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STATE HYPERSTRUCTURES OF TREE AUTOMATA BASED ON
LATTICE-VALUED LOGIC

Maryam Ghorani*

Abstract. In this paper, an association is organized between the theory of tree automata on one
hand and the hyperstructures on the other hand, over complete residuated lattices. To this end, the
concept of order of the states of a complete residuated lattice-valued tree automaton (simply L -valued
tree automaton) is introduced along with several equivalence relations in the set of the states of an
L -valued tree automaton. We obtain two main results from this study: one of the relations can lead to
the creation of Kleene’s theorem for L -valued tree automata, and the other one leads to the creation
of a minimal L -valued tree automaton that accepts the same language as the given one.
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1. Introduction

The mathematical formulation of a fuzzy automaton was introduced by Wee and Fu [50] and Santos [48].
Subsequently, the fundamentals of fuzzy language theory were established by Lee and Zadeh [27], and by
Thomason and Marinos [49]. Thereafter, many other authors have contributed to this field (see [15, 31, 40, 45]).
Fuzzy automata have many significant applications such as in learning systems, fuzzy discrete event systems and
neural networks [32, 40–42, 46]. Due to the importance of residuated lattice valued logic, Qiu [43, 44] established a
fundamental framework of automata theory based on complete residuated lattice-valued logic, which generalized
some of the results obtained in fuzzy finite automata studied in [40, 45]. In recent years, several other authors
have studied lattice-valued automata (to get more information refer to references [28, 30, 47, 51–53]).

The notion of fuzzy tree automata has been considered by numerous authors and researchers. Inagaki and
Fukumura [16] investigated fuzzy tree automaton as a special case of weighted tree automaton that accepts
formal tree series over a complete semiring. Mordeson and Malik [40] defined a fuzzy tree automaton as an
acceptor of a fuzzy dendrolanguage. Esik and Liu [13] studied fuzzy tree automata with membership in a
distributive lattice and, after defining a fuzzy recognizable tree language, they derived a Kleene’s theorem for
fuzzy tree automata. Bozapalidis and Bozapalidoy [3] showed that linear tree homomorphisms preserve syntactic
recognizability. More results on fuzzy tree automata can be found in [24, 26, 39] and references therein. Since,
fuzzy tree automata take values in the unit interval [0, 1], to enhance the processing ability of fuzzy tree
automata, Ghorani and Zahedi [20–22], Ghorani et al. [23] and Ghorani [18, 19] extended the membership value
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to a more general algebraic structure and considered tree automata based on complete residuated lattice-valued
logic.

Fuzzy sets introduced by Zadeh in 1965 [54], and hyperstructures introduced by Marty in 1934 [33], are
now used globally both on the theoretical point of view and for their many applications. The relation between
fuzzy sets and hyperstructures have been already considered by Corsini [7], Corsini and Leoreanu [8], Ameri
and Zahedi [1] and others [6, 9–12, 55].

Using the tools and methods of hyperstructure theory, Massouros [37] obtained a new proof of the famous
Kleene’s theorem for automata theory, which states that “a subset of the set of words is acceptable by an
automaton if and only if it is defined by a regular expression.” He also defined various hyperoperations on the
set of states of deterministic and non-deterministic acceptors. Moreover, Massouros and Mittas [38] described
constructions of some hyperstructures on the set of words formed from the given input alphabet and on the set
of states of the corresponding automata. Some other important results were obtained by Massouros [35, 36],
and by Chvalina and Chvalinova [4].

Now, in this paper we extend the concept of fuzzy hyperstructures to complete residuated lattice-valued
hyperstructures (or L -valued hyperstructures). Also, we present some connections of tree automata theory and
languages theory with hyperstructures theory over complete residuated lattices. Using some hyperoperations, we
prove the Kleene’s theorem for L -valued tree automata. Kleene’s theorem gives the basic algebraic operations
on the languages recognized by L -valued tree automata and establishes the equivalence between L -valued
tree automata and regular expressions. Moreover, by introducing a new L -valued hypergroup, we provide a
minimization algorithm for L -valued tree automata.

The outline of the paper is as follows: in Section 2, we provide some preliminaries and basic definitions. In
Section 3, we present some definitions on L -valued hyperstructures and by defining an L -valued hyperopera-
tion, we prove the Kleene’s theorem for L -valued tree automata. In Section 4, by introducing a new L -valued
hypergroup, we obtain a minimization algorithm for L -valued tree automata. Conclusions are given in Section 5.

2. Preliminaries and basic definitions

In this section, we review some definitions and concepts concerning complete residuated lattices and (L -
valued) tree automata. For more details, the reader is referred to [2, 5, 13, 17, 20, 23].

2.1. Complete residuated lattice

Definition 2.1 ([2]). A complete residuated lattice is a 5-tuple l =< L ,+, ·,�, ρ > where:

(i) < L ,+, · > is a complete lattice with the least and the greatest elements 0 and 1, respectively;
(ii) � and ρ are two binary operations on L such that � is isotone and < L ,�, 1 > is a commutative monoid,

and ρ is antitone in the first and isotone in the second variable; that is, for any a1, a2, b ∈ L if a1 ≤ a2

then a1 � b ≤ a2 � b, b� a1 ≤ b� a2, a2ρb ≤ a1ρb and bρa1 ≤ bρa2;
(iii) for all a, b, c ∈ L , a� b ≤ c if and only if a ≤ bρc.

Example 2.2 ([20]). Let L = [0, 1] ⊆ R. Then l =< L ,∨,∧,�, ρ > is a complete residuated lattice, where
a � b = max(0, a + b − 1), aρb = min(1, 1 − a + b) for any a, b ∈ [0, 1] , and ∨ and ∧ are the symbols of the
truth-valued lattice, representing max and min, respectively.

Example 2.3 ([19]). Let L = [−4, 0] ⊆ R with natural ordering and a, b ∈ L . Define

a� b =

{
a+ b− ab, if a, b ∈ Q,
a+ b, if a or b ∈ Qc,
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Table 1. The operation ρ in Example 2.4.

ρ 0 a b c 1

0 1 1 1 1 1
a 0 1 1 1 1
b 0 1 1 c 1
c 0 b b 1 1
1 0 a b c 1

and

aρb =

{
min{0, b−a1−a}, if a, b ∈ Q,
min{0, b− a}, if a or b ∈ Qc,

where, Q and Qc show the set of rational and irrational numbers, respectively. It is obvious that < L ,∨,∧ > is
a complete lattice (∨ and ∧ are max and min, respectively) and condition (ii) of Definition 2.1 holds. However,
condition (iii) of Definition 2.1 does not hold because −1�−1 = −3 ≤ −

√
5, but −1 > −1ρ−

√
5 = −

√
5 + 1.

Hence, l =< L ,∨,∧,�, ρ > is not a complete residuated lattice.

Example 2.4 ([19]). Suppose that l =< L ,∨,∧,�, ρ > where L = {0, a, b, c, 1} with 0 < a < b, c < 1, and b
and c are incomparable, � = ∧ and ρ is defined as Table 1. It is easy to check that conditions (i) and (iii) of
Definition 2.1 hold. However condition (ii) of Definition 2.1 does not hold, because a ≤ c but bρa > bρc.

Remark 2.5. In this paper, by an L -valued logic we mean the complete residuated lattice-valued logic; that
is, the set of truth values is L , which possesses nullary connective a (a ∈ L ), an addition binary connective &
as well as usual connectives ∨,∧ and implication →. In addition, in L -valued logic, the only designated truth
value is 1; in other words, a formula ϕ written by |=l ϕ is valid , if and only if [ϕ] = 1 for any interpretation,
where [ϕ] stands for the truth value of ϕ. In this paper, the truth valuation rules of predicate logical and set
theoretical formulas are displayed as follows:

(i) [a] = a(a ∈ L ), [ϕ ∨ ψ] = [φ] + [ψ], [ϕ ∧ ψ] = [ϕ] · [ψ],

[ϕ→ ψ] = [ϕ]ρ[ψ], [ϕ&ψ] = [ϕ]� [ψ].

(ii) If X is the universe then LX denotes the class of all L -valued subsets of X, where by an L -valued subset
of X we mean a mapping from X to L . Now, let A ∈ LX . Then,

[(∃x)ϕ(x)] =
∑
x∈X

[ϕ(x)], [(∀x)ϕ(x)] =
∏
x∈X

[ϕ(x)], [x ∈ A] = A(x).

In addition, the following derived formulas will be used:

(a) ¬ϕ =def ϕ→ 0, ϕ↔ ψ =def (ϕ→ ψ) ∧ (ψ → ϕ),
(b) A ⊆ B =def (∀x)((x ∈ A)→ (x ∈ B)), A ≡ B =def (A ⊆ B) ∧ (B ⊆ A).

Remark 2.6. We utilize
∑n
i=1[ϕi] and

∏n
i=1[ϕi] instead of [ϕ1] + [ϕ2] + · · · + [ϕn] and [ϕ1] · [ϕ2] · · · · · [ϕn],

respectively. Also, if A ∈ LX , then we can write A as follows:

A =
{

(x,A(x)) | x ∈ X,A(x) ∈ L
}
.
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l is said to be a chain if L is a chain set. In this paper, we assume that the complete residuated lattice l is
also a chain, i.e. all pairs of elements are comparable.

We emphasis that L is the set of truth values, < L ,+, · > is a complete lattice and L with four oper-
ations (+, ·,�, ρ), satisfying the conditions of Definition 2.1, is a complete residuated lattice, denoted by
l =< L ,+, ·,�, ρ > . We confuse the expressions l-valued and L -valued, that is by the expression L -valued
we mean complete residuated lattice-valued.

2.2. Trees and (L -valued) tree automata

We denote by W the set of positive integers and by W∗ the set of finite strings over W. The empty string
is denoted by ε. Let P ⊆ W∗. Then P̄ = {p ∈ W∗ | ∃p′ ∈ W∗, pp′ ∈ P} consists of all the prefixes of all the
strings in P. For example if P = {123}, then P̄ = {ε, 1, 12, 123}. In general P ⊆ P̄. P is said to be prefix-closed
if P = P̄ .

Definition 2.7 ([5]). A ranked alphabet is a couple (F,Arity) where F is a finite set and Arity is a mapping
from F into W ∪ {0}. The arity of a symbol f ∈ F is Arity(f). The set of symbols of arity n is denoted by
Fn. Here, we use parenthesis and commas for a short declaration of symbols with arity. For instance, f(, ) is a
short declaration for a binary symbol f. The set T (F ) of trees, over the ranked alphabet F, is the smallest set
defined by:

– F0 ⊆ T (F ),
– if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ), then f(t1, . . . , tp) ∈ T (F ).

Example 2.8. Let F = {a, f(, )}. Hear f is a binary symbol and a is a constant (i.e. Arity(f) = 2 and
Arity(a) = 0). Then we have T (F ) = {a, , f(a, a), f(a, f(a, a)), . . .}. Trees can be represented in a graphical
way. For instance, the tree f(a, f(a, a)) is represented by:

Also a tree t ∈ T (F ) can be defined as a partial function t : W∗ → F with domain pos(t), satisfying the
following properties:

(i) t(ε) = Head(t), where Head(t) is the root symbol of t.
(ii) pos(t) is non-empty and prefix-closed.

(iii) ∀p ∈ pos(t), if t(p) ∈ Fn, n ≥ 1, then {j|pj ∈ pos(t)} = {1, . . . , n}.
(iv) ∀p ∈ pos(t), if t(p) ∈ F0, then {j|pj ∈ pos(t)} = ∅.

Each element in pos(t) is called a position.
A subtree t|p of a tree t ∈ T (F ) at position p is defined as follows:

– pos(t|p) = {j| pj ∈ pos(t)},
– ∀q ∈ pos(t|p), t|p(q) = t(pq).

Definition 2.9 ([5]). The height of a tree t, denoted by Height(t), is inductively defined by:

– Height(t) = 0 if t ∈ X,
– Height(t) = 1 if t ∈ F0,
– Height(t) = 1 + max

{
Height(ti)| i ∈ {1, . . . , n}

}
if Head(t) ∈ Fn.
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Example 2.10. Let F = {a, b, g(), f(, ), h(, , )}. Consider the tree t as follows:

The root symbol of t is h (i.e. Head(t) = h); the set of positions of t is pos(t) = {ε, 1, 2, 3, 11, 12, 31}; the
set of prefixes of all the strings in pos(t) is {ε, 1, 2, 3, 11, 12, 31}, therefore pos(t) is prefix-closed; Height(t) = 3;
t|1 = f(a, b); t|2 = a; t|3 = g(b); t|11 = a; t|12 = b; t|31 = b.

Definition 2.11. ([20]) A tuple A = (Q,F,Qf , δ) is called a complete residuated lattice valued tree automaton
(for short, an L -valued tree automaton), where

(i) Q is a set of states.
(ii) F is a ranked alphabet.
(iii) Qf : Q→ L is an L -valued subset of Q over L and is called the set of L -valued final states.
(vi) For each n ≥ 0, δn is an L-valued mapping from Qn × Fn ×Q to L .

Example 2.12. Let F = {a, g(), f(, )} and L = [0, 1] ⊆ R. Consider A = (Q,F,Qf , δ) with components:
Q = {q0, q1}, Qf (q0) = 0.5, Qf (q1) = 1 and

δ0(a, q0) = 0.5, δ1(q0, g, q0) = 0.9, δ1(q0, g, q1) = 0.6, δ2
(
(q0, q0), f, q1

)
= 0.3.

It is obvious that A is an L -valued tree automaton.

A deterministic L -valued tree automaton is an L -valued tree automaton Ad = (Qd, F,Qfd , δd), where for
each σ ∈ Fn and q1, . . . , qn ∈ Qd there exists at most one q ∈ Qd such that δd((q1, . . . , qn), σ, q) > 0. An L -valued
tree automaton A = (Q,F,Qf , δ) is said to be complete, if there exists at least one rule δ((q1, . . . , qn), σ, q) > 0,
for all n ≥ 0, σ ∈ Fn and q1, . . . , qn ∈ Q.

Remark 2.13. An operation of the L -valued tree automaton can be seen as a movement from Qn to Q,
according to the ranked input letter and the family of L-valued subsets δ = (δn)n≥0. We will usually write δ for
δn.

In the following example we give an L -valued tree automaton that is deterministic and complete.

Example 2.14. Let F = {a, g(), f(, )} and L = [0, 1] ⊆ R. Consider the L -valued tree automaton A =
(Q,F,Qf , δ) as: Q = {q0, q1, q2}, Qf (q0) = 0.3, Qf (q1) = 0.9, Qf (q2) = 0.4 and

δ(a, q0) = 0.5, δ(q2, g, q1) = 0.9, δ(q0, g, q1) = 0.6, δ(q1, g, q1) = 0.8,
δ
(
(q0, q0), f, q2

)
= 0.4, δ

(
(q0, q1), f, q2

)
= 0.9, δ

(
(q1, q0), f, q2

)
= 0.3,

δ
(
(q1, q1), f, q2

)
= 0.4, δ

(
(q0, q2), f, q2

)
= 0.2, δ

(
(q1, q2), f, q2

)
= 0.5,

δ
(
(q2, q0), f, q2

)
= 0.7, δ

(
(q2, q1), f, q2

)
= 0.1, δ

(
(q2, q2), f, q2

)
= 0.9.

It is obvious that the L -valued tree automaton A is deterministic and complete.
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3. Kleene’s theorem for L -valued tree automata

The study of fuzzy hyperstructures is an interesting research area of fuzzy sets theory and many works have
been done in this area ([7, 10–12, 55]). In this section, we extend the concept of fuzzy hyperstructures to L -
valued hyperstructures. Moreover, we present some connections of tree automaton theory and languages theory
with hyperstructures theory over complete residuated lattices.

Definition 3.1. The L -valued response mapping rA : T (F ) ×Q → L , by induction on t ∈ T (F ), is defined
as follows:

(i) If t = σ ∈ F0, then rA(t, q) = δ(t, q), ∀q ∈ Q,
(ii) If t = σ(t1, . . . , tn), ∀t1, . . . , tn ∈ T (F ) and σ ∈ Fn, then

rA(t, q) =
∑

(q1,...,qn)∈Qn

(
δ((q1, . . . , qn), σ, q) ·

n∏
i=1

rA(ti, qi)
)
.

Remark 3.2. Let t ∈ T (F ) and q ∈ Q. If rA(t, q) > 0, then we say that the tree t leads to q.

The L -valued behaviour BA(q) from Q and the L -valued behaviour BA(Qf ) of A, are defined as follows,
respectively:

BA(q) =
{(
t, BA(q)(t)

)
| t ∈ T (F )

}
,

where

BA(q)(t) = rA(t, q)�Qf (q),

and

BA(Qf ) =
{(
t, BA(Qf )(t)

)
| t ∈ T (F )

}
,

where

BA(Qf )(t) =
∑
q∈Q

BA(q)(t).

Also, L is said to be L -valued acceptable if there exists an L -valued tree automaton A such that L = BA(Qf ).

Now, we apply the preceding descriptions in the following example.

Example 3.3. Suppose that l =< L ,∨,∧,�, ρ > is a complete residuated lattice where L = [0, 1] ⊆ R, a� b =
max(0, a+ b−1) and aρb = min(1, 1−a+ b) for any a, b ∈ [0, 1]. Also, let A = (Q,F,Qf , δ) be defined as follows:
F = {a, g(), f(, )}, Q = {q0, q1, q2}, Qf (q0) = 0.6, Qf (q1) = 1, Qf (q2) = 0.4 and δ(a, q0) = 0.8, δ(q0, g, q1) =
1, δ(q1, g, q1) = 0.5, δ

(
(q1, q1), f, q2

)
= 0.9, δ(q1, g, q2) = 0.9. We have:

BA(q0)(a) = 0.8� 0.6 = 0.4, BA(q1)
(
gn(a)

)
= 0.5� 1 = 0.5, ∀n ≥ 2,

BA(q1)
(
g(a)

)
= 0.8� 1 = 0.8, BA(q2)

(
gn(a)

)
= 0.5� 0.4 = 0, ∀n ≥ 3,

BA(q2)
(
g2(a)

)
= 0.8� 0.4 = 0.2, BA(q2)

(
f(g(a), g(a))

)
= 0.8� 0.4 = 0.2,
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BA(q2)
(
f(gn(a), gm(a))

)
=

{
0.2 n = m = 1,
0 o.w.

and

BA(q0) =
{

(a, 0.4)
}
, BA(q1) =

{(
g(a), 0.8

)
,
(
gn(a), 0.5

)
| n ≥ 2

}
, BA(q2) =

{(
g2(a), 0.2

)
,
(
f(g(a), g(a)), 0.2

)}
.

Therefore

BA(Qf )(a) = 0.4, BA(Qf )
(
g(a)

)
= 0.8, BA(Qf )

(
g2(a)

)
= 0.5 ∨ 0.2 = 0.5,

BA(Qf )
(
gn(a)

)
= 0.5, ∀n ≥ 3, BA(Qf )

(
f(g(a), g(a))

)
= 0.2

and

BA(Qf ) =
{

(a, 0.4),
(
g(a), 0.8

)
,
(
gn(a), 0.5

)
,
(
f(g(a), g(a)), 0.2

)
| n ≥ 2

}
.

Definition 3.4. Let A = (Q,F,Qf , δ) be an L -valued tree automaton. A state q ∈ Q is accessible if there
exists a tree t ∈ T (F ) such that rA(t, q) > 0. An L -valued tree automaton is called reduced if all of its states
are accessible.

The L -valued tree automaton A given in Example 3.3 is reduced, since all of the states are accessible.

Definition 3.5. Let A be an L -valued tree automaton over the ranked alphabet F, and t ∈ T (F ). An L -
valued run r of A on t is a mapping r : pos(t)×Q→ L compatible with δ, i.e., ∀ p, pi ∈pos(t), if t(p) = σ ∈
Fn, r(p, q) > 0 and r(pi, qi) > 0, ∀ i ∈ {1, . . . , n}, then δ((q1, . . . , qn), σ, q) > 0.

Assume that K = {�1, . . . ,�n} is a set of constants and t ∈ T (F ∪ K ). Let L1, . . . , Ln, µ ∈ L T (F∪K ) where
µ(t) > 0 and µ(�i) = 1, ∀ i, 1 ≤ i ≤ n.

Then the L -valued tree substitution of
(
�1, µ(�1)

)
, . . . ,

(
�n, µ(�n)

)
by L1, . . . , Ln in

(
t, µ(t)

)
, denoted by(

t, µ(t)
){(

�1, µ(�1)
)
← L1, . . . ,

(
�n, µ(�n)

)
← Ln

}
, is defined by the following identities:

(i)
(
�i, µ(�i)

){(
�1, µ(�1)

)
← L1, . . . ,

(
�n, µ(�n)

)
← Ln

}
= Li for i = 1, . . . , n,

(ii)
(
a, µ(a)

){(
�1, µ(�1)

)
← L1, . . . ,

(
�n, µ(�n)

)
← Ln

}
=
{(
a, µ(a)

)}
for all a ∈ F such that arity of a is

0 and a 6= �1, . . . , a 6= �n,

(iii)
(
f(s1, . . . , sm), µ(f(s1, . . . , sm))

){(
�1, µ(�1)

)
← L1, . . . ,

(
�n, µ(�n)

)
← Ln

}
=
{(
f(t1, . . . , tm), µ(f(t1, . . . , tm))

)
|
(
ti, µ(ti)

)
∈
(
si, µ(si)

){(
�1, µ(�1)

)
← L1, . . . ,

(
�n, µ(�n)

)
← Ln

}}
, and µ(ti) = µ(si) ·

∏n
j=1 µ(αj), 1 ≤ i ≤ m such that

(
ti, µ(ti)

)
=
(
si, µ(si)

){(
�j , µ(�j)

)
← (αj , µ(αj)) | ∀j, 1 ≤ j ≤ n

}
, and (αj , µ(αj)) ∈ Lj

also µ(f(t1, . . . , tm)) = µ(f(s1, . . . , sm)) ·
∏m
i=1 µ(ti) and si 6= �i, 1 ≤ i ≤ m.

(iv)
(
f(�1, . . . ,�n), µ(f(�1, . . . ,�n))

){(
�1, µ(�1)

)
← L1, . . . ,

(
�n, µ(�n)

)
← Ln

}
=
{(
f(t1, . . . , tn),

µ(f(t1, . . . , tn))
)
|
(
ti, µ(ti)

)
∈ Li, 1 ≤ i ≤ n

}
, where µ(f(t1, . . . , tn)) = µ(f(�1, . . . ,�n)) ·

∏n
i=1 µ(ti).
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Let M and L be L -valued subsets of T (F ∪ K ). The concatenation of M to L is defined as L·�M =
∪(

t,µ(t)
)
∈L

{(
t, µ(t)

){(
�, µ(�)

)
←M

}}
and Kleene-star L∗,� is defined as L∗,� = ∪n≥0L

n,�, where

(i) L0,� =
{

(�, µ(�))
}
,

(ii) Ln+1,� = Ln,� ∪ L·�Ln,�.

Example 3.6. Let F = {a, g(), f(, )} and K = {�1,�2}. Also let t = f(�1, f(�1,�2)), µ(t) =
0.6, µ(f(�1,�2)) = 0.8, µ(�1) = µ(�2) = 1 and L1 = {(a, 0.7), (g(a), 0.2)}. Then

(t, 0.6){(�1, 1)← L1} =
{(
f(a, f(a,�2)), 0.6

)
,
(
f(a, f(g(a),�2)), 0.2

)
,(

f(g(a), f(g(a),�2)), 0.2
)
, (f(g(a), f(a,�2)), 0.2

)}
.

Example 3.7. Let F = {a, b, g(), f(, )}, L =
{

(a, 0.7), (f(a,�), 0.5)
}

and M =
{

(b, 0.4), (f(g(a),�), 0.3)
}
.

Then

L ·�M =
{

(a, 0.7), (f(a, b), 0.4), (f(a, f(g(a),�)), 0.3)
}

and

L∗,� = {(�, µ(�))} ∪
{

(a, 0.7), (f(a,�), 0.5)
}
∪
{

(a, 0.7), (f(a, a), 0.5), (f(a, f(a,�)), 0.5)
}
∪ . . .

Let H be a non-void crisp set (i.e. an element is either a member of H or not). An L -valued hyperoperation
“o” on H is an L -valued subset of H×H×H over L , i.e. a mapping from H×H×H to L . If o is an L -valued
hyperoperation, then we write (aob)(x) instead of o(a, b, x) and the notation (aob)(x) means the truth value of
aob at the element x.

Let A,B ∈ LH and o ∈ LH×H×H. Then we define

AoB(x) =def
∑
a,b∈H

(
A(a)� B(b)� aob(x)

)
, ∀x ∈ H.

Definition 3.8. Let o ∈ LH×H×H. Then HG1 ∈ L LH×H×H is an L -valued set of semihypergroups if:

HG1(o) =def
[(

(aob)oc
)
≡
(
ao(boc)

)]
, ∀a, b, c ∈ H,

where

(aob)oc =
{(
x, ((aob)oc)(x)

)
| x ∈ H and

(
(aob)oc

)
(x) ∈ L

}
,

(
(aob)oc

)
(x) =

∑
y∈H

(
(aob)(y)� (yoc)(x)

)
,

ao(boc) =
{(
x, (ao(boc))(x)

)
| x ∈ H and

(
ao(boc)

)
(x) ∈ L

}
,
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and (
ao(boc)

)
(x) =

∑
y∈H

(
(aoy)(x)� (boc)(y)

)
.

Intuitively,
[(

(aob)oc
)
≡
(
ao(boc)

)]
stands for the truth value of

(
(aob)oc

)
≡
(
ao(boc)

)
,

Remark 3.9. It is obvious that HG1(o) ∈ L . Note that HG1(o) stands for the truth value of the proposition
that “o” is an L -valued semihypergroup.

Example 3.10. Let l =< L ,+, ·,�, ρ > be a complete residuated lattice where L = [0, 1] ⊆ R and operators
+, ·,� and ρ are defined as Example 2.2. Moreover, let H = {a, b} and the L -valued hyperoperation “o” on H
be as follows:

(aoa)(a) = 0.1, (aoa)(b) = 0.2, (bob)(a) = 0.4, (bob)(b) = 0.5,
(aob)(a) = 0.3, (aob)(b) = 0.2, (boa)(a) = 0.2, (boa)(b) = 0.2.

Utilizing Definition 3.8 and items (i) and (ii)b in Remark 2.5 , we obtain HG1(o). ∀a, b, c ∈ H, we can obtain:[(
(aob)oc

)
≡
(
ao(boc)

)]
=
∏
x∈H

(∑
y∈H

(
(aob)(y)� (yoc)(x)

)
ρ
∑
r∈H

(
(aor)(x)� (boc)(r)

)
·
∑
r∈H

(
(aor)(x)� (boc)(r)

)
ρ
∑
y∈H

(
(aob)(y)� (yoc)(x)

))
= 1.

Therefore HG1(o) = 1.

Definition 3.11. Let HG1(o) > 0. Then HG ∈ L LH×H×H is an L -valued set of hypergroups if:

HG(o) =def [Hoa ≡ aoH] ∧ [Hoa ≡ H] ∧ [aoH ≡ H] ∀a ∈ H,

where

Hoa =
{(
x,Hoa(x)

)
| x ∈ H and Hoa(x) ∈ L

}
,

aoH =
{(
x, aoH(x)

)
| x ∈ H and aoH(x) ∈ L

}
,

Hoa(x) =
∑
y∈H

(
H(y)� yoa(x)

)
,

aoH(x) =
∑
y∈H

(
aoy(x)�H(y)

)
,

and

H(y) =

{
1 y ∈ H,
0 y 6∈ H.

Remark 3.12. It is obvious that HG(o) ∈ L . If HG1(o) > 0, then HG(o) stands for the truth value of the
proposition that “o” is an L -valued hypergroup.
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Let HG(o) > 0. Then B-HG ∈ L LH×H×H is an L -valued set of B-hypergroups, if the following conditions
hold: ∀ a, b ∈ H

• aob(a) > 0,
• aob(b) > 0,
• aob(x) = 0,∀x ∈ H, x 6= a, b.

If the above conditions hold then B-HG(o) = HG(o), otherwise B-HG(o) = 0. Note that B-HG(o) is the truth
value of the proposition that “o” is an L -valued B-hypergroup,

Example 3.13. Consider Example 3.10. We obtain HG(o).

Hoa(a) =
∑
y∈H

(
H(y)� yoa(a)

)
=
(
H(a)� (aoa)(a)

)
+
(
H(b)� (boa)(a)

)
= (1� 0.1) + (1� 0.2) = 0.2.

By a similar method, we can see that Hoa(b) = 0.2, Hob(a) = 0.4, Hob(b) = 0.5, aoH(a) = 0.3, aoH(b) =
0.2, boH(a) = 0.4 and boH(b) = 0.5.

Now, we show that ∀a ∈ H, [Hoa ≡ aoH] :∏
x∈H

(
Hoa(x)ρaoH(x)

)
·
(
aoH(x)ρHoa(x)

)
=
(
Hoa(a)ρaoH(a)

)
·
(
aoH(a)ρHoa(a)

)
·
(
Hoa(b)ρaoH(b)

)
·
(
aoH(b)ρHoa(b)

)
·
(
Hob(a)ρboH(a)

)
·
(
boH(a)ρHob(a)

)
·
(
Hob(b)ρboH(b)

)
·
(
boH(b)ρHob(b)

)
= 0.9.

Therefore

∀a ∈ H, [Hoa ≡ aoH] = 0.9.

Moreover, we show that ∀a ∈ H, [Hoa ≡ H] :∏
x∈H

(
Hoa(x)ρH(x)

)
·
(
H(x)ρHoa(x)

)
=
(
Hoa(a)ρH(a)

)
·
(
H(a)ρHoa(a)

)
·
(
Hoa(b)ρH(b)

)
·
(
H(b)ρHoa(b)

)
·
(
Hob(a)ρH(a)

)
·
(
H(a)ρHob(a)

)
·
(
Hob(b)ρH(b)

)
·
(
H(b)ρHob(b)

)
= 0.2.

Therefore

∀a ∈ H, [Hoa ≡ H] = 0.2.

By a similar method, we can show that ∀a ∈ H, [aoH ≡ H] = 0.2. Utilizing Definition 3.11 we have

HG(o) = 0.9 · 0.2 · 0.2 = 0.2.

Definition 3.14. PR ∈ L LH×H×H is an L -valued set of partially reversibles if:

PR (o) =def xoy(w)ρ
( ∑
x′∈s(x)

wox′(y) +
∑

y′∈s(y)

woy′(x)
)
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where ∀a ∈ H, s(a) = {b ∈ H | aob(e) > 0 & boa(e) > 0} and e is the neutral element (i.e., ∀a ∈ H, aoe ≡
eoa ≡ a).

Definition 3.15. Let

HR =
{(

(�,�),HR(�,�)
)
| � is an L -valued operation and � is an L -valued hyperoperation on H

}
.

Then HR is an L -valued set of hyperringoids if:

(i) HG(�) > 0
(ii) ∀ a, b, c ∈ H, (a� b) � c ≡ a� (b� c);

(iii) ∀ a, b, c ∈ H, a� (b� c) ≡ (a� b) � (a� c);
(iv) ∀ a, b, c ∈ H, (a� b) � c ≡ (a� c) � (b� c).

If all of the above conditions hold, then HR(�,�) is truth value the proposition that ”(�,�)” is an L -valued
hyperringoid.

An L -valued hyperringoid with B-HG(�) > 0 is called An L -valued B-hyperringoid.

Example 3.16. It is easy to see that HR(+, .�) > 0 and B-HR(+, .�) > 0 where, .� is an L -valued operation
and + is an L -valued hyperoperation on T (F ∪ K ).

Definition 3.17. Let HR(�,�) > 0. Then L -valued rational subsets of H are:

(i) finite L -valued subsets of H,
(ii) finite L -valued hyperoperation ” � ” and finite L -valued operation ” � ” of L -valued rational subsets,

(iii) series of the form
∑∞
n=1(

∏n
i=1A), where A is an L -valued rational subset and the notations

∑
and

∏
denote the L -valued hyperoperation ” � ” and L -valued operation ” � ”, respectively.

Remark 3.18. Note that if we set L = [0, 1], then the preceding definitions of L -valued hyperstructures
reduce to their fuzzy counterparts [25, 34].

From the 4-tuple defining the L -valued tree automaton, the set of the states Q can receive the structure
of an L -valued hypergroup through the proper definition of certain hyperoperations. In this way, L -valued
hypergroups can be attached to the L -valued automaton and describe its structure and operation. Here, we
consider some L -valued hypergroups as:

a) The attached L -valued order hypergroup,
b) The attached L -valued behaviour hypergroup.

Using the attached L -valued order hypergroup, we can prove the Kleene’s theorem and the attached L -valued
behaviour hypergroup can lead to the creation of the minimal L -valued tree automaton that has the same
behaviour with the given L -valued tree automaton. Now, we shall introduce some new L -valued hyperstructures
and will show how these structures can be connected to the theory of L -valued tree automata.

Definition 3.19. The order of a state q ∈ Q, denoted by ord q, is the minimum of the height of trees that lead
to q.

One or more unreachable states possibly exist, i.e., there is no tree that leads to these states. These states
have no influence in the operation of the L -valued tree automaton and therefore their order is not necessary to
be defined. Let R = {ord q | q ∈ Q} and f ∈ LR be such that f(ord q) ≤ f(ord p) if and only if ord q ≤ ord p.

Then the L -valued equivalence class of q is defined as:

Cq =
{(
p, Cq(p)

)
| p ∈ Q

}
, where Cq(p) =

(
f(ord q) ρ f(ord p)

)
�
(
f(ord p) ρ f(ord q)

)
.
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According to the definition of the L -valued hyperoperation, different types of hypergroups can be introduced in
Q, with the use of the notion of order. Here, through introducing the notion of the order of a state, an L -valued
hypergroup of the L -valued tree automaton appears which is called the attached L -valued order hypergroup.

This L -valued hypergroup is needed for the proof of Kleene’s theorem along with using the tools and methods
derived from the theory of hyperstructures.

Theorem 3.20. The set of states of an L -valued tree automaton, endowed with the following L -valued
hyperoperation is an L -valued hypergroup.

(q ? q)(p) =

{
0 Qf (q) > 0andQf (p) = 0∑
ord z≤ord q Cz(p) o.w.

(3.1)

and

(q ? p)(r) = (q ? q)(r) + (p ? p)(r), ∀q, p, r ∈ Q.

Proof. Since Cz is reflexive and transitive, for any q, q′, p ∈ Q, we have

(1) (q ? q)(q) = Cq(q) = 1,
(2) (q ? q)(q′) ≥ (q ? q)(p)� (p ? p)(q′).

From (1) and (2), we have

(q ? q)(q′) ≥
∑
p∈Q

(
(q ? q)(p)� (p ? p)(q′)

)
≥ (q ? q)(q)� (q ? q)(q′) = (q ? q)(q′),

i.e.,

(q ? q)(q′) =
∑
p∈Q

(
(q ? q)(p)� (p ? p)(q′)

)
.

Now we show that HG1(?) > 0. For any q, q′, p ∈ Q and s ∈ Q, we have

(
(q ? q′) ? p

)
(s) =

∑
r∈Q

(
(q ? q

′
)(r)� (r ? p)(s)

)
=
∑
r∈Q

(
(q ? q

′
)(r)�

(
(r ? r)(s) + (p ? p)(s)

))
=
∑
r∈Q

((
(q ? q

′
)(r)� (r ? r)(s)

)
+
(
(q ? q

′
)(r)� (p ? p)(s)

))
=
∑
r∈Q

(
(q ? q

′
)(r)� (r ? r)(s)

)
+
∑
r∈Q

(
(q ? q

′
)(r)� (p ? p)(s)

)
=
∑
r∈Q

((
(q ? q)(r)� (r ? r)(s)

)
+
(
(q
′
? q
′
)(r)� (r ? r)(s)

))
+ (p ? p)(s)

= (q ? q)(s) + (q
′
? q
′
)(s) + (p ? p)(s).

Similarly, we obtain ∑
k∈Q

(
(q
′
? p)(k)� (q ? k)(s)

)
= (q ? q)(s) + (q

′
? q
′
)(s) + (p ? p)(s).
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Thus,
∑
r∈Q

(
(q ? q

′
)(r)� (r ? p)(s)

)
=
∑
k∈Q

(
(q
′
? p)(k)� (q ? k)(s)

)
and HG1(?) = 1.

Now, we prove that HG(?) > 0. ∀q, r ∈ Q we have

(q ? Q)(r) =
∑
q′∈Q

(
(q ? q′)(r)�Q(q′)

)
=
∑
q′∈Q

(
(q ? q)(r) + (q′ ? q′)(r)

)
= (r ? r)(r) = 1.

Also,

(Q ? q)(r) =
∑
q′∈Q

(
Q(q′)� (q′ ? q)(r)

)
=
∑
q′∈Q

(
(q′ ? q′)(r) + (q ? q)(r)

)
= (r ? r)(r) = 1.

So, (q ? Q)(r) = Q(r) = (Q ? q)(r). Therefore, HG(?) = 1 and the proof is completed.

The L -valued hypergroup defined in (3.1) is named attached L -valued order hypergroup.
Next, we will use the L -valued hypergroup (3.1) to prove the Kleene’s theorem that states “an L -valued

subset of T (F ) is behaviour of an L -valued tree automaton, if and only if it is L -valued rational.” Note that
the L -valued hypergroup (3.1) is directly related to T (F ), since we can define:

λ(q ? q) =
{(
t, λ(q ? q)(t)

)
| t ∈ T (F )

}
,

where

λ(q ? q)(t) =
∑

p∈Q,(q?q)(p)>0

rA(t, p).

To prove the Kleene’s theorem, first we must provide some lemmas:

Lemma 3.21. The L -valued subset λ(q ? q) ∈ L T (F ) is L -valued rational.

Proof. For each 1 ≤ i, j ≤ |Q| and K ⊆ Q, we define T (i, j,K) as the L -valued set of trees t ∈ T (F ∪ K) such
that there is an L -valued run r of A on t satisfying the following properties:

– r(ε, qi) > 0;
–
∑j
i=1 r(p, qi) > 0 for all p 6= ε, t(p) ∈ Fn.

In the other words, T (i, j,K)(t) > 0 if we can reach qi at the root by using only states in {q1, . . . , qj} when we
assume that the leaves are states of K.

Obviously λ(q ? q) = ∪i{T (i, |Q|, ∅) | (q ? q)(qi) > 0}, that is λ(q ? q)(t) =
∑
i T (i, |Q|, ∅)(t), where

(q ? q)(qi) > 0. Now, we are going to show the rationality of T (i, j,K) by induction on j.

– Base case j = 0. The set T (i, 0,K) is the L -valued set of trees t where the root is labelled by qi, the leaves
are labelled by K and no internal node is labelled by some q. Therefore, there exist a1, . . . , an, a ∈ F0 such
that t = a or t = f(a1, . . . , an), also T (i, 0,K)(t) = rA(t, qi). Hence T (i, 0,K) ∈ L T (F∪K) is finite and is
L -valued rational.

– Induction case. Assume that for any K ⊆ Q, 0 ≤ j′ < j and 1 ≤ i ≤ |Q|, the set T (i, j′,K) is L -valued
rational. Let us claim that the following equality holds:

T (i, j,K)(t) = T (i, j − 1,K)(t) +
[
T (i, j − 1,K ∪ {qj}).qjT (j, j − 1,K ∪ {qj})∗,qj .qjT (j, j − 1,K)

]
(t).

By induction hypothesis, each set in the right-hand side of the equality defining T (i, j,K) is L -valued rational.
This yields the desired result. Now we show that our claim holds. The inclusion is shown as follows: Let
T (i, j,K)(t) > 0 and n be the number of occurrences of qj . If n 6= 0, then there exist some subtrees in T (j, j −
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1,K∪{qj}) and T (j, j− 1,K). Also since the root of t is labelled by qi, there is a subtree in T (i, j− 1,K∪{qj}).
Applying the concatenation operation for these trees and iterating this process, we reach to

(
T (i, j − 1,K ∪

{qj}).qjT (j, j − 1,K ∪ {qj})∗,qj .qjT (j, j − 1,K)
)
(t) > 0. Also if n = 0, then T (i, j − 1,K)(t) > 0. Therefore, this

yields the desired result.
The converse inclusion is shown by induction on the number of occurrences of qj .

– Base case. Let
(
T (i, j − 1,K ∪ {qj}).qjT (j, j − 1,K ∪ {qj})∗,qj .qjT (j, j − 1,K)

)
(t) > 0 and the number of

occurrences of qj be one. Then, T (i, j,K)(t) > 0.
– Induction case. Let the following property hold for n.(

T (i, j − 1,K ∪ {qj}).qjT (j, j − 1,K ∪ {qj})n,qj .qjT (j, j − 1,K)
)

(t) ≤ T (i, j, k)(t).

It is obvious that(
T (i, j − 1,K ∪ {qj}).qjT (j, j − 1,K ∪ {qj})n+1,qj .qjT (j, j − 1,K)

)
(t)

=
(
T (i, j − 1,K ∪ {qj}).qjT (j, j − 1,K ∪ {qj})n,qj .qjT (j, j − 1,K)

)
(t)

+
(
T (i, j − 1,K ∪ {qj}).qjT (j, j − 1,K ∪ {qj}).qjT (j, j − 1,K ∪ {qj})n,qj .qjT (j, j − 1,K)

)
(t)

(by induction hypothesis) ≤ T (i, j,K)(t).

Also, by definition we have T (i, j − 1,K)(t) ≤ T (i, j,K)(t). Therefore, T (i, j,K) and also λ(q ? q) are L -valued
rational subsets of T (F ∪ K) where (q ? q)(qi) > 0.

It is obvious that if Qf is the set of L-valued final states of A, then ∪q∈Q,Qf (q)>0λ(q ? q) is the behaviour of
L -valued tree automaton A, therefore we have the following theorem:

Theorem 3.22. The behaviour of an L -valued tree automaton is L -valued rational subset of T (F ).

From the above theorem the direct part of Kleene’s theorem is derived. Now, we are going to consider the
other part of Kleene’s theorem.

Let Y be a finite set. Then, Y is a set of L -valued ranked hyperoperators over arbitrary set M , if there
exists an external ranked hyperoperation from Y ×M n ×M to L , where n ≥ 0. Now, let Y be a set of L -
valued ranked hyperoperators over M and HR(�,�) > 0, where � is an L -valued operation and � is an
L -valued hyperoperation on T (Y ). Then, an L -valued subset R of T (Y ) will be named the set of L -valued
behaviours from M , if there exists F ∈ L M such that

[
φ(F )(t)ρR(t)

]
�
[
R(t)ρφ(F )(t)

]
> 0,∀t ∈ T (Y ) where

φ(F ) ∈ L T (Y ).

Lemma 3.23. Let A = (Q,F,Qf , δ) be an L -valued tree automaton. For a given Qf ∈ L Q, all the L -valued
behaviours can be found.

Proof. Let Q = {qj | j = 1, . . . , n} be a finite set with |Q| = n and

Xj =
{(
t, rA(t, qj)

)
| t ∈ T (F ) and rA(t, qj) ∈ L

}
, j = 1, . . . , n.

Obviously, X1, . . . , Xn are the L -valued behaviours from Q and B-HR(+, .�) > 0 where, .� is an L -valued
operation and + is an L -valued hyperoperation on T (F ). Also let

Bj =

{
1 Qf (qj) > 0
0 o.w.
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and

Aij =
{(
t, T (i, j − 1,K ∪ {qj})(t)

)
| t ∈ T (F ) and T (i, j − 1,K ∪ {qj})(t) ∈ L

}
,

where K ⊆ Q and 1 ≤ i, j ≤ n. For a given Qf , the set of L -valued behaviours from Q is the solution of the
following n× n system:

X1(t) = (A11.q1X1)(t) + (A12.q2X2)(t) + · · ·+ (A1n.qnXn)(t) +B1

X2(t) = (A21.q1X1)(t) + (A22.q2X2)(t) + · · ·+ (A2n.qnXn)(t) +B1

...
Xn(t) = (An1.q1X1)(t) + (An2.q2X2)(t) + · · ·+ (Ann.qnXn)(t) +B1

By solving this system, according to the theory developed in [35], we get X1, . . . , Xn which are all the L -valued
behaviours from Q. Therefore, the lemma is proved.

Lemma 3.23 guarantees the existence of all the L-valued behaviours from Q. Therefore, in the following two
lemmas the existence of L -valued behaviours L1 from Q1 and L2 from Q2 is guranteed.

Lemma 3.24. Let F be a set of L -valued ranked hyperoperators over Q1 and Q2. If L1 and L2 are the sets of
L -valued behaviours from Q1 and Q2, respectively, then there exists a set Q with hyperoperators from F such
that L1 + L2 is also a set of L -valued behaviours from Q.

Proof. By hypothesis, there exist Qf1 ∈ L Q1 and Qf2 ∈ L Q2 such that
(
φ1(Qf1)(t1)ρL1(t1)

)
�
(
L1(t1)ρφ1

> (Qf1)(t1)
)
> 0 and

(
φ2(Qf2)(t2)ρL2(t2)

)
�
(
L2(t2)ρφ2(Qf2)(t2)

)
> 0,∀t1, t2 ∈ T (F ). Now, we define Q =

Q1 ∪ Q2, Qf = Qf1 ∪ Qf2 and φ(Qf ) = φ1(Qf1) ∪ φ2(Qf2) where φ(Qf ) ∈ L T (F ). Therefore we obtain the
desired result.

Also, it is easy to prove the following lemma.

Lemma 3.25. Let F be a set of L -valued ranked hyperoperators over Q1 and Q2. If L1 and L2 are the sets of
L -valued behaviours from Q1 and Q2, respectively, then there exists a set Q such that L1.�L2 is also a set of
L -valued behaviours from Q.

From the Lemma 3.25 we have the following corollary:

Corollary 3.26. Let L be
the set of L -valued behaviours from Q. Then Ln,� is also a set of L -valued behaviours from Q.

Utilizing the Lemmas 3.24 and 3.25, Corollary 3.26 and this fact that every finite set of trees defines the
L -valued behaviour of an L -valued tree automaton, we have the other part of Kleene’s theorem that is as
follows:

Theorem 3.27. Every L -valued rational subset of T (F ) is L -valued behaviour of an L -valued tree automaton.

From Theorems 3.22 and 3.27, we have the Kleene’s theorem as follows:

Theorem 3.28 (Kleene’s Theorem). An L -valued subset of T (F ) is the behaviour of an L -valued tree
automaton, if and only if it is L -valued rational.

Remark 3.29. Using the tools and methods of hyperstructure theory, Massouros [37] obtained a new proof
of the famous Kleene’s theorem for automata theory. Let us recall that if we let L = {0, 1} then an L -valued
tree automaton reduces to a tree automaton. Moreover, we know that the words over a finite alphabet can be
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viewed as unary terms, therefore automata become special tree automata. Hence the obtained results in this
section, extend the corresponding ones in automata theory [37].

Remark 3.30. If L = {0, 1}, Theorem 3.28 is just Kleene’s theorem for tree automata in [5, 17]. If we consider
L = [0, 1] ⊆ R and maximum arity of trees equals to one, then we obtain the Kleene’s theorem for fuzzy
automata [40]. The Kleene’s theorem for L -valued automaton [29], fuzzy tree automata [13] and weighted tree
automata over semirings [14] be seen as special cases of Theorem 3.28.

4. Minimal L -valued tree automata

In this section, we define an L -valued hypergroup that can lead to the creation of the minimal L -valued
tree automaton that accepts the same language as the initial one. Let A = (Q,F, {qf}, δ) be an L -valued tree
automaton where qf is the only final state of the L -valued tree automaton A.

We define [q] =def
{(
q′, [q](q′)

)
| q′ ∈ Q

}
where

[q](q′) =def
∏

(q1,...,qi−1,qi+1,...,qn)∈Qn−1

∏
f∈Fn

[(
δ
(
(q1, . . . , qi−1, q, qi+1, . . . , qn), f, p

)
ρ

δ
(
(q1, . . . , qi−1, q

′, qi+1, . . . , qm), f, p′
))
�
(
δ
(
(q1, . . . , qi−1, q

′, qi+1, . . . , qn), f, p′
)
ρ

δ
(
(q1, . . . , qi−1, q, qi+1, . . . , qm), f, p

))
� [p](p′)

]
.

If [q](q′) > 0, then we say that the states q and q
′

have the same L -valued behaviour. Now, we introduce an
L -valued hyperoperation “o” on Q as follows:

(q1oq2)(q) =


[q1](q) + [q2](q) [q1](q) 6= [q2](q)
[q1](q) + [qf ](q) [q1](q) = [q2](q), q1 6= q2

[q1](q) [q1](q) = [q2](q), q1 = q2,

(4.1)

where qf is the only final state of the L -valued tree automaton or the conventional final state. It is obvious
that HG(o) > 0. Also it can be easily shown that PR (o) > 0. Thus we have the following theorem:

Theorem 4.1. The L -valued hyperoperation “o” defined in (4.1), is an L -valued partially reversible
hypergroup.

The L -valued partially reversible hypergroup defined in (4.1), is named attached L -valued behaviour
hypergroup.

Remark 4.2. The notion of the behaviour is directly relevant to the creation of a minimum L -valued tree
automaton which accepts the same language as the initial one. Therefore, if in an L -valued tree automaton
there exist two states of the same behaviour, it makes no difference in the process of reaching the final state,
whether we use the first one or the other. So, if the behaviour hypergroup is L -valued partially reversible, then
we can construct an L -valued hypergroup and an L -valued tree automaton which has this new hypergroup as
behaviour hypergroup that has less states than the original one, but it accepts exactly the same language as
the initial one.

In the following theorem, the existence of the minimal form of an L -valued tree automaton is shown.
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Theorem 4.3. Let A = (Q,F, {qf}, δ) be an L -valued tree automaton and PR (o) > 0, where o ∈ L Q×Q×Q.

Then, there exists Q′ ⊆ Q such that HG(o) > 0, where o ∈ L Q′×Q′×Q′ . Also, there exists A ′ = (Q′, F,Q′f , δ
′)

such that BA(Q) = BA′(Q′).

Proof. Let PR (o) > 0. Then, there exist q1, q2 ∈ Q such that (q1oq1)(q) = (q2oq2)(q), ∀q ∈ Q, where
(q1oq2)(qf ) > 0. Since [q1] = [q2], BA(q1) = BA(q2). Therefore, we can omit one of the states. Thus, we consider
Q′ = Q \

{
q1 ∈ Q| ∃q2 ∈ Q, [q1] = [q2]

}
such that there exists an L -valued hyperoperation ”o” on Q′ as

(qop)(q′) = [q](q′) + [p](q′).

Obviously, HG(o) > 0. Also, there exists an L -valued tree automaton corresponding to the hypergroup
as Amin = (Qmin, F, {qf}, δmin) where Qmin = Q′ and δmin((q1, . . . , qn), qt, σ) =

∑
{δ((p1, . . . , pn), pt, σ) :

[qt](pt) > 0, [qi](pi) 6= 0, i = 1, . . . , n}.

In Algorithm 4.4, we provide a minimization algorithm for L -valued hypergroup defined in (4.1). Utilizing
Algorithm 4.4, we obtain a new L -valued hypergroup on Q′ such that Q′ ⊂ Q and both show the same
behaviour.

Algorithm 4.4. A procedure for obtaining minimal L -valued hypergroup.

Input: The L -valued behaviour hypergroup given in (4.1);
Set Q′ = Q;
For all q ∈ Q obtain qoq;
If qoq = pop for all q, p ∈ Q such that q 6= p, then

Set Q′ = Q \ {p};
Output: The minimal L -valued behaviour hypergroup corresponding to input;

Next, we will illustrate the Algorithm 4.4 by an example.

Example 4.5. Let L = [0, 1] ⊆ R and A = (Q,F,Qf , δ) be a deterministic, complete and reduced L -valued
tree automaton where:

Q = {q0, q1, q2, q3}, F = {a, b, g(, )}, Qf (q0) = 0.2, Qf (q1) = 0.4, Qf (q2) = Qf (q3) = 0

and δ be as follows:

δ(a, q0) = 1, δ(b, q1) = 1, δ
(
(q3, q3), g, q1

)
= 0.2.

δ
(
(q0, q0), g, q2

)
= 0.3, δ

(
(q0, q1), g, q2

)
= 0.3, δ

(
(q0, q2), g, q3

)
= 0.8,

δ
(
(q0, q3), g, q2

)
= 0.3, δ

(
(q1, q0), g, q2

)
= 0.3, δ

(
(q1, q1), g, q2

)
= 0.3,

δ
(
(q1, q2), g, q3

)
= 0.8, δ

(
(q1, q3), g, q2

)
= 0.3, δ

(
(q2, q0), g, q3

)
= 0.2,

δ
(
(q2, q1), g, q3

)
= 0.2, δ

(
(q2, q2), g, q1

)
= 0.1, δ

(
(q2, q3), g, q0

)
= 0.1,

δ
(
(q3, q0), g, q1

)
= 0.1, δ

(
(q3, q1), g, q1

)
= 0.1, δ

(
(q3, q2), g, q0

)
= 0.1,

Also we consider L -valued hypergroup defined in (4.1). Then we have:

q0oq0 = {(q0, 1), (q1, 1)}, q2oq2 = {(q2, 1)},
q1oq1 = {(q0, 1), (q1, 1)}, q3oq3 = {(q3, 1)}.
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Therefore, by Algorithm 4.4 we have:

q1oq2 = {(q1, 1), (q2, 1)}, q1oq3 = {(q1, 1), (q3, 1)}, q2oq3 = {(q2, 1), (q3, 1)}.

Thus, L -valued tree automaton which has this new hypergroup as L -valued behaviour hypergroup is as:
Amin = (Qmin, F,Qfmin , δmin) where,

Qmin = {q1, q2, q3}, F = {a, b, g(, )}, Qfmin
(q1) = 0.4

and δmin is as follows:

δ(a, q1) = 1, δ(b, q1) = 1, δ((q3, q3), g, q1) = 0.2,
δ((q1, q1), g, q2) = 0.3, δ((q1, q2), g, q3) = 0.8, δ((q1, q3), g, q2) = 0.3,
δ((q2, q1), g, q3) = 0.2, δ((q2, q2), g, q1) = 0.1, δ((q2, q3), g, q1) = 0.1,
δ((q3, q1), g, q1) = 0.1, δ((q3, q2), g, q1) = 0.1.

Obviously, L -valued tree automata A and Amin have the same behaviour.

5. Conclusions

This paper presented two types of L -valued hyperstructures that are used for solving the main problems
in the theory of languages and tree automata over complete residuated lattices. Through defining L -valued
hyperoperations, we obtained the following attached hypergroups:

a) The attached L -valued order hypergroup,
b) The attached L -valued behaviour hypergroup.

Using the attached L -valued order hypergroup, we proved the Kleene’s theorem for L -valued tree automata,
and the attached L -valued behaviour hypergroup led to the creation of a minimal L -valued tree automaton
that has the same behaviour as the given L -valued tree automaton.

Acknowledgements. The author would like to express her gratitude to the handling editor and anonymous referees for
their helpful comments and suggestions that improved the quality of the paper.
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