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MINIMUM PARAMETRIC FLOW IN TIME-DEPENDENT

DYNAMIC NETWORKS

Mircea Parpalea1,*, Nicoleta Avesalon2 and Eleonor Ciurea2

Abstract. The paper presents a dynamic solution method for the parametric minimum flow in time-
dependent, dynamic network. This approach solves the problem for a special parametric dynamic
network with linear lower bound functions of a single parameter. Instead of directly working in the
original network, the method implements a labelling algorithm which works in the parametric dynamic
residual network where repeatedly decreases the flow along quickest dynamic source-sink paths for
different subintervals of parameter values, in their increasing order. In each iteration, the algorithm
computes both the parametric minimum flow within a certain subinterval, and the new subinterval for
which the flow needs to be computed.
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1. Introduction

Dynamic flow problems where networks structure changes depending on a scalar parameter λ are widely
used to model different network-structured, decision-making problems over time (see for example [2]). These
types of problems are arising in various real applications such as communication networks, air/road traffic
control, and production systems. Moreover, in many applications of graph algorithms, including communication
networks, graphics, assembly planning, and scheduling, graphs are subject to discrete changes, such as additions
or deletions of arcs or nodes. In the last decade there has been a growing interest in such dynamically changing
graphs, and a whole body of algorithms and data structures for dynamic graphs has been discovered [7, 9,
12, 18, 21]. Further on, the next section presents some basic discrete-time dynamic networks terminology and
notations and Section 3 introduces the parametric minimum flow over time problem. In Section 4 the algorithm
for solving the parametric minimum flow in discrete dynamic networks is presented and Section 5 ilustrates how
the algorithm works on a given dynamic network.

2. Discrete-time dynamic network

A discrete dynamic network G = (N,A, T ) is a directed graph with N being a set of |N | = n nodes i, A
being a set of |A| = m arcs a and T being the finite time horizon discretized into the set H = {0, 1, . . . , T}.
An arc a ∈ A from node i to node j is denoted by (i, j). Parallel, as well as opposite arcs are not allowed in
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graph G. The following time-dependent functions are associated with each arc a = (i, j) ∈ A: the upper bound
(capacity) function u(i, j; θ), u : A ×H → <+, representing the maximum amount of flow that can enter the
arc (i, j) at time θ, the lower bound function `(i, j; θ), ` : A×H → <+, i.e. the minimum amount of flow that
must enter the arc (i, j) at time θ, and the transit time function h(i, j; θ), h : A ×H → ℵ (where ℵ is the set
of natural numbers). Time is measured in discrete steps, so that if one unit of flow leaves node i at time θ over
the arc a = (i, j) that one unit of flow arrives at node j at time θ + h(i, j; θ), where h(i, j; θ) is the transit time
of the arc (i, j). The time horizon T represents the time limit until which the flow can travel in the network.
The network has two special nodes: a source node s and a sink node t.

2.1. Time-space network

For a given discrete-time dynamic network, as presented in [15], the time-space network is a static network
constructed by expanding the original network in the time dimension, by considering a separate copy of every
node i ∈ N at every discrete time step θ ∈ H. A node-time pair (NTP) (i, θ) refers to a particular node i ∈ N
at a particular time step θ ∈ H, i.e., (i, θ) ∈ N ×H.

Definition 2.1. The time-space network GT of the original dynamic network G [15] is defined as follows:

(a) NT := {(i, θ)|i ∈ N, θ ∈ H};
(b) AT := {aθ = ((i, θ), (j, θ + h(i, j; θ)))|0 ≤ θ ≤ T − h(i, j; θ), (i, j) ∈ A};
(c) uT (aθ) := u(a; θ) foraθ ∈ AT ;
(d) `T (aθ) := `(a; θ) foraθ ∈ AT .

For every arc (i, j) ∈ A with traversal time h(i, j; θ), capacity u(i, j; θ) and lower bound `(i, j; θ), the time-
space network GT contains the arcs ((i, θ), (j, θ + h(i, j; θ))), θ = 0, 1, . . . , T − h(i, j; θ) with capacities u(i, j; θ)
and lower bounds `(i, j; θ). A (discrete-time) dynamic path P̄ is defined as a sequence of distinct, consecutively
linked NTPs.

2.2. Parametric dynamic network

Definition 2.2. A discrete-time dynamic network G = (N,A, T ) for which the lower bounds `(i, j; θ) of some
arcs (i, j) ∈ A are functions of a real parameter λ is referred to as a parametric dynamic network and is denoted
by Ḡ = (N,A, u, ¯̀, h, T ).

The model of the parametric dynamic network, which was introduced in [4] is extended by the previous
definition to the case of the parametric minimum flow over time where lower bounds of arcs are parameterized
instead of upper ones. For a parametric dynamic network Ḡ, the parametric lower bound function ¯̀ : A×H ×
[0, Λ]→ <+ associates to each arc (i, j) ∈ A and for each of the parameter values λ in an interval [0, Λ] the real
number ¯̀(i, j; θ;λ), referred to as the parametric lower bound of arc (i, j):

¯̀(i, j; θ;λ) = `0(i, j; θ) + λ · L(i, j; θ), λ ∈ [0, Λ], θ ∈ H, (2.1)

where L : A × H → < is a real valued function, associating to each arc (i, j) ∈ A and for each time-value
θ ∈ H the real number L(i, j; θ), referred to as the parametric part of the lower bound of the arc (i, j). The
nonnegative value `0(i, j; θ) is the lower bound of the arc (i, j) for λ = 0, i.e., ¯̀(i, j; θ; 0) = `0(i, j; θ). For the
problem to be correctly formulated, the lower bound function of every arc (i, j) ∈ A must respect the condition
u(i, j; θ) ≥ ¯̀(i, j; θ;λ) for the entire interval of the parameter values, i.e., ∀(i, j) ∈ A, ∀θ ∈ H and ∀λ ∈ [0, Λ].
It follows that u(i, j; θ) ≥ `0(i, j; θ) and the parametric part of the lower bounds L(i, j; θ) must satisfy the
constraints: L(i, j; θ) ≤ [u(i, j; θ)− `0(i, j; θ)]/Λ, ∀(i, j) ∈ A.
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3. Parametric flow over time

The parametric dynamic flow value function v̄ : N ×H × [0, Λ]→ < associates to each of the nodes i ∈ N ,
at each time moment θ ∈ H, a real number v̄(i; θ;λ) referred to as the value of node i at time θ, for each of the
parameter λ values.

Definition 3.1. A feasible parametric flow over time f̄(i, j; θ;λ) in a parametric dynamic network Ḡ =
(N,A, u, ¯̀, h, T ) is a function f̄ : A×H × [0, Λ]→ <+ that satisfies the following constraints for all λ ∈ [0, Λ],
∀i ∈ N , ∀θ ∈ H:

∑
j|(i,j)∈A

f̄(i, j; θ;λ)−
∑

j|(j,i)∈A

ϑ+h(j,i;ϑ)=θ∑
ϑ

f̄(j, i;ϑ;λ) =

{
v̄(i; θ;λ), i = s, t;

0, i 6= s, t;
(3.1)

¯̀(i, j; θ;λ) ≤ f̄(i, j; θ;λ) ≤ u(i, j; θ), ∀(i, j) ∈ A; (3.2)

f̄(i, j; θ;λ) = 0, ∀(i, j) ∈ A, ∀θ ∈ [T − h(i, j; θ) + 1, T ]; (3.3)

∑
θ∈H

v̄(s; θ;λ) = −
∑
θ∈H

v̄(t; θ;λ) = v̄(λ); (3.4)

where f̄(i, j; θ;λ) determines the rate of flow (per time unit) entering arc (i, j) at time θ, for the parameter
value λ, ∀θ ∈ {0, 1, . . . , T} and ∀λ ∈ [0, Λ], s is the source node and t is the sink node.

Definition 3.2. The parametric minimum flow over time (PmFT) problem is to compute all minimum flows
over time for every possible value of λ:

minimise v̄(λ) =
∑
θ∈H

v̄(s; θ;λ), for all λ ∈ [0, Λ], (3.5)

under flow constraints (3.1)–(3.4).

Definition 3.3. For the minimum flow over time problem, the parametric time-dependent residual network
with respect to a given feasible parametric flow over time f̄ is defined as Ḡ(f̄) := (N,A(f̄), T ), with A(f̄) :=
A+(f̄) ∪A−(f̄), where

A+(f̄) := {(i, j)|(i, j) ∈ A,∃θ ≤ T − h(i, j; θ); f̄(i, j; θ;λ)− ¯̀(i, j; θ;λ) > 0}; (3.6)

A−(f̄) := {(i, j)|(j, i) ∈ A,∃θ ≤ T − h(j, i; θ); u(j, i; θ)− f̄(j, i; θ;λ) > 0}. (3.7)

The direct arcs (i, j) ∈ A+(f̄) in Ḡ(f̄) have same transit times h(i, j; θ) with those in Ḡ while the reverse arcs
(i, j) ∈ A−(f̄) have negative transit times h(i, j; θ+h(j, i; θ)) = −h(j, i; θ), with (j, i) ∈ A and 0 ≤ θ+h(j, i; θ) ≤
T .

Definition 3.4. For the parametric minimum flow over time (PmFT) problem, the parametric residual capac-
ities of arcs (i, j) in the parametric time-dependent residual network Ḡ(f̄) are defined for all (i, j) ∈ A and
0 ≤ θ + h(i, j; θ) ≤ T , as follows:

r̄(i, j; θ;λ) = f̄(i, j; θ;λ)− ¯̀(i, j; θ;λ); (3.8)
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r̄(j, i; θ + h(i, j; θ);λ) = u(i, j; θ)− f̄(i, j; θ;λ). (3.9)

Definition 3.5. Given a parametric flow over time f̄(i, j; θ;λ), the parametric residual capacity r̄(P̄ ; θ;λ) of a
dynamic path P̄ is, for all parameter λ values, the minimum value of the parametric residual capacity functions
r̄(i, j; θ;λ) for all arcs (i, j) composing the path:

r̄(P̄ ; θ;λ) = min{r̄(i, j; θ;λ)|(i, j) ∈ P̄}. (3.10)

Definition 3.6. The transit time τ(P̄ ) of a dynamic path P̄ is defined by:

τ(P̄ ) =
∑

(i,j)∈P̄

h(i, j; θ). (3.11)

A dynamic path P̄ is referred to as the quickest one if τ(P̄ ) ≤ τ(P̄ ′) for all dynamic paths P̄ ′ in the parametric
time-dependent residual network Ḡ(f̄).

4. Parametric minimum dynamic flow

The approaches for solving the maximum (or minimum) parametric flow over time problem via applying
classical algorithms can be grouped in two main categories: i) by applying a classical parametric flow algorithm
for the maximum (see [8, 16, 19]) or for the minimum (see [17]) flow in the static time-space network; ii) by
applying a non-parametric maximum dynamic flow algorithm (see [15]) in dynamic residual networks generated
by partitioning the interval of the parameter values (see [3]). This second category approach was used in [4] for
finding a maximum parametric flow in discret-time dynamic networks but, as far as we know, the problem of the
minimum flow over time in parametric time-dependent, dynamic networks has not been treated yet. Anyway,
an analysis of the limitations which may occur when attempting to solve the problem of a minimum flow via
an approach that solves the one of a maximum flow can be found in reference [14].

Given the powerful versatility of dynamic algorithms, it is not surprising that these algorithms and dynamic
data structures are often more difficult to design and analyse than their static counterparts(see [13]). Cai et al.
[6] proved that the complexity of finding a shortest (quickest) dynamic flow augmenting path, by exploring
the forward and reverse arcs successively, is O(nmT 2). For algorithms which explores the two sub-networks
(the forward sub-network, consisting of the set of direct arcs A+(f̄) and the reverse sub-network consisting of
the set of reverse arcs A−(f̄)) simultaneously, Miller-Hooks and Patterson [10] also reported a complexity of
O(n2T 2). By using special node addition and selection procedures, Nasrabadi and Hashemi [11] succeeded to
reduce significantly the number of node time pair that needs to be visited. The worst-case complexity of their
algorithm is O(nT (n+ T )).

4.1. Parametric minimum dynamic flow (PmDF) algorithm

The idea of the algorithm is that if the parametric residual capacities for all arcs in Ḡ(f̄) are maintained
linear functions of λ, with no break points, the problem can be solved via a slightly modified non-parametric
algorithm. Firstly, if one exists, a feasible flow must be established. The most convenient is this to be done in the
nonparametric network G′ = (N,A, u, `′, h, T ) obtained from the initial network by replacing the parametric
lower bound functions with the non-parametric ones: `′(i, j; θ) = max{`(i, j; θ;λ)|λ ∈ [0, Λ]}, i.e. `′(i, j; θ) =
`0(i, j; θ) for L(i, j; θ) ≤ 0 and `′(i, j; θ) = `0(i, j; θ) + Λ · L(i, j; θ) for L(i, j; θ) > 0. For finding a feasible flow
f̄(i, j; θ) in Ḡ see the algorithms in [1], applied in the static time-space network GT . During the running of
the algorithm, the subinterval of the parameter values is continuously narrowed so that the above restriction
to remain valid. In each subinterval [λk, λk+1] of the parameter values, the linear parametric residual capacity
of every arc (i, j) can be written as r̄k(i; j; θ;λ) = αk(i, j; θ) + βk(i, j; θ) · (λ − λk) while the parametric flow
is f̄k(i; j; θ;λ) = fk(i, j; θ) + Fk(i, j; θ) · (λ − λk). As soon as the parametric time-dependent residual network
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Ḡ(f̄) contains no dynamic paths, the algorithm computes the minimum flow for the considered subinterval and
then reiterates on the next subinterval of the parameter values, until Λ value is reached.

Algorithm 4.1. Parametric minimum dynamic flow(PmDF) algorithm.

(01) PmDF ALGORITHM;
(02) BEGIN
(03) find a feasible flow f̄(i, j; θ) in network Ḡ;
(04) BP := {0}; k := 0; λk := 0;
(05) REPEAT
(06) QDP(k, λk, BP );
(07) k := k + 1;
(08) UNTIL(λk = Λ);
(09) END.

4.2. Quickest dynamic paths (QDP) procedure

Quickest dynamic paths (QDP) procedure repeatedly finds a shortest dynamic path in the time-dependent
residual network and computes its parametric residual capacity r̄(P̄ ; θ;λ). Then it computes, line (13) of
procedure, the parametric residual capacity r̄(P̄ ; θ;λ) = α + (λ − λk) · β of the dynamic path and updates
the upper limit λk+1 of the subinterval of the parameter values (line (18)) to the first value (in increasing order)
of parameter λ up to which r̄(P̄ ; θ;λ) remains linear without break points.

Algorithm 4.2. Quickest dynamic paths (QDP) procedure.

(01) PROCEDURE QDP(k, λk, BP );
(02) BEGIN
(03) FOR all θ ∈ H DO
(04) BEGIN
(05) FOR all i ∈ N DO σ(i, θ) := (0, 0);
(06) FOR all (i, j) ∈ A DO

αk(i, j; θ) := f̄(i, j; θ)− `0(i, j; θ)− λk · L(i, j; θ);
βk(i, j; θ) := −L(i, j; θ);
αk(j, i; θ + h(i, j; θ)) := u(i, j; θ)− f̄(i, j; θ);
βk(j, i; θ + h(i, j; θ)) := 0;
fk(i, j; θ) := f̄(i, j; θ); Fk(i, j; θ) := 0;

(07) END;
(08) C := 1; λk+1 = Λ; τ̄ :=∞; θ̄ :=∞;
(09) LS(σ,C);
(10) WHILE(C = 1) DO
(11) BEGIN
(12) build P̄ based on σ starting from (s, θ̄);
(13) α := min{αk(i, j; θ)|(i, j) ∈ P̄};

β := min{βk(i, j; θ)|(i, j) ∈ P̄ , αk(i, j; θ) = α};
(14) (i, θ) := (s, θ̄);
(15) WHILE(i 6= t) DO
(16) BEGIN
(17) (j, ϑ) := σ(i, θ);
(18) IF(βk(i, j; θ) < β) THEN

λk+1 := min{λk+1, λk + (αk(i, j; θ)− α)/(β − βk(i, j; θ))};
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(19) αk(i, j; θ) := αk(i, j; θ)− α; βk(i, j; θ) := βk(i, j; θ)− β;
αk(j, i;ϑ) := αk(j, i;ϑ) + α;
βk(j, i;ϑ) := βk(j, i;ϑ) + β;

(20) IF((i, j) ∈ A+(f̄)) THEN
fk(i, j; θ) := fk(i, j; θ)− α;
Fk(i, j; θ) := Fk(i, j; θ)− β;

(21) ELSE fk(j, i;ϑ) := fk(j, i;ϑ) + α; Fk(j, i;ϑ) := Fk(j, i;ϑ) + β;
(22) (i, θ) := (j, ϑ);
(23) END;
(24) FOR all θ ∈ H DO FOR all i ∈ N DO σ(i, θ) := (0, 0);
(25) LS(σ,C);
(26) END;
(27) BP := BP ∪ {λk+1};
(28) END.

Further on, the procedure decreases the flow along the dynamic path (lines (20) and (21)) while
correspondingly updates the time-dependent residual network (line (19)). The updating step means subtraction
of r̄(P̄ ; θ;λ) from r̄k(i, j; θ;λ) for direct arcs and addition of it for reverse ones in the dynamic path.

Line (18) of the QDP procedure indicates that if the linear parametric residual capacity of one of the arcs
composing the dynamic path intersects the parametric residual capacity of the dynamic path, having a lower
slope, i.e. βk(i, j; θ) < β, then the upper limit λk+1 of the subinterval of the parameter values is set to the
value of λ for which the intersection takes place (if this leads to narrowing the subinterval) and in this way the
parametric residual capacity of the dynamic path remains linear without break points.

The algorithm ends when none of the source nodes, at any time moments θ ∈ {0, 1, . . . , T}, is reachable from
any of the sink nodes, i.e. there is no dynamic path from s to t.

4.3. Labels setting (LS) procedure

Algorithm 4.3. Labels setting (LS) procedure.

(01) PROCEDURE LS(σ,C);
(02) BEGIN
(03) FOR all θ ∈ {0, 1, . . . , T} DO
(04) BEGIN
(05) FOR all i ∈ N − t DO τ(i, θ) :=∞;
(06) τ(t, θ) := 0; L := L ∪ {(t, θ)};
(07) END;
(08) τ̄ :=∞; θ̄ :=∞
(09) WHILE(L 6= ∅) DO
(10) BEGIN
(11) select the first (j, ϑ) from L; L := L− {(j, ϑ)};
(12) FOR all i ∈ N with (i, j) ∈ A+(f̄) DO
(13) FOR all θ with θ + h(i, j; θ) = ϑ DO
(14) IF(τ(j, ϑ) + h(i, j; θ) < τ(i, θ)) THEN
(15) BEGIN
(16) τ(i, θ) := τ(j, ϑ) + h(i, j; θ)
(17) σ(i, θ) := (j, ϑ)
(18) IF((i, θ) /∈ L) THEN L := L ∪ {(i, θ)};
(19) END;
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(20) FOR all i ∈ N with (i, j) ∈ A−(f̄) DO
(21) IF(ϑ+ h(j, i;ϑ) ≤ T and τ(j, ϑ)− h(j, i;ϑ) < τ(i, ϑ+ h(j, i;ϑ))) THEN
(22) BEGIN
(23) τ(i, ϑ+ h(j, i;ϑ)) := τ(j, ϑ)− h(j, i;ϑ);
(24) σ(i, ϑ+ h(j, i;ϑ)) := (j, ϑ);
(25) IF((i, ϑ+ h(j, i;ϑ)) /∈ L) THEN L := L ∪ {(i, ϑ+ h(j, i;ϑ))};
(26) END;
(27) END;
(28) τ̄ := minθ∈{0,1,...,T}{τ(s, θ)}; θ̄ := minθ∈{0,1,...,T}{θ|τ(s, θ) = τ̄};
(29) IF(τ̄ =∞) THEN C := 0;
(30) END.

The label setting procedure uses transit time labels τ(i, θ) associated to all nodes at each discrete time values.
At any step of the algorithm, a label is permanent once it denotes the length of shortest augmenting path to a
node-time pair, otherwise it is temporary.

The LS procedure maintains a set L of candidate nodes in increasing order of their temporary labels, which
initially includes only the sink nodes (t, θ), θ ∈ {0, 1, . . . , T}. For every node-time pair (j, ϑ) selected from the
list, the arcs with positive residual capacity connecting (i, θ) to (j, ϑ) are explored, where ϑ = θ+h(i, j; θ) if the
arc connecting (i, θ) to (j, ϑ) is a forward arc and 0 ≤ θ = ϑ+ h(j, i;ϑ) if (i, j) is a reverse arc. At any iteration,
the algorithm selects the node-time pair (i, θ) with the minimum temporary label, makes its transit time
label permanent, checks optimality conditions and updates the labels accordingly. A transit time label τ(i, θ)
represents the length (transit time) of a shortest (quickest) dynamic path from (i, θ) if τ(i, θ) ≤ τ(j, ϑ)+h(j, i;ϑ),
∀(i, j) ∈ A(f̄). The process is repeated until there are no more candidate nodes in L. The transit time of the
shortest (quickest) path P̄ computed based on successor vector σ is given by τ̄ .

Theorem 4.4 (Correctness of PmDF algorithm). PmDF algorithm computes correctly a parametric minimum
flow over time for a given time horizon T and for λ ∈ [0, Λ].

Proof. The partitioning type algorithm iterates on successive subintervals [λk, λk+1], starting with λ0 = 0 and
ending with λkmax+1 = Λ and consequently, the correctness of the algorithm obviously follows from the correct-
ness of the quickest dynamic paths (QDP) procedure which ends when none of the source node-time pairs is
reachable from any of the sink node-time pairs, i.e. when there is no dynamic path from the source node to
the sink node in the time-depending residual network. According to the classical flow decreasing path theorem
(see [1]) this means that the obtained flow is a minimum dynamic flow for the given time horizon. In fact, the
algorithm ends with a set of linear parametric minimum flows and with the partition BP of the interval of the
parameter values in their corresponding subintervals.

Theorem 4.5 (Time complexity of PmDF algorithm). The parametric minimum dynamic flow (PmDF) algo-
rithm runs in O(Kn2mT 3) time, where K + 1 is the number of λ values in the set BP at the end of the
algorithm.

Proof. The building, as well as the updating of the time-dependent residual network requires an O(mT ) running
time, since for each of the time values 0 ≤ θ ≤ T all the m arcs must be examined. Labels Setting (LS) procedure
investigates at most nT adjacent node-time pairs for each of the node-time pairs which are removed from the
list L (i.e. O(nT ) times). Thus, the complexity of labels setting (LS) procedure is O(n2T 2). Considering that in
each of the iterations of the QDP procedure, for one of the time values, one arc is eliminated from the dynamic
residual network, the algorithm end in at most O(mT ) iterations. On each of the iterations the procedure finds
a quickest dynamic path with the complexity O(n2T 2) and updates the time-dependent residual network in
O(mT ) time. Thus, the total complexity of the quickest dynamic paths (QDP) procedure is O(n2mT 3).
For each of the K subintervals [λk, λk+1], k = 0, 1, . . . ,K − 1 in which the interval [0, Λ] of the parameter λ
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Figure 1. Left : The discrete-time dynamic network Ḡ used for illustrating PmDF algorithm,
right : the piecewise linear minimum flow over time value function for the discrete dynamic
network Ḡ.

Table 1. Characteristics of dynamic network Ḡ presented in Figure 1 (left).

(i, j) h(i, j; θ) `0(i, j; θ) L(i, j; θ) f̄(i, j; θ)

(1, 2)
1, θ = 0
2, θ ≥ 1

3, θ = 0
0, θ ≥ 1

−2, θ = 0
0, θ ≥ 1

5, θ = 0
0, θ ≥ 1

(1, 3)
1, 0 ≤ θ < 2
2, θ ≥ 2

1, 0 ≤ θ < 2
0, θ ≥ 2

4, θ = 0
1, θ = 1
0, θ > 1

5, θ = 0
2, θ = 1
0, θ ≥ 1

(2, 3) 1, θ ≥ 0 0, θ ≥ 0
3, θ = 1
0, θ 6= 1

3, θ = 1
0, θ 6= 1

(2, 4)
1, 0 ≤ θ < 2
2, θ ≥ 2

0, θ ≥ 0 0, θ ≥ 0
2, θ = 1
0, θ 6= 1

(3, 4)
2, 0 ≤ θ < 2
1, θ ≥ 2

0, θ = 0
2, 0 < θ ≤ 2
0, θ > 2

−2, θ = 2
0, θ 6= 2

0, θ = 0
5, 0 < θ ≤ 2
0, θ > 2

values is partitioned in, the algorithm makes a call to procedure QDP. Consequently, the complexity of the
parametric minimum dynamic flow (PmDF) algorithm is O(Kn2mT 3).

5. Example

In the discrete-time dynamic network presented in Figure 1 (left), node 1 is the source node s and node 4
is the sink node t; the time horizon being set to T = 3, i.e. H = {0, 1, 2, 3}. For the interval of the parameter
λ values, set to [0, 1], i.e. Λ = 1, the transit times h(i, j; θ), parametric lower bound functions ¯̀(i, j; θ;λ) =
`0(i, j; θ) + λ · L(i, j; θ) and feasible flow f̄(i, j; θ) for all arcs in Ḡ are indicated in Table 1. The upper bounds
u(i, j; θ) = 5 for all the arcs at all time values.
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Table 2. The evolution of PmDF algorithm for the dynamic network Ḡ.

k λk P̄ r̄k(P̄ ; θ;λ) λk+1

(1, 1), (3, 2), (2, 1), (4, 2) 1− λ 1
Iteration 1: 0 0 (1, 0), (2, 1), (4, 2) 1 + λ 1

(1, 0), (3, 1), (4, 3) 3 1/4
(1, 0), (2, 1), (3, 2), (4, 3) 1 + λ 1/4

(1, 1), (3, 2), (2, 1), (4, 2) 1− λ 1
Iteration 2: 1 1/4 (1, 0), (2, 1), (4, 2) 1 + λ 1

(1, 0), (3, 1), (4, 3) 4− 4λ 1
(1, 0), (2, 1), (3, 2), (4, 3) 1 + λ 3/5

(1, 1), (3, 2), (2, 1), (4, 2) 1− λ 1
Iteration 3: 2 3/5 (1, 0), (2, 1), (4, 2) 1 + λ 1

(1, 0), (3, 1), (4, 3) 4− 4λ 1
(1, 0), (2, 1), (3, 2), (4, 3) 4− 4λ 1

After the initialisation step, for k = 0 and for the corresponding initial value of the parameter λ0 = 0,
procedure QDP is called for the first time. The successor vector is initialised for all nodes at all time values
to σ(i, θ) := (0, 0) and the Labels setting (LS) procedure is called for finding a quickest dynamic path in
the time-dependent residual network Ḡ(f̄). The distance labels are initialised to τ(4, θ) := 0, ∀θ ∈ {0, 1, 2, 3}
and the set of candidate nodes is set to L := {(4, 0), (4, 1), (4, 2), (4, 3)}. After setting transit time labels and
finding successor values for all node-time pairs, the procedure computes the minimum label of the source node,
τ̄ := min{τ(1, 0), τ(1, 1), τ(1, 2), τ(1, 3)} = min{2, 1,∞,∞} = 1 with θ̄ := 1. Since τ̄ 6=∞ the procedure LS ends
with the variable C keeping its initial value C = 1.

Based on successor vector, the quickest dynamic path P̄ := ((1, 1), (3, 2), (2, 1), (4, 2)) is built and its
residual capacity r̄(P̄ ; θ;λ) = α + (λ − λk) · β is computed with α = min{1, 2, 2} = 1 and β = −1. After the
time-dependent residual network is updated and the parametric dynamic flow is decreased along the shortest
dynamic path, the successor vector is reinitialised and procedure LS is called again. The next shortest dynamic
path found by QDP procedure is P̄ := ((1, 0), (2, 1), (4, 2)) with r̄(P̄ ; θ;λ) = 1 + λ and both the time-dependent
residual network and the parametric dynamic flow are accordingly updated. Then QDP procedure finds the new
dynamic path P̄ := ((1, 0), (3, 1), (4, 3)) with α = 3 and β = 0. Since β0(1, 3; 0) = −4 < β = 0, the upper limit
λk+1 of the subinterval of the parameter is updated to λ1 = min{1, (4−3)/(0 + 4)} = 1/4. Finaly, after updating
the time-dependent residual network and the parametric dynamic flow, based on successor vector found by LS
procedure, QDP finds the last path P̄ := ((1, 0), (2, 1), (3, 2), (4, 3)) with α = 1 and β = 1. The validity of the
upper limit of the subinterval of the parameter values is tested and it is maintained unchanged since for the
arc (2, 3) at θ = 1, β0(2, 3; 1) = −4 < β = 1 but λ1 = min{1/4, (4− 1)/(1 + 4)} = min{1/4, 3/5} = 1/4. At this
point, after the updating step, no other dynamic path can be found in the time-dependent residual network
so that C := 0 is set, the breakpoints list is updated to BP = {0, 1/4} and the first iteration ends with the

minimum parametric flow over time ˆ̄f0(i, j; θ;λ) computed for the subinterval [0, 1/4] of the parameter λ values.
The PmDF algorithm increments variable k to the value k = 1 and a next iteration is performed. The evolution
of the algorithm is presented in Table 2.

The piecewise linear minimum flow over time value function for the discrete dynamic network Ḡ, computed
by parametric minimum dynamic flow (PmDF) algorithm, is presented in Figure 1 (right).

6. Concluding remarks

In this paper, we have presented an original version of the general problem of the minimum parametric
flows in time-dependent dynamic networks with nonzero lower bounds, a model that is closely related to real
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problems. The dynamic flows networks over time and their variations are very challenging problems. These types
of problems are arising in various real applications such as communication networks, air/road traffic control,
supply system and production systems. Some examples consist in network optimization model for multi-depot
bus scheduling, network based model for periodical monitoring routing problem or network model for work
team scheduling after a major disaster. Further applications of the problems are found in the references (see
[5, 20]). The algorithm which has been developed in the above article proved that the minimum parametric
flow in time-dependent dynamic networks can be efficiently addressed in a non-static way, without needing to
transform time-dependent dynamic networks into their related, expanded ones. Furthermore, an example is also
given to support and clearly understand the proposed type of approach. The article also gives a response to the
question related to the efficiency of a genuine dynamic, addressed algorithm in relation with the complexity of
the clasic approach of solving a dynamic problem in a related, expanded network.

Next, we will compare the concluding results of this article with those previously obtained and presented in
references [15–17].

To begin with, we remind of the main goals of the three cited articles compared to the present one. As its
title suggests, the article denoted by reference [15] presents the solving of the problem of maximum flow of
minimum cost in dynamic network G = (N,A, ` = 0, u, h, cost). The article indicated in reference [16] presents
a partitioning approach for finding a maximum parametric flow in the static network Ḡ = (N,A, ` > 0, ū(λ))
while the article mentioned by reference [17], takes into account a problem which is somehow related to the
one in reference [16] only that it solves the minimum parametric flow problem in the static network Ḡ =
(N,A, ¯̀(λ) > 0, u). Finally, the present article, as it has already been stated above, presents a dynamic approach
for determining a minimum parametric flow in the dynamic network Ḡ = (N,A, ¯̀(λ) > 0, u, h).

Furthermore, it is well known that the problem of determining a flow in a dynamic network (to which it
refers present article) is way more complex than the one of determining flows in static networks (to which it
refers references [16, 17]). Likewise, the problem of finding a parametric minimum flow in a dynamic network
with parametric lower bounds (¯̀(λ) > 0) is much more difficult to be solved than the one of finding flows of
minimum cost in dynamic networks with ` = 0 (to which it refers reference [15]).

To sum up briefly, the outcomes presented in this paper are not at all resumptions but furtherance at higher
level of the results that were obtained in the articles referred to in references [15–17].
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