
Theoretical Informatics and Applications
Theoret. Informatics Appl. 36 (2002) 43–65

DOI: 10.1051/ita:2002004

PIPELINED DECOMPOSABLE BSP COMPUTERS ∗

Martin Beran
1

Abstract. The class of weak parallel machines is interesting, because
it contains some realistic parallel machine models, especially suitable
for pipelined computations. We prove that a modification of the bulk
synchronous parallel (BSP) machine model, called decomposable BSP
(dBSP), belongs to the class of weak parallel machines if restricted
properly. We will also correct some earlier results about pipelined
parallel Turing machines.

Mathematics Subject Classification. 68Q05, 68Q10.

Introduction

The bulk synchronous parallel (BSP) model, introduced by Valiant [15], is an
example of the so-called bridging models of parallel computers. A good bridging
model should allow portable parallel algorithms to be developed easily and also
implemented on the really existing computers efficiently. The BSP model fulfils
these requirements – BSP algorithms have been designed and analyzed [6,7,10,13],
and BSP implementations exist [3, 9]. Hence, the BSP model is a realistic model
of parallel computation. The decomposable BSP model (dBSP) is an extension of
the BSP model [1]. It enables exploitation of communication locality of parallel
algorithms in order to achieve an additional speedup.

Models of computation can be assigned into machine classes according to their
computational power. The first machine class C1 [14] contains the Turing machine
(TM) and other sequential models, e.g., RAM (random access machine). Given
an algorithm, its time complexity differs only up to a polynomial factor when

Keywords and phrases: BSP, complexity theory, models of compuation, parallel computing,
pipelining.

∗ This research was partially supported by the GA ČR grant No. 201/00/1489.

1 Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Praha 1,
Czech Republic; e-mail: beran@ms.mff.cuni.cz

c© EDP Sciences 2002

44 M. BERAN

executed on different models from the first class. The second machine class C2 [5]
is the class of massively parallel computers, e.g., PRAM (parallel random access
machine). The time complexity of a problem on computers from the second class
is polynomially related to the space complexity of the Turing machine. Machines
from the second class offer an exponential speedup in comparison with the first
class but, unfortunately, they are infeasible if physical laws of nature are taken into
account. Hence we would like to have a class of parallel computers which compute
faster then members of the first machine class, yet being realistic, i.e., physically
feasible. One such class is the class of weak parallel machines Cweak, defined by
Wiedermann [17]. Members of class Cweak provide fast pipelined computation, i.e.,
fast solution of many instances of the same problem. A typical feature of weak
parallel models is restricted communication. For example, in a single step of a
parallel Turing machine, information can be transferred from a tape cell to its
immediate neighbours only. In dBSP, any communication pattern is allowed, but
local communication (limited to small clusters of processors) runs faster and is
therefore preferred. This characteristic – communication locality – is exhibited by
many really existing parallel computers. This observation supports the hypothesis
that weak parallelism of Cweak members could be a good characterization of realistic
parallel computers.

In this paper, we will answer the question whether dBSP computers belong to
the class of weak parallel machines. In Section 1, we will define the class Cweak

and present a representative weak parallel machine – the pipelined parallel Turing
machine (PPTM). We will correct some claims from [17] about the relation of
PPTMs and class Cweak. Section 2 contains an analysis of the membership of the
dBSP model in the class of weak parallel machines. Results presented in this paper
are contained also in the author’s doctoral thesis [2].

1. Weak parallel models

The class of weak parallel machines Cweak was defined in [17]. In addition to
time and space, a new complexity measure – period – was introduced.

Definition 1.1. Period P (n) of a computation over a sequence of inputs (in-
stances of the same problem P) of the same size n is the upper bound on time
between beginnings of reading two subsequent inputs of the sequence or between
ends of writing two subsequent outputs.

Note that the period depends only on the size of an individual input, not on
the number of inputs in the sequence. The time complexity is defined like in non-
pipelined case, i.e., it is the time needed to process a single input and produce
the corresponding output. In a pipelined computation, the time is the interval
between start of reading the i-th input and end of writing the i-th output, for
any i. Intuitively, each input instance should pass the same processing stages.
This concept is formalized by the notion of uniform pipelined computation.

PIPELINED DECOMPOSABLE BSP COMPUTERS 45

Definition 1.2. A pipelined machine is uniform iff it eventually starts cycling
(repeating the same configuration) with period P (n) on a sufficiently long sequence
of identical inputs.

Now we define the class of efficient pipelined machines. The definition is similar
to the definition of the second machine class. The respective machines are “weak
parallel”, because they provide fast processing of many instances (small period),
but not of a single input (which would lead to small time).

Definition 1.3. The class of weak parallel machines Cweak contains machines with
their periods P (n) polynomially equivalent to the space complexity S(n) of a DTM.

“Polynomial equivalence” means that there are some constants k, l such that
P (n) = O(Sk(n)) and S(n) = O(P l(n)). Since space complexity of all models
in the first machine class is linearly equivalent (i.e., polynomially equivalent with
k = l = 1) the DTM in the above definition can by substituted by any first class
machine, e.g., a RAM.

In the paper [17], the parallel Turing machine (PTM) is defined, analyzed, and
its pipelined version (PPTM) is shown to be a member of Cweak. In this section,
we briefly repeat important definitions and facts from that paper (in Sect. 1.1) and
present some new results: two restrictions of the PPTM model with proofs of their
membership in the class of weak parallel machines and a theorem saying that the
original nonrestricted PPTM is too strong to belong into Cweak (in Sects. 1.2, 1.3,
and 1.4). These results will be used later in Section 2 when dealing with pipelined
versions dBSP.

1.1. Parallel Turing machines

A parallel Turing machine is a modification of the standard Turing machine [4].
It achieves parallelism by making copies of its finite control unit and head. Its
important property (which restricts the degree of possible parallelism) is the fact
that all heads operate on the same set of tapes.

Definition 1.4. A (non-pipelined) d-dimensional k-tape Parallel Turing Machine
– (d, k)-PTM for short – is based on a nondeterministic sequential Turing machine
(NTM) having k tapes of dimension d. The computation starts with only one
processor (a set of k heads with the control unit realizing the transition relation is
called the processor). If the NTM would do a nondeterministic choice of performing
one of instructions i1, i2, . . . , ib, the PTM creates b − 1 new processors and each
of b processors executes a different instruction from the alternatives. Then all
the processors work independently, but they share the same set of tapes. The
processors run synchronously, performing one step per time unit. It is forbidden
for several processors to write simultaneously different symbols into the same tape
cell.

Whenever any processor encounters a choice in the transition relation, it gen-
erates new copies of itself. One would suspect that there could emerge 2O(T (n))

processors during T (n) steps, but it is not the case. Any processors in the same

46 M. BERAN

state with heads at the same positions are indistinguishable and effectively act as
a single processor. Assuming S(n) cells occupied on each of k tapes and q pos-
sible states, at most q.(S(n))k = O(Sk(n)) distinguishable processors can exist.
The limited number of processors causes that the PTM does not belong to the
second machine class. As for membership in the first class, (1, 1)-PTM ∈ C1. A
multi-tape PTM and a sequential TM can simulate mutually each other, but the
sequential TM can be simulated by a multi-tape PTM in sublinear space [17], thus
(d, k)-PTM 6∈ C1 for k > 1.

Definition 1.5. A pipelined parallel Turing machine (d, k)-PPTM has a two-
dimensional read-only input tape, and a one-dimensional write-only output tape.
The i-th input word wi is written from the beginning of the i-th row of the input
tape. The machine prints its i-th output to the i-th cell of the output tape. The
input is read in order w1, w2, . . . and the output is printed in the same order. The
number of steps made by the PPTM between reading the first symbol of wi and
printing the i-th output depends only on the length of wi. The PPTM halts after
printing the last output.

A PPTM M solves a decision problem P in time T (n) iff for a sequence of
instances of the same length n the machine M prints the i-th output after at most
T (n) steps after reading the first symbol of the i-th input.

A PPTM M works in space S(n) iff any sequence of arbitrarily many inputs of
the same length n is processed using at most S(n) cells on working tapes.

A PPTM M solves P with period P (n) iff it reads the first symbol of the input
wi after at most P (n) steps after reading the first symbol of wi−1 and prints the
i-th output at most P (n) steps after printing the (i − 1)-st output.

Typically, the input words of a PPTM are instances of the same problem P .
Hence, the PPTM is especially suitable to solve not just one instance of P , but a
(long) sequence of instances.

The Pipelined Computation Thesis (PCT) says that for a problem P , there is
a pipelined algorithm for P with period polynomially equivalent to the sequential
space complexity of P . The class Cweak consists of exactly those machines which
satisfy the PCT. The uniform (1, 1)-PPTM satisfies half of the PCT, as is proved
in the following lemma.

Lemma 1.6. A Turing machine computing in time T (n) and space S(n) can be
simulated by a (1, 1)-PPTM with period P (n) = O(S(n)), time O(T (n)) and space
O(T (n)).

Proof. Each instance, which is being computed, occupies S(n) consecutive tape
cells. There are T (n)/S(n) such instances at any time, occupying T (n) cells in
total, thus the PPTM needs space O(T (n)). The pipelined machine simulates one
step for each instance and moves the whole content of its working tape one cell to
the right. This can be done in a constant number of steps with enough processors.
After S(n) steps, there is enough room for a new instance at the beginning of the
working tape. At the same time, the oldest instance on the tape is finished and
its output printed. Hence the period of computation is O(S(n)). After T (n)/S(n)

PIPELINED DECOMPOSABLE BSP COMPUTERS 47

periods, T (n) steps is performed on an instance and its processing is finished. The
PPTM time complexity is O(T (n)), because each period comprises S(n) steps.
Arrangement of the instances on the working tape is drawn in Figure 1.

...

...

instance 1

instance 2

instance 2

instance 3

instance 3

instance 4

instance 4

instance 5

S(n) steps
input

S(n)
︷ ︸︸ ︷

Figure 1. Pipelined PTM with period P (n) = O(S(n)).

As we will see later, the second part of the PCT – simulation of PPTM with
period P (n) in sequential space O(P k(n)) – does not hold for a general uniform
PPTM. Nevertheless, a single period can be simulated in small space.

Lemma 1.7. Let M be a uniform (1, 1)-PPTM computing with period P (n).
Then there exists a sequential Turing machine M′ with a separate input tape com-
puting in space S(n) = O(P (n)), which gets a configuration of M on its input tape
and checks that M returns into the same configuration after P (n) steps.

Proof. Simulation machine M′ uses the fact that only processors with heads at
cells i− t, . . . , i + t can influence the content of cell i after t steps. Figure 2 shows
which cells have to be remembered and which may be forgotten to be able to
simulate P (n) steps. First, symbols in cells 0, . . . , P (n) are copied from input to
the working tape, content of the cell 0 after P (n) steps is computed and checked,
then the symbol in the cell P (n) + 1 is copied to the working tape and the cell 1
after P (n) steps is evaluated, and so on until the whole working tape is processed.
At any time, only a segment of O(P (n)) cells of the original PPTM M tape has
to be stored on the working tape of M′. Machine M′ is a deterministic sequential
Turing machine working in space S(n) = O(P (n)). See [17] for technical details
of the simulation.

The above algorithm allows to simulate a single period in polynomially related
sequential space. This is not sufficient to claim that a whole computation can be
simulated in polynomially related space, because the simulation does not cover the
startup phase of the pipelined algorithm, before the cycle (required by uniformity)
is entered. The cost of the startup phase of a uniform pipelined computation has
no a priori upper bound and may contain a major part of the whole computation
(cf. Th. 1.13).

48 M. BERAN

... ...

... ...

P (n) stepscan be forgotten

must be remembered

︸ ︷︷ ︸
P (n)

Figure 2. Sequential simulation of a pipelined PTM.

Now we present two restrictions of a uniform PPTM, namely the restricted
PPTM and the strictly pipelined PTM. We prove that both models belong to the
class of weak parallel machines.

1.2. Limited PPTM

The limited PPTM places an upper bound on the space complexity of the
startup phase, i.e., the initial part of a computation before the machine enters
a cycle required by uniformity. The desired space upper bound is O(P k(n)) for
some constant k > 0. This allows, together with Lemma 1.7, to space-efficiently
sequentially simulate the whole PPTM computation.

Definition 1.8. A uniform (d, k)-PPTM with period P (n) is called a limited
(d, k)-PPTM iff there exists a sequential Turing machine algorithm A, working
in space S(n) = O(P k(n)) for some constant k > 0, which for each input gener-
ates configuration C belonging to the computation cycle of the PPTM (which the
pipelined computation is required to enter due to uniformity). A gradually prints
the cells of C from left to right (assuming the working tape starts in the left and
stretches to the right) to its output tape, given the PPTM’s input of size n.

Theorem 1.9. Limited (1, 1)-PPTM is a member of the class of weak parallel
machines.

Proof. A simulation of a space S(n) sequential computation on a PPTM with
period P (n) = O(S(n)) is provided by Lemma 1.6. The algorithm is limited,
because the PPTM tape contains configurations of a space bounded sequential
machine. Therefore parts of the tape corresponding to individual instances can be
generated by the sequential algorithm in space O(S(n)).

The reverse simulation uses the algorithm from Lemma 1.7 to check that the
PPTM returns into the same configuration after a period. The special configura-
tion C (required to exist by the definition of the limited PPTM) is tested, because
it can be generated in space S(n) = O(P k(n)). If a new cell is needed by the cycle
testing algorithm, it is obtained by running the C generating algorithm until one
new cell is printed.

PIPELINED DECOMPOSABLE BSP COMPUTERS 49

1.3. Strictly pipelined PTM

Another possible approach is not to restrict the complexity of the startup phase,
but instead to prevent usage of its results during subsequent computation. More
generally, we forbid sharing of information among instances. Thus, all necessary
data must be computed for each instance separately. The definition of a strictly
pipelined parallel Turing machine formalizes the intuitive notion of the instances
not interacting with each other. For each instance, there are tape cells which are
“owned” by the instance. Only contents of these cells and processors with heads
on them may have an influence on the computation of that instance.

Definition 1.10. For a chosen input word w, a partitioning of tape cells of a
(1, 1)-PPTM into two sets is a partitioning into set Pw,t of cells pertinent to w in
step t and set Iw,t of cells independent on w in step t, iff:

1. Pw,t ∩ Iw,t = ∅;
2. Pw,t ∪ Iw,t contains the whole rewritten part of the working tape;
3. in the beginning of a computation (t = 0), there is only one processor, which

is in the initial state and is scanning the cell number 0. At that moment,
the cell 0 ∈ Pw1,0;

4. if the cell number 0 ∈ Iwi,t ∩ Pwi,t−1 then 0 ∈ Pwi+1,t and a new processor
in the initial state scanning cell 0 is created;

5. a processor with the head on cell c ∈ Pw,t in step t must not have its head
on cell c′ in step t′ > t if c′ ∈ Iw,t′ ;

6. only a processor with the head on cell c ∈ Pwi,t can read a symbol from the
i-th input word wi in step t;

7. cell c ∈ Iw,t ∩ Pw,t−1 contains the blank symbol λ in step t;
8. if a processor with its head on cell c ∈ Pw,t creates new processor p then

cell c′ scanned by the head of p will belong to Pw,t+1. An exception is a
processor created according to (4);

9. if a processor enters a terminal state, it disappears.

Definition 1.11. A uniform (1, 1)-PPTM is strictly pipelined, iff in the beginning
of a computation the working tape contains the blank symbol λ in every cell and
the sets of cells pertinent to any pair of input words wi and wj , i 6= j, are disjoint
at every step t.

The definition of the strictly pipelined PTM ensures that computations of in-
dividual instances – corresponding to individual input words – are completely
separated from each other. Due to (3, 4), and (5), every processor is bound to a
particular instance during all time of the processor’s existence. A processor per-
tinent to an instance can neither become independent, nor pertinent to another
instance. The feature (4) provides a means for starting computation of new in-
stances. Conditions (7) and (8) guarantee that no instance can exploit information
produced by another instance i, because information can be neither left in a cell
which becomes independent on the instance i, nor passed outside the cells pertinent
to i by a newly created processor. Passing information to the cells independent on
i by an already existing processor is forbidden by (5). A processor pertinent to an

50 M. BERAN

instance i cannot look at an input word other than wi, due to (6). Feature (9) pre-
vents processors pertinent to finished instances from becoming obstacles in further
computation. The cells pertinent to an input word are not marked in any way.
The notion of pertinent and independent cells is just an abstract characteristic of
the PTM. Thus, there could be many ways of partitioning the cells, all satisfying
the conditions of Definition 1.10. A parallel Turing machine is strictly pipelined if
and only if there exists at least one such partitioning.

Theorem 1.12. Strictly pipelined (1, 1)-PPTM is a member of the class of weak
parallel machines.

Proof. The strictly pipelined PTM is uniform, therefore it starts cycling with pe-
riod P (n) after some time. During one cycle, a new input is read and computation
of a new instance begins. Only a processor scanning cell 0 can start computation
of a new instance. A processor pertinent to a problem instance (an input word),
i.e., a processor with its head on a cell pertinent to the instance, is either the
initial processor created for the instance according to (4) in Definition 1.10, or it
has been created by another processor pertinent to the same instance. Thus no
information about other instances can be passed to the processor at hand via its
state upon creation (which is determined by the state of the creator). Require-
ment (7) ensures that no information about an instance can be transferred to other
instances via tape contents. Hence, processors pertinent to an instance have no
information about other instances. In particular, there is no information about
how many instances have already started processing before, therefore processing
of any new instance must enter the uniformity cycle. Otherwise the cycling behav-
ior would not be guaranteed. During one period, i.e., P (n) steps, all processors
of the instance can allocate (made pertinent to it) up to O(P (n)) tape cells. As
cycling is required, these cells must be made free (independent of this instance)
and available for usage by the next instance in subsequent O(P (n)) steps. During
this deallocation, only O(P (n)) new cells can be allocated. The instance cannot
have more than O(P (n)) pertinent cells at any time and hence the computation
of one instance can be simulated by a nonpipelined PTM in space O(P (n)). The
individual instances share no information, thus each instance can be simulated
separately, assuming there are no active processors and no non-blank cells other
than those pertinent to the currently simulated instance. Since the nonpipelined
(1, 1)-PTM ∈ C1, space S(n) = O(P k(n)) for some constant k > 0 suffices for a
sequential Turing machine to simulate the computation.

The reverse simulation of a space S(n) Turing machine on the pipelined PTM
with period P (n) = O(S(n)), as described in Lemma 1.6, satisfies the restriction
of the strictly pipelined PTM.

1.4. Unrestricted PPTM

We can ask a natural question whether the restrictions of limited and strictly
pipelined PPTMs are necessary or not. We prove that general or even uniform
PPTMs are too powerful for being weak parallel machines (this fact disproves the

PIPELINED DECOMPOSABLE BSP COMPUTERS 51

claim of [17] that uniform PPTMs are members of Cweak). The problematic part is
a space bounded sequential simulation of a PPTM. Although we are able to sim-
ulate a single period (and thus all periods due to uniformity) in small space using
Lemma 1.7, it is also necessary to somehow obtain one configuration belonging to
the cycle. If we just nondeterministically guess a configuration and test that it will
repeat after every P (n) steps, we are not sure whether the PPTM would ever reach
such a configuration. We could guess a perfectly cycling configuration unreach-
able from the initial configuration of the PPTM. Therefore, we must check that
the guessed (or otherwise obtained) cycling configuration would be ever reached
by the simulated PPTM machine. Generally, the PPTM can get into the cycle af-
ter an arbitrarily complex precomputation, which cannot be simulated using only
O(P (n)) space. The precomputation phase is a major obstacle, as is shown in the
following theorem and its corollaries:

Theorem 1.13. Every sequential Turing machine (TM) algorithm that halts on
each input can be simulated by a uniform (1, 1)-PPTM algorithm with period
P (n) = O(n).

Proof. A PPTM computation is divided into two phases. In the precomputation
phase, results of TM computations are computed for all inputs of length n. During
the computation phase, a simple table lookup is performed for each input. The
PPTM uses a two-track tape. The table is stored in one track and the inputs are
put into the second track.

• Precomputation phase: Run the sequential TM algorithm for all 2O(n) pos-
sible inputs and write a table of pairs 〈i, o〉 to the first track of the tape.
For each input i occupying n tape cells there is a single cell o which holds
the information about acceptance or rejection of this input. The table can
be stored in space n2O(n) = 2O(n). As the definition of the pipelined PTM
requires that reading of a new input word is started after every P (n) steps,
the input is continuously read and stored on a separate track of the PTM’s
working tape.

• Computation phase: Create one head for each tape cell to be able to move
information along the tape in parallel. The leftmost head reads one new
input symbol in every step. Simultaneously, the contents of the second track
is shifted one cell to the right. After O(n) steps, one input word is read and
stored at the tape so that it is aligned with the first entry of the lookup table
created in the precomputation phase. Now one head compares – sequentially,
in time O(n) – the input and part i of the first table entry. If it matches, the
corresponding o is attached to the input. Then a new period begins. When
a new input is read, the input from the first period is shifted to the right,
aligned with the second entry of the table, and compared. After 2O(n) periods
the input gets to the end of the table. As the table contains all the possible
inputs, exactly one match must have occurred by that time. Therefore, the
result for the input is known and can be printed to the output. At the same
time, 2O(n) inputs can be simultaneously compared to different entries of
the table. After every O(n) steps, one new input is read and one output is

52 M. BERAN

produced. First, the inputs read and buffered on the working tape during
the precomputation phase are processed. Simultaneously, the new inputs are
read and put to the buffer in place of already processed ones.

Corollary 1.14. There is a uniform (1, 1)-PPTM computing with period P (n)
such that it cannot be simulated by a Turing machine in space O(P k(n)) for a
constant k > 0.

Proof. Consider a problem with TM space complexity S(n) = ω(nk) for all k > 0.
It means that there is no TM which solves the problem in space less than S(n). A
TM algorithm for this problem can be simulated by a PPTM with period P (n) =
O(n) according to Theorem 1.13. A simulation of the PPTM on the TM in space
O(P k(n)) = O(nk) yields a contradiction to the assumption about S(n).

We showed that computations of a sequential algorithm on all inputs of fixed
length can be performed in the precomputation phase and consequently a short
period is achieved. Although it is possible to simulate one period in small se-
quential space, the complete simulation of the pipelined computation may need
much more space. The mutual simulation between a sequential TM and a uniform
(1, 1)-PPTM with polynomially equivalent period and sequential space – which is
required by the Parallel Computation Thesis – is possible from TM to PPTM, but
not vice versa. Thus, we refuted the PCT for the uniform (1, 1)-PPTM.

Corollary 1.15. The uniform (1, 1)-PPTM is not a model belonging to the class
of weak parallel machines.

Note that Corollary 1.15 is not in contradiction to Theorems 1.9 and 1.12, be-
cause the table lookup algorithm from Theorem 1.13 is neither limited nor strictly
pipelined. The table of results needs space 2Θ(n) which exceeds the upper bound
of a limited algorithm with polynomial period. Moreover, the table is reused by
all instances which is forbidden by strict pipelining.

2. Pipelined decomposable BSP

Now we turn our attention from Turing machines to models based on RAM.
We assume that the reader has some knowledge about RAM and PRAM models,
their mutual simulations, and the related complexity theory (an overview can be
found in [4, 11]).

2.1. Definitions

Throughout this paper, all RAM, PRAM, and BSP computers have logaritmic
cost, i.e., an instuction with n-bit operands takes n time units, and an n-bit
value stored in register with r-bit address takes n + r space units. Moreover, we
assume that only a polynomial (in the size of input) number of PRAM or BSP
processors can be actively computing from the beginning of a computation. An

PIPELINED DECOMPOSABLE BSP COMPUTERS 53

inactive processor p starts computing only after explicitely activated by sending
an activation message to it, or by calling a special instruction activate(p) which
costs log p time units.

A Bulk Synchronous Parallel Computer [13, 15] consists of p processors with
local memories. Every processor is essentially a RAM with logarithmic cost. The
processors can communicate by sending messages via a router (some communica-
tion and synchronization device). The computation runs in supersteps, i.e., the
processors work asynchronously, but are periodically synchronized by a barrier.
A superstep consists of three phases: computation, communication, and synchro-
nization. In the computation phase, the processors compute with locally held
data. The communication phase consists of a realization of so-called h-relation,
i.e., processors send point-to-point messages to other processors so that no proces-
sor sends nor receives more than h bits. Data sent in one superstep are available
at their destinations from the beginning of the next superstep. In the final phase
of each superstep, all the processors perform a barrier synchronization.

Performance of the router is given by two parameters: g (the ratio of the
time needed to send or receive one bit to the time of one elementary compu-
tational operation – the inverse of the communication throughput) and l (the
communication latency and the synchronization overhead). Both g and l are
non-decreasing functions of p. If a BSP computation consists of s supersteps
and the i-th superstep is composed of wi computational steps in every processor
and of an hi-relation, then the time complexity of the computation is defined by
T =

∑s
i=1(wi + hig + l) = W + Hg + sl, where W =

∑s
i=1 wi and H =

∑s
i=1 hi.

We always assume the logarithmic cost of individual instructions. Communica-
tion contributes not only to H , but also to the computational cost W . Cost of
a communication (send or receive) instruction which reads/writes k registers at
addresses a, a + 1, . . . , a + k − 1 is

∑k−1
i=0 (log(a + i) + |ra+i|), where |ra+i| is size

(number of bits) of value stored in register a + i.
A Decomposable Bulk Synchronous Parallel Computer with p processors and

communication parameters g and l – denoted dBSP (p, g, l) – is a BSP (p, g, l)
computer with some modifications and additional instructions split and join.

During a superstep, a processor can issue instruction split(i), where i ∈
{0, . . . , p − 1}. If a processor calls split, then all other processors must call
split exactly once in the same superstep. Beginning from the next superstep,
the machine is partitioned into clusters (submachines) C1, . . . , Ccl, where cl is the
number of different values of i in instructions split(i). Processors which specified
the same i in the split instruction belong to the same cluster, while different values
of i imply different clusters. Communication is restricted to processors in the
same cluster. Sending a message from a processor in one cluster to a processor
in another cluster is forbidden. Cluster Ci can be further recursively decomposed
using instruction split(j), which assigns the calling processor to subcluster Ci,j .
When a cluster is recursively decomposed, all processors in the cluster must call
split, but other clusters need not decompose at the same time (their processors
need not call split). See Figure 3 for an example of dBSP partitioning.

54 M. BERAN

split(0)split(0)

split(0)

split(0)

split(0)

split(1)split(1)

split(1)

split(1)

split(1)

split(1)split(1)

split(2)

joinjoinjoinjoinjoin

joinjoinjoinjoinjoin

joinjoin join

supersteps

1

2

3

4

5

6

7

Figure 3. Example of dBSP instructions split(i) and join.

Instruction join called by a processor cancels the last level of decomposition
which involved the calling processor. All the processors in all the sibling – orig-
inated from the same split operation – clusters must call join exactly once in
the same superstep. Only one level of join is allowed in a single superstep. After
a join, the machine can be decomposed again.

The time complexity of a dBSP computation is T =
∑s

i=1(wi+hig(pi)+l(pi)) =
W +

∑s
i=1(hig(pi) + l(pi)), where pi is the size (number of processors) of the

largest non-partitioned cluster existing in superstep s. The synchronization cost
of a decomposed machine is l(pi) and not l(p), because synchronization among
processors from different clusters is not necessary. They could work independently
and synchronize only at the time of a join, when they become a single cluster
again.

A PPTM is constructed from a non-pipelined PTM by adding input and output
tapes capable of holding many inputs and outputs. Similarly, input and output
arrays of registers can be added to the PRAM and dBSP models yielding pipelined
PRAM and pipelined dBSP models, respectively.

Definition 2.1. A pipelined PRAM (pipe-PRAM) is a PRAM equipped with ad-
ditional two-dimensional array I of read-only registers and two-dimensional array
O of write-only registers. The j-th value of the i-th input word wi can be read
from register Ii,j and the j-th value of the i-th output is written to register Oi,j .
Special register io select, local to each processor, is used to choose the particular

PIPELINED DECOMPOSABLE BSP COMPUTERS 55

input or output. The initial value of all registers io select is 0 and the only op-
eration permitted for io select is inc to increment the value of io select by one
in the processor executing the instruction. The increment is performed in unit
time regardless the value of io select. The only way to access the input is by the
instruction r:=in(i) which copies the content of Iio select,i into read-write PRAM
register r. Only the number of bits of index i, the index of register r, and the value
of Iio select,i contribute to the time cost of the r:=in(i) instruction. Particularly,
the time cost of the instruction does not depend on the value of io select. Simi-
larly, the output is written by the instruction out(i,r) which copies the content
of PRAM register r into output register Oio select,i. The cost of the instruction
depends again only on the number of bits in index i, the index and the value of r,
rather than on the value of io select. The input is read in order w1, w2, . . . and
the output is written in the same order. Only the first O(nk), where k > 0 is a
constant, processors may access the I/O registers.

Definition 2.2. A pipelined dBSP computer (pipe-dBSP) is a dBSP machine
equipped with the same input/output register arrays as the pipe-PRAM.

Since individual instructions of a PRAM or a BSP computer can take different
numbers of time units and the BSP computes – and thus can read input or write
output – only during a part of each superstep, we slightly relax the definition of
time and period of a pipelined computation (cf. Def. 1.1).

Definition 2.3. A computation of a pipelined machine on inputs of length n runs
in time T (n) and with period P (n) iff the N -th output is printed after at most
T (n) + (N − 1)P (n) time units since the beginning of the computation.

Before we answer the question about membership of the pipelined dBSP model
in the class of weak parallel machines, we present several easy technical lemmas
first.

Lemma 2.4. On both a Turing machine and a RAM, time and space complexities
are interrelated by the inequality

S(n) ≤ T (n) ≤ 2O(S(n)) .

Proof. The first inequality follows from the fact that in T (n) steps a Turing ma-
chine cannot use more than T (n) cells and a RAM cannot allocate more than T (n)
bits in its registers. After 2O(S(n)) steps, all possible configurations in space S(n)
are exhausted and the machine has either to stop or to cycle forever.

Lemma 2.5. For the maximum number of processors pmax used in the first T
time units of a PRAM computation on an input of size n, it holds

pmax ≤ 2O(log n+T) .

Proof. In the beginning of the computation there are up to pinit ≤ O(nk) ≤
2O(log n) processors. The logarithmic time cost puts an upper bound on the value

56 M. BERAN

of the argument given to the activate instruction, because this instruction must
be finished in time T : log pactivate ≤ T yields pactivate ≤ 2O(T).

Lemma 2.6. Time and space complexities of a PRAM computer are related by
the inequality

S(n) ≤ pT (n) ≤ 2O(T (n)) .

Proof. During T (n) time units, a single PRAM processor cannot allocate more
than T (n) bits in its local registers and in the global memory. See also the proof
of Lemma 2.4.

Combination of the first part of this lemma with Lemma 2.5 yields S(n) ≤
pT (n) ≤ 2O(T (n))T (n) ≤ 2O(T (n)+log T (n)) ≤ 2O(T (n)).

2.2. Unrestricted pipe-PRAM and pipe-dBSP

Pipelined PRAM and dBSP computers, introduced in Definitions 2.1 and 2.2,
are very powerful. There is a straightforward simulation of a space-bounded se-
quential computation in a polynomially related period.

Lemma 2.7. Let P be a problem for which there is a sequential RAM algo-
rithm running in time TRAM(n) and space SRAM(n). Let us have a pipelined
dBSP (p, g(p), l(p)) computer with arbitrary parameter g(p) and with l(p) = O(pk)
for some constant k > 0. Then the pipelined version of P can be solved by
the pipe-dBSP machine in time T dBSP(n) = O((TRAM(n))k+1SRAM(n)), space
SdBSP(n) = O((TRAM(n))k+2), with period P dBSP(n) = O((SRAM(n))2), and
p = T RAM(n)/SRAM(n) processors.

Proof. Each processor stores q instances of P in its local memory. A superstep
comprises computing the next TRAM(n)/p steps of the sequential algorithm for
all qp unfinished instances. Then every processor sends its instances to the next
processor. The oldest q instances are finished and their output written to the
output registers. Simultaneously, q new inputs are read from the input registers.

Every processor uses O(qSRAM(n)) registers. The maximum number of bits in
an address is thus log(qSRAM(n)) = log q + log SRAM(n) instead of log SRAM(n)
in the RAM algorithm. Hence an instruction can be slowed down relatively to
its RAM counterpart by factor log q. Communication is done in two phases. The
computer is twice repartitioned into pairs of processors. In the first phase, each
processor with even pid sends its data to the successive odd processor. Data from
odd to even processors are sent in the second phase.

PIPELINED DECOMPOSABLE BSP COMPUTERS 57

From time needed by a single computational superstep and its related commu-
nication supersteps, i.e., q periods, we obtain the length of the period.

qP dBSP(n) =
T RAM(n)

p
q log q + 2l(p) + SRAM(n)q log q + log p +

+qSRAM(n)g(2) + 2l(2) ,

P dBSP(n) =
T RAM(n)

p
log q + 2

l(p)
q

+ SRAM(n) log q +

+
log p

q
+ SRAM(n)g(2) + 2

l(2)
q

·

The first term corresponds to computation, the next one to partitioning, then
two terms follow due to the cost of send/recv instructions. Communication and
synchronization in clusters is covered by the last two terms. Now we use the as-
sumption l(p) = O(pk). We also put p = TRAM(n)/SRAM(n) and q = (TRAM(n))k.
This yields P dBSP(n) = O(kSRAM(n) log TRAM(n)) and further using Lemma 2.4
we get P dBSP(n) = O((SRAM(n))2).

The first output is produced after the first instance travels through all proces-
sors, thus T dBSP(n) = pqP (n) = O((TRAM(n))k+1SRAM(n)). Sum of all occupied
registers over all processors, with addresses possibly increased by the factor of
log q gives space SdBSP(n) = pqSRAM(n) log q = O((TRAM(n))k+1SRAM(n)) =
O((T RAM(n))k+2).

It is possible to achieve a shorter period using the technique from Section 1.4.
We show that results analogous to Theorem 1.13 and Corollary 1.15 can be proved.

Theorem 2.8. Every sequential TRAM(n)-time and SRAM(n)-space bounded RAM
algorithm that halts on each input can be simulated by a pipelined PRAM in time
T PRAM

pipe (n) = 2O(n)T RAM(n), space SPRAM
pipe (n) = 2O(n) + O(SRAM(n)), and period

P (n) = O(n2), using only a single processor.

Proof. The theorem uses the table lookup technique from the proof of Theo-
rem 1.13. The table of results for all possible inputs of size n can be generated
during a precomputation phase and stored using 2O(n) registers with addresses
of log(2O(n)) = O(n) bits, yielding the total space occupied by the table to be
2O(n)O(n) = 2O(n). Additional space O(SRAM(n)) is needed as the workspace for
the precomputation. The total time of the precomputation phase is 2O(n)T RAM(n),
i.e., 2O(n)-times repeated sequential algorithm. One input consisting of O(n) val-
ues of up to O(n) bits is transformed to index i by multiplication of all the input
values in time O(n2). The index is used to obtain the i-th element of the table
containing the output value in time O(n) because the index has O(n) bits.

Corollary 2.9. The pipelined PRAM does not belong to the class of weak parallel
machines.

Proof. See also Corollaries 1.14 and 1.15. Consider problem P with RAM space
complexity S(n) such that ∀k > 0 : S(n) = ω(nk). There is a pipe-PRAM

58 M. BERAN

algorithm for P working with period P (n) = O(n2). Assuming pipe-PRAM ∈
Cweak, we obtain a RAM algorithm for P with space complexity O(nk) for some
constant k > 0. This is a contradiction to space complexity lower bound S(n) for
problem P .

Corollary 2.10. The pipelined dBSP is not a member of the class of weak parallel
machines.

Proof. The claim follows immediately from the previous corollary, because a RAM
(single processor PRAM) algorithm is essentially equivalent to a dBSP algorithm
which uses only one processor.

2.3. Limited pipe-PRAM and pipe-dBSP

Limited pipe-PRAM or pipe-dBSP do not allow an arbitrarily complex pre-
computation phase. They are restricted in the same way as limited PPTMs (cf.
Def. 1.8), i.e., there is a configuration in their computation cycle which is com-
putable in small space.

Definition 2.11. A pipe-PRAM with period P (n) is called a limited pipe-PRAM
iff there exists a RAM algorithm A, working in space S(n) = O(P k(n)) for some
constant k > 0, which for each input generates configuration C belonging to the
computation cycle of the pipe-PRAM. A computes the contents of the i-th register
of the j-th processor in configuration C, given a pipe-PRAM input of size n and
numbers i, j.

Lemma 2.12. Let there exist a sequential RAM algorithm for problem P running
in time T RAM(n) and space SRAM(n). Then the pipelined version of P can be
solved by a limited pipe-PRAM with period PPRAM(n) = O((SRAM(n))2).

Proof. We run the algorithm from Lemma 2.7 and use one register of the global
memory per processor for communication. The communication, synchronization,
and partitioning time is avoided, but the cost of send/recv instruction may increase
by the factor of log p. Only one instance is handled by a processor in any time
(q = 1).

PPRAM(n) =
TRAM(n)

p
+ SRAM(n) log p + log p .

Substitution of p = T RAM(n)/SRAM(n) and log TPRAM(n) = O(SRAM(n)) into
the above formula produces PPRAM(n) = O((SRAM(n))2).

Clearly, the algorithm cycles with period P (n). Every configuration consists of
RAM configurations in different stages of processing and therefore can be gener-
ated by a sequential algorithm in space SRAM(n). Hence the simulation can be
performed by a limited pipe-PRAM.

Lemma 2.13. A limited pipe-PRAM computing with period P (n) can be simulated
by a RAM in space S(n) = O(P k(n)).

PIPELINED DECOMPOSABLE BSP COMPUTERS 59

Proof. The RAM machine generates configuration C which exists in the cycle by
definition. Then it simulates one period and checks that pipe-PRAM returns to C.
The largest value manipulated – and thus the highest addressable register and the
number of processors – during the period is bounded by 2O(P (n)), see Lemmas 2.5
and 2.6. We assume that the simulated PRAM runs in SIMD mode, i.e., all its
processors perform always the same instruction. This is not a major restriction,
because the SPMD mode (processors have the same program, but each has own
program counter) can be simulated with only a constant-factor overhead. If the
program has I instructions (note that I is a constant), a single SPMD step is
realized by I SIMD substeps. It the i-th SIMD substep, processors with program
counter equal to i perform the i-th instruction. Other processors do nothing.

Configuration C is gradually generated one register at a time, for each possible
index of a processor and of a register. For every generated register value, the
RAM checks whether the register will contain the same value after the single
period. Checking runs recursively back in time from the last to the first step in
the period. Sketch of the algorithm:

1. nondeterministically guess and write down the sequence of instructions exe-
cuted . . . space S1(n) = O(P (n)); the SIMD mode ensures that the number
of instructions to be guessed does not depend on the number of processors;

2. guess and write down the output . . . space S2(n) = O(P (n));
3. let us denote instr(t) the instruction executed in step t. We define function

mem(t,p,m) which returns the content of register (p, m) — local register m
of processor p (or the global register m in if p = −1) in step t. The function
handles all kinds of PRAM instructions.

function mem(t,p,m)
{ stop recursion }
if t = 0 then obtain register (p, m) from C;
{ irrelevant instruction }
if instr(t) does not change (p,m) then return mem(t-1,p,m);
{ conditional assignment }
if instr(t)=(if z>0 then x:=y) & mem(t-1,p,z)> 0 then

return mem(t-1,p,y);
{ unconditional assignment }
if instr(t)=(x:=y) then return mem(t-1,p,y);
{ binary operation }
if instr(t)=(z:=x◦y) then

return mem(t-1,p,x)◦ mem(t-1,p,y), where ◦ ∈ {+,−, ∗, /}
end

The output guessed in step 2 is checked by calling mem(P (n),o,−1) for each
output register o. The recursion depth is S3′(n) = O(P (n)) and we need
to store up to S3′′(n) = O(P (n)) bits per recursion level. Thus we get
S3(n) = S3′(n).S3′′(n) = O((P (n))2) for the space complexity of function
mem(t,p,m);

60 M. BERAN

4. check the sequence of instructions guessed in step 1. Given the label (index
in the program) of the instruction executed in the t-th step, check that the
label of the next executed instruction was correctly guessed. Call of function
instr(P (n)) does the checking.

function instr(t)
if t = 0 then

return 0;
if instr(t-1) is not a jump then

return instr(t-1)+1;
ifinstr(t-1)=(goto l) then

return l; { unconditional jump }
if instr(t-1)=(if global zero(z) goto l) &
mem(t-1,-1,z)= 0 then

return l { conditional jump }
else

return instr(t-1)+1;
end

Checking of the instructions needs a counter from 0 to P (n) plus a space for
function mem(t,p,z) . . . S4(n) = O(log P (n) + S3(n)) = O(S3(n)).

The total space needed by the simulation algorithm is Snondet(n) = S1 + S2 +
S3 + S4 = O((P (n))2). Finally, we transform our nondeterministic algorithm
into a deterministic one using Savitch’s theorem. The space complexity of the
deterministic algorithm is S(n) = O((Snondet(n))2) = O((P (n))4).

A call to mem(0, i, j), stops the recursion and invokes the C generating algorithm
to obtain the i-th register of j-th processor in time 0. The simulation needs
space polynomial in the period of the PRAM algorithm plus space polynomial in
P (n) needed to generate C. The total space used by the RAM is thus S(n) =
O(P k(n)).

Definition 2.14. A pipelined dBSP machine computing with period P dBSP(n) is
limited, iff it can be simulated by a limited pipe-PRAM with period PPRAM(n) =
O((P dBSP(n))j) for some constant j > 0.

We have defined the limited pipe-PRAM model first and derived the limited
pipe-dBSP from it. The reason against a straightforward limited pipe-dBSP def-
inition is a problem with uniformity. Recall (Def. 1.2) that a uniform machine
eventually starts cycling with the cycle length P (n). But any BSP-like machine
can read input and write output only during the computational part of a super-
step, not during communication and synchronization parts. Moreover, as we have
seen in Lemma 2.7, simulating a sequential computation on a pipe-dBSP with a
small period requires packing several periods into a single superstep. But then
the BSP machine cannot be cycling with the cycle length P (n), because the cycle
length must be an integral multiple of the superstep length. According to our
definition, the limited pipe-dBSP machine need not be uniform, we only require
that it can be efficiently simulated by a limited pipe-PRAM (which is uniform).

PIPELINED DECOMPOSABLE BSP COMPUTERS 61

Theorem 2.15. Limited pipe-PRAM and limited pipe-dBSP with l(p) = O(pk)
for some k > 0 are members of class Cweak.

Proof. Lemma 2.7 provides a pipelined dBSP algorithm for any problem with
period polynomially equivalent to sequential space. A similar algorithm for the
limited pipe-PRAM computer is given in Lemma 2.12. Its existence shows that
also the dBSP computer is limited.

By definition, any limited pipe-dBSP machine can be simulated by a limited
pipe-PRAM with period PPRAM(n) = O((P dBSP(n))j). This in turn is simulated
by a RAM in space SRAM(n) = O((PPRAM(n))k) = O((P dBSP(n))jk) according
to Lemma 2.13.

2.4. Strictly pipelined PRAM and dBSP

The limited pipe-dBSP allows for space-efficient sequential simulation, because
the startup phase of its computation has limited space complexity. The strictly
pipelined dBSP achieves the same goal by isolating individual instances (cf. strictly
pipelined PTM in Sect. 1.3). The following rather technical definition ensures that
computation of an instance cannot utilize any information produced by other in-
stances. Moreover, the amount of work which can be spent in an instance during
a single period is limited.

Definition 2.16. For a chosen input word w, a partitioning of PRAM registers
into two sets is a partitioning into set Pw,t of registers pertinent to w in step t and
set Iq,t of registers independent on w in step t, iff:

1. Pw,t ∩ Iw,t = ∅;
2. Pw,t ∪ Iw,t contains all used local and global registers;
3. each register r ∈ Iw,t ∩ Pw,t−1 contains value 0 in step t;
4. no instruction works with two registers r1, r2 such that r1 ∈ Pw,t∧r2 ∈ Iw,t;
5. if a processor works with registers from Pw,t in step t and with registers

from Iw,t in step t + 1, then its program counter contains 0 in step t + 1,
i.e., the processor executes the same instruction as in the beginning of the
computation.

Definition 2.17. A pipelined PRAM with period P (n) is strictly pipelined, iff
it is uniform, the sets of registers pertinent to any pair of input words wi and
wj , i 6= j, are disjoint at every step t, and no more work (time multiplied by
the number of processors) than O(P k(n)), for some constant k > 0, is done on
registers pertinent to a single input word during a period.

Lemma 2.18. A strictly pipelined PRAM working with period P (n) can be sim-
ulated by a RAM in space S(n) = O(P k(n)).

Proof. The strictly pipelined PRAM starts cycling with period P (n), because it
is uniform. A new input word is read and computation of the new instance begins
during the cycle. A processor pertinent to an instance I, i.e., a processor working
with registers pertinent to I, can start working with another instance I ′ 6= I only
if it resets itself (sets 0, i.e., the initial value, to its program counter), due to (5)

62 M. BERAN

in Definition 2.16. Therefore, no processor can transfer information from I to
I ′ via its internal state (program counter value). Requirement (3) ensures that
no information about an instance can be transferred to other instances via values
stored in registers. Hence, processors and registers pertinent to an instance have no
information about other instances, in particular, they have no information about
how many instances have already started processing before. Thus processing of
a new instance must enter the cycle to ensure cyclic behavior. The computation
may use only 2O(P (n)) processors and registers due to the maximum operand of an
instruction possible in time P (n). Only limited amount of work, namely O(P k(n)),
can be done on the instance in one period. Such work limits the number of
processors pertinent to the instance to O(P k(n)) and allows for allocation (making
pertinent to this instance) of space up to O(P k(n)) bits of memory. This memory
must be made free (independent of the instance) for usage by the next instance
during the next period. Hence, total memory consumed by a single instance is
bounded by O(P k(n)). The simulation algorithm takes the input and progressively
executes all periods (cycles) with this input until the output is produced. As no
information from the registers and processors pertinent to other instances can be
utilized, only O(P k(n)) registers and processors pertinent to the single instance
being processed have to be stored from one cycle to the next. Other registers
can be assumed to contain 0 and other processors can be assumed inactive (doing
nothing).

Definition 2.19. A pipelined dBSP machine computing with period P dBSP(n) is
strictly pipelined, iff it can be simulated by a strictly pipelined PRAM with period
PPRAM(n) = O((P dBSP(n))j) for some constant j > 0.

Theorem 2.20. Strictly pipelined PRAM and strictly pipelined dBSP with l(p) =
O(pk), for some k > 0, are members of class Cweak.

Proof. The algorithm from Lemma 2.12 is a strictly pipelined PRAM algorithm.
Consequently, the algorithm described in Lemma 2.7 is a strictly pipelined dBSP
algorithm. Both algorithms run with period polynomially equivalent to the se-
quential space.

According to the definition, any strictly pipelined dBSP computer can be sim-
ulated by a strictly pipelined PRAM with period PPRAM(n) = O((P dBSP(n))j).
Lemma 2.18 then provides a RAM algorithm with space complexity SRAM(n) =
O((PPRAM(n))k) = O((P dBSP(n))jk).

3. Conclusion

Our goal was to analyze pipelined computations on the dBSP machine model.
To do it, we have used a framework of weak parallel machines. We have presented
a definition of class Cweak. Pipelined parallel Turing machines – defined and an-
alyzed in [17] – are already known candidates for being weak parallel machines.
Membership of PPTM in class Cweak was claimed in paper [17]. The proof was
based on ideas mentioned in Lemmas 1.6 and 1.7. In this paper, we identified a

PIPELINED DECOMPOSABLE BSP COMPUTERS 63

problem in that proof: ability to simulate a single period in a space-efficient way
does not yield simulation of the whole computation in small space. As we have
shown in Corollary 1.15, a major part of a computation can be performed in its
initial phase, before the machine starts cycling. Hence, a uniform PPTM is not
a weak parallel machine, but a suitably restricted PPTM becomes a member of
Cweak. We have defined two possible restrictions – limited and strictly pipelined
PPTMs.

The second type of machine models studied in this paper are pipelined de-
composable BSP computers. The situation in this case is similar to PPTMs. A
general dBSP machine is too powerful (even without any parallelism, i.e., with
only one processor used) and therefore is not a weak parallel machine. Two mod-
ifications of the pipelined dBSP model – limited and strictly pipelined dBSPs –
have been introduced and their membership in Cweak proved. They are based on
the same ideas as the limited and strictly pipelined PPTMs, respectively. This
result indicates that dBSP is a viable realistic model of parallel computation. We
have used dBSP and not BSP machines, because the algorithm for simulation of
S(n)-bounded sequential computation in period P (n) needs fast communication.
A dBSP machines can be partitioned into clusters of size 2, thus the time of an
h-relation is hg(2) + l(p) instead of much larger BSP time hg(p) + l(p). Note that
h = T k(n)S(n) is very large in our case and thus the difference between using g(2)
and g(p) is significant.

Negative results presented in this paper (Cors. 1.15, 2.9, and 2.10) pose a ques-
tion whether the limited parallelism is a good notion at all. There are arguments
for answering both “yes” and “no”. Negative answer is motivated by the fact
that class Cweak seems to be less robust than originally expected and necessary
restrictions of limited and strictly pipelined machines are quite technical. A good
machine class should contain some canonical members with simple and clear defin-
initions. Examples are the Turing machine and RAM for C1 and PRAM for C2. We
do not know any such model belonging to Cweak without further artificial restric-
tions. On the other hand, definition of the weak parallel machines was motivated
by a need for characterization of realistic parallel models of computation. The trick
with precomputing all possible outputs (proof of Th. 1.13) requires an exponential
time and space for creating and storing the table of all results. But in real com-
puters, we have typically only small (at most polynomial) amount of time, space,
and processor resources. In such a realistic case, definition of a limited machine
is a formalization of an intuitive requirement that a precomputation running ex-
ponentially longer and consuming an exponential amount of memory is infeasible.
Note that in a polynomial space, only a small fraction of the whole solution table
can be stored and there is no certainty that real inputs will make use of any such
part of the table. Proof of Lemma 1.6 provides an algorithm for computing a series
of inputs with period proportionally decreasing with the number of processors on
realistic pipelined parallel computers (at least for p ≤ O(T (n)/S(n))). Results for
srictly pipelined machines show that this algorithm is usable even for cases where
computations on individual inputs do not have anything in common and are totaly
isolated from each other.

64 M. BERAN

An important (but not surprising) observation is that if some data are computed
once and then reused during a pipelined computation, then the total time needed
to process all instances can be made significantly smaller. It could be interesting to
study relations of pipelined computation and another recently emerging paradigm
of computing – interactive and persistent machines [8, 12, 16]. Like a pipelined
computer, an interactive machine processes a (potentially infinitely) long sequence
of input data, produces corresponding output data, and is able to store information
in its internal memory for later use.

References

[1] M. Beran, Decomposable bulk synchronous parallel computers, in Proc. of SOFSEM ’99.
Springer-Verlag, Lecture Notes in Comput. Sci. 1725 (1999) 349-359.
http://www.ms.mff.cuni.cz/~beran/publications.html

[2] M. Beran, Formalizing, analyzing, and extending the model of bulk synchronous parallel
computer, Technical Report V-829. Institute of Computer Science, Academy of Sciences of
the Czech Republic (2000).
http://www.cs.cas.cz/research/library/reports 800.shtml

[3] O. Bonorden, B. Juurlink, I. von Otte and I. Rieping, The Paderborn University BSP
(PUB) library - design, implementation and performance, in Proc. of 13th International
Parallel Processing Symposium & 10th Symposium on Parallel and Distributed Processing
(IPPS/SPDP). San Juan, Puerto Rico (1999).
http://www.uni-paderborn.de/~pub/

[4] P. van Emde Boas, Machine models and simulations, edited by J. van Leeuwen. Elsevier
Science Publishers, Amsterdam, Handb. Theoret. Comput. Sci. A (1990) 1-66.

[5] P. van Emde Boas, The second machine class, model of parallelism, edited by J. van
Leeuwen, J.K. Lenstra and A.H.G. Rinnooy Kan. Centre for Mathematics and Computer
Science, Amsterdam, Parallel Computers and Computations, CWI Syllabus 9 (1985) 133-
161.

[6] A.V. Gerbessiotis and C.J. Siniolakis, Primitive operations on the BSP model, Technical
Report PRG-TR-23-96. Oxford University Computing Laboratory, Oxford (1996).

[7] A.V. Gerbessiotis and L.G. Valiant, Direct bulk-synchronous parallel algorithms. J. Parallel
Distributed Comput. 22 (1994) 251-267.

[8] D.Q. Goldin, S.A. Smolka and P. Wegner, Turing machines, transition systems, and inter-
action (submitted).
http://www.cs.umb.edu/~dqg/papers/mfcs.ps

[9] J.M.D. Hill, W. McColl, D.C. Stefanescu, M.W. Goudreau, K. Lang, S.B. Rao, T. Suel,
T. Tsantilas and R. Bisseling, BSPlib: The BSP programming library. BSPlib reference
manual with ANSI C examples (1998).
http://www.bsp-worldwide.org/implmnts/oxtool/

[10] B.H.H. Juurlink and H.A.G. Wijshoff, Communication primitives for BSP computers. In-
form. Process. Lett. 58 (1996) 303-310.

[11] R.M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, edited
by J. van Leeuwen. Elsevier Science Publishers, Amsterdam, Handb. Theoret. Comput. Sci.
A (1990) 869-941.

[12] J. van Leeuwen and J. Wiedermann, The Turing machine paradigm in contemporary com-
puting, edited by B. Enquist and W. Schmidt. Springer-Verlag, Mathematics Unlimited —
2001 and Beyond (2001) 1139-1155.

[13] W.F. McColl, Bulk synchronous parallel computing, edited by J.R. Davy and P.M. Dew.
Oxford University Press, Abstract Machine Models for Highly Parallel Computers (1995)
41-63.

PIPELINED DECOMPOSABLE BSP COMPUTERS 65

[14] C. Slot and P. van Emde Boas, On tape versus core; an application of space efficient perfect
hash function to the invariance of space, in Proc. of STOC’84. Washington D.C. (1984)
391-400.

[15] L.G. Valiant, A bridging model for parallel computation. Comm. ACM 33 (1990) 103-111.
[16] P. Wegner, Models and paradigms of interaction. OOPSLA Tutorial Notes (1995).
[17] J. Wiedermann, Weak parallel machines: A new class of physically feasible parallel machine

models, in Mathematical Foundations of Computer Science 1992, 17th Int. Symposium
(MFCS’92), edited by I.M. Havel and V. Koubek. Springer-Verlag, Berlin, Lecture Notes in
Comput. Sci. 629 (1992) 95-111.

Communicated by J. Hromkovic.
Received May 30, 2001. Accepted June 26, 2002.

To access this journal online:
www.edpsciences.org

