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TWO-WAY REPRESENTATIONS AND WEIGHTED AUTOMATA

Sylvain Lombardy
1

Abstract. We study the series realized by weighted two-way automata, that are strictly more powerful
than weighted one-way automata. To this end, we consider the Hadamard product and the Hadamard
iteration of formal power series. We introduce two-way representations and show that the series they
realize are the solutions of fixed-point equations. In rationally additive semirings, we prove that two-way
automata are equivalent to two-way representations, and, for some specific classes of two-way automata,
rotating and sweeping automata, we give a characterization of the series that can be realized.

Mathematics Subject Classification. 68Q45, 68Q70.

1. Introduction

Two-way finite automata were introduced at the very beginning of the theory of automata. It was then
proved [17, 21] that they are not more powerful than one-way automata. Many papers have studied the suc-
cintness of two-way automata with respect to one-way automata (cf. for instance [16]). In this paper, we study
weighted two-way automata. This model is strictly more powerful than weighted one-way automata: they have
been introduced in [1] where two-way Z-automata that are equivalent to one-way Z-automata have been char-
acterized, and in the framework of probabilistic automata [2].

In this paper, some classes of series realized by two-way automata are characterized. To this end, we de-
scribe first different classes of formal power series closed under rational operations, or other operations like
the Hadamard product or the mirror. Rational series naturally appear as the behaviour of (one-way) weighted
automata. The combination of the runs of two different automata on the same inputs naturally leads to con-
sider Hadamard product; likewise, the ability to use the same automaton over the same input several times is
reflected by the Hadamard iteration. When considering two-way machines, it is also normal consider the mirror
operation to express that the input can be read from right to left.

Two-way weighted automata are then defined; they are straighforward extensions from two-way automata
and weighted one-way automata. Like one-way automata, these automata are memoryless machines: at each
step of the computation the automaton has access to no other information that the current state and the letter
read on the input. The value of the weight which is computed along the run does not influence the actions of the
automaton. This makes this model more restrective (and less powerful) than models involving pebbles or stacks
(cf. for instance [12]), but it is consistent with the study of Hadamard series and is suitable for an algebraic
study.
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We introduce then two-way representations which are algebraic models that are extensions of linear repre-
sentations. As proved in the last part, they are, under some assumptions on the semiring of weights, equivalent
to two-way automata. The set of series realizable by such representations, called two-way recognizable series, is
closed under sum, Hadamard product, Hadamard iteration, mirror, and left quotient.

We then show that two-way recognizable series are solutions of some fixed-point systems. The resolution of
such a system amounts to compute an explicit expression for the series realized by a two-way representation. This
allows to prove that rotating representations exactly realize the series which are in the closure of the rational
series under sum, Hadamard product and Hadamard iteration; likewise, sweeping representations exactly realize
the series which are in the closure of the rational series under the same operations plus the mirror.

Finally, we show that, in the case of rationally additive semirings, each weighted two-way automaton corre-
sponds to a two-way representation and realizes the same series. We also used weighted two-way automata to
prove that the set of two-way recognizable series are not closed under Cauchy product and Kleene star.

2. Formal power series

If A is a finite alphabet of symbols, A∗ is the set of words over A; this set is naturally endowed with the
concatenation as multiplication; this operation is associative and admits the empty word ε (the word with no
letter) as neutral element. For every word w = w1 . . . wn, |w| = n denotes the length of w; the mirror of w is
the word w = wn . . . w1.

A semiring is an algebra (K, +, .), where the addition + is associative and commutative, the product . is
associative and distributes over +; K contains two distinct elements 0 and 1, 0 is neutral for the addition and
is an annihilator for the product, 1 is neutral for the product. The semiring K is commutative if its product
is. Moreover, we assume that every semiring is endowed with a partial unary operation ∗ (star) such that, for
every x, y in K,

(P) if (x.y)∗ exists, so does (y.x)∗, and (y.x)∗ = 1 + y.(x.y)∗.x;
(S) if x∗, (y.x∗)∗, and (x + y)∗ exist, (x + y)∗ = x∗.(y.x∗)∗.

The domain of this operation always contains 0 and 0∗ = 1. A semiring with a complete star operation is a
Conway semiring [9]. If K is a Conway semiring, for every positive integer n, the semiring of K-matrices with
size n is canonically endowed with a star operation. If n = 1, M∗ = [M∗

1,1], otherwise, for every decomposition
of M , it holds:

M =

⎡
⎣ X Y

Z T

⎤
⎦ =⇒ M∗ =

⎡
⎣ (X + Y · T ∗ · Z)∗ (X + Y · T ∗ · Z)∗ · Y · T ∗

(T + Z · X∗ · Y )∗ · Z · X∗ (T + Z · X∗ · Y )∗

⎤
⎦ ,

where X and T are square matrices. Then, the semiring Kn×n is also Conway (cf. [5]).
The extension of Identity (P) to nonsquare matrices is straighforward:

Lemma 2.1. Let K be a Conway semiring and let m and n be two nonnegative integers. If M is in Km×n and
N is in Kn×m, then (M · N)∗ = Idm + M · (N · M)∗ · N.

2.1. Operations on series

Let K be a semiring and A be an alphabet. A formal power series s in K〈〈A∗〉〉 is a mapping from A∗ to K; for
every word w, we denote 〈s, w〉 the image (or coefficient) of w in s and s is formally denoted as an infinite sum:
s =

∑
w∈A∗〈s, w〉w. The support of a formal power series s is the set of words w such that 〈s, w〉 is different

from zero. A series with a finite support is called a polynomial.
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The set K〈〈A∗〉〉 is naturally endowed with a number of operations:

s + t =
∑

w∈A∗
(〈s, w〉 + 〈t, w〉)w (Sum); s =

∑
w∈A∗

〈s, w〉w (Mirror);

s · t =
∑

w∈A∗

( ∑
u·v=w

〈s, u〉 · 〈t, v〉
)

w (Cauchy product);

s � t =
∑

w∈A∗
(〈s, w〉 · 〈t, w〉)w (Hadamard product).

The algebra (K〈〈A∗〉〉, +, ·) is a semiring; the unit element for the Cauchy product is the constant series 1. The
star operator of this semiring is the Kleene star. It is first defined on proper series:

〈s, ε〉 = 0 =⇒ s∗ =
∑

w∈A∗

( ∞∑
k=0

〈sk, w〉
)

w =
∑

w∈A∗

⎛
⎝ |w|∑

k=0

〈sk, w〉
⎞
⎠w.

It is then extended to series s such that 〈s, ε〉∗ exists; to this end, we consider the proper part sp of s: s =
〈s, ε〉 + sp, and set s∗ = 〈s, ε〉∗(sp · 〈s, ε〉∗)∗.

If K is a Conway semiring, so is the semiring (K〈〈A∗〉〉, +, ·) (cf. [5]). The sum, the Cauchy product and the
Kleene star are called rational operations.

The algebra (K〈〈A∗〉〉, +,�) is also a semiring; the unit element for the Hadamard product is A∗ (actually
the characteristic series of the language A∗). The star in this semiring is the Hadamard iteration which exists
if and only if the star of every coefficient exists; for every word w, 〈s�, w〉 = 〈s, w〉∗. Since every operation is
pointwise, if K is a Conway semiring, so is (K〈〈A∗〉〉, +,�). The sum, the Hadamard product and the Hadamard
iteration are called pointwise operations.

Remark 2.2. The mirror operation commutes with the pointwise operations. Moreover, if K is commutative,
the mirror operation anticommutes with the Cauchy product (s · t = t · s) and commutes with the Kleene star.

2.2. A Hierarchy of series

In this paper, we consider the following hierarchy of series in K〈〈A∗〉〉:
• K〈A∗〉 is the set of polynomials of K〈〈A∗〉〉;
• KRatA∗ is the closure of K〈A∗〉 under rational operations;
• KHadA∗ is the closure of KRatA∗ under pointwise operations2;
• KRHA∗ is the closure of K〈A∗〉 under both rational and pointwise operations.

In the commutative case, KRatA∗ is closed under Hadamard product (cf. [19]), but not under Hadamard
iteration. We also consider KMirRatA∗, KMirHadA∗, and KMirRHA∗, which are the closure by mirror of KRatA∗,
KHadA∗, and KRHA∗ respectively. If the semiring K is commutative or A has only one letter, the closure by
mirror does not create larger families. It can be noticed that KMirHadA∗ is the closure of KMirRatA∗ under
pointwise operations.

Example 2.3. Let A = {a, b} and K be the semiring of rational languages over B = {x, y}. The polynomial
P = {x} a + {y} b is the series that maps a onto {x} and b onto {y}; thus, for every word w, 〈P ∗, w〉 is the
singleton that contains the word wA �→B obtained from w in replacing every a by x and every b by y.

For every word w, 〈(P ∗) � (P ∗), w〉 = (w · w)A �→B , thus (P ∗) � (P ∗) is a series of KHadA∗ which is not
rational.
In [13], it is shown that the series (a + b)∗b(({x}a)∗)�b(a + b)∗ is in KRHA∗ but not in KHadA∗. Notice that in
this last example, K = Rat{x}∗ is commutative.

2 This family is slightly different from the family introduced in [8] of series which are finite sums of series of the form s � t� ,
where s and t are rational series; nevertheless, by results from [8], they coincide on commuttive idempotent semirings.
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3. Weighted two-way automata

Weighted two-way automata are extensions of classical two-way automata. We consider, like for instance
in [4], that, during the computation of two-way automata, the move of the input only depends on the state and
not on the transition. It does not alter the expressivity of the model.

Definition 3.1. Let K be a semiring, A an alphabet and � a special symbol, called endmarker, which does not
belong to A. A two-way K-automaton over A is a tuple (Q+, Q−, A, �, K, E, I, T ), where:

− Q = Q+ ∪ Q− is a finite set of states;
− E : Q × A × Q ∪ Q+ × � × Q− ∪ Q− × � × Q+ −→ K is the transition function;
− I : Q+ −→ K is the initial function, and T : Q+ −→ K is the final function.

States in Q+ are called forward states, states in Q− are backward states. The set of transitions is the support of
E, the set of initial states is the support of I and the set of final states is the support of T . For every transition
e = (p, a, q), λ(e) = a is the label of e, σ(e) = p is the source, and τ(e) = q is the target of e.

A path in such an automaton is a triple π = (p, (ei)i∈[1;k], q), where (ei)i∈[1;k] is a sequence of transitions, and
k is a nonnegative integer, such that, for every i in [2; k], σ(ei) = τ(ei−1). Moreover, if k is positive, σ(e1) = p
and τ(ek) = q; if k = 0, the path is empty and p = q.

At each step of a computation, the head on the input is at a given position; depending on the letter at this
position and on the state, the automaton performs a transition; it then reaches a new state, and, depending on
the nature of the state, respectively forward or backward, the head respectively moves to the left or to the right
before the next step. For each path π = (p, (ei)i∈[1;k], q), the move of the head on the input after each transition
is given by the function δπ : [0; k] → Z inductively defined as:

δπ(0) = 0, ∀i ∈ [1; k], δπ(i) =

{
δπ(i − 1) + 1 if τ(ei) ∈ Q+;
δπ(i − 1) − 1 if τ(ei) ∈ Q−.

The global move of the head after π is δ(π) = δπ(k).
A word w = w1 . . . wn is admissible for a path π = (p, (ei)i∈[1;k], q) at position r in [1; n] if, starting with the

head at position r, the automaton can follow path π. Formally, for every i in [0; k− 1], r + δπ(i) is in [1; n], and
λ(ei+1) = wr+δπ(i).

A word is admissible for a path if it is admissible at some position. If a path admits some admissible words,
there is a shortest one, which is the label of the path.

There are four particular types of non empty paths. Let π = (p, (ei)i∈[1;k], q) be a path with label w =
w1 . . . wn;

− π is forward if p and q are in Q+, w is admissible for π at position 1, and δ(π) = n; thus π reads w starting
from the left end of w, to the right end of w.

− π is backward if p and q are in Q−, w is admissible for π at position n, and δ(π) = −n; thus π reads w
starting from the right end of w, to the left end of w.

− π is backward-turn if p is in Q+, q is in Q−, w is admissible for π at position 1, and δ(π) = −1; thus π reads
w starting from the left end of w and comes back to the left end.

− π is forward-turn if p is in Q−, q is in Q+, w is admissible for π at position n, and δ(π) = 1; thus π reads w
starting from the right end of w and comes back to the right end.

For every backward-turn (resp. forward-turn) path, we say that a word w is strongly admissible if the label of
the path is a prefix (resp. a suffix) of w.

A computation on the word w = w1 . . . wn of A∗ is a path π = (p, (ei)i∈[1;k], q) where p is initial, q is final, �w�
is admissible for π, and the head starts on the first letter of w (which is the second position in the word �w�)
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w w w w

Figure 1. Geometrical representations of paths in a two-way automaton: first and second, a
forward and a backward paths with label w, then a backward-turn and a forward-turn paths
with w as strongly admissible word.
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Figure 2. The two-way Z-automaton A1; p and q are forward states, r is a backward state.
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Figure 3. A computation of A1 on the word abaaba.

and ends on the right endmarker. Formally, the latest condition is equivalent to δ(π) = n.
The weight of a computation π = (p, (ei)i∈[1;k], q) is the product

w(π) = I(p) ·
(

k∏
i=1

E(ei)

)
· T (q).

A word w is accepted by an automaton if there exists a computation on w in this automaton.
Notice that the weight of a computation is computed ”one-way”, like the trace of a two-way computation

defined in [15].

Example 3.2. The two-way Z-automaton of Figure 2 accepts every word. A word w with m blocks of a with
odd lengths and k letters a in these blocks is accepted with a weight equal to (−1)m2k. Figure 3 shows a
computation of this automaton on the word abaaba.
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Definition 3.3. A two-way K-automaton A is valid, if, for every word w, the sum of the weights of the
computations on w is defined. In this case, A realizes a series |A| where, for every word w, 〈|A|, w〉 is the sum
of the weights of the computations on w.

In this paper, we consider some classes of two-way automata.

Definition 3.4. Let A = (Q+, Q−, A, �, K, E, I, T ) be a two-way K-automaton.

• A is one-way if Q− = ∅.
• A is sweeping if every half-turn is labeled by the endmarker: for every transition e, if σ(e) and τ(e) are not

both in Q− or both in Q+, then λ(e) = �.
• A is rotating if it is sweeping and, for every p in Q−, for every letter a, there is a unique transition with

source p and label a; this transition is a loop on p with weight 1.
• A is deterministic if

– it contains at most one initial state,
– for every letter (or endmarker) a and every state p, there is at most one transition e with σ(e) = p and
λ(e) = a,
– for every final state p, there is no transition e with σ(e) = p and λ(e) = �.

• A is simple if for every input, the number of computations is finite.

Obviously, a simple two-way weighted automaton is always valid, without any assumption on the semiring of
weights. It is decidable whether a two-way K-automaton is simple [1], and if K is commutative, every simple
two-way K-automaton realizes a rational series [1] (and, like in the unweighted case, it may be smaller than
equivalent one-way K-automata). Moreover, every unambiguous3 one-way K-automaton can be simulated by a
deterministic two-way K-automaton [6].

4. Two-way representations

The linear representation of a one-way K-automaton maps every word w to a matrix μ(w) such that μ(w)p,q

is the sum of the weights of the path from state p to state q with label w. The matrix μ(w) is the product of
the matrices corresponding to every letter of w. This gives an efficient way to compute the weight of a given
word in such an automaton. We extend this notion in the two-way case.

4.1. A new product of matrices

We first introduce a new product on matrices depending on a decomposition of K-matrices with size m + n:

M =

⎡
⎢⎣

→
M ∈ Km×m

←↩

M ∈ Km×n

↪→
M ∈ Kn×m

←
M ∈ Kn×n

⎤
⎥⎦ ·

Intuitively, such a matrix represents the weight on some parts of computations in a two-way automaton:
→
Mp,q

represents forward paths from p to q,
←
Mp,s backward paths from p to s,

↪→
M r,q forward-turn paths from r to q,

and
←↩

Mr,s backward-turn paths from r to s. If M and N are two matrices in K(m+n)×(m+n), we set:

M sN =

⎡
⎢⎣

→
M · (

←↩

N ·
↪→
M)∗ ·

→
N

←↩

M +
→
M · (

←↩

N ·
↪→
M)∗ ·

←↩

N ·
←
M

↪→
N +

←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

→
N

←
N · (

↪→
M ·

←↩

N)∗ ·
←
M

⎤
⎥⎦ ·

3With only one computation for each accepted input.
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This product, inspired by the definitions made in [4] for two-way finite automata, requires that the star of
matrices is defined; it depends on the pair (m, n), and not only on m + n; if needed, it can be explicitely
precised as M smn N .

To explain the mean of these formulae, we consider the following example. Assume that M (resp. N) represents

computations on the word u (resp. v);
←↩

Mp,q is for instance the sum of the weights of all backward-turn paths

from p to q for which u is strongly admissible. M sN must be defined in such a way that
←−↩

M sNp,q is the sum
of the weights of all backward-turn paths from p to q for which uv is strongly admissible. Let Π be this set of
paths. The label of every path in Π is a prefix of uv; Π can be split into two parts: the paths with label prefix

of u, and the paths with label longer than u. The sum of the paths of the first part is
←↩

Mp,q; every path π in the
second part is the concatenation of paths π0, . . . π2k with k > 0, where π0 is a forward path with label u, for
every i in [0; k− 1], π2i+1 is a backward-turn path for which v is strongly admissible, for every i in [1; k− 1], π2i

is a forward-turn path for which u is strongly admissible, and π2k is a backward path with label u. The sum of
the weights of all the paths of Π with the same decomposition is

→
M ·

(
k−1∏
i=0

←↩

N ·
↪→
M

)
·
←↩

N ·
←
M.

Proposition 4.1. Let K be a Conway semiring and let m and n be two nonnegative integers. The product son
matrices in Km+n×m+n is associative and the unit is the usual identity matrix Idm+n.

Proof. To prove that (M sN) sP = M s(N sP ), we prove that the equality holds for the four blocks of these
matrices.

−−−−−−−−−−→
(M sN) sP =

−→
M sN · (

←↩

P ·
↪−→

M sN)∗ ·
→
P

=
→
M · (

←↩

N ·
↪→
M)∗ ·

→
N · (

←↩

P · (
↪→
N +

←
N · (

↪→
M ·

←↩

N)∗ ·
↪→
M ·

→
N)∗ ·

→
P

=
→
M · (

←↩

N ·
↪→
M)∗ ·

→
N · ((

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N · (

↪→
M ·

←↩

N)∗ ·
↪→
M ·

→
N)∗ · (

←↩

P ·
↪→
N)∗ ·

→
P

=
→
M · (

←↩

N ·
↪→
M)∗ · (

→
N · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗)∗ ·

→
N · (

←↩

P ·
↪→
N)∗ ·

→
P

=
→
M · (

←↩

N ·
↪→
M +

→
N · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

↪→
M)∗ ·

→
N · (

←↩

P ·
↪→
N)∗ ·

→
P

=
→
M · (

←−↩

N sP ·
↪→
M)∗ ·

−→
N sP =

−−−−−−−−−−→
M s(N sP ) ·

←−−−−−−−−−↩
M s(N sP ) =

←↩

M +
→
M · (

←−↩
N sP ·

↪→
M)∗ ·

←−↩
N sP ·

←
M

=
←↩

M +
→
M · [(

←↩

N +
→
N · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N) ·

↪→
M ]∗ · (

←↩

N +
→
N · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N) ·

←
M

=
←↩

M +
→
M · (

←↩

N ·
↪→
M)∗ · [

→
N · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗]∗

· (
←↩

N +
→
N · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N) ·

←
M

=
←↩

M +
→
M · (

←↩

N ·
↪→
M)∗ · [

→
N · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗]∗ ·

←↩

N ·
←
M

+
→
M · (

←↩

N ·
↪→
M)∗ ·

→
N · [(

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

→
N ]∗ · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

←
M

=
←↩

M +
→
M · (

←↩

N ·
↪→
M)∗ ·

←↩

N ·
←
M +

→
M · (

←↩

N ·
↪→
M)∗ ·

→
N

· [(
←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

→
N ]∗ · (

←↩

P ·
↪→
N)∗ ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

←↩

N ·
←
M

+
→
M · (

←↩

N ·
↪→
M)∗ ·

→
N · [

←↩

P ·
↪→
N + ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

→
N ]∗ ·

←↩

P ·
←
N ·

←
M
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=
←−↩

M sN

+
−→

M sN · [
←↩

P ·
↪→
N +

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

→
N ]∗ ·

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

←↩

N ·
←
M

+
−→

M sN · [
←↩

P ·
↪→
N +

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

→
N ]∗ ·

←↩

P ·
←
N ·

←
M

=
←−↩

M sN +
−→

M sN · [
←↩

P ·
↪→
N +

←↩

P ·
←
N ·

↪→
M · (

←↩

N ·
↪→
M)∗ ·

→
N ]∗ ·

←↩

P ·
←
N · (

↪→
M ·

←↩

N)∗ ·
←
M

=
←−↩

M sN +
−→

M sN · (
←↩

P ·
↪−→

M sN)∗ ·
←↩

P ·
←−

M sN =
←−−−−−−−−−↩

(M sN) sP .

Similar computations show that
←−−−−−−−−−−
M s(N sP ) =

←−−−−−−−−−−
(M sN) sP and

↪−−−−−−−−−→
(M sN) sP =

↪−−−−−−−−−→
M s(N sP ) . �

4.2. Definition of two-way representations

Definition 4.2. Let K be a Conway semiring and let A be an alphabet. Let m and n be two nonnegative
integers. A two-way representation over A∗ with dimension m + n is a tuple ρ = (I, μ,♦, T ), where I and T are
vectors in Km, μ is a morphism from A∗ into (K(m+n)×(m+n), s), and ♦ is a matrix in K(m+n)×(m+n) such that
→
♦ = Idm and

←
♦ = 0.

The series realized by ρ is the series |ρ| defined by

|ρ| =
∑

w∈A∗

(
I ·
−−−−−−−−−−→
♦ sμ(w) s♦ · T

)
w.

A series is two-way K-recognizable if it can be realized by a two-way K-representation.

For every word w,
→
μ is the application which maps w on

−→
μ(w); the applications

←↩
μ ,

↪→
μ and

←
μ are defined likewise.

Example 4.3. We consider a two-way representation of a randow walk on the input. This example comes
from [2]. Let ρ = (I, μ,♦, T ) be the two-way (Q+ ∪ {∞})-representation over {a}∗ with size 1 + 1 defined by:

I = [1], T = [1], ♦ =
[

1 0
0 0

]
, μ(a) =

[
1/2 1/2
1/2 1/2

]

Hence, the weight of an in |ρ| is equal to
→
μ(an) for every n. By induction, for every n,

→
μ(an) = [1/(n + 1)]

and
←↩
μ (an) = [n/(n + 1)]. Therefore, |ρ| =

∑
k�0

ak

k + 1
. This series is not in QRata∗; by [18], it is even not in the

closure by the Hadamard product. Nevertheless, it belongs to QHada∗:

|ρ| =
(
a∗ −

(a

2

)∗
·
(a

2

)∗)�
�
(a

2

)∗
·

4.3. Effective computation

We describe here an algorithm to compute the coefficient of a word w = w1 . . . wk in |ρ|, close to
the one presented in [12] for the evaluation in pebble weighted automata. For every i in [0; k], we set

Xi = I, . . . ,
−−−−−−−−−−→

♦ sμ(w1, . . . , wi) and Yi =
↪−−−−−−−−−→

♦ sμ(w1, . . . , wi). It holds{
X0 = I,

Y0 =
↪→
♦ ,

∀i ∈ [1; k],

{
Xi = Xi−1 · (←↩

μ (wi) · Yi−1)∗ ·→μ(wi),
Yi =

↪→
μ (wi) +

←
μ(wi) · Yi−1 · (←↩

μ (wi) · Yi−1)∗ ·→μ(wi).
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←
μ (wi)

m × n

Yi−1
n × m

· m2n

∗ m3 (+ m star operations)Xi−1
1 × m

·m2
→
μ(wi)
m × m

·m2

Yi−1
n × m

· m2n

· m2n

Xi Yi

Figure 4. Evaluation scheme of Xi and Yi.

The complexity of the computation of (Xk, Yk) depends on the complexity of the operations in the semiring K;
usually, the addition is less expensive than the multiplication and the star; moreover, the star of a matrix of
size n can be computed with O(n3) multiplications and O(n) star operations(for instance with the McNaughton-
Yamada algorithm [14]). Notice that we consider the naive algorithm for the multiplication of matrices: for
every m, n, r, the multiplication of M in Km×r and N in Kr×n can be performed with O(mnr) multiplications.
We evaluate the complexity of each step of the induction. Assume that ρ is a representation with size m+n; for
every i, Xi is a vector of size m and Yi is a matrix of size n × m. Figure 4 shows the evaluation scheme for Xi

and Yi, with the cost of each operation. Moreover, if n is negligible w.r.t. m, (
←↩
μ (wi) · Yi−1)∗ = Id +

←↩
μ (wi) ·

(Yi−1 · ←↩
μ (wi))∗ · Yi−1 can be computed with O(m2n) multiplications and O(n) star operations. Finally, since

〈|ρ|, w〉 = Xk · (
←↩

♦ · Yk)∗ · T , we obtain:

Proposition 4.4. Let ρ be a two-way representation of size m + n. The coefficient of a word of length k in |ρ|
is computed with O(km2n) multiplications and O(k min(m, n)) star operations.

4.4. Representation of a two-way automaton.

Definition 4.5. Let K be a Conway semiring and let A = (Q+, Q−, A, �, K, E, I, T ) be a two-way K-
automaton. The representation of A, with dimension Q+ + Q−, is ρ = (I, μ,♦, T ) defined by:

∀a ∈ A, ∀(p, q) ∈ Q × Q, μ(a)p,q = E(p, a, q)
∀(p, q) ∈ Q+ × Q− ∪ Q− × Q+, ♦p,q = E(p, �, q).

In the case where K is the Boolean semiring, the monoid M generated by {μ(a) | a ∈ A∗} (with sas product)
is the (finite) transition monoid of the two-way automaton, defined in [3]; μ is a morphism from A∗ into M,

and the language accepted by the automaton is μ−1(P ), with P = {M ∈ M | I ·
−−−−−−−→
♦ sM s♦ ·T = 1}. It is a proof

of the classical result [17, 21]: languages accepted by two-way finite automata are recognizable languages.
In general, the Conway properties do not tell how the sum of the weights of all computations on a given

word can be computed in the two-way automaton. Hence, the computations made with the representation do
not imply that the two-way automaton is valid. In Section 7, we describe a framework where the star and the
infinite sums are related and where two-way representations and two-way automata are equivalent models.

The following classes of two-way K-representations correspond to classes defined for two-way K-automata
above.
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Definition 4.6. Let ρ = (I, μ,♦, T ) be a two-way K-representation of size m + n.

• ρ is sweeping if for every letter a,
←↩
μ (a) = 0 and

↪→
μ (a) = 0.

• ρ is rotating if it is sweeping and, for every letter a,
←
μ(a) = Id.

• If n = 0, ρ is one-way. In this case, ♦ can be ignored and the representation is a linear K-representation, as
defined in [11]. By the Kleene–Schützenberger Theorem [20], a series over A∗ can be realized by a one-way
K-representation if and only if it is in KRatA∗.

4.5. Closure properties

Like in the case of linear (one-way) representations, the set of series realized by two-way representations is
closed by a number of operations.

Proposition 4.7. The set of series realized by two-way (resp. sweeping, resp. rotating) K-representations is
closed under the pointwise operations.

Proof. The following constructions realize the pointwise operations; they clearly preserve the sweeping and the
rotating properties.

Let ρi = (Ii, μi, ♦i, Ti) be a representation of size mi + ni, for i in {1, 2}.
The sum |ρ1| + |ρ2| is realized by this representation with size (m1 + m2) + (n1 + n2):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝
[

I J
]
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

→
μ1 0

0
→
μ2

←↩
μ1 0

0
←↩
μ2

↪→
μ1 0

0
↪→
μ2

←
μ1 0

0
←
μ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id

←↩

♦1 0

0
←↩

♦2

↪→
♦1 0

0
↪→
♦2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎣T1

T2

⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Hadamard product |ρ1| � |ρ2| is realized by this representation with size (m1 + m2) + (n1 + 1 + n2):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
[

I1 0
]
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

→
μ1 0

0
→
μ2

←↩
μ1 0 0

0 0
←↩
μ2

↪→
μ1 0
0 0

0
↪→
μ2

←
μ1 0 0
0 1 0

0 0
←
μ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Id

←↩

♦1 T1 0

0 0
←↩

♦2

↪→
♦ 1 0

0 I2

0
↪→
♦2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎣ 0

T2

⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Hadamard iteration |ρ1|� is realized by this representation with size (1 + m1) + (n1 + 1):

ρ� =

⎛
⎜⎜⎜⎜⎜⎜⎝
[

1 I1

]
,

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0

0
→
μ1

0 0
←↩
μ1 0

0
↪→
μ1

0 0

←
μ1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

Id
0 0
←↩

♦1 T1

0
↪→
♦1

0 I1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

[
1

T1

]
⎞
⎟⎟⎟⎟⎟⎟⎠

.

The correctness of the construction for the sum is straighforward. The proof of the correctness of the construc-
tion for the Hadamard product is similar to the proof for the Hadamard iteration that we detail here. Let
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ρ� = (I�, μ�, ♦�, T�). We prove by induction that, for every word w,

I� ·
−−−−−−−→
♦� sμ�(w) =

[
1 I1 ·

−−−−−−−→
♦1 sμ1(w)

]
,

↪−−−−−−→
♦� sμ�(w) =

⎡
⎣ 0

↪−−−−−−→
♦1 sμ1(w)

0 I ·
−−−−−−−→
♦1 sμ1(w)

⎤
⎦ .

It is true if w if the empty word, and, if it is true for w, for every letter a:

(
←↩
μ�(a) ·

↪−−−−−−→
♦� sμ�(w))∗ · →μ�(a)

=

⎛
⎝[ 0 0

←↩
μ 1(a) 0

]
·
⎡
⎣ 0

↪−−−−−−→
♦1 sμ1(w)

0 I1 ·
−−−−−−−→
♦1 sμ1(w)

⎤
⎦
⎞
⎠
∗

.

[
1 0

0
→
μ1(a)

]

=

[
0 0

0
←↩
μ 1(a) ·

↪−−−−−−→
♦1 sμ1(w)

]∗
.

[
1 0

0
→
μ1(a)

]

=

[
1 0

0 (
←↩
μ 1(a) ·

↪−−−−−−→
♦1 sμ1(w))∗ ·→μ1(a)

]
.

I�.
−−−−−−−→

♦� sμ�(wa) =
[

1 I1.
−−−−−−−→
♦1 sμ1(w)

]
.

[
1 0

0 (
←↩
μ 1(a) ·

↪−−−−−−→
♦1 sμ1(w))∗ ·→μ1(a)

]

=
[

1 I1 ·
−−−−−−−→
♦1 sμ1(w) · (←↩

μ 1(a) ·
↪−−−−−−→
♦1 sμ1(w))∗ ·→μ1(a)

]
=
[

1 I1 ·
−−−−−−−→

♦1 sμ1(wa)
]
.

↪−−−−−−→
♦� sμ�(wa)

=

[
0

↪→
μ 1(a)

0 0

]
+

⎡
⎣ 0

←
μ1(a) ·

↪−−−−−−→
♦1 sμ1(w)

0 I1 ·
−−−−−−−→
♦1 sμ1(w)

⎤
⎦ .

[
1 0

0 (
←↩
μ 1(a) ·

↪−−−−−−→
♦1 sμ1(w))∗ ·→μ1(a)

]

=

⎡
⎣ 0

↪→
μ 1(a) +

←
μ1(a) ·

↪−−−−−−→
♦1 sμ1(w) · (←↩

μ 1(a) ·
↪−−−−−−→
♦1 sμ1(w))∗ ·→μ1(a)

0 I1 ·
−−−−−−−→
♦1 sμ1(w) · (←↩

μ 1(a) ·
↪−−−−−−→
♦1 sμ1(w))∗ ·→μ1(a)

⎤
⎦

=

⎡
⎣ 0

↪−−−−−−→
♦1 sμ1(wa)

0 I ·
−−−−−−−→

♦1 sμ1(wa)

⎤
⎦ .

We then compute (
←↩

♦� ·
↪−−−−−−→

♦� sμ�(w))∗:

⎛
⎝
[

0 0
←↩

♦1 T1

]
.

⎡
⎣ 0

↪−−−−−−→
♦1 s1 μ(w)

0 I1 ·
−−−−−−−→
♦1 sμ1(w)

⎤
⎦
⎞
⎠
∗

=

[
1 0

0 (
←↩

♦1 ·
↪−−−−−−→
♦1 sμ1(w) + T1 · I1 ·

−−−−−−−→
♦1 sμ1(w))∗

]

=

[
1 0

0 (
←↩

♦1 ·
↪−−−−−−→
♦1 sμ1(w))∗ · (T1 · I1 ·

−−−−−−−→
♦1 sμ1(w) · (

←↩

♦1 ·
↪−−−−−−→
♦1 sμ1(w))∗)∗

]
·
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Thus, (I� ·
−−−−−−−→
♦� sμ�(w)) · (

←↩

♦� ·
↪−−−−−−→

♦� sμ�(wa))∗ · T� is equal to

[
1 I1 ·

−−−−−−−→
♦1 sμ1(w)

]
.

⎛
⎝
[

0 0
←↩

♦1 T1

]
.

⎡
⎣ 0

↪−−−−−−→
♦1 sμ1(w)

0 I1 ·
−−−−−−−→
♦1 sμ1(w)

⎤
⎦
⎞
⎠
∗

.

[
1

T1

]

=1 + I1 ·
−−−−−−−→
♦1 sμ1(w) · (

←↩

♦1 ·
↪−−−−−−→
♦1 sμ1(w))∗ · (T1 · I1 ·

−−−−−−−→
♦1 sμ1(w) · (

←↩

♦1 ·
↪−−−−−−→
♦1 sμ1(w))∗)∗ · T1

=1 + I1 ·
−−−−−−−→
♦1 sμ1(w) · (

←↩

♦1 ·
↪−−−−−−→
♦1 sμ1(w))∗ · T1 · (I1 ·

−−−−−−−→
♦1 sμ1(w) · (

←↩

♦1 ·
↪−−−−−−→
♦1 sμ1(w))∗ · T1)∗

=1 + 〈|ρ1|, w〉 · 〈|ρ1|, w〉∗ = 〈|ρ1|, w〉∗ = 〈|ρ1|�, w〉,

which is the coefficient of w in |ρ�|. �

Proposition 4.8. The set of series realized by two-way (resp. sweeping) K-representations is closed under
mirror.

Let ρ = (I, μ,♦, T ) be a two-way representation of size m + n. The following two-way representation with size
(n + 2) + m realizes the mirror of |ρ|.

⎛
⎜⎜⎜⎜⎜⎝
[

1 0 0
]
,

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0
←
μ 0

0 0 1

0
↪→
μ

0

0
←↩
μ 0

→
μ

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

Id

I
↪→
♦
0

0
←↩

♦ T 0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎣

0

0
1

⎤
⎥⎦
⎞
⎟⎟⎟⎟⎟⎠ .

This construction preserves the sweeping property.
From Propositions 4.7 and 4.8, it comes:

Proposition 4.9. Let K be a Conway semiring and A an alphabet.
Every series in KHadA∗ can be realized by a rotating K-representation.
Every series in KMirHadA∗ can be realized by a sweeping K-representation.

We shall see further that two-way recognizable series are not closed under Cauchy product and Kleene star.
Nevertheless, they are closed under left (and right) quotients:

Proposition 4.10. Let ρ = (I, μ,♦, T ) be a two-way K-representation and let w be a word. Then, the

series w−1|ρ| =
∑

v∈A∗〈|ρ|, wv〉v is realized by the two-way K-representation (I ·
−−−−−−−→
♦ sμ(w) , μ, ♦′, T ), with

↪→
♦′ =

↪−−−−−−→
♦ sμ(w) , and

←↩

♦′ =
←↩

♦ .

Proof. For every word v,
−−−−−−−→
μ(v) s♦′ =

→
μ(v) · (

←↩

♦′ · ↪→μ (v))∗ =
−−−−−−−→
μ(v) s♦ , and

←−−−−−−↩
μ(v) s♦′ =

←↩
μ (v)+

→
μ(v) · (

←↩

♦′ · ↪→μ (v))∗ ·
←↩

♦′ ·←μ(v) =
←−−−−−−↩

μ(v) s♦ , hence

I ·
−−−−−−−→
♦ sμ(w) ·

−−−−−−−−−−→
♦′ sμ(v) s♦′ · T = I ·

−−−−−−−→
♦ sμ(w) · (

←−−−−−−↩
μ(v) s♦′ ·

↪→
♦′)∗ ·

−−−−−−−→
μ(v) s♦′ · T

= I ·
−−−−−−−→
♦ sμ(w) · (

←−−−−−−↩

μ(v) s♦ ·
↪−−−−−−→
♦ sμ(w) )∗ ·

−−−−−−−→
μ(v) s♦ · T

= I ·
−−−−−−−−−−→

♦ sμ(w) sμ(v) s♦ · T = 〈w−1|ρ|, v〉· �



TWO-WAY REPRESENTATIONS AND WEIGHTED AUTOMATA 343

5. Two-way-recognizable series as fixed points

In the case of one-way K-automata, if M is the transition matrix of an automaton with final vector T , and X
is the vector with entry in K〈〈A∗〉〉 such that Xp is the series realized if p is the initial state (with weight 1), X
fulfills the fixed-point equation X = T +M ·X. If each entry of M is a linear combination of letters, S = M∗ ·T
is the unique solution of the equation, and thus the series realized by the automaton is I · M∗ · T , where I is
the initial vector. This is the foundation of algorithms that convert one-way automata to rational expressions.

We set a similar equation for two-way representations. We consider the matrix algebras respectively induced
by the Cauchy and the Hadamard products of series. We use the same symbol to denote the product of matrices
as the product of scalars. Notice that M � N is not the Hadamard (entrywise) product of matrices. More
precisely,

∀M ∈(K〈〈A∗〉〉)m×k, N ∈ (K〈〈A∗〉〉)k×n, ∀(i, j) ∈ [1; m] × [1; n]

(M · N)i,j =
k∑

h=1

Mi,h · Nh,j , and (M � N)i,j =
k∑

h=1

Mi,h � Nh,j .

Let A∗n be the diagonal matrix with entries A∗ (the dimension may be omitted); it is the unit for the matrix
product involving the Hadamard product of series. We use these algebras to characterize series realized by a
two-way K-representation as fixed-points.

Theorem 5.1. Let K be a Conway semiring. Let ρ = (I, μ,♦, T ) be a two-way K-representation and let M =∑
a∈A μ(a)a. Then |ρ| = I · (X0 ·

↪→
♦)� � Y0, where (X0, Y0) is the unique solution of the system

⎧⎨
⎩X =

←↩

♦ +
←↩

M · A∗ + (
→
M · X) � (

↪→
M · X)� � (

←
M · A∗),

Y = T +
→
M · Y + (

→
M · X) � (

↪→
M · X)� � (

↪→
M · Y ).

(5.1)

In equation (5.1), X comes from the inductive description of backward-turn paths, and Y from the inductive
description of forward paths to final states. For instance, starting from a given state, a forward path (contributing

to Y ) is either the empty path (term T ), or a forward transition followed by a forward path (
→
M · Y ), or a path

where the head comes back (potentially many times) at the first position (last term). The move of the head to
the right is reflected by the Cauchy product; the fact that when the head is at the same position, it must read
the same letter is reflected by the Hadamard product.

Proof. Assume first that there exists a solution (X0, Y0). We prove that (X0, Y0) = (
←↩

S ,
→
S · T ), with S =∑

w∈A∗
(μ(w) s♦)w. We first prove by induction that X0 =

←↩

S . The matrix M is proper, hence 〈X0, ε〉 =
←↩

♦ =

←−−−−−−↩

μ(ε) s♦ . Let w be a word such that 〈X0, w〉 =
←−−−−−−↩

μ(w) s♦ . Then, for every letter a,

〈X0, aw〉 = 〈
←↩

M · A∗, aw〉 + 〈
→
M · X0, aw〉 · 〈

↪→
M · X0, aw〉∗ · 〈

←
M · A∗, aw〉

= 〈
←↩

M, a〉 + 〈
→
M, a〉 · 〈X0, w〉 · (〈

↪→
M, a〉 · 〈X0, w〉)∗ · 〈

←
M, a〉

=
←↩
μ (a) +

→
μ(a) ·

←−−−−−−↩

μ(w) s♦ · (↪→
μ (a) ·

←−−−−−−↩
μ(w) s♦ )∗ ·←μ(a)

=
←−−−−−−−−−↩

μ(a) sμ(w) s♦ =
←−−−−−−↩
μ(aw) s♦ = 〈

←↩

S , aw〉.
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Likewise, we prove by induction that Y0 =
→
S · T . It is then easy to check that (

←↩

S ,
→
S · T ) is actually a solution

to the system. Finally, for every word w,

〈I · (X0 ·
↪→
♦)� � Y0, w〉 = I · (

←−−−−−−↩

μ(w) s♦ ·
↪→
♦)∗ ·

−−−−−−−→
μ(w) s♦ · T

= I ·
→
♦ · (

←−−−−−−↩

μ(w) s♦ ·
↪→
♦)∗ ·

−−−−−−−→
μ(w) s♦ · T = I ·

−−−−−−−−−−→
♦ sμ(w) s♦ · T . �

Theorem 5.1 is an implicit characterization of the series realized by a two-way representation. Unfortunately,
equation (5.1) is not easy to solve (and does not always accept solutions in KRHA∗). In the next section, we
solve it in the particular case of sweeping representations.

6. Rotating and sweeping representations

In this section, we characterize series realized by rotating and sweeping representations and we show that
they can be denoted by explicit expressions involving rational, pointwise and mirror operators.

Proposition 6.1. If ρ = (I, μ,♦, T ) is a rotating K-representation,

|ρ| = I · (→M∗
·
←↩

♦ ·
↪→
♦
)� �

→
M
∗
· T, with M =

∑
a∈A

μ(a)a.

Proof. Since ρ is rotating, equation (5.1) reduces to X =
←↩

♦ +
→
M ·X, Y = T +

→
M ·Y. The solution of this system

is (X0, Y0) = (
→
M
∗
·
←↩

♦ ,
→
M
∗
· T ). �

Proposition 6.2. If ρ = (I, μ,♦, T ) is a sweeping K-representation,

|ρ| = I · ((→M∗
·
←↩

♦) � (
←
M
∗
·

↪→
♦)
)� �

→
M
∗
· T, with M =

∑
a∈A

μ(a)a.

Proof. Since ρ is sweeping, equation (5.1) reduces to

X =
←↩

♦ + (
→
M · X) � (

←
M · A∗), Y = T +

→
M · Y.

It immediatly comes Y =
→
M
∗
· T , and we prove by induction on the length of words that, for every word w,

〈X, w〉 = 〈(
→
M
∗
·
←↩

♦) �
←
M
∗
, w〉.

It is true when w = ε (
→
M and

←
M are proper), and if it is true for a word w, then, for every letter a,

〈X, aw〉 =〈
←↩

♦ + (
→
M · X) � (

←
M · A∗), aw〉 = 〈

→
M, a〉 · 〈X, w〉 · 〈

←
M, a〉

= 〈
→
M, a〉 · 〈(

→
M
∗
·
←↩

♦) �
←
M
∗
, w〉 · 〈

←
M, a〉

= 〈
→
M, a〉 · 〈

→
M
∗
, w〉 ·

←↩

♦) · 〈
←
M
∗
, w〉 · 〈

←
M, a〉

= 〈
→
M
∗
, aw〉 ·

←↩

♦) · 〈
←
M
∗
, aw〉 = 〈(

→
M
∗
·
←↩

♦) �
←
M
∗
, aw〉.

Finally, X = (
→
M
∗
·
←↩

♦) �
←
M
∗
. The proposition follows then by Theorem 5.1. �

Since the star of matrices can be effectively computed by the usual formulae, these propositions state that, for
rotating and sweeping representations, an explicit expression (involving rational, pointwise and mirror operators)
representing the realized series can be computed.

The following theorem results from Propositions 4.9, 6.1, and 6.2.
Theorem 6.3. Let K be a Conway semiring. A series can be realized by a rotating K-representation if and only
if it is in KHadA∗. A series can be realized by a sweeping K-representation if and only if it is in KMirHadA∗.
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7. Two-way automata over rationally additive semirings

7.1. Equivalence between Automata and representations

We consider now rationally additive semirings introduced in [10], and we prove in this framework the equiv-
alence between two-way weighted automata and two-way representations.

Definition 7.1. [10] A semiring K is a rationally additive semiring if it is equipped with an operator
∑

defined
on some countable families such that, for every countable set I and every family s in KI ,

(1) if I is finite,
∑

i∈I si exists and is the sum of elements of s;
(2) for every element x of K,

∑
i∈N

xi exists and x∗ is defined as x∗ =
∑

i∈N
xi;

(3) for every element x of K, if
∑

s exists, so do
∑

i∈I x · si and
∑

i∈I si · x, and

∑
i∈I

x · si = x · (
∑

s) and
∑
i∈I

si · x = (
∑

s) · x;

assume that I is the disjoint union of sets (Ij)j∈J ;
(4) if for every j in J , rj =

∑
i∈Ij

si exists, and
∑

j∈J rj exists, then
∑

s exists and
∑

s =
∑

j∈J rj ;
(5) if for every j in J , rj =

∑
i∈Ij

si exists, and
∑

s exists, then
∑

j∈J rj exists and
∑

j∈J rj =
∑

s.

Example 7.2. Many positive semirings are rationally additive or can be completed to be rationally additive,
for instance N ∪ {∞}, Q+ ∪ {∞}, (N ∪ {∞}, min, +), the regular languages, every complete lattice, or every
positive finite semiring. Nevertheless, many current semirings are not rationally additive. For instance, no ring
is a rationally additive semiring (there is no consistent definition of the star of −1). The study of two-way
automata and representions in semirings that are not rationally additive requires further investigation. Specific
cases have already been studied: Z in [1], or (Z ∪ {∞}, min, +) in [7].

Proposition 7.3 ([10], Prop. 4). A rationally additive semiring is a Conway semiring.

This means that, in rationally additive semirings, the combinatorial approach of star (as sum of powers) and
the axiomatic approach meet. As a consequence, we show that, in this framework, the combinatorial description
of series by two-way automata is equivalent to the algebraic description by two-way representations.

Proposition 7.4. Let K be a rationally additive semiring, and let ρ = (I, μ,♦, T ) be the representation of a
two-way K-automaton A = (Q+, Q−, A, �, K, E, I, T ). Let w = w1 . . . wn be a non empty word of A∗; let p, q in
Q+ and r, s be in Q−. We consider the four following sets:

− F (w)p,q is the set of forward paths from p to q with label w,
− B(w)r,s is the set of backward paths from p to q with label w,
− BT (w)p,s is the set of backward-turn paths from p to q where w is strongly admissible,
− FT (w)r,q is the set of forward-turn paths from p to q where w is strongly admissible.

Then, for each of these sets, the sum of the weights of the paths exists and

∑
π∈F (w)p,q

w(π) =
→
μ(w)p,q,

∑
π∈BT (w)p,s

w(π) =
←↩
μ (w)p,s,

∑
π∈FT (w)r,q

w(π) =
↪→
μ (w)r,q ,

∑
π∈B(w)r,s

w(π) =
←
μ(w)r,s.
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Proof. The proof is by induction on the length of w. If n = 1, each set is either empty and there is no transition
from p to q with label a in A, or it is the singleton that contains the transition in A between the two states
with label w. The equalities are therefore true by Definition 4.5.

We assume that the proposition is true for every w of length at most n. Let w = ua where u is a word with
length n and a is a letter. For every path π = (p, (ei)i∈[1;k], q) in F (w)p,q, we set Rπ = {i ∈ [1; k−1] | δπ(i) = n}.
Let F (w)(t)p,q = {π ∈ F (w)p,q | |Rπ| = t}; obviously F (w)p,q =

⋃
t∈N

F (w)(t)p,q.
We consider now the (partial) operation of concatenation of paths: if (p, π = (ei)i∈[1;k], q) and ζ =

(r, (fi)i∈[1;�], s) are two paths with q = r, then π · ζ is the path from p to s resulting from the concatention of
the two sequences. This operation extends to sets of paths.

We can now decompose the paths in F (w)(t)p,q :

F (w)(t)p,q =
⋃

r1,...,rt∈Q+,
s1,...,st−1∈Q−

F (u)p,r1 · BT (a)r1,s1 · FT (u)s1,r2 . . . FT (u)st−1,rt · F (a)rt,q.

By induction hypothesis, the sum of the weights in each of these sets is defined, hence, by ([10], Prop. 3), the
sum of the weights of paths in F (w)(t)p,q is defined and∑

π∈F (w)
(t)
p,q

w(π) =
∑

r1,...,rt∈Q+,
s1,...,st−1∈Q−

→
μ(u)p,r1 ·←↩

μ (a)r1,s1 ...
↪→
μ (u)st−1,rt ·→μ(a)rt,q

=
(→

μ(u) · (←↩
μ (a) · ↪→

μ (u)
)t−1 ·→μ(a)

)
p,q

. (7.1)

By ([10], Thm. 9), if K is a rationally additive semiring, so is the semiring of matrices Km×m for every m.
Therefore, the sum over t of

(←↩
μ (a) · ↪→

μ (u)
)t is defined. Hence, by the fourth axiom of rationally additive

semirings, the sum of the weights of paths in F (w) exists and∑
π∈F (w)p,q

w(π) =
(→

μ(u) · (←↩
μ (a) · ↪→

μ (u)
)∗→

μ(a)
)

p,q
=
→
μ(ua)p,q.

We define now BT (w)(t)p,s in a similar way, and we can decompose BT (w)(t)p,s:
BT (w)(0)p,s = BT (u)p,s and for every positive t,

BT (w)(t)p,s =
⋃

q1,...qt∈Q+,
r1,...rt∈Q−

F (u)p,q1 · BT (a)q1,r1 · FT (u)r1,q2 . . . BT (a)qt,rt · B(u)rt,s.

By the same arguments, the sum of the weights of paths in BT (w)(t)p,q exists and∑
π∈BT (w)

(t)
p,s

w(π) =
(→

μ(u) · (←↩
μ (a) · ↪→

μ (u)
)t−1 ·←↩

μ (a) ·←μ(u)
)

p,s
.

Finally, we get ∑
π∈BT (w)p,s

w(π) =
←↩
μ (u)p,s +

(→
μ(u) · (←↩

μ (a) · ↪→
μ (u)

)∗ ·←↩
μ (a) ·←μ(u)

)
p,s

=
←↩
μ (ua)p,s.

The proof is similar for FT (w)r,q and B(w)r,s. �

Theorem 7.5. Let A be a weighted two-way automaton over a rationally additive semiring. Then, the automa-
ton A is valid and the series realized by A is the same as the series realized by the representation of A.
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Proof. The proof is similar to the proof of Proposition 7.4. Let w = w1 . . . wn be a word in A∗; for every pair
of states p, q in Q+, let S(w)p,q be the set of paths π = (ei)i∈[1;k] from p to q such that �w is admissible for π
at position 2 (the first position of w) and δ(π) = n; like in the proof of Proposition 7.4, we show that the sum
of the weights of S(w)p,q exists and is equal to (♦ sμ(w))p,q .

Likewise, if p is in Q− and q in Q+, we set S(w)p,q as the set of forward-turn paths π from p to q such that
�w is admissible for π at the last position, and δ(π) = 1; the sum of the weights of these paths is equal to
(♦ sμ(w))p,q .

Finally, for every pair of states p, q in Q+, let C(w)p,q be the set of computations π from p to q; let Rπ =
{i ∈ [1; k − 1] | δπ(i) = n} and, for every t, let C(w)(t)p,q = {π ∈ C(w)p,q | |Rπ | = t}. Then, for every t,

C(w)(t)p,q =
⋃

r1,...rt∈Q+,
s1,...st∈Q−

S(w)p,r1 · fr1,s1S(w)s1,r2 ...frt,stS(w)st,q,

where every fri,si is a transition with label �. Hence, by the same arguments as in the proof of Proposition 7.4,
the sum of the weights of the paths in C(w)p,q exists and

∑
π∈C(w)p,q

w(π) = (
−−−−−−−→
♦ sμ(w) · (

←↩

♦ ·
↪−−−−−−→
♦ sμ(w) )∗)p,q = (

−−−−−−−−−−→
♦ sμ(w) s♦ )p,q.

The sum of the weights of the computations with label w that start in an initial state p and end in a final state

q is therefore Ip ·
−−−−−−−−−−→
♦ sμ(w) s♦ · Tq.

Finally, the sum of the weights of the computations of A with label w exists and

〈|A|, w〉 = I ·
−−−−−−−−−−→
♦ sμ(w) s♦ · T · �

7.2. Non closure properties

In this part, we first prove that two-way recognizable series are in general not closed under Cauchy product
or the Kleene star.

Proposition 7.6. The set of two-way recognizable series is not closed under Cauchy product or Kleene star.

The proof is based on the following example.

Example 7.7. Let K = P({x, y}∗). We consider the series r =
∞∑

k=0

(xkyk)ak.

This series can be realized by a sweeping two-way K-automaton. We consider now

r · r =
∞∑

k=0

k∑
i=0

(xiyixk−iyk−i)ak.

Assume that r·r is realized by a two-way automaton A with n states. Let m be a positive integer; we consider the
computations with label am; we first prove that for every output w = xiyixm−iym−i there exists a computation
π = (p, (er)r∈[1;k], q) with this output such that the transition ed that outputs the last y of the first block of y’s
satisfies min(δπ(d), m − δπ(d)) � 2n2: in this run, the last y of the first block of y’s is produced when the head
is “close” (independently from m and i) to the left or the right end of the input.

For w = xiyixm−iym−i fixed, we consider a computation π = (p, (er)r∈[1;k], q) with output w such that
Δ = min(δπ(d), m− δπ(d)) is minimal, where d is the index of the transition which output the last y; among all
candidates, we chose a computation with minimal length. If Δ � 2n2, our assumption holds. Otherwise, d is in
[2n2 + 1; k− 2n2]. Every subpath of length n contains a circuit (with positive length), i.e. a subpath that starts
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and ends in the same state. Thus, the path (er)r∈[d−n2;d−1] (resp. (er)r∈[d+1;d+n2]) contains n non-overlapping
circuits (cj)j∈[1;n] (resp. (c′j)j∈[1;n]) of length at most n. We denote δ(cj) = δcj(lj), where lj is the length of cj .
δ(cj) (resp. δ(c′j)) is not null, otherwise we could build a shorter computation by removing it. Notice also that
δ(cj) (resp. δ(c′j)) is in [−n; n].

First case, if there exists j and j′ such that δ(cj) · δ(c′j′ ) < 0, the insertion of |δ(c′j′)| instances of circuit cj

immediatly after cj and |δ(cj)| instances of circuit c′j′ immediatly after c′j′ in π leads to a computation with label
am where the position of the head on the input is shifted of δ(cj)|δ(c′j′ )| for every transition occuring between
circuits cj and c′j . Since Δ > 2n2, for every transition er, with r in [d − n2, d + n2], it holds δπ(r) > n2, hence
the shift preserves the admissibility of the computation. Notice that the output of cj and c′j′ is necessarily the
empty word, otherwise, we build a computation with an output which is not consistent with r. This insertion
can be iterated while the transition that outputs the last y of the first block is more than 2n2 far away from
one end of the input.

Second case, if all circuits correspond to a move in the same direction, we use the following combinatorial
lemma: if (aj)j∈[1;n] and (bj)j∈[1;n] are two vectors of integers in [1;n], there exist J and J ′ non empty subsets
of [1; n] such that

∑
j∈J aj =

∑
j∈J′ bj . Hence, there exist J and J ′ such that the sum of (δ(cj))j∈J is equal

to (δ(c′j))j∈J′ . Another computation can be built from π in removing circuits in {cj | j ∈ J} and inserting
another copy of each circuit in {c′j | j ∈ J ′} next to the first occurence. The position of the head on the input
for the transition that outputs the last y of the first block is shifted of −∑j∈J aj . If circuits in {c′j | j ∈ J ′}
are removed and circuits in {cj | j ∈ J} are inserted, we get another computation with a shift in the other
direction. This proves that π is not minimal and leads to a contradiction.

We have stated that, for every i in [1; m] there exists a computation πi on input am such that the position of
the head on the transition that ouputs the last y of the first block is at most 2n2 far away from one end of the
input. Hence, if m is larger than 4n3 there exist at least two distinct i and i′ such that the head is at the same
position and the automaton is in the same state at this step of the computation. Hence, there is a computation
that begins as πi and ends as πi′ and outputs xiyixm−i′ym−i′ , which is in contradiction with the fact that A
realizes r · r.

Likewise r∗ can not be realized by a two-way automaton A.

Proposition 7.8. Let A and B be two alphabets, let ϕ be a length-preserving morphism from A∗ into B∗, and
let ρ be a two-way representation over A∗. Then

ϕ(|ρ|) =
∑

w∈A∗
〈|ρ|, w〉ϕ(w)

is not necessarily two-way recognizable.

Proof. We use the same example; let r′ be the following series over A∗ = {a, b}∗ with coefficients in P({x, y}∗):

r′ = 1 +
∞∑

k=0

∞∑
h=0

(xk+1yk+1xhyh)akbah.

This series is two-way recognizable, but the morphism that maps both a and b onto a sends r′ to r · r which is
not recognizable. �

8. Q as counterexample

In the field Q, the sum of powers of x exists if and only if x is in ] − 1; 1[, and in this interval, x∗ = 1
1−x .

Thus Q is not a Conway semiring. The two following examples show that, in general, the results of our paper
does not provide any conversion

• from a valid weighted two-way automaton to a consistent two-way representation;
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1
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1
2a

Figure 5. The sweeping Q-automaton A2 and the two-way Q-automaton A3.

• from an expression describing a series in KHadA∗ to a valid weighted two-way automaton.

Example 8.1. Let ρ1 = (I1, μ1, ♦1, T1) be the representation of the deterministic automaton A1 of Figure 2.
This representation is not consistent:

−−−−−−−→
μ1(b) sμ1(b) =

[
1 0
0 0

]
·
([

0
−1

]
· [ 0 1

])∗ · [ 1 0
0 0

]

=
[

1 0
0 0

]
·
[

0 0
0 −1

]∗
·
[

1 0
0 0

]
,

and the star of this matrix does not exist. Nevertheless, A1 is a deterministic automaton and is obviously valid.

Example 8.2. We consider the series
∑
k�0

ak

k + 1
=
(
a∗ −

(a

2

)∗
·
(a

2

)∗)�
�
(a

2

)∗
·

We can apply the constructions of Proposition 4.7 to build a two-way Q-automaton from this expression.
The result is the automaton A2 of Figure 5 (left). This automaton is not valid: for every word w, there are an
infinite number of computations with label w and weight 1

2|w| . Nevertheless, there exists a two-way Q-automaton
corresponding to the representation that realizes this series; it is drawn on Figure 5 (right), and this one is valid.
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19 (1985) 71–100.
[16] G. Pighizzini, Two-way finite automata: Old and recent results. Fundam. Inform. 126 (2013) 225–246.
[17] M.O. Rabin and D. Scott, Finite automata and their decision problems. IBM J. Res. Dev. 3 (1959) 114–125.
[18] Ch. Reutenauer, Sur les éléments inversibles de l’algèbre de Hadamard des séries rationnelles. Bull. Soc. Math. France 110

(1982) 225–232.
[19] J. Sakarovitch, Elements of Automata Theory. Cambridge University Press (2009).
[20] M.-P. Schützenberger, On the definition of a family of automata. Inform. and Control 4 (1961) 245–270.
[21] J.C. Shepherdson, The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3 (1959) 198–200.

Communicated by R. Reis.
Received January 25, 2016. Accepted November 7, 2016.


	Introduction
	Formal power series
	Operations on series
	A Hierarchy of series

	Weighted two-way automata
	Two-way representations
	A new product of matrices
	Definition of two-way representations
	Effective computation
	Representation of a two-way automaton.
	Closure properties

	Two-way-recognizable series as fixed points
	Rotating and sweeping representations
	Two-way automata over rationally additive semirings
	Equivalence between Automata and representations
	Non closure properties

	Q as counterexample
	References

