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THE DETERMINACY STRENGTH OF PUSHDOWN ω-LANGUAGES ∗
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Abstract. We investigate the determinacy strength of infinite games whose winning sets are recognized
by nondeterministic pushdown automata with various acceptance conditions, e.g., safety, reachability
and co-Büchi conditions. In terms of the foundational program “Reverse Mathematics”, the deter-
minacy strength of such games is measured by the complexity of a winning strategy required by the
determinacy. Infinite games recognized by nondeterministic pushdown automata have some resemblance
to those by deterministic 2-stack visibly pushdown automata with the same acceptance conditions. So,
we first investigate the determinacy of games recognized by deterministic 2-stack visibly pushdown
automata, together with that by nondeterministic ones. Then, for instance, we prove that the deter-
minacy of games recognized by pushdown automata with a reachability condition is equivalent to the
weak König lemma, stating that every infinite binary tree has an infinite path. While the determinacy
for pushdown ω-languages with a Büchi condition is known to be independent from ZFC, we here
show that for the co-Büchi condition, the determinacy is exactly captured by ATR0, another popular
system of reverse mathematics asserting the existence of a transfinite hierarchy produced by iterating
arithmetical comprehension along a given well-order. Finally, we conclude that all results for pushdown
automata in this paper indeed hold for 1-counter automata.

Mathematics Subject Classification. 03D05, 03B30, 68Q45.

1. Introduction

In this paper, we are mainly concerned with the determinacy strength of infinite games (due to Gale and
Stewart) whose winning sets are recognized by pushdown automata with various acceptance conditions. From
a standpoint congenial to the foundational program “reverse mathematics” [32], the determinacy strength is
measured by the complexity of a winning strategy of the game, which yields to one of the two players by the
determinacy.

Büchi and Landweber [3] first studied the Gale–Stewart game G(A), where A is an ω-regular language
accepted by a finite Büchi automaton or equivalently a deterministic Muller automaton. They showed that one
can effectively decide the winner of such G(A) and a winning strategy can be constructed by a finite state
transducer.

Walukiewicz [39, 40] showed that the games with winning sets accepted by deterministic Muller pushdown
automata are determined with computable winning strategies that can be carried out by a pushdown transducer.
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Subsequent to Thomas’s suggestion for higher Borel games in [38], Cachat, Duparc and Thomas [5] defined a Σ0
3-

complete acceptance condition and showed the infinite games whose winning sets are accepted by deterministic
pushdown automata with such a condition are determined with computable winning strategies. Serre [30, 31]
investigated the infinite games with arbitrary finite Borel level by introducing a finite chain of real-time (namely,
the ε-transition is not allowed) deterministic pushdown automata with restriction on the stack, and showed such
games are also determined with computable winning strategies. More extensions to infinite games recognized
by other types of machines, e.g., Büchi visibly pushdown automata (equivalent to deterministic Stair Büchi
pushdown automata) and deterministic higher-order pushdown automata, can be found in [4, 6, 21].

On the other hand, for ω-languages accepted by nondeterministic pushdown automata, the situations are quite
different. Context-free ω-languages, accepted by nondeterministic Büchi (or Muller) pushdown automata, are
beyond finite Borel hierarchy [16]. Finkel proved that the determinacy of context-free ω-languages is equivalent
to the determinacy of effective analytic games [14], which is not even provable in the set theory ZFC. In [12],
he furthermore showed that there exists an infinite game with an effective Δ0

3 winning set accepted by a real-
time Büchi 1-counter automaton (a special kind of pushdown automaton) such that none of the players has
a hyperarithmetical winning strategy. This indicates that for infinite games recognized by nondeterministic
pushdown automata even at low levels of Borel hierarchy, the winning strategies might be highly undecidable.
Then the following question emerges: if the winning strategies in such games are undecidable, exactly how
undecidable are they?

In order to calibrate the complexity of winning strategies, we follow the terminologies from reverse mathe-
matics, a framework to measure the provability of mathematical statements. Reverse mathematics makes use of
several subsystems of second order arithmetic, of which the five particular subsystems are RCA0, WKL0, ACA0,
ATR0, and Π1

1-CA0, in order of increasing strength. Observe that even full second order arithmetic Z2 is a much
weaker system than ZFC. In particular, ZFC proves that every Borel game is determined, while Z2 does not
even prove determinacy for general Δ0

4 games [25]. Note that weaker is good in this context, since subsystems of
Z2 can distinguish different kinds of Borel games below Δ0

4 which are all characterized as determined by ZFC.
In fact, studies on determinacy of infinite games are closely connected with the origin and backbone of reverse
mathematics (cf. [19, 32, 34, 35]).

Although our main purpose is to analyze the complexity of winning strategies for infinite games whose winning
sets are ω-languages accepted by pushdown automata with various acceptance conditions, we also deal with
the infinite games recognized by 2-stack visibly pushdown automata. The 2-stack visibly pushdown automata
is a kind of input-driven pushdown automata with two stacks. The input alphabet is partitioned into push, pop
alphabet for each stack separately, and internal alphabet, which decide its visible actions on the stacks. We first
investigate the determinacy strength of the classes of ω-languages recognized by deterministic 2-stack visibly
pushdown automata, and in particularly those with acceptance conditions of low complexity, such as safety,
reachability and co-Büchi. Then, we show that most of the results also hold for nondeterministic 2-stack visibly
pushdown automata with the same acceptance conditions.

Based on the techniques and results for deterministic 2-stack visibly pushdown automata, we investigate
complexity of winning strategies for infinite games whose winning sets are ω-languages recognized by nondeter-
ministic pushdown automata with the same various acceptance conditions and analogous results are obtained,
except that the safety case is determined with computable winning strategies. In fact, all the results for push-
down automata in this study also hold for 1-counter automata.

We also remark that all the logical equivalences in this study with respect to reverse mathematics are
finally established by considering the boldface classes of ω-languages, that is, ones defined by some kind of
automata with an oracle tape as parameters, which are developed in order to keep in harmony with the technical
requirements of reverse mathematics.

The remainder of this paper is organized as follows. In Section 2, we recall some basic notions of Gale–Stewart
games, automata theory, and also give an introduction to reverse mathematics, as well as some previous studies
on determinacy in reverse mathematics, which will be useful in the following. Sections 3 and 4 are dedicated to
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Player I : a1 a2 a3 a4 . . .

Player II : b1 b2 b3 b4 . . .

Figure 1. A Gale–Stewart game.

investigations on the complexity of winning strategies for infinite games recognized by 2-stack visibly pushdown
automata and pushdown automata with various acceptance conditions. The conclusions are drawn in Section 5.

2. Preliminaries

A finite word, over an alphabet X , is a finite sequence of letters u = a1a2 . . . an, where ai ∈ X for all
0 < i ≤ n. For 0 < i ≤ n, u(i) denotes the ith letter of u. For i ≤ n, u[i] = u(1)u(2) . . . u(i), which denotes the
prefix of u of length i. ε is the empty sequence. X<ω denotes the set of finite words over X . A finite language
over X is a subset of X<ω. By u.v or uv, we denote the concatenation of finite words u and v.

An infinite word or ω-word over X is an infinite sequence α = a1a2 . . . an . . ., where for all i ≥ 1, ai ∈ X .
When α is an infinite word over X , we write α = α(1)α(2) . . . α(n) . . . and α[n] = α(1)α(2) . . . α(n), which is
the prefix of α of length n. Xω denotes the set of infinite words over X . An ω-language over X is a subset
of Xω. The concatenation of a finite word u and an infinite word v is also written as uv. For V ⊆ X<ω,
V ω = {v1 . . . vn . . . ∈ Xω : ∀i ≥ 1, vi ∈ V } is called the ω-power of V .

Let X be a (countable) set. The topology on Xω is defined by a metric d(α, β) = 2−� where � = min{i :
α(i) �= β(i)}, where min ∅ = +∞ and 2−∞ = 0. Then we say a subset of Xω is open (i.e., in Σ0

1) if and only if
it is in the form Y Xω = {uv ∈ Xω : u ∈ Y, Y ⊂ X<ω and v ∈ Xω}. A closed set (i.e., in Π0

1) is the complement
of an open set. Δ1

1 is the class of all Borel sets.

2.1. Gale–Stewart games

The Gale–Stewart game G(A) is a two-player game of perfect information, where A ⊆ Xω is called a winning
set (or winning condition) and X is an alphabet. Player I and player II select an element of X alternatively as
shown in Figure 1.

Eventually, they produce an infinite sequence x = a1b1a2b2 . . . of Xω, which is called a play in G(A). Player I
wins with the play x if and only if x ∈ A. Otherwise, II wins.

A strategy for player I is a mapping σ : (X2)<ω → X . A strategy for player II is a mapping τ : (X2)<ωX → X .
A strategy σ is a winning strategy for player I if any sequence that follows σ belongs to the winning set A, i.e.,
if a1 = σ(ε) and for every n > 1 an = σ(a1b1 . . . an−1bn−1), we have a1b1a2b2 . . . ∈ A. A strategy τ is a winning
strategy for player II if it guarantees that a0b0a1b1 . . . /∈ A. A Gale–Stewart game is determined if one of the
two players has a winning strategy.

We recall some classical determinacy results on Gale–Stewart games. Gale and Stewart in 1953 first showed
the determinacy of Σ0

1 games. In sequel, the determinacy of Π0
2, Σ0

3, Π0
4 games are proved by Wolfe (1955),

Davis (1964) and Paris (1972), respectively. Using level by level induction, Martin [22] showed that, in ZFC, all
games with Borel winning conditions are determined, which is known as Borel determinacy. Note that (assuming
Borel determinacy), any Borel game has a Δ1

2 winning strategy, but Borel determinacy and Δ1
2 comprehension

(see Def. 1.11 in Sect. 2.3) are not comparable [24]. Beyond Borel hierarchy, the determinacy of Σ1
1 (of analytic

sets) games, as well as that of Σ1
1 (of effective analytic sets) games, is not provable in ZFC, all of which need

large cardinal assumptions [18, 23].
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2.2. Pushdown automata

We introduce the basic notions on pushdown automata, 1-stack visibly pushdown automata and 2-stack
visibly pushdown automata. We will also briefly recall some known results on infinite games whose winning sets
are ω-languages accepted by these kinds of pushdown automata.

We start with the formal definition of pushdown automata as follows.

Definition 2.1. A (nondeterministic) pushdown automaton is a tuple M = (Q,X, Γ, qin, δ, F ), where

• Q is a finite set of states,
• X is a finite input alphabet,
• Γ is a finite stack alphabet, which includes a special bottom letter ⊥,
• qin ∈ Q is the initial state,
• δ : Q× (X ∪ {ε}) × Γ → P(Q× Γ≤2) is the transition relation, and
• F is a set of final states.

The content of a stack is denoted by γ ∈ (Γ \ {⊥})<ω{⊥}. The leftmost letter will be assumed to be on the top
of stack, also the bottom letter ⊥ can never be deleted and the rightmost letter is always ⊥.

A pushdown automaton M = (Q,X, Γ, qin, δ, F ) is said to be deterministic if for any q ∈ Q, a ∈ X and γ ∈ Γ ,
|δ(q, a, γ)| + |δ(q, ε, γ)| ≤ 1. By |S|, we denote the number of elements in a finite set S.

Definition 2.2. A configuration of a pushdown automaton M is a pair (q, γ), where q ∈ Q and γ ∈ (Γ \
{⊥})<ω{⊥}. For a ∈ X ∪ {ε}, γ ∈ (Γ \ {⊥})<ω{⊥}, p, q ∈ Q, υ ∈ Γ and β ∈ Γ≤2, if (q, β) ∈ δ(p, a, υ), then we
denote a : (p, υγ) �→M (q, βγ). �→<ω

M is the transitive and reflexive closure of �→M. Notice that this transition is
not a real-time one, namely, ε-transitions are not allowed.

Note that, in this study, we assume that for all a ∈ X ∪ {ε}, p ∈ Q, υ ∈ Γ , |δ(p, a, υ)| > 0 following the
convention from [33].

Definition 2.3. Let α = a1a2 . . . an . . . be an infinite word over X . An infinite sequence of configurations
r = (qi, γi)i≥0 is called a run of M on α, starting from the initial configuration (qin,⊥), if and only if

(1) (q0, γ0) = (qin,⊥), and
(2) for each i ≥ 1, there exists bi ∈ X ∪{ε} such that bi : (qi−1, γi−1) �→M (qi, γi) and such that a1a2 . . . an . . . =

b1b2 . . . bn . . . or b1b2 . . . bn . . . is a prefix of a1a2 . . . an . . .

For every run r, Inf(r) is the set of states that are visited infinitely many times during the run r.

Remark that a “run” is defined in line with [33], which does not require the pushdown automata to read
through the whole tape. Such a condition differs from the ones mentioned in [10,11], which force the pushdown
automata to eventually finish reading the whole tape. However, for Büchi and Muller acceptance conditions,
the former and latter conditions define the same classes of ω-languages for pushdown automata [33].

Definition 2.4. A Büchi pushdown automaton is a tuple M = (Q,X, Γ, δ, qin, F ). The ω-language accepted by
M is

L(M) = {α ∈ Xω : there is a run r of M on α such that Inf(r) ∩ F �= ∅}.

Definition 2.5. A Muller pushdown automaton is a tuple M = (Q,X, Γ, δ, qin,F), where F ⊆ P(Q) is a
collection of accepting sets of states. The ω-language accepted by M is

L(M) = {α ∈ Xω : there is a run r of M on α such that Inf(r) ∈ F}.
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An ω-language is a context-free ω-language if it is accepted by a Büchi pushdown automaton (or Muller
pushdown automaton). Then we denote

CFLω = {L ⊆ Xω : there exists a Büchi pushdown automaton M s.t. L(M) = L}.
By DCFLω, we denote the class of deterministic context-free ω-languages that are accepted by deterministic

Muller pushdown automata. DCFLω is a subclass of B(Σ0
2). The class of ω-languages accepted by deterministic

Büchi pushdown automata is strictly included in DCFLω.
Finkel [17] proved that CFLω exhausts the finite ranks of the Borel hierarchy, i.e., for each n ≥ 1, there exists

a Σ0
n-complete context-free ω-language and a Π0

n-complete context-free ω-language. He [16] also showed that
there exist some context-free ω-languages which are Borel sets of infinite rank. Moreover, Finkel [15] proved that
the Wadge degrees, hence also Borel ranks, of CFLω coincides with those of ω-languages of nondeterministic
Turing machines. A survey dedicated to recent studies on context-free ω-languages can be found in [13].

Now we briefly recall the results for Gale–Stewart games in REGω, DCFLω, and CFLω. For games in
REGω, Büchi and Landweber [3] showed that one of the two players has a winning strategy, which can be
effectively constructed, which is known as the Büchi–Landweber theorem.

Theorem 2.6 [3]. REGω games are effectively determined with a computable winning strategy.

This result is extended by Walukiewicz [39, 40] to deterministic Muller pushdown automata.

Theorem 2.7 [39, 40]. DCFLω games are effectively determined with a computable winning strategy.

Finkel [17] proved that it is undecidable to determine the winner in the Gale–Stewart games recognized by
Büchi pushdown automata. Subsequently, he showed that

Theorem 2.8 [14]. The determinacy of CFLω games is equivalent to the determinacy of Σ1
1 games, where Σ1

1

is the class of effective analytic sets.

Recently, Finkel [12] extended such an equivalence to the class of ω-languages accepted by 2-tape Büchi
automata. Note that determinacy of Σ1

1 games is not provable in ZFC and requires a large cardinal assumption.
Finkel [12] also proved that there exists an infinite game with an effective Δ0

3 winning set which is accepted
by a real-time Büchi 1-counter automaton (a special kind of pushdown automaton) such that none of the players
has a hyperarithmetical winning strategy.

To downscale the winning sets to lower complexity, apart from the Büchi and Muller conditions, we also
consider the ω-languages defined by the following acceptance conditions. For simplicity we here write a run r
as the sequence of states appearing in r.
• Safety (or Π1) acceptance condition.

L(M) = {α ∈ Xω : there is a run r = (qi)i≥0 of M on α such that ∀i, qi ∈ F}.

• Reachability (or Σ1) acceptance condition.

L(M) = {α ∈ Xω : there is a run r = (qi)i≥0 of M on α such that ∃i, qi ∈ F}.

• Co-Büchi (or Σ2) acceptance condition.

L(M) = {α ∈ Xω : there is a run r = (qi)i≥0 of M on α such that Inf(r) ⊆ F}.

We also treat the following ω-languages with the combinations of the above conditions.
• (Σ1 ∧ Π1) acceptance condition. There exist Fr, Fs⊆ Q,

L(M) = {α ∈ Xω : there is a run r = (qi)i≥0 of M on α such that ∃i, qi ∈ Fr ∧ ∀i, qi ∈ Fs}.



34 W. LI AND K. TANAKA

• (Σ1 ∨ Π1) acceptance condition. There exist Fr, Fs⊆ Q,

L(M) = {α ∈ Xω : there is a run r = (qi)i≥0 of M on α such that ∃i, qi ∈ Fr ∨ ∀i, qi ∈ Fs}.

• Δ2 acceptance condition. There exist Fb, Fc⊆ Q,

L(M) = {α ∈ Xω : there is a run r of M on α such that Inf(r) ∩ Fb �= ∅}

= {α ∈ Xω : there is a run r of M on α such that Inf(r) ⊆ Fc}.

Visibly pushdown automata

Visibly pushdown automata, initially introduced by Alur and Madhusudan in [1], is a special kind of push-
down automata with restriction on the input alphabet. The alphabet is partitioned into Push, Pop, Int. The
transitions are input-driven in the sense that while it reads a letter a on the input tape, the operations on the
stack depend on the affiliation of a. That is, if a ∈ Push, the visibly pushdown automaton pushes one letter to
the stack; if a ∈ Pop, it pops the top one letter from the stack; if a ∈ Int, it does not touch the stack. See [1,21]
for more introduction on visibly pushdown automata.

Similarly, we can define the classes of ω-languages accepted by Büchi 1-stack visibly pushdown automata and
deterministic Muller 1-stack visibly pushdown automata, and denote them as VPLω and DVPLω.

Löding, Madhusudan, Serre [21] showed that VPLω is in B(Σ0
3). They also proved that the visibly pushdown

games with visibly pushdown winning conditions are determined, where visibly pushdown games are played on
graphs generated by visibly pushdown processes. Since DVPLω is a subclass of DCFLω, DVPLω games are
also effectively determined with a computable winning strategy.

For the 2-stack visibly pushdown automata, the alphabet is partitioned into Push1, Pop1, Push2, Pop2

and Int, where each subscript indicates the stack that associated with this subalphabet [8]. For finite words, it
can express properties beyond the context-free languages [7, 8, 36, 37]. On infinite words, the expressive power
of Büchi 2-stack visibly pushdown automata is equivalent to the existential monadic second-order logic [2].

The formal definition of 2-stack visibly pushdown automata is given as follows.

Definition 2.9. A 2-stack visibly pushdown automaton is a tuple M = (Q,X, Γ, qin, δ, F ), where

• Q is a finite set of states,
• X = Push1 ∪Pop1 ∪Push2 ∪ Pop2 ∪ Int is a finite input alphabet,
• Γ is a finite stack alphabet, which contains a special bottom letter ⊥,
• qin ∈ Q is the initial state,
• δ = δPush1 ∪ δPop1

∪ δPush2 ∪ δPop2
∪ δInt is a transition relation, where:

� δPush1 ⊆ Q× Push1 ×Q× (Γ \ {⊥}),
� δPop1

⊆ Q× Pop1 × Γ ×Q,

� δPush2 ⊆ Q× Push2 ×Q× (Γ \ {⊥}),
� δPop2

⊆ Q× Pop2 × Γ ×Q,

� δInt ⊆ Q× Int ×Q,

• F ⊆ Q is a set of final states.

A configuration of a 2-stack visibly pushdown automaton is in the form (q, γ1, γ2), where q ∈ Q and γ1, γ2 ∈
(Γ \ {⊥})<ω{⊥} represent the contents of the two stacks.
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Definition 2.10. Let α = a1a2 . . . an . . . be an infinite word over X . An infinite sequence of configurations
r = (qi, γ1

i , γ
2
i )i≥0 is called a run of a 2-stack visibly pushdown automaton on α, starting from the initial

configuration (qin,⊥,⊥), if and only if:

(1) (q0, γ1
0 , γ

2
0) = (qin,⊥,⊥), and

(2) for each i > 1,
• (qi−1, ai, qi, υ) ∈ δPush1 , γ

1
i = υγ1

i−1, and γ2
i = γ2

i , or
• (qi−1, ai, υ, qi) ∈ δPop1

and either
(
υ ∈ Γ \ {⊥}, γ1

i−1 = υγ1
i , γ2

i = γ2
i−1

)
or

(
υ = ⊥ = γ1

i−1 = γ1
i ,

γ2
i = γ2

i−1

)
, or

• (qi−1, ai, qi, υ) ∈ δPush2 , γ
1
i = γ1

i and γ2
i = υγ2

i−1, or
• (qi−1, ai, υ, qi) ∈ δPop2

and either
(
υ ∈ Γ \ {⊥}, γ1

i−1 = γ1
i , γ2

i−1 = υγ2
i

)
or

(
γ1

i−1 = γ1
i , υ = ⊥ = γ2

i−1 =
γ2

i

)
, or

• (qi−1, ai, qi) ∈ δInt, γ1
i = γ1

i−1, and γ2
i = γ2

i−1.

The nondeterministic 2-stack visibly pushdown automata (on finite words) is not closed under determination,
which is shown by Torre, Madhusudan, and Parlato via the following example. Given X = {a} ∪ {c, d} ∪ {b} ∪
{x, y}, where Int = ∅, the language {(ab)ncidn−ixiyn−i : n, i ∈ ω and i ≤ n} is recognized by a nondeterministic
2-stack visibly pushdown automaton, but not any deterministic one. Moreover, the languages accepted by (2-
stack) visibly pushdown automata and pushdown automata are not comparable, since {anban : n ∈ ω} can
be easily accepted by a deterministic pushdown automata but not any 1-stack or 2-stack visibly pushdown
automaton. The above properties easily hold for (2-stack) visibly pushdown automata on infinite words.

By 2VPLω and 2DVPLω, we denote the classes of ω-languages accepted by Büchi 2-stack visibly pushdown
automata and deterministic Muller 2-stack visibly pushdown automata. The expressive power of pushdown
automata with two stacks is very strong, even for the restricted visibly case. The Gale–Stewart games in
2VPLω and 2DVPLω are undecidable.

Figure 2 shows the inclusion relations on some classes of ω-languages, as well as the decidability of infinite
games in these classes, where BTMω and 2BCLω denote the classes of ω-languages that are recognized by Büchi
Turing machines and Büchi 2-counter automata, respectively. By “decidable”, we specify the games that are
effectively determined (namely, which player has a winning strategy is effectively determined) with computable
winning strategies.

All the classes of ω-languages in Figure 2 are accepted by some kind of machines with a Büchi and/or a Muller
condition. In the following, we consider several other acceptance conditions of lower complexity, and particularly
the infinite games whose winning sets are recognized by deterministic (respectively, nondeterministic) 2-stack

Figure 2. The classes of ω-languages and the decidability of their games.
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visibly pushdown automata and nondeterministic pushdown automata with such conditions, which turns out to
provide us more classes that are closer to the boundary in Figure 2.

2.3. Second order arithmetic

Second order arithmetic Z2 is formally developed in the two-sorted first-order language with number variables
x, y, z, . . ., and unary function variables f , g, h, . . ., constant symbols 0, 1, binary function symbol +, ·, and
binary relation symbols =, <. Set variables X , Y , Z, . . ., are also used to range over the {0, 1}-functions. The
classifications of formulas are given as follows, where i ∈ {1, 2}, n ∈ ω.

(1) ϕ is Π0
0 (bounded) if ϕ is constructed by atomic formulas with propositional connectives and bounded number

quantifiers ∀x < t and ∃x < t, where t does not contain x.
(2) ϕ is Π1

0 (arithmetical) if it contains no function quantifiers.
(3) ¬ϕ is Σi

1 if ϕ is Πi
1.

(4) ∀x1 . . .∀xk ϕ is Π0
n+1 if ϕ ∈ Σ0

n.
(5) ∀f1 . . . ∀fk ϕ is Π1

n+1 if ϕ ∈ Σ1
n.

Based on such classification of formulas, we consider the following schemes of the set existence axioms.

Definition 2.11. Let n ∈ ω and i ∈ {1, 2}.
(1) Δi

n-CA, which stands for Δi
n comprehension, consists of all the axioms of the form

∀x(ϕ(x) ↔ ψ(x)) → ∃X∀x(x ∈ X ↔ ϕ(x)),

where ϕ(x) is Σi
n, ψ(x) is Πi

n and X does not occur freely in ϕ.
(2) Πi

n-CA (respectively, Σi
n-CA), which stands for Πi

n comprehension (respectively, Σi
n comprehension), consists

of all the axioms of the form
∃X∀x(x ∈ X ↔ ϕ(x)),

where ϕ(x) is Πi
n (respectively, Σi

n) and X does not occur freely in ϕ.
(3) Σi

n-SP, which stands for Σi
n separation, consists of all the axioms of the form

¬∃x(ϕ0(x) ∧ ϕ1(x)) → ∃X∀x((ϕ0(x) → x ∈ X) ∧ (ϕ1(x) → x /∈ X)),

where ϕ0(x) and ϕ1(x) are Σi
n.

It is worth remarking that the above schemes should be in boldface versions, in the sense that they are defined
with the class of formulas with real parameters. However the boldface notion is customarily used only for sets
of reals. The above axioms assert the existence of sets of natural numbers, and their lightface counterparts are
often denoted as Δi

n-CA−, etc.
A standard base theory for developing reverse mathematics is the system RCA0, which stands for recursive

comprehension axiom. RCA0 consists of algebraic axioms for (ω,+, ·, 0, 1, <) plus induction axioms for Σ0
1

formulas and Δ0
1-CA. In general, adding axiom T to RCA0, we obtain a theory T0. The following are well-known

in the study of reverse mathematics.

(1) Σ0
1-SP0 is equivalent (over RCA0) to weak König’s lemma, which states that every infinite binary tree has

an infinite path. So, we also write WKL0 for Σ0
1-SP0.

(2) Σ0
1-CA0 is equivalent (over RCA0) to arithmetical comprehension, asserting the existence of Σ0

n sets for all
n ∈ ω. So we also write ACA0 for Π1

0-CA0.
(3) Σ1

1-SP0 is equivalent (over RCA0) to arithmetical transfinite recursion, which asserts the existence of a
transfinite hierarchy produced by iterating arithmetical comprehension along a given well-order. So we
write ATR0 for Σ1

1-SP0.
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(4) To measure the determinacy strength of Δ0
3 games in the Baire space, the second author of this paper also

defined C-TR0 (and C-ID0) as the system RCA0 plus transfinite recursion for formulas on C (and in the
definition for operations in C) (cf. [32,35]). Since we do not treat a statement stronger than ATR0, we have
omitted their precise definitions.

(5) The so-called Big Five systems are

RCA0 ≡ Δ0
1-CA0 ≡ Π0

1 -SP0

WKL0 ≡ Σ0
1-SP0

ACA0 ≡ Σ0
1-CA0 ≡ Π1

0-CA0 ≡ Π1
0-SP0

ATR0 ≡ Σ1
1-SP0

Π1
1-CA0 ≡ Σ1

1-CA0

Here we are concerned with the logical strength of determinacy of infinite games. Determinacy of class C,
denoted by C-Det, asserts that all infinite games with winning sets in C are determined. When we say the
determinacy of a class C is equivalent to (the set existence axioms of) a subsystem S of Z2, we mean that not
only determinacy of C is provable in S but also RCA0 + C-Det proves all the axioms of S. Thus, by reverse
mathematical investigations, we can characterize the complexity of winning strategies.

Infinite games and strategies in the Baire space (ωω) and the Cantor space (2ω) are easily formalized in
RCA0. However, even Δ0

1-Det (in ωω) is not provable in RCA0. This is because a winning strategy of a Δ0
1 game

is not recursive but hyperarithmetical. In fact, boldface Δ0
1-Det turns out to be equivalent to ATR0. Table 1

summarizes the previous results on the determinacy in the Baire space and the Cantor space, e.g., [28,32], where
Sep(C,D) ≡ {(C ∩Dc

1) ∪ (Cc ∩D2) : C ∈ C, D1, D2 ∈ D}, and the items in the same line are pairwise equivalent
over RCA0. For example, the third line is read as

ATR0 ↔ Δ0
1-Det(in ωω) ↔ Σ0

1-Det(in ωω) ↔ Δ0
2-Det(in 2ω) ↔ Σ0

2-Det(in 2ω).

It is worth noting that the lightface versions of determinacy are not so easily classified. For instance, Nemoto,
MedSalem and Tanaka [28] proved the equivalence of boldface Π1

1-CA0 and Σ0
1 ∧ Π0

1-Det, and also the non-
equivalence of lightface counterparts over RCA0. Moreover, we also remark that the clopen determinacy and
open determinacy over the reals are known to be different in higher-order reverse mathematics [29].

Table 1. Reverse mathematics and infinite games in ωω and 2ω.

Determinacy in ωω Determinacy in 2ω

WKL0 Δ0
1, Σ0

1

ACA0 B(Σ0
1)

ATR0 Δ0
1, Σ0

1 Δ0
2, Σ0

2

Π1
1-CA0 B(Σ0

1) Sep(Σ0
1,Σ

0
2)

Π1
1-TR0 Δ0

2 Sep(Δ0
2,Σ

0
2)

Σ1
1-ID0 Σ0

2 Σ0
2 ∧ Π0

2

Σ0
∞(Σ1

1)-ID0(≈ Π1
2-CA0) B(Σ0

2) B(Σ0
2)
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3. Determinacy strength of infinite games recognized by 2-stack visibly

pushdown automata

In this section, we investigate the determinacy strength of infinite games whose winning sets are accepted
by 2-stack visibly pushdown automata. We start with analyzing the complexity of winning strategies in the
infinite games recognized by deterministic 2-stack visibly pushdown automata. Then we show that most of the
corresponding results also hold for nondeterministic ones.

The classes of ω-languages accepted by deterministic 2-stack visibly pushdown automata (2DVPA) with
safety, reachabiliy, co-Büchi and Büchi conditions are denoted as shown in Table 2.

Table 2. The classes of ω-languages accepted by 2DVPA.

Acceptance conditions Subclass of 2DVPLω

Reachability 2DVPLω(Σ1)

Safety 2DVPLω(Π1)

Co-Büchi 2DVPLω(Σ2)

Büchi 2DVPLω(Π2)

To characterize the complexity of the above classes of ω-languages, we would like first recall some results on
deterministic and nondeterministic Turing machines. We follow the definition of Turing machines from [33], in
which the machines are not required to finish reading the whole tape. By TM(C) (respectively, DTM(C)), we
denote the class of ω-languages recognized by nondeterministic (respectively, deterministic) Turing machines
with acceptance condition C.

Theorem 3.1 (cf. [33]).

DTMω(Π1) = TMω(Π1) = Π0
1

DTMω(Σ1) = TMω(Σ1) = Σ0
1

DTMω(Σ2) = TMω(Σ2) = Σ0
2

DTMω(Π2) = Π0
2

TMω(Π2) = Σ1
1

Note that the equalities of Theorem 3.1 also hold for the boldface versions. We here remark that bold-
face/lightface 2(D)VPLω and PDLω (namely, the class of ω-languages recognized by pushdown automata that
we will treat in the next section) are included in the corresponding boldface/lightface (D)TMω, and hence also
by the corresponding formulas with/without parameters. In particular, the lightface 2DVPLω(Π1) (respec-
tively, 2DVPLω(Σ1), 2DVPLω(Σ2), 2DVPLω(Π2)) is a subclass of effective Π0

1 (respectively, Σ0
1, Σ0

2, Π0
2)

class.
We now begin with considering the infinite games whose winning sets for player I are recognized by deter-

ministic 2-stack visibly pushdown automata with a (Σ1 ∧ Π1) acceptance condition. We prove that:

Theorem 3.2. There exists an infinite game in 2DVPLω(Σ1 ∧ Π1) with only Σ0
1-hard winning strategies.

Our goal is to show that there exists a deterministic 2-stack visibly pushdown automaton M with a (Σ1∧Π1)
acceptance condition such that in the game G(L(M)), player II has a winning strategy and all winning strategies
are Σ0

1-hard.
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To prove this theorem, we first recall the notion of (universal nondeterministic) 2-counter automata. A
2-counter automaton can be seen as a restricted 2-stack pushdown automaton with just one symbol for each
stack, in the sense that the number of the symbols in a stack is expressed as a nonnegative integer in a counter.
The input of a 2-counter automaton is a natural number m which is initially stored in one of the counters. Then
by the current state and the tests results on whether each counter is zero or not, the automaton goes to the
next state and do operations on the two counters by increasing the counter(s) by 1, or decreasing the counter(s)
by 1 if the counter is not zero.

A 2-counter automaton is a tuple R = (Q, δ, qin, F ), where Q is a finite set of states, δ ⊆ Q× {0, 1}2 ×Q×
{−1, 0, 1}2 a transition relation, qin an initial state and F a set of halting states. A configuration of 2-counter
automata is (q,m, n), where q ∈ Q, and m, n are nonnegative integers in the two counters. For any input natural
number m of R, the initial configuration is (qin,m, 0).

We code a configuration (q,m, n) of a 2-counter automaton as qambn. A run for a natural number m on a
2-counter automaton R is a sequence of configurations such that qinam0bn0 �→R q1a

m1bn1 �→R q2a
m2bn2 �→R . . .,

where qin is the initial state, m0 = m, n0 = 0 and �→R is defined by the transition relation δ of R. A run is
halting if it reaches a halting configuration.

We define a number m ∈ L(R) if and only if there exists a run on m such that qinambn0 �→R q1a
m1bn1 �→R

. . . �→R qsa
msbns , where n0 = 0 and qs ∈ F . It is known that a 2-counter automaton, even a deterministic

one, is equivalent to a Turing machine [26,27]. Thus the halting problem for a certain (universal deterministic)
2-counter automaton is Σ0

1-complete. In the following, by 2-counter automata, we mean deterministic 2-counter
automata unless stated otherwise.

Proof of Theorem 3.2. Let R be a universal 2-counter automaton. We will construct a game associated with R,
denoted by GR, such that the halting problem of R is computable in any winning strategy of player II, while
player I has no winning strategy, and moreover the winning set for player II is recognized by a deterministic
2-stack visibly pushdown automaton with a (Σ1 ∨Π1) acceptance condition. Note that in this case, the winning
set for player I is recognized by a deterministic 2-stack visibly pushdown automaton M with a (Σ1 ∧ Π1)
acceptance condition.

We consider the following two-stage infinite game GR.

In the first stage, player I produces a code of a number m in the form

m︷ ︸︸ ︷
111 . . .1 0 in the first m + 1 rounds.

During these rounds, player II can choose anything (denoted as �), but makes no sense to the game. By choosing
0, player I announces an end of the code for m and asks whether m is accepted by R or not. In this stage, if
player I breaks the above rule of the game, e.g., player I just produces infinite many 1’s, which makes the game
sink in the first stage and never enter the second stage, then player I loses.

If the game enters the second stage, it is player II’s turn to answer yes (denoted as 1) or no (denoted as 0),
leading the game to the following possible cases.

• If player II chooses yes,
◦ player II should provide a sequence of configurations on m of R to support her argument, and
◦ while player II is making the sequence of configurations, player I may choose to challenge at the point

he believes player II has cheated.
Player II wins if player I never challenge, or fails the challenge (namely, no error is found), otherwise I wins.

• If player II chooses no, then
◦ player I defends by providing a sequence of configurations on m of R that he claims correct, and
◦ while player I is making the sequence of configurations, player II may challenge at the point she believes

player I has cheated.
Player II wins if she manages to find an error by the challenge, otherwise I wins.

For simplicity, here we just explain the case where player II challenges when she answers no. Player II needs
to check whether or not the sequence of configurations provided by player I is a halting run of R with m. That
is, player II makes sure that player I has obeyed the following rules.
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Figure 3. A game GR with a challenge by player II.

(1) the sequence of configurations provided by player I is a sequence in the form of qambn and connected by �
(for simplicity � is the code of �→R),

(2) it starts with the initial configuration,
(3) any two consecutive configurations constitute a valid transition of R, and
(4) the sequence of configurations is ended with a halting configuration.

The rules (1), (2), and (4) are easy to check with Σ1 conditions (namely, player I loses with Π1). In the
following, we treat the case that “player II answers no and player II challenges to confirm rule (3)” as a
subgame of GR, denoted as G∗

R.
Now in G

∗
R, player II challenges by providing a modified reverse form of the last two configurations including

a witness for error. It is in the form of cb(a$)mi+1q � b
ni(a$)min{mi,mi+1}∗q as shown in Figure 3, where c

indicates a start of challenge, $ and $ are for comparing mi+1 with mi, and ∗ is a witness for error as we will
explain below.

The winning set for player II in G∗
R can be accepted by a deterministic 2-stack visibly pushdown automaton

with the input alphabet partitioned into

• Push1 = {1, 0, a, b,�, qin, q1, . . . , qj}, Pop1 = {a, b,�, q},
• Push2 = {$}, Pop2 = {$}, and Int = {c, �}.
We consider such a play in G∗

R as an input of a deterministic 2-stack visibly pushdown automaton, then the
operations on the two stacks while reading the play from left to right are done according to the partition of the
alphabet as shown in Figure 4.

p

mi+1

mi

+,m mnm n m mq a b q a bcb a q b a qi i 1ii i i+1 i+1
i i+1

i+ 1

i+ 1

i

i

i

m

n

m

b

a
q

b

a
q

Notations for contents in the dotted circle: 

Figure 4. Regarding a play as an input of a deterministic 2-stack visibly pushdown automaton.



THE DETERMINACY STRENGTH OF PUSHDOWN ω-LANGUAGES 41

p'
iq

+,m mnm n m mq a b q a bcb a q b a qi i 1ii i i+1 i+1
i i+1

Figure 5. Regarding a play as an input of a deterministic 2-stack visibly pushdown automaton.

We look at more details on how the witness for error works in this case. After reading (a$)min{mi,mi+1}, it
pops min{mi,mi+1} many a’s from the top of stack 1 and also min{mi,mi+1} many $ from the top of stack 2.
Then, the current condition of the top of two stacks is in one of the following forms,

• [a,⊥] if mi+1 < mi,
• [qi, $] if mi+1 > mi, or
• [qi,⊥] if mi+1 = mi.

Finally, it meets the letter ∗, a witness for error as in Figure 5. There are three conditions for the top of the
two stacks as described above: [∗, ⊥], [qi, ∗] or [qi, ⊥], where ∗ can be either a (on the top of stack 1) or $ (on
the top of stack 2) that is determined by the successive transition from qi and will be popped by reading ∗.

If all the following are true, player II succeeds her challenge and wins this game.

• (qi, ami , bni) �→R (qi+1, a
mi+1, bni) → ∗ �= $, and

• (qi, ami , bni) �→R (qi+1, a
m−1, bni) → ∗ �= a, and

• neither (qi, ami , bni) �→R (qi+1, a
mi+1, bni) nor

(qi, ami , bni) �→R (qi+1, a
mi−1, bni) → ∗ �= ∅.

It should be noted that the last letters ∗ and q in player II’s challenge can be used to detect other possible errors
in the sequence provided by player I. For instance, if mi+1 = mi + 2 and (qi, ami , bni) �→R (qi+1, a

mi+1, bni),
then player II can not only confirm mi+1 > mi since ∗ = $, but also detect the error that mi+1 �= mi + 1.

The winning plays of player II in this subgame G∗
R can be recognized by a deterministic 2-stack visibly

pushdown automaton with a Σ1 acceptance condition.
If we consider the game GR, player II’s winning set can be recognized by an enlarged deterministic 2-stack

visibly pushdown automaton with a (Σ1 ∨ Π1) acceptance condition. Note that in this game, player I has no
winning strategies. Assume that player II has a winning strategy τ , then the halting set for R is

L(R) =
{
m : player II follows her winning strategy τ and answers “yes” with m

many 1’s in a 2DVPLω(Σ1 ∧ Π1) game GR
}
.

Since the halting problem of R is Σ0
1-complete, any winning strategy for player II is Σ0

1-hard. �

In the same way as the proof of Theorem 3.2, we can also show that:

Corollary 3.3. For any n, there exists an infinite game in 2DVPLω(B(Σ1)) with only Σ0
n-hard winning

strategies.

In other words, the corollary means that, for any n, there exists a deterministic 2-stack visibly pushdown
automaton M with a B(Σ1) acceptance condition such that in the game G(L(M)), player II has a winning
strategy and all the winning strategies are Σ0

n-hard.
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An idea of the proof of Corollary 3.3 is as follows. Take the case n = 3 as an example. Let A be any Σ0
3 set.

Then there is a 2-counter automaton R such that m0 ∈ A if and only if ∃m1∀m2 R halts on m = 2m03m15m2 .
Now we consider the following game.

• Player I starts the game by asking if m0 ∈ A.
• Player II answers yes or no.

◦ If player II answers yes, she also needs to choose m1, and then player I chooses m2. After that, player II
constructs a sequence of configurations of R on m = 2m03m15m2 in the same way as in the proof for
Theorem 3.2.

◦ If player II answers no, then the game continues similarly as the roles of the players switched.

Theorem 3.2 (and Cor. 3.3) and their proofs can be easily formalized in second order arithmetic. However, to
get a statement nicely fit for the classification due to reverse mathematics, we shall consider deterministic 2-stack
visibly pushdown automata with an oracle tape and obtain the corresponding boldface classes of ω-languages.

An oracle tape is a read-only, non-real-time infinite tape and distinct from the input tape. It serves as an
oracle function f : ω → ω in the form of 1f(0)01f(1)01f(2) . . .. Such an oracle is similar with that used in [20].
In the following, by 2DVPLω(C) for a boldface acceptance condition C, we denote the boldface class of ω-
languages accepted by the corresponding deterministic 2-stack visibly pushdown automata with an oracle tape.

Corollary 3.4. The determinacy of games in 2DVPLω(Σ1 ∧ Π1) implies ACA0. In fact, they are equivalent
to each other over RCA0.

Proof. Since ACA0 is equivalent to Σ0
1-CA0, it suffices to show that the determinacy implies the existence of Σ0

1

sets with any oracle.
We consider a 3-counter automaton Rf = (Q ∪ {q♦}, δ ∪ δ♦, qin, F ) with a function f : ω → ω. q♦ is a query

state associated with the content of the third counter and the function f . Intuitively, the transition relation
δ ∪ δ♦ satisfies that if Rf is in a state belonging to Q, it works as a usual 3-counter automaton; if it reaches the
query state q♦, it will query the value of f with current number in the third counter, update the third counter
with the returned value of f and go to next state. We refer the latter case as the query transition.

A configuration (q,m, n, k) of Rf , where q ∈ (
Q∪{q♦}) and m, n, k denote the contents of the three counters,

is coded as qambnek. We define L(Rf ) by m ∈ L(Rf ) if and only if there exists a run on m such that

qina
mbn0ek0 �→Rf q1a

m1bn1ek1 �→Rf . . . �→Rf qsa
msbnseks ,

where n0 = k0 = 0 and qs is a halting state.
The game GRf proceeds in the same way as GR in Theorem 3.2, except that it also needs to make sure that

for each appearance of the query state q♦ in the computation sequence of Rf , the content in the third counter
is updated according to the query transition of Rf .

In this game, player II has a winning strategy and her winning set can be accepted by a deterministic 2-stack
visibly pushdown automaton with a (Σ1 ∨Π1) condition and an oracle tape in the form of 1f(0)01f(1)01f(2) . . .,
in which the oracle tape is used to check the query transition is correct or not in the computation sequence of
Rf . Such automata in fact defines the corresponding boldface class 2DVPLω(Σ1 ∨ Π1).

Assume that player II has a winning strategy τ . Then we have

L(Rf ) =
{
m : player II follows her winning strategy τ and answers “yes” with m

many 1’s in a 2DVPLω(Σ1 ∧ Π1) game GRf

}
.

To show the equivalence, it is enough to see that this game is a Σ1 ∧ Π1 game in the Cantor space, where
the determinacy follows from ACA0 [28]. �
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Figure 6. A game GR1∩R2=∅ with challenges.

We move on to treat infinite games whose winning sets are ω-languages recognized by deterministic 2-stack
visibly pushdown automata with a Π1 acceptance condition.

Theorem 3.5. The determinacy of games in 2DVPLω(Π1) implies the separation principle for Σ0
1 set without

parameters, namely, Σ0
1-SP−.

Proof. Let R1 and R2 be two 2-counter automata such that L(R1) ∩ L(R2) = ∅. We are looking for a set to
separate L(R1) and L(R2). Or equivalently, we want a function g : ω → {1, 2} such that for each m ∈ ω,
m /∈ L(Rg(m)). We obtain such a g from a winning strategy of the following two-stage game GR1∩R2=∅.

In the first stage, player I produces a sequence g of 1’s and 2’s such that at each step m, Rg(m) should not
halt with m. Player II may challenge player I’s choice i at any m if she thinks the 2-counter automaton Ri halts
with this m, or choose to pass if she agrees with player I.

If player II challenges at a certain m, then the game enters the second stage and player I defends by producing
an infinite sequence of configurations of Ri on m, qinam0bn0 � q1a

m1bn1 . . ., where m0 = m and n0 = 0, as
illustrated in Figure 6.

While player I is making such an infinite sequence of configurations of Ri, if player II perceives that player I
has cheated, she may challenge again. Then the game continues in the same way as the challenge part in
Theorem 3.2.

The winning set for player I can be described as

(1) player II never challenge, namely, player I eventually produces an infinite sequence from {1, 2},
(2) player II proposes a challenge at a certain m in the first stage but no challenge in the second stage, or
(3) player II challenges in both stages, but fails in the challenge in the second stage.

We can see that player I’s winning sets can be recognized by deterministic 2-stack visibly pushdown automata
with a Π1 acceptance condition. Assume that player I has a winning strategy σ in the game GR1∩R2=∅, then
the desired separating set is

S =
{
m ∈ ω : Following strategy σ, player I picks 2 for m in the first stage of GR1∩R2=∅

}
. �

Considering the corresponding 2-stack visibly pushdown automata with an oracle tape, we can show that

Corollary 3.6. The determinacy of games in 2DVPLω(Π1) is equivalent to WKL0 over RCA0.

Proof. Similarly, we can construct an infinite game such that the winning set for player I is recognized by
deterministic 2-stack visibly pushdown automaton with a Π1 acceptance condition and an oracle tape. By
WKL0 ≡ Σ0

1 -SP0 and Theorem 3.5, the determinacy of such games implies WKL0. It follows from [28] that
WKL0 → Σ0

1-Det(in 2ω) → 2DVPLω(Σ1)-Det ↔ 2DVPLω(Π1)-Det. �
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To treat the determinacy of 2DVPLω(Δ2), we first recall a coding technique to convert sequences from ωω

to 2ω [28]. For a finite sequence u ∈ 2<ω, u is called regular, if it satisfies:

(r1) u(|u| − 1) = 1 − u(|u| − 2),
(r2) u(2m) = 0 implies u(2m+ 1) = 0 for all 2m+ 1 < |u|, and
(r3) u(2m+ 1) = 1 implies u(2m+ 2) = 1 for all 2m+ 2 < |u|.
A regular u ∈ 2<ω determines a unique sequence in ũ ∈ ω<ω, such that

u =

2ũ(0)︷ ︸︸ ︷
0 . . . 0 1

2ũ(1)︷ ︸︸ ︷
1 . . . 1 0 . . . in,

2ũ(|ũ|−1)︷ ︸︸ ︷
in . . . in (1 − in),

where in = 0 for n = 2m and in = 1 for n = 2m+ 1. Note that ũ is defined recursively from u. The statement
“s is regular” is a Π0

0 statement.
For an infinite sequence α ∈ 2ω, α is called totally regular if it satisfies

∀n∃m > nα[m] is regular.︸ ︷︷ ︸
Π0

0︸ ︷︷ ︸
Π0

2

A totally regular α ∈ 2ω determines a unique sequence in α̃ ∈ ωω, such that

α =

2α̃(0)︷ ︸︸ ︷
0 . . . 0 1

2α̃(1)︷ ︸︸ ︷
1 . . .1 0

2α̃(2)︷ ︸︸ ︷
0 . . .0 1 . . . .

We also adopt the “translation rules” for players from [28], which is used to convert games from ωω to 2ω.
For an infinite play α ∈ 2ω, we say that “player I (respectively, player II) obeys the translation rules” if either
of the following cases holds.

(1) It is player II (respectively, player I) who first plays against r2 or r3.
(2) Neither player I nor player II plays against r2 or r3, and for all n, α(n) = 0 (respectively, α(n) = 1) implies

there exists m > n, α(m) = 1 (respectively, α(m) = 0).

We can see that “player I (or player II) obeys the translation rules” is a Π0
2 statement.

Then we show that:

Theorem 3.7. The determinacy of 2DVPLω(Δ2) implies the determinacy of Δ0
1 games in ωω.

Proof. By the coding technique in [28] as described above, we write α̃ ∈ ωω for the unique sequence coded by
α ∈ 2ω. Note that not all sequences in 2ω code a sequence in ωω.

Then, a play α̃ in a Δ0
1 game in ωω can be translated into a play α in 2ω, and α is winning for player 1

(respectively, player 2) if and only if

(a) α̃ is a winning play (respectively, α̃ is not a winning play) in the Δ0
1 game in ωω while both players obey

the translation rules to produce a play α, or
(b) while they are producing α, player 2 (respectively, player 1) breaks the rules,

which constitutes a Σ0
2 winning set for player 1 (respectively, player 2). Thus the game is Δ0

2 in 2ω. Note that
the increase in complexity of winning condition is mainly due to the complexity of the coding rules that we
follow.

Now we convert this Δ0
1 game in ωω to a 2DVPLω(Δ2) game relying on the translation rules used in the

above Δ0
2 game in 2ω. The translation rules do not need any modification for 2DVPLω(Δ2). So, for simplicity,

the two players are assumed to obey this translation rule and we just treat the above case (a).
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Given a Δ0
1 game, there exist two 2-counter automata R1 and R2 such that

x is a winning play ↔ ∃n �x[n] ∈ L(R1) ↔ ¬∃n �x[n] ∈ L(R2),

where �x[n] denotes a code of the initial n-segment of s.
We construct a game GR1,R2 as follows.

• When a player produces a finite sequence α[n] in the Δ0
2 game in 2ω such that �α̃[n] ∈ L(Ri)(i ∈ {1, 2}),

player i in the game GR1,R2 starts providing a sequence of configurations of Ri on �α̃[n], which player i
claims to halt in finite steps.

• While player i is making such a sequence of configurations of Ri on �α̃[n], the player 3− i may challenge at
any point.

We can see that the winning set for player 1 in the constructed game GR1,R2 is in 2DVPLω(Δ2). Moreover,
if player i has a winning strategy in 2DVPLω(Δ2), then player i in the original Δ0

1 game in ωω also has a
winning strategy. �

Corollary 3.8. The determinacy of games in 2DVPLω(Δ2), or 2DVPLω(Σ2), is equivalent to ATR0 over
RCA0.

Proof. Since ATR0 ↔ Δ0
1-Det, by Theorem 3.7, the determinacy of 2DVPLω(Δ2) implies ATR0. For the other

direction, it follows from [28] that

ATR0 → Σ0
2-Det(in 2ω) → DTMω(Σ2)-Det → 2DVPLω(Σ2)-Det → 2DVPLω(Δ2)-Det. �

Next, we will show that most of the above results for deterministic 2-stack visibly pushdown automata also
hold for nondeterministic ones. Similarly, by 2VPLω(C) with a boldface acceptance condition C, we denote
the boldface class of ω-languages accepted by the corresponding nondeterministic 2-stack visibly pushdown
automata with an oracle tape.

Theorem 3.9. For an acceptance condition C ∈ {Σ1,Π1,Σ1 ∧Π1,Δ2,Σ2}, RCA0 proves

2DVPLω(C)-Det ↔ 2VPLω(C)-Det ↔ TMω(C)-Det.

Proof. Given an acceptance condition C ∈ {Σ1,Π1,Σ1 ∧ Π1,Δ2,Σ2}, we know that

TMω(C) ⊇ 2VPLω(C) ⊇ 2DVPLω(C).

So, TMω(C)-Det → 2DVPLω(C)-Det.
The other directions follow from the above results on 2DVPLω(C), together with the reverse mathematical

investigations of determinacy [28]. �

We also conjecture that 2DVPLω(B(Σ2))-Det is equivalent to B(Σ0
2)-Det, which is proof theoretically equiv-

alent to Π1
2-CA0 (cf. [24]), and that 2VPLω(Π2)-Det is equivalent to Σ1

1-Det, which is known to be equivalent to
the determinacy of pushdown ω-languages with a Π2 acceptance condition [14]. Note the that for deterministic
case, 2DVPLω(Π2)-Det is equivalent to 2DVPLω(Σ2)-Det.

4. Determinacy strength of infinite games recognized by nondeterministic

pushdown automata

In this section we use the studies on deterministic 2-stack visibly pushdown automata in Section 3 to ana-
lyze the determinacy strength of infinite games whose winning sets are ω-languages recognized by pushdown
automata with various acceptance conditions. Following the notations in Section 3, we define the ω-languages
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0 0 i i i+1 i+1 i i i+1m ,ma b a b a bcb a b a min
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Figure 7. A play in a 2DVPLω game.

0 0 i i i+1a b a b a bin i i
m n m n mq q q

Figure 8. A play in a r-PDLω game.

PDLω(Σ1), PDLω(Π1), PDLω(Σ2), PDLω(Π2), PDLω(Σ1∧Π1) and PDLω(Δ2). Moreover, we put r in front
of the pushdown ω-languages, for instance r-PDLω(Σ1), to denote the ω-languages accepted by the correspond-
ing real-time pushdown automata.

By the compactness arguments, PDLω(Π1) (respectively, PDLω(Σ1), PDLω(Σ2), PDLω(Π2)) is a subclass
of the effective Π0

1 (respectively, Σ0
1, Σ0

2, Σ1
1) class (cf. [33]), and so does the corresponding real-time class.

Similarly, the boldface pushdown ω-languages are included in their counterparts of Borel and analytic classes.
In Section 3, we use deterministic 2-stack visibly pushdown automata to check if an error has occurred or not

in the code of configuration sequence of a 2-counter automaton, which is done in the collation part as shown in
Figure 7.

Such a check can be carried out more easily by a nondeterministic pushdown automaton. Instead of play-
ers’ collation parts, a pushdown automaton can nondeterministically check whether an error occurs or not as
illustrated in Figure 8.

We begin with analyzing the complexity of winning strategies in the infinite games recognized by real-time
pushdown automata with Σ1 acceptance condition.

Theorem 4.1. The determinacy of games in r-PDLω(Σ1) implies Σ0
1-SP−.

Proof. This is a straightforward adaptation of the proof of Theorem 3.5. We construct a two-stage game
GR1∩R2=∅, where R1 and R2 are two 2-counter automata such that L(R1)∩L(R2) = ∅. The game constructed
here is no difference from that we used in the proof of Theorem 3.5 except that the two players interchange
their roles and player I only challenges in the first stage.

In the first stage, it is player II who produces a sequence g. For each m, player II chooses i(∈ {1, 2}) such
that Ri does not halt with m. Player I attempts to detect player II’s lie and challenge player II’s choice i at
any m if she thinks the 2-counter automaton Ri halts with this m, or choose to pass if he agrees with player II.
If player I never find the opportunity to challenge, he loses.

If player I challenges at a step m, the game enters the second stage. Then player II defends by producing
an infinite sequence of configurations of Ri on m, qinam0bn0 � q1a

m1bn1 . . ., where m0 = m and n0 = 0, as
illustrated in Figure 9.
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1   2   1   1 … i 

c

i m

i i im n m n m
in i iq a b q a b q a b

… …

iR m m

Figure 9. A game GR1∩R2=∅.

Player I wins if there exist some computation errors in the infinite sequence of configurations of the 2-counter
automaton, which is provided by player II. We can see that the winning plays for player I in the game GR1∩R2=∅
can be recognized by a real-time nondeterministic pushdown automaton with a Σ1 acceptance condition.

Notice that in this game, player II always wins if she plays rationally while player I has no winning strategy.
Assume that player II has a winning strategy τ in the game GR1∩R2=∅, then the desired separating set is

S =
{
m ∈ ω: Following strategy τ , player II picks 2 at m in the first stage of the game GR1∩R2=∅

}
.

�

Similarly, when we turn to the reverse mathematical statement of the above result, we need to consider the
corresponding boldface classes of ω-languages which are accepted by such pushdown automata with an oracle
tape. The oracle tape is defined in the same way as Section 3. We can show that:

Corollary 4.2. The determinacy of the games in r-PDLω(Σ1) is equivalent to WKL0 over RCA0.

Note that, for nondeterministic pushdown ω-languages, a safety condition is not the complement of a reach-
ability case. In contrast with the reachability case, we show that

Theorem 4.3. RCA0 � PDLω(Π1)-Det.

Proof. We shall prove that any game in PDLω(Π1) is effectively determined with computable winning strategies
by constructing an equivalent pushdown game with a Π1 winning condition, which it known to be effectively
determined with computable winning strategies.

Pushdown processes can be regarded as pushdown automata without input alphabet and labels on the
transitions. Given a pushdown automaton M = (Q,X, Γ, qin, δ, F ) with a Π1 condition, we can formulate a
pushdown process PM = (Q,Γ, V1, V2, δ̂), where

• Vi = {i}QΓ<ω for i ∈ {1, 2}, and
• δ̂ =

{〈
(i, p, νγ), (3 − i, q, wγ)

〉
: ∃a ∈ X ∪ {ε}( (q, w) ∈ δ(p, a, ν) ∧ q ∈ F︸ ︷︷ ︸

(a)

)∨
(
(q, w) ∈ δ(p, a, ν) ∧ ∀q′ ∈ F (q′, w) /∈ δ(p, a, ν)︸ ︷︷ ︸

(b)

)
, i ∈ {1, 2}, ν ∈ Γ,w ∈ Γ≤2, γ ∈ (Γ \ {⊥})<ω{⊥}

}
is the

transition relation.

Intuitively, the transition of PM consists of, all the safe transitions of M as shown in (a) and transitions to
keep the continuity property as shown in (b).
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A pushdown game graph GP can be generated by such a pushdown process, in which the set of vertices V is
a subset of V1 ∪ V2 and the set of edges E ⊆ V × V is defined via δ̂. We fix the configuration (1, qin,⊥) as the
initial vertex.

In the game GP , at a vertex w ∈ Vi, player i chooses a vertex v(∈ V3−i) such that (w, v) ∈ E. Thus the two
players choose alternatively with player 1’s first position. Finally they produce an infinite sequence ρ = v1v2 . . .
of V ω. The deadlock case is avoided due to the construction of PM.

A strategy for player i (∈ {1, 2}) is a mapping fi: V ∗Vi → V . The winning set for player 1 is T =
{
ρ ∈({0, 1}F (Γ \ {⊥})<ω{⊥})ω : ρ defines an accepting run of M}

. Player 1 wins with the play ρ if and only if
ρ ∈ T , otherwise player 2 wins.

A pushdown game GP can be seen as the pushdown automaton M in the sense that for all α ∈ L(M) (which
is called an external winning condition) α induces a winning play belonging to T (which is called an internal
winning condition) in GP and vice versa.

We now construct the following infinite game associated with M, denoted by G(L(M)), where the two players
produce a play x that simulates the play ρ in GP : for all j ≥ 1, player i in G(L(M)) chooses aj = α(j) if player
i in the game GP chooses vj such that there exists α(j) : vj−1 �→M vj , vj−1 ∈ Vi and vj ∈ V3−i, where i ∈ {1, 2}
and α(j) ∈ X ∪ {ε}.

From the construction, we can see that player i has a winning strategy in GP iff play i has a winning strategy
in G(L(M)), if it exists. Moreover, if there exists a computable winning strategy fi for player i in GP , then
there exists a winning strategy f ′

i for player i in G(L(M)) which is computable from fi, and vice versa.
By Walukiewicz [39, 40], there is a computable winning strategy in GP . Thus in the game G(L(M)) we can

construct a computable wining strategy from that in GP . �

Before we move on to treat other pushdown ω-languages, we remark again the resemblance between infinite
games recognized by nondeterministic pushdown automata and those by deterministic 2-stack visibly pushdown
automata with the same acceptance conditions. Intuitively, deterministic 2-stack visibly pushdown automaton
can check an error has occurred or not “in the history”, while a pushdown automaton can nondeterministically
predict an occurrence of an error “in the future” and execute a subsequent check.

A careful examination of this argument and the proofs for 2DVPLω games in Section 3, together with the
proof that we presented in Theorem 4.1 as an example, reveals the following analogous results for pushdown
ω-languages as stated in Theorem 4.4. It is worth noting that all the following equivalences are established
based on infinite games defined by (real-time) pushdown automata with an oracle tape, which are developed in
order to keep in harmony with the classification of reverse mathematics, and also consistent with the results in
Section 3.

Theorem 4.4. The following diagram holds over RCA0.

r-PDLω(Σ2)-Det ↔ ATR0 ↔ 2DVPLω(Σ2)-Det ↔ 2DVPLω(Π2)-Det
� � �

r-PDLω(Δ2)-Det ↔ Δ0
1-Det ↔ 2DVPLω(Δ2)-Det
↓

r-PDLω(Σ1 ∧ Π1)-Det ↔ ACA0 ↔ 2DVPLω(Σ1 ∧Π1)-Det
↓

r-PDLω(Σ1)-Det ↔ WKL0 ↔ 2DVPLω(Σ1)-Det ↔ 2DVPLω(Π1)-Det

Recall that the determinacy of infinite games recognized by pushdown automata with a Π2 (Büchi) acceptance
condition (without an oracle tape) is equivalent to the determinacy of effective analytic games, which is not
provable in ZFC [14].

Moreover, the above results for real-time pushdown automata also hold for non-real-time ones.

Theorem 4.5. For an acceptance condition C ∈ {Σ1,Σ1 ∧Π1,Δ2,Σ2}, RCA0 proves

r-PDLω(C)-Det ↔ PDLω(C)-Det ↔ TMω(C)-Det.
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Proof. Given an acceptance condition C ∈ {Σ1,Σ1 ∧ Π1,Δ2,Σ2}, we know that

TMω(C) ⊇ PDFω(C) ⊇ r-PDLω(C).

Then we have TMω(C)-Det → PDLω(C)-Det.
The other directions follow from the above results on r-PDLω(C) in Theorem 4.4, together with the reverse

mathematical investigations of determinacy in [28]. �

Finally, we can easily observe that all the arguments about pushdown automata in this section are, in fact,
replaced by (nondeterministic) 1-counter automata, namely pushdown automata that can check whether the
counter is zero or not with only one stack symbol. The ω-languages recognized by 1-counter automata (respec-
tively, real-time 1-counter automata) with boldface acceptance condition C is denoted as CLω(C) (respectively,
r-CLω(C)). We show that

Theorem 4.6. For an acceptance condition C ∈ {Σ1,Σ1 ∧Π1,Δ2,Σ2}, RCA0 proves

r-CLω(C)-Det ↔ CLω(C)-Det ↔ TMω(C)-Det.

5. Conclusions

In this study, we proved that infinite games in several pushdown ω-languages with lower Borel complexity
are still highly undecidable. It also remains to investigate the determinacy strength of ω-languages recognized
by other types of machines and/or other acceptance conditions, which approaches to the boundary line between
decidable and undecidable infinite games in Figure 2. For the classes of ω-languages accepted by 2-stack visibly
pushdown automata, we studied some of their determinacy strength with acceptance conditions below Δ2 and
conjectured for 2DVPLω(B(Σ2))-Det, as well as 2VPLω(B(Π2))-Det.

An interesting problem is to extend studies to infinite games recognized by probabilistic automata. The prob-
abilistic automata is a generalization of finite state automata, of which the nondeterministic transitions are re-
placed by transitions with (rational) probabilistic distributions. The acceptance of a word is assessed by not only
the normal conditions, like Büchi, but also the acceptance probability of this word. Let L(PBA>0) (respectively,
L(PBA=1)) denote the class of ω-languages accepted by probabilistic Büchi automata with acceptance probabil-
ities larger than 0 (respectively, equal to 1). It is known that L(PBA>0) ⊆ B(Π0

2) and L(PBA=1) ⊆ Π0
2 [9]. One

possible direction is to investigate the determinacy strength of games in L(PBA>0) (respectively, L(PBA=1)),
and particularly, whether the determinacy of such games is equivalent to those in B(Π0

2) (respectively, Π0
2) or

not. Furthermore, the investigations on their relations with the determinacy of stochastic games (e.g., Blackwell
determinacy) will appear in the future literature.
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