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NON-PRIMITIVE WORDS OF THE FORM pqm

Othman Echi1,2

Abstract. Let p, q be two distinct primitive words. According to Lentin−Schützenberger [9], the

language p+q+ contains at most one non-primitive word and if pqm is not primitive, then m ≤ 2 | p |
| q | +3.

In this paper we give a sharper upper bound, namely, m ≤ �| p | −2

| q | + 2�, where �x� stands for the

floor of x.

Mathematics Subject Classification. 68R15.

1. Introduction

An alphabet is a nonempty finite set Σ. Its elements are called symbols (or letters). A (finite) word is a
(finite) sequence of symbols from Σ. The length of a word u = a1 . . . an, denoted by | u | is the number n of its
letters.

Two words w1 = a1 . . . an and w2 = b1 . . . bm are equal if n = m and ai = bi, for every i.
We denote by Σ∗, Σ+ the sets of all finite, finite nonempty words, respectively. The concatenation or product

of words is defined as follows

If w1 = a1 . . . an and w2 = b1 . . . bm, then w1w2 = a1 . . . anb1 . . . bm.

Clearly, this operation is associative and the empty word is the unit element.
Consequently, Σ∗ = (Σ∗, .) is a free monoid and Σ+ = (Σ+, .) is a free semigroup.
When k ∈ N \ {0, 1}, we say that uk is a proper power of u.
A word is called primitive if it is not empty and not a proper power of another word. The concept of primitive

words plays a crucial role in algebraic coding theory and combinatorial theory of words (see [10, 11]).
It is also worth noting that primitive words can be linked with the prime spectra of rings; endowed with the

Zariski topology (see [7]).
Let u ∈ Σ+; then there exist a unique primitive word

√
u (called the primitive root of u) and a unique integer

e ≥ 1 (called the exponent of u) such that u =
√

u
e (see [12]).
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Let p �= q be two distinct primitive words; then following a result due to Lyndon-Schützenberger [12], the
words pnqm are primitive for all integers m, n ≥ 2. If m = 1 or n = 1, then pnqm is not necessarily primitive;
for example if p = a, q = bab, then pq = (ab)2 is not primitive. According to Lentin−Schützenberger [9] the
language p+q+ contains at most one non-primitive word; which is of the form pqm or pnq. Twenty five years
later, Shyr–Yu rediscovered the same result in [13].

Moreover, if pqm is not primitive, then m ≤ 2 | p |
| q | + 3 [9]. In this paper we give a sharper upper bound,

namely, m ≤ �| p | −2
| q | + 2�, where �x� stands for the floor of x.

2. Preliminaries

In this section we will review some well known results from literature.
If Σ is an alphabet, then we denote by Q(Σ) the set of all primitive words. The symbol Q(k)(Σ) stands for

the set of all elements of Σ+ with exponent k.

Proposition 2.1 [12]. Let u, v ∈ Σ+; then uv = vu if and only if u, v are powers of a common word.

Proposition 2.2 [12]. Let u ∈ Σ+; then there exist a unique primitive word
√

u (called the primitive root of u)
and a unique positive integer e (called the exponent of u) such that u =

√
u

e.

Proposition 2.3 [9, 13]. Let p, q be distinct primitive words over Σ, then the language p+q+ contains at most
one non-primitive word.

Proposition 2.4 [13]. Let p �= q ∈ Q(Σ). If pqm = gk for some m, k ≥ 2 and g ∈ Q(Σ), then one of the
following two statements hold:

(1) p = (xqm)k−1x, for some x ∈ Σ+.
(2) p = (yx(x(yx)j+1)m−1)k−2yx(x(yx)j+1)m−2xy and q = x(yx)j+1, for some x �= y ∈ Σ+, j ≥ 0.

We close this section by a theorem due to Fine–Wilf [8] which is the main ingredient to solve most problems on
primitivity.

Theorem 2.5 (Fine–Wilf Theorem). Let u, v ∈ Σ+. Then the following statements are equivalent.

(i) u and v are powers of the same word.
(ii) there exist i, j > 0 so that ui and vj have a common prefix (suffix) of length | u | + | v | − gcd(| u |, | v |).

3. Non-Primitive Words of the form pqm

The following Lemma is inspired from Proposition 2.4, but here we are assuming that m ≥ 1 instead of m ≥ 2.
Let us first recall a lemma from [9] that appeared also in [13].

Lemma 3.1 ([9], Corollary 4 and [13]). If uqm = gk for some m, k ≥ 1, u ∈ Σ+, and g, q ∈ Q(Σ), with u /∈ q+,
then g �= q and | g | >| qm−1 |.
Lemma 3.2. Let p, q be distinct primitive words on an alphabet Σ, and k ≥ 2, m ≥ 1 be integers. Then the
following statements are equivalent.

(i) pqm ∈ Q(k)(Σ).
(ii) One of the following properties hold.

(1) there exists x ∈ Σ+ such that p = (xqm)k−1x and xqm ∈ Q(Σ).
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(2) there exist x, y ∈ Σ+ such that q = yx, py = (x(yx)m−1)k−1 and x(yx)m−1 ∈ Q(Σ).

Proof. (i) =⇒ (ii). Assume pqm = ρk, for some ρ ∈ Q(Σ).
We claim that | ρ | �= | qm |, otherwise ρ = qm as suffixes with the same length of the same word; so m = 1

and q = ρ. Hence p = qk−1; thus k = 1. We deduce that p = ρ; this leads to the equality p = q, which is contrary
to our assumption. Therefore | ρ |�= qm.

Two cases have to be considered.

Case 1. Assume | ρ |>| qm |. In this case, as pqm = ρk, we deduce that ρ = xqm, for some x ∈ Σ+. Hence

pqm = ρk = ρk−1(xqm).

Thus
p = ρk−1x = (xqm)k−1x.

Case 2. Assume | ρ | < | qm |.
By ([13], Lem. 2.1), we have | ρ |>| qm−1 |. Now, since pqm = pqqm−1 = ρk−1ρ, we conclude that ρ = xqm−1,

for some x ∈ Σ+; so
pq = ρk−1x = (xqm−1)x.

Now, as | ρ | < | qm | and pqm = ρk−1ρ, there exists y ∈ Σ+ such that qm = yρ. We conclude that
pqm = pyρ = ρk. This yields

py = ρk−1 = (xqm−1)k−1.

Thus
pq = ρk−1x = pyx,

so q = yx.
We conclude that

q = yx, py = (x(yx)m−1)k−1 and x(yx)m−1 ∈ Q(Σ).

(ii) =⇒ (i).
– Suppose that p = (xqm)k−1x and xqm ∈ Q(Σ), for some x ∈ Σ+; then

pqm = (xqm)k−1xqm

= (xqm)k ∈ Q(k)(Σ).

Now, assume q = yx, py = (x(yx)m−1)k−1 and x(yx)m−1 ∈ Q(Σ), for some x, y ∈ Σ+; then we get

pqm = p(yx)m

(py)x(yx)m−1

= (x(yx)m−1)k−1kx(yx)m−1

= (x(yx)m−1)k ∈ Q(k)(Σ). �

From the paper of Lentin−Schützenberger [9], one may see that if pqm is not a primitive word, then m ≤
2 | p |
| q | + 3. Lemma 3.2 enables us giving an upper bound shaper than that of [9].

Theorem 3.1. Let p, q be distinct primitive words on an alphabet Σ and m be a positive integer. If pqm is not
primitive, then

m ≤
⌊ | p | −2

| q | + 2
⌋

,

where �x� stands for the floor of x.
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Proof. By the previous theorem, we consider two cases.
Case 1. Assume p = (xqm)k−1x, for some x ∈ Σ+ and k ≥ 2, then

| p | = (k − 1)(| x | +m | q |)+ | x | = k | x | +(k − 1)m | q | .

In this case, we get
| p | ≥ 2 + m | q |,

consequently m <
| p | −1
| q | .

Case 2. Assume q = yx, py = (x(yx)m−1)k−1, for some x, y ∈ Σ+. Hence

| p | + | y | = (k − 1)[| x | +(m − 1) | q |].
So

| p | + | q | = k | x | +(m − 1)(k − 1) | q | .

This gives

| p | = k | x | + ((m − 1)(k − 1) − 1) | q |

= k | x | + (k(m − 1) − m) | q |,
yielding the following inequalities:

| p | ≥ 2 + (k(m − 1) − m) | q |
≥ 2 + (2m − 2 − m) | q |
= 2 + (m − 2) | q | .

Therefore, m ≤ | p | −2
| q | + 2. �

Remark 3.3.

(1) Clearly, our upper bound is sharper than that provided in [9]; indeed(
2 | p |
| q | + 3

)
−

( | p | −2
| q | + 2

)
=

| p | +2
| q | + 1.

(2) Our upper bound may be reached: it suffices to consider p = a, q = bab; then for m = � | p | −2
| q | + 2� = 1;

and pqm = (ab)2 is non-primitive.

Lemma 3.4. Let p, q be distinct primitive words on Σ such that | q | divides | p |. Then qp2 ∈ Q(Σ).

Proof. We let | p |= m | q |, with m ≥ 1. Assume qp2 /∈ Q(Σ); then qp2 = rn, for some n ≥ 2. By 3.1, r �= p
and | r |>| p |; this yields n = 2. Now, Considering the length of qp2 = r2 we have 2 | r |= (1 + 2m) | q |. Thus

| q | is even and | r |= (1 + 2m)
| q |
2

. This implies, in particular, that gcd(| p |, | r |) ≥ | q |
2

.

It follows that p2 is a common suffix of p2 and r2 with length

| p2 |= 2 | p |=| p | + | r | − | q |
2

≥| p | + | r | − gcd(| p |, | r |).

Therefore, according to Theorem 2.5, p and r are powers of the same word, leading to p = r, a
contradiction. �
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Now, combining Lemma 3.2, Lemma 3.4 and Theorem 3.1, one may easily obtain the following result.

Corollary 3.5 [1]. Let p, q be distinct primitive words on Σ such that | q | divides | p |. Then for all positive

integers (m, n) �= (1, 1) and m ≥ | p |
| q | , the word pnqm is primitive.
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