i − 1]) ∧ (f [j − 1] = f [i − 2]),

or, in Walnut,

eval fibfinite "?msd fib (i>j) & (j>1) & $fibeqfact(0,j,i-j) &
$fibeqfact(0,i-j,j-2) & (F[j-2]=F[i-1]) & (F[j-1]=F[i-2])":

The resulting automaton accepts [1, 0][0, 1][0, 0]+, which corresponds to the solutions i = Fn, j = Fn−1 for
n ≥ 4. �

An old result of Séébold [56] is

Theorem 4.3. If uu is a square occurring in f , then u is conjugate to some finite Fibonacci word.

Proof. Recalling FibConjPre as defined in Section 3.8, we can express the assertion that any square uu of
order n appearing in f is conjugate to f [0..n − 1]:

∀i FibEqFact(i, i + n, n) =⇒ FibConjPre(i, n),

or, in Walnut,

def fibsqc "?msd fib Ai $fibeqfact(i,i+n,n) => $fibconjpre(i,n)":

When we implement this, we discover that all lengths ≥ 1 are accepted. This makes sense since the only
lengths corresponding to squares are Fn, and for all other lengths the base of the implication is false. �

We now reprove an old result of de Luca [22]. Recall that a primitive word is a non-power; that is, a word
that cannot be written in the form xn where n is an integer ≥ 2.
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Figure 17. Automaton accepting lengths of prefixes that are the product of two palindromes.

Figure 18. Automaton accepting lengths of prefixes that are the product of two palindromes
in exactly one way.

Theorem 4.4. All finite Fibonacci words are primitive.

Proof. We prove somewhat more. The factor f [i..j] is a power if and only if there exists d, 0 < d < j − i + 1,
such that f [i..j − d] = f [i + d..j] and f [j − d + 1..j] = f [i..i + d− 1]. Letting pow(i, j) denote this predicate, the
predicate

¬pow(0, n − 1)

expresses the claim that the length-n prefix f [0..n−1] is primitive. When we implement this using the following
two Walnut commands

def fibpow "?msd fib Ed (0<d)&(d+i<=j)&$fibeqfact(i,i+d,j-d-i+1)&

$fibeqfact(j-d+1,i,d)":

eval fibprim "?msd fib ~$fibpow(0,n-1)":

we discover something more: namely, that the prefix of every length is primitive, except those prefixes of length
2Fn for n ≥ 4. Since for k ≥ 4 we never have 2Fn = Fk, Theorem 4.4 is a consequence. �

A theorem of Chuan ([17], Thm. 3) states that the finite Fibonacci word Xn, for n ≥ 5, is the product of
two palindromes in exactly one way: where the first factor is of length Fn−1 − 2 and the second is of length
Fn−2 + 2. (Actually, Chuan claimed this was true for all Fibonacci words, but, for example, for 010 there are
evidently two different factorizations of the form (ε)(010) and (010)ε.) We can prove something more general
using our method, by generalizing:

Theorem 4.5. If the length-n prefix f [0..n − 1] of f is the product of two (possibly empty) palindromes, then
(n)F is accepted by the automaton in Figure 17 below. Furthermore, if the length-n prefix f [0..n − 1] of f is
the product of two (possibly empty) palindromes in exactly one way, then (n)F is accepted by the automaton in
Figure 18 below. Evidently, this includes all n of the form Fj for j ≥ 5.

Proof. For the first, we first define a predicate stating that f [i..i + n − 1] is a (possibly empty) palindrome:

FibPale(i, n) := ∀t < n f [i + t] = f [i + n − 1 − t].
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Figure 19. Automaton encoding borders of prefixes of f .

Next, we define a predicate alleging that the prefix of length n is a product of two (possibly empty) palin-
dromes, with the first being of length i:

FibPalProd(i, n) := (i < n) ∧ FibPale(0, i) ∧ FibPale(i, n − i).

Next, we use this predicate to compute the lengths of all prefixes that are the product of two (possibly empty)
palindromes:

∃iFibPalProd(i, n)

Finally, we define a predicate stating that the prefix of length n is a product of two palindromes, but only in
one way:

FibUniPalProd(n) := ∃p ∧ FibPalProd(p, n) ∧ (∀q FibPalProd(q, n) => (p = q)).

In Walnut this is

def fibpale "?msd fib At (t<n) => (F[i+t] = F[i+n-1-t])":
def fibpalprod "?msd fib (i<n) & $fibpale(0,i) & $fibpale(i,n-i)":
def fibpalprodlen "?msd fib Ei $fibpalprod(i,n)":
def fibunipalprod "?msd fib Ep ($fibpalprod(p,n) & (Aq $fibpalprod(q,n) => (p = q)))":

As a result we get the automaton accepting the lengths of prefixes that are products of two palindromes (in
Fig. 17) and the automaton accepting the lengths of prefixes that are products of two palindromes in only one
way (in Fig. 18). �

A result of Cummings, Moore, and Karhumäki [19] states that the borders of the finite Fibonacci word
f [0..Fn − 1] are precisely the words f [0..Fn−2k − 1] for 2k < n. We can prove this, and more:

Proof. Consider the pairs (n, m) such that 1 ≤ m < n and f [0..m− 1] is a border of f [0..n− 1]. Their Fibonacci
representations are accepted by the automaton below in Figure 19.

To get this, we used the predicate

(n > m) ∧ (m ≥ 1) ∧ FibEqFact(0, n − m, m),

or, in Walnut,

eval fibbord "?msd fib (n>m) & (m >= 1) & $fibeqfact(0,n-m,m)":

By following the paths with first coordinate of the form 10+ we recover the result of Cummings, Moore, and
Karhumäki as a special case. �
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5. Details about our implementation

Our prover, called Walnut, was written in Java by Hamoon Mousavi, and was developed using the Eclipse
development environment4. We used the package dk.brics.automaton, developed by Anders Møller at Aarhus
University, for automaton minimization5. The GraphViz package was used to display automata6.

Our program (not counting the dk.brics.automaton) package, consists of about 4800 lines of code. We used
Hopcroft’s algorithm for DFA minimization [40].

A user interface is provided to enter queries in a language very similar to the language of first-order logic.
The intermediate and final results of a query are all automata. At every intermediate step, we chose to do
minimization and determinization, if necessary. Each automaton accepts tuples of integers in the numeration
system of choice. The built-in numeration systems are ordinary base-k representations and Fibonacci base.
However, the program can be used with any numeration system for which an automaton for addition and
ordering can be provided. These numeration system-specific automata can be declared in text files following a
simple syntax. For the automaton resulting from a query it is always guaranteed that if a tuple t of integers is
accepted, all tuples obtained from t by addition or truncation of leading zeros are also accepted. In Fibonacci
representation, we make sure that the accepting integers do not contain consecutive 1’s.

The program was tested against hundreds of different test cases varying in simplicity from the most basic
test cases testing only one feature at a time, to more comprehensive ones with many alternating quantifiers.
We also used known facts about automatic sequences and Fibonacci word in the literature to test our program,
and in all those cases we were able to get the same result as in the literature. In a few cases, we were even able
to find small errors in those earlier results.

The source code and manual for Walnut is available for free download at
https://www.cs.uwaterloo.ca/~shallit/papers.html.

All the calculations in this paper were performed on a MacBook Pro, with 2.6 GHz Intel Core i5 processor,
running OS X Yosemite 10.10.5.

Acknowledgements. We thank Narad Rampersad and Michel Rigo for useful suggestions. We also thank the referees,
who read this paper with care and made many helpful suggestions that improved the paper.
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by M. Blab. LITP (1982) 177–183.
[7] J. Berstel, Fibonacci Words – A Survey. In The Book of L, edited by G. Rozenberg and A. Salomaa. Springer-Verlag (1986)

13–27.
[8] J.-P. Borel and F. Laubie, Quelques mots sur la droite projective réelle. J. Théorie Nombres Bordeaux 5 (1993) 23–51.
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[42] J. Karhumäki, On cube-free ω-words generated by binary morphisms. Disc. Appl. Math. 5 (1983) 279–297.
[43] R. Kolpakov and G. Kucherov, On maximal repetitions in words. In Fundamentals of Computation Theory: FCT ’99, edited
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