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ON THE DISTRIBUTION OF CHARACTERISTIC
PARAMETERS OF WORDS ∗
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Abstract. For any finite word w on a finite alphabet, we consider the
basic parameters Rw and Kw of w defined as follows: Rw is the minimal
natural number for which w has no right special factor of length Rw

and Kw is the minimal natural number for which w has no repeated
suffix of length Kw. In this paper we study the distributions of these
parameters, here called characteristic parameters, among the words of
each length on a fixed alphabet.
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Introduction

As is well known, a fundamental role in combinatorics on words is played by
extendable and special factors (see, e.g. [1, 6, 8] and references therein). We recall
that a factor u of a word w is (right) extendable if there exists a letter a such that
ua is still a factor of w and it is (right) special if there exist two distinct letters a
and b such that ua and ub are both factors of w.

Much information about the structure of a word w can be obtained by knowing
some numerical parameters such as, for instance, the periods of the word (see,
e.g. [10–12, 14]). Other parameters of this kind are the minimal natural number
Rw such that w has no right special factor of length Rw and the length Kw of
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Table 1.
1
2DR(i, n), 0 ≤ i ≤ n ≤ 20, n > 0.

i

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0

2 1 1 0

3 1 2 1 0

4 1 2 4 1 0

5 1 2 8 4 1 0

6 1 2 10 14 4 1 0

7 1 2 10 32 14 4 1 0

8 1 2 10 53 43 14 4 1 0

9 1 2 10 77 104 43 14 4 1 0

10 1 2 10 97 215 125 43 14 4 1 0

11 1 2 10 105 404 315 125 43 14 4 1 0

12 1 2 10 105 683 720 340 125 43 14 4 1 0

13 1 2 10 105 1042 1557 852 340 125 43 14 4 1 0

14 1 2 10 105 1469 3172 2010 896 340 125 43 14 4 1 0

15 1 2 10 105 1929 6103 4581 2230 896 340 125 43 14 4 1 0

16 1 2 10 105 2407 11076 10121 5342 2281 896 340 125 43 14 4 1 0

17 1 2 10 105 2887 19149 21631 12445 5602 2281 896 340 125 43 14 4 1 0

18 1 2 10 105 3343 31762 44785 28330 13358 5672 2281 896 340 125 43 14 4 1 0

19 1 2 10 105 3695 50857 89989 63158 31219 13732 5672 2281 896 340 125 43 14 4 1 0

20 1 2 10 105 3823 78908 176030 137969 71721 32536 13807 5672 2281 896 340 125 43 14 4 1 0

the shortest unrepeated suffix of w. For instance, the maximal length Gw of a
repeated factor of a non-empty word w is given [8] by

Gw = max{Rw, Kw} − 1.

Moreover, as proved in [1], a word is uniquely determined by its factors up to length
Gw + 2. This result suggested an algorithm for “sequence assembly” [5]. More-
over, some generalizations of the notion of periodic word, based on the previous
parameters, have been recently considered in [2, 3].

In the sequel we shall refer to Rw and Kw as the characteristic parameters of
the word w. The aim of this paper is to study how the values of the characteristic
parameters, as well as of some other related quantities, are distributed among the
words of each length.

Fixed a d-letter alphabet A, for any pair of natural numbers i and n, we denote
by DR(i, n) and DK(i, n) the number of words w of length n on the alphabet A
such that, respectively, Rw = i and Kw = i.

In the case of a binary alphabet, the values of DR(i, n)/2 and DK(i, n)/2 for
small values of i and n are given in Tables 1 and 2, respectively. By inspecting
these tables, one can recognize several regularities: for instance, the values of DR

on each column are initially increasing, and then constant at least on the first few
columns. In both tables there are long diagonal segments where the values are
constant.

In Section 2 we study the relations among the characteristic parameters of a
given word and those of the words obtained by adding a letter on its right or on
its left. For any non-empty word w we consider the set Bw of the letters extending
on the right the longest repeated suffix of w in a factor of w. The main result of
the section (cf. Prop. 2.1) states that for any letter a ∈ Bw one has Rwa = Rw

and Kwa = Kw + 1, while, for any other letter b, Rwb = max{Rw, Kw} and
Kwb ≤ min{Kw, 1 + Rw}.

In Section 3 we establish some properties of the maximal length Gw of a repeated
factor of a word w. In particular we show that the length |w| of a word w cannot
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Table 2.
1
2DK(i, n), 0 ≤ i ≤ n ≤ 20, n > 0.

i

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1

2 0 1 1

3 0 1 2 1

4 0 1 4 2 1

5 0 1 6 6 2 1

6 0 1 9 13 6 2 1

7 0 1 13 26 15 6 2 1

8 0 1 19 49 35 15 6 2 1

9 0 1 28 89 75 39 15 6 2 1

10 0 1 42 158 160 88 39 15 6 2 1

11 0 1 64 278 331 197 90 39 15 6 2 1

12 0 1 99 486 671 428 210 90 39 15 6 2 1

13 0 1 155 847 1338 922 464 216 90 39 15 6 2 1

14 0 1 245 1475 2641 1948 1028 485 216 90 39 15 6 2 1

15 0 1 390 2570 5167 4078 2233 1087 489 216 90 39 15 6 2 1

16 0 1 624 4484 10037 8460 4818 2382 1104 489 216 90 39 15 6 2 1

17 0 1 1002 7838 19387 17428 10281 5197 2434 1110 489 215 90 39 15 6 2 1

18 0 1 1613 13730 37277 35679 21776 11225 5344 2459 1110 489 215 90 39 15 6 2 1

19 0 1 2601 24106 71402 72672 45828 24078 11606 5419 2463 1110 489 215 90 39 15 6 2 1

20 0 1 4199 42422 136336 147350 95948 51304 25055 11798 5444 2463 1110 489 215 90 39 15 6 2 1

exceed Gw +dRw which implies Gw ≥ blogd |w|c−1 when d > 1. We also introduce
the notion of symmetric word. A symmetric word of order m is any word w such
that Rw = Kw = m. We show that there exists a symmetric word of order m and
length n if and only if 2m ≤ n ≤ dm + m − 1.

In Section 4 we study the functions DR and DK , as well as some other related
functions. We prove that for all i, n > 0 one has

DR(i, n + 1) = DR(i, n) + (d − 1)DG(i − 1, n),

where DG(i, n) denotes the number of the words of length n having repeated factors
of maximal length i. Some further relations allow one to reduce the computation of
DR to the evaluation of Card(Bw) on symmetric words. More precisely, denote by
D∗

G(i, n) and D>
K(i, n) the number of the words of length n such that, respectively,

Gw ≥ i and Kw = i > Rw, and let DS(i, n) be the sum of Card(Bw) extended to
all symmetric words w of order i and length n. Then for i ≥ 0 and n > 1 one has

D∗
G(i, n) = dD∗

G(i, n − 1) + D>
K(i + 1, n),

and for i, n ≥ 0,

D>
K(i + 1, n + 1) = D>

K(i, n) + DS(i, n).

Thus, since DG(i, n) = D∗
G(i, n)−D∗

G(i + 1, n), the values of any of the functions
DR, DG, D∗

G, D>
K , and DS can be computed by knowing the values of only one of

them. Moreover, for i, n ≥ 0, one has

DK(i, n + 1) = dDK(i, n) + DP (i, n + 1) − DP (i + 1, n + 1),

where DP (i, n) denotes the number of periodic-like words (cf. [3]) w of length n
such that Kw = i.

We also show that when i is fixed and n grows, DR(i, n) and DK(i, n) are non-
decreasing. This is not true for DG(i, n), because one has DG(i, n) 6= 0 if and only
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if i < n ≤ i + di+1. Among other results, we prove that

DG(i − 1, n) ≤ DR(i, n) + DK(i, n),

where equality holds if and only if d = 1 or i > n/2.
In Section 5 we study the “diagonal behaviour” of DR, DK , and DG, i.e.,

the behaviour of DR(i, n), DK(i, n), and DG(i, n) when variables i and n are
simultaneously increased by 1. We show that, for any i, n ≥ 0,

DK(i, n) ≤ DK(i + 1, n + 1),

where equality holds if and only if i > n/2. In other terms, for any fixed m ≥ 0, the
values of DK on the points of a diagonal line (t, m + t)t≥0 are initially increasing
and ultimately constant. Similar properties hold for D∗

G and D>
K . Moreover, one

has

DR(t, m + t) ≤ DR(m, 2m) and DG(t, m + t) ≤ DG(m, 2m),

where the “=” sign holds in the first equation if and only if t ≥ m and in the
second one if and only if t ≥ m − 1.

A consequence of these results is that when i > n/2 the values of DR(i, n),
DK(i, n), and DG(i, n) depend uniquely on the difference n− i. In a forthcoming
paper [4], we shall give the exact values of DG(i, n), DR(i, n), and DK(i, n) when
i > n/2. In view of the diagonal behaviour, these values give upper bounds
to the previous distributions in the general case. Moreover, we shall study the
most frequent and the average values of the characteristic parameters and of the
maximal length of a repeated factor over the set of all words of length n.

1. Preliminaries

Let A be a finite non-empty set, or alphabet, and A∗ the set of all finite sequences
of elements of A, including the empty sequence denoted by ε. The elements of A
are usually called letters and those of A∗ words. The word ε is called empty word.
We set A+ = A∗ \ {ε}. A word w ∈ A+ can be written uniquely as a sequence of
letters as

w = a1a2 · · ·an,

with ai ∈ A, 1 ≤ i ≤ n, n > 0. The integer n is called the length of w and
denoted by |w|. By definition, the length of ε is equal to 0. For any n ≥ 0 we set
An = {w ∈ A∗ | |w| = n}. We shall denote by w∼ the reversed word of w, i.e.,
w∼ = anan−1 · · · a1. Moreover, we set ε∼ = ε.

Let w ∈ A∗. The word u ∈ A∗ is a factor (or subword) of w if there exist words
λ, µ such that w = λuµ. A factor u of w is called proper if u 6= w. If w = uµ,
for some word µ (resp. w = λu, for some word λ), then u is called a prefix (resp.
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suffix ) of w. For any word w we denote respectively by Fact(w), Pref(w), and
Suff(w) the sets of its factors, prefixes, and suffixes.

Let u ∈ Fact(w). Any pair (λ, µ) ∈ A∗ × A∗ such that w = λuµ is called an
occurrence of u in w. If λ 6= ε and µ 6= ε, then the occurrence of u is called
internal. A factor u of w is repeated if it has at least two distinct occurrences in
w, otherwise it is called unrepeated.

A factor u of w is right extendable (resp. left extendable) in w if there exists
a letter x ∈ A such that ux ∈ Fact(w) (resp. xu ∈ Fact(w)). The factor ux
(resp. xu) of w is called a right (resp. left) extension of u in w.

A word s is called a right (resp. left) special factor of w if there exist two letters
x, y ∈ A, x 6= y, such that sx, sy ∈ Fact(w) (resp. xs, ys ∈ Fact(w)). From the
definition, one has that any suffix (resp. prefix) of a right (resp. left) special factor
of w is right (resp. left) special.

With each word w one can associate a word kw defined as the shortest suffix of
w which is an unrepeated factor of w. This is also equivalent to say that kw is the
shortest factor of w which is not right extendable in w. In a symmetric way, one
can define hw as the shortest factor of w which is not left extendable in w.

One can remark that all proper suffixes of kw and all proper prefixes of hw

are repeated factors, while kw and hw are unrepeated. In the following, we shall
denote by k′

w (resp. h′
w) the longest repeated suffix (resp. prefix) of a non-empty

word w.
For any word w we shall consider the parameters Kw = |kw| and Hw = |hw|.

Moreover, we shall denote by Rw the minimal natural number such that there is
no right special factor of w of length Rw and by Lw the minimal natural number
such that there is no left special factor of w of length Lw.

By definition, if w ∈ A+, then

0 < Hw, Kw ≤ |w|, 0 ≤ Rw, Lw < |w|. (1)

Note that, in both equations, equality holds if and only if w is a power of a letter.
For the empty word ε one has Rε = Lε = Hε = Kε = 0.

Let w = a1a2 · · · an be a word, ai ∈ A, i = 1, . . . , n. A positive integer p ≤ n is
called a period of w if for all i, j ∈ [1, n] such that i ≡ j (mod p), one has ai = aj .

Example 1.1. Let A = {a, b, c} and w = abccacbccabaab. One has |w| = 14,
kw = aab, k′

w = ab, hw = abc, h′
w = ab. Thus, Kw = Hw = 3. The right special

factors of w are ε, a, b, c, ab, ca, cca, bcca. The left special factors of w are ε, a,
b, c, ab, bcc, bcca. Hence, Rw = Lw = 5 and the periods of w are 12 and 14.

In the case of the word v = abbbb on the alphabet {a, b} one has Rv = Hv = 1
and Lv = Kv = 4.

2. Characteristic parameters of a word

As we have seen in the previous section, with any word w one can associate the
integers Rw, Lw, Kw, and Hw. In subsequent sections we shall refer mainly to
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parameters Rw and Kw. However, any result admits a symmetric dual version in
which “right” is replaced by “left”, Rw by Lw, Kw by Hw, kw by hw and so on.
The parameters Rw and Kw will be also called characteristic parameters of the
word w. For any word w ∈ A+ we set

Bw = {a ∈ A | k′
wa ∈ Fact(w)}·

Moreover, we define Bε = A. Thus, if w 6= ε, Bw is the set of letters of A extending
on the right k′

w in w. We remark that Bw 6= ∅, as k′
w is right extendable in w.

Proposition 2.1. Let w ∈ A∗. For any x ∈ Bw one has

Kwx = Kw + 1 and Rwx = Rw.

For any x ∈ A \ Bw one has

Kwx ≤ min{Kw, 1 + Rw} and Rwx = max{Rw, Kw}·

Proof. If w = ε the result is trivial. Thus, we assume w 6= ε. If x ∈ Bw, then
k′

wx is a right extension of k′
w in w, so that k′

wx is repeated in wx, whereas kwx
is unrepeated in wx since it does not occur in w. Hence,

kwx = kwx

so that Kwx = Kw + 1.
Since any right special factor of w is also a right special factor of wx one has

Rwx ≥ Rw. Let us suppose that Rwx > Rw. This implies that there exists a right
special factor s of wx of length Rw, i.e., there are two distinct letters a and b such
that sa, sb ∈ Fact(wx) and |s| = Rw. Since a 6= b, at least one of the words sa
and sb is a factor of w. Since s is not a right special factor of w, one of these two
words, say sb, does not occur in w and, therefore, it has to be a suffix of wx, that
implies x = b and s ∈ Suff(w). Since sa is a factor of w, s is a repeated suffix of
w. This implies that s is a suffix of k′

w, so that sb is a suffix of k′
wb. Since k′

wx is
a factor of w, one has sb ∈ Fact(w), which is a contradiction. Thus, Rwx = Rw.

If x 6∈ Bw, then k′
wx is an unrepeated suffix of wx. Hence, Kw = |k′

wx| ≥ Kwx.
Let us prove now that Kwx ≤ 1 + Rw. This is trivial if Kwx = 1. If Kwx ≥ 2,
then k′

wx = sx with s ∈ Suff(k′
w) as Kwx ≤ Kw. Since k′

wx is repeated in wx,
sx = k′

wx ∈ Fact(w). Moreover, since Bw 6= ∅ there exists a letter a ∈ Bw such
that k′

wa ∈ Fact(w) which implies sa ∈ Fact(w). We conclude that s is right
special in w, so that Kwx = |s| + 2 ≤ Rw + 1.

Since k′
w is right extendable in w but k′

wx ∈ Fact(wx) \Fact(w), it follows that
k′

w is right special in wx. Thus Rwx ≥ Kw. Moreover, trivially, Rwx ≥ Rw, so
that Rwx ≥ max{Rw, Kw}. Suppose that Rwx > max{Rw, Kw}. This implies that
there exists a right special factor s of wx of length max{Rw, Kw}. Proceeding as
in the first part of the proof, one derives that s is a repeated suffix of w, which is
a contradiction, because |s| > Kw.
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Example 2.2. In the case of the word w of Example 1.1 one has Bw = {a, c}.
Hence Kwa = Kwc = 4 = Kw + 1, whereas Rwa = Rwc = 5 = Rw. Moreover,
Kwb = 2 = Kw − 1 and Rwb = 5 = max{Rw, Kw}.

From Proposition 2.1, we derive the following noteworthy lemmas, which will
be used in the sequel.

Lemma 2.3. Let w be a word such that Rw ≥ Kw. For any letter x one has

Rwx = Rw.

Proof. By Proposition 2.1 one has either Rwx = Rw or Rwx = max{Rw, Kw}.
Since Rw ≥ Kw, in any case it follows Rwx = Rw.

Lemma 2.4. Let w be a word such that Rw < Kw. There exists a unique letter a
such that

Kwa = Kw + 1 and Rwa = Rw.

For all letters x 6= a,

Kwx ≤ 1 + Rw ≤ Kw and Rwx = Kw.

Proof. Since Rw < Kw, one has |k′
w| ≥ Rw so that k′

w is not a right special factor
of w. However, as k′

w is right extendable in w, the set Bw contains a unique letter,
say a. By Proposition 2.1, Kwa = Kw + 1 and Rwa = Rw. For all other letters
x 6= a, as x 6∈ Bw and Rw < Kw, by Proposition 2.1 it follows Kwx ≤ 1 + Rw and
Rwx = Kw.

Example 2.5. In the case of the word v of Example 1.1 one has Kvb = 5 = Kv +1
and Rvb = 1 = Rv whereas Kva = 2 = 1 + Rv and Rva = 4 = Kv.

Lemma 2.6. For any w ∈ A∗ and any x ∈ A one has

Kw ≤ Kxw ≤ 1 + Kw and Rw ≤ Rxw ≤ 1 + Rw.

Proof. The result is trivial for w = ε. For any w ∈ A+ and any x ∈ A, one has
Kxw ≥ Kw and Rxw ≥ Rw. Indeed, k′

w is repeated in xw and any right special
factor of w is a right special factor of xw.

If Kxw = 1, then certainly Kxw ≤ 1 + Kw. Let us then suppose that Kxw > 1.
In this case, we can write k′

xw = yt, with y ∈ A and t ∈ A∗. Thus t is a repeated
suffix of w and, therefore, |t| ≤ Kw − 1. Hence, one derives Kxw ≤ 1 + Kw.

Similarly, if Rxw = 1, then certainly Rxw ≤ 1 + Rw. Let us then suppose that
Rxw > 1. In this case, there is a right special factor u of xw of length Rxw − 1.
We can write u = yt, with y ∈ A and t ∈ A∗. Since t is a right special factor of w
one has |t| ≤ Rw − 1. Hence, one derives Rxw ≤ 1 + Rw.
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A further consequence of Proposition 2.1 is the following proposition proved
in [8] with a different technique:

Proposition 2.7. For any word w,

|w| ≥ Rw + Kw.

Proof. The proof is by induction on the length of w. The statement is trivially
true if |w| ≤ 1. Let us then suppose that |w| ≥ 1 and |w| ≥ Rw + Kw. We shall
prove that for any letter x one has |wx| ≥ Rwx + Kwx. From Proposition 2.1, if
x ∈ Bw one has Kwx = Kw + 1 and Rwx = Rw, so that

Rwx + Kwx = Rw + Kw + 1 ≤ |w| + 1 = |wx|.

If x 6∈ Bw one has Kwx ≤ min{Kw, 1 + Rw} and Rwx = max{Rw, Kw}. Thus

Rwx + Kwx ≤ min{Kw, 1 + Rw} + max{Rw, Kw} ≤ 1 + Rw + Kw ≤ |w| + 1
= |wx|.

This concludes the proof.

Corollary 2.8. Let w be a word. The following relations hold:

2Kw > |w| ⇒ Rw < Kw, 2Rw > |w| ⇒ Kw < Rw,

2Kw ≥ |w| ⇒ Rw ≤ Kw, 2Rw ≥ |w| ⇒ Kw ≤ Rw.

Proof. Let us suppose 2Kw > |w|. By the preceding proposition, 2Kw > Kw +Rw

that implies Rw < Kw. All other relations are proved in a similar way.

The following lemma, whose proof is trivial, will be useful in the sequel:

Lemma 2.9. For any word w one has Lw∼ = Rw, Rw∼ = Lw, Hw∼ = Kw, and
Kw∼ = Hw.

3. Length of repeated factors

In the sequel A will denote a fixed alphabet having cardinality d > 0. Let w be
a non-empty word. We denote by Gw the maximal length of a repeated factor of
w. We recall the following important relation between Gw and the characteristic
parameters of a non-empty word w [8].

Gw = max{Rw, Kw} − 1 = max{Lw, Hw} − 1. (2)

The subword complexity λw of a word w is the map λw : N → N defined by

λw(n) = Card({v ∈ Fact(w) | |v| = n}), for all n ∈ N.
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As proved in [7, 8], λw reaches its maximum value in Gw + 1 having

λw(Gw + 1) = λw(Rw) = |w| − max{Rw, Kw} + 1 = |w| − Gw. (3)

Lemma 3.1. Let w ∈ A+. Then

Gw + 1 ≤ |w| ≤ Gw + dRw .

Proof. Since any repeated factor in a non-empty word w has a length smaller than
|w|, one has Gw ≤ |w|− 1. Now, let λw be the subword complexity of the word w.
Since λw(Rw) ≤ dRw , the result follows by equation (3).

From the preceding lemma, one derives the following result proved in [8]:

Lemma 3.2. Let d > 1. For any w ∈ A+ one has

Gw ≥ blogd |w|c − 1.

Proof. Since, by equation (2), Rw ≤ 1 + Gw, by the preceding lemma and using
d > 1, one has |w| ≤ Gw + dRw ≤ Gw + d1+Gw < d2+Gw . One derives 2 + Gw >
logd |w| ≥ blogd |w|c, so that the result follows.

We observe that the lower bounds in the previous lemmas are effectively reached
(cf. Rem. 3.6).

Lemma 3.3. Let n be a positive integer and w ∈ An. One has Gw ≥ n− 2 if and
only if w has one of the following forms:

abn−1, an−1b, (ab)bn/2caδ, (4)

where a, b ∈ A and δ is equal to 0 or 1, according to the parity of n. Moreover,
one has Gw = n − 2 if and only if n ≥ 2 and a 6= b.

Proof. If n = 1 the statement is trivially true. Thus we assume n ≥ 2. Let us
suppose that Gw ≥ n − 2. Since w has a repeated factor v of length n − 2, there
exist letters a, b, x, y such that one of the following three cases occurs:

w = vab = xvy, w = abv = vxy, w = avb = xyv.

Let us consider the first case. From the equation w = vab = xvy one has b = y
and va = xv. This trivially implies a = x and v = an−2. Therefore, w = an−1b. In
a symmetric way one proves that in the third case w = abn−1. In the second case,
from a classical result of Lyndon and Schützenberger [13] (see [11]), one derives
w = (ab)bn/2caδ.

Conversely, it is trivial to verify that for any of the words w in (4) one has
Gw ≥ n − 2, where equality holds if and only if n ≥ 2 and a 6= b.
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Lemma 3.4. Let w ∈ A+ be a word. For any x ∈ A one has

Gw ≤ Gwx ≤ 1 + Gw and Gw ≤ Gxw ≤ 1 + Gw.

Moreover, if x ∈ A \ Bw, then Gw = Gwx.

Proof. By Proposition 2.1, if x ∈ Bw, then max{Rwx, Kwx} = max{Rw, Kw + 1},
so that

max{Rw, Kw} ≤ max{Rwx, Kwx} ≤ 1 + max{Rw, Kw}·

By equation (2), Gw ≤ Gwx ≤ 1 + Gw. Now, let us suppose x ∈ A \ Bw. By
Proposition 2.1, one has Kwx ≤ Kw ≤ max{Rw, Kw} = Rwx, so that

max{Rwx, Kwx} = Rwx = max{Rw, Kw}·

By equation (2), it follows Gw = Gwx.
From Lemma 2.6, for any w ∈ A+ and any x ∈ A, one has

max{Rw, Kw} ≤ max{Rxw, Kxw} ≤ max{Rw, Kw} + 1.

From equation (2) one derives Gw ≤ Gxw ≤ 1 + Gw.

A word w ∈ A∗ is said to be a de Bruijn word (or full cycle) of order m > 0 if
any word of Am occurs exactly once in w. For instance, if A = {a, b} and m = 3,
the word abaaabbbab satisfies the previous condition. If d ≥ 2 and w is a de Bruijn
word of order m, then one has

Rw = Kw = m and Gw = m − 1.

Indeed, all factors of length m are unrepeated, so that Rw, Kw ≤ m and Gw ≤
m − 1, while all factors of length m − 1 are right special and hence repeated, so
that Rw, Kw ≥ m and Gw ≥ m − 1.

As is well known (see [9]) the length of a de Bruijn word of order m on a d-letter
alphabet is dm + m − 1. In fact, if d > 1, since Gw = m − 1 and λw(m) = dm, by
equation (3), one derives |w| = dm + m − 1. The case d = 1 is trivial.

Moreover, it is well known (see [9]) that for any word v ∈ Am the number of de
Bruijn words of order m having v as a prefix (or suffix) is given by

(d − 1)!d
m−1

ddm−1−m.

Thus the total number of de Bruijn words of order m on a d-letter alphabet is
given by

(d − 1)!d
m−1

ddm−1
. (5)
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Lemma 3.5. A word w is a de Bruijn word of order m if and only if

|w| = dm + m − 1 and Gw = m − 1.

Proof. As we have previously seen, if w is a de Bruijn word of order m, then
|w| = dm + m − 1 and Gw = m − 1. Conversely, if a word w verifies the relation
Gw = m − 1, then any factor of w of length m has a unique occurrence in w. If,
moreover, the length of w is equal to dm + m− 1, then by equation (3), w has dm

distinct factors of length m, so that all the words of Am have to be factors of w,
i.e., w is a de Bruijn word of order m.

Remark 3.6. The bounds in Lemmas 3.1 and 3.2 are effectively reached. Indeed,
if d = 1 trivially Gw = |w| − 1 and Rw = 0, so that |w| = Gw + dRw .

Let us suppose d > 1 and m ≥ 1. If w is a de Bruijn word of order m,
then one has |w| = dm + m − 1, Rw = Kw = m, and Gw = m − 1, so that
|w| = Gw + dRw . Consequently, logd |w| = logd(Gw + dRw) ≥ Rw = 1 + Gw so
that Gw ≤ blogd |w|c − 1. Hence, by Lemma 3.2, Gw = blogd |w|c − 1.

For any m, n ≥ 0 we consider the set of words S(m, n) defined as

S(m, n) = {w ∈ An | Rw = Kw = m}·

The words of this set will be called symmetric words of order m and length n.
For instance, if d > 1 any de Bruijn word of order m is a symmetric word of

order m and length dm + m − 1. However, there exist symmetric words such as
w = abbabaab which are not de Bruijn words. Indeed, in this case Rw = Kw = 3
but |w| = 8 < 23 + 3 − 1 = 10.

Proposition 3.7. For any m, n ≥ 0, one has

S(m, n) 6= ∅ if and only if 2m ≤ n ≤ dm + m − 1.

Proof. If there exists w ∈ S(m, n), then by Proposition 2.7 one has

n = |w| ≥ Rw + Kw = 2m

and, by Lemma 3.1, one derives

n = |w| ≤ Gw + dRw = m − 1 + dm.

This implies 2m ≤ n ≤ dm + m − 1.
To prove the converse, we suppose that 2m ≤ n ≤ dm +m−1; we have to show

the existence of a symmetric word of order m and length n. If m = 0, then n = 0
and S(0, 0) = {ε}. If d = 1, then m = n = 0 and again S(0, 0) = {ε}. Thus, we
assume that m > 0 and d > 1. We consider a de Bruijn word of order m ending
by am, a ∈ A, and its suffix w0 of length n. We can write

w0 = v0a
m, with v0 ∈ An−m.
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Since in w0 there is no repeated factor of length m one has

k′
w0

= am−1 and Kw0 = m ≥ Rw0 .

If Rw0 = m, we are done. Hence, we assume Rw0 < m. Thus, since k′
w0

is not
right special, Bw0 = {a}. We select a letter b ∈ A \ {a} and consider the sequence
of words of length n

w1 = v1a
mb, w2 = v2a

mb2, . . . , wm = vmambm,

where vi, 1 ≤ i ≤ m, is obtained from vi−1 by deleting its first letter. Let us
observe that by Lemma 2.6 one has, for 1 ≤ i ≤ m,

Kwi ≤ Kwi−1b and Rwi ≤ Rwi−1b. (6)

Moreover, since am−1 is a right special factor of all words wi, 1 ≤ i ≤ m, one
obtains

Rwi ≥ m. (7)

Let us denote by t the minimal positive integer such that Kwt ≥ m. Such an
integer exists since clearly Kwm ≥ m. We shall show that wt is a symmetric word
of order m.

Let us first verify that Kwt = m. If t = 1, by Proposition 2.1, since b 6∈ Bw0 ,
one has Kw0b ≤ Kw0 = m so that, by equation (6), Kw1 ≤ m. Thus, Kw1 = m.
If, on the contrary, t > 1, then, by the minimality of t, one has Kwt−1 ≤ m − 1
and, by Proposition 2.1, Kwt−1b ≤ Kwt−1 + 1 ≤ m. By equation (6), it follows
Kwt ≤ m and then Kwt = m.

Now, let us verify that Rwt = m. By Proposition 2.1, since b 6∈ Bw0 , one has
Rw0b = max{Rw0 , Kw0} = m and, by equations (6) and (7), it follows Rw1 = m.
Moreover, for 1 ≤ i < t, by equation (7), Rwi ≥ m > Kwi . Hence, by equation (6)
and Lemma 2.3, one has Rwi+1 ≤ Rwi , so that

Rwt ≤ Rw1 = m.

By equation (7) one has Rwt ≥ m. Thus, Rwt = m, so that wt is a symmetric
word of order m and length n, which concludes the proof.

Corollary 3.8. For any pair of positive integers m and n such that m < n ≤
dm + m − 1 there exists a word u ∈ An such that Ku ≤ Ru = m.

Proof. Let m < n ≤ dm +m−1. This condition implies that d > 1. If n ≥ 2m the
conclusion follows from the preceding proposition. Then, let us suppose m < n <
2m. We consider the word u = ambn−m, with a and b distinct letters. Since am−1

is a right special factor of u one has Ru = m. Moreover, Ku = n − m < m = Ru,
since n < 2m. This concludes the proof.
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4. Distributions

We introduce two functions DR and DK giving the distributions of the charac-
teristic parameters among the words of any given length. These maps are defined
as: for all i, n ≥ 0,

DR(i, n) = Card({v ∈ An | Rv = i}), DK(i, n) = Card({v ∈ An | Kv = i})·

We remark that the values of DR and DK actually depend on the value of d =
Card(A). However, as d is fixed, this dependence will not be explicitly written.

In the case d = 2, the values of DR(i, n)/2 and DK(i, n)/2 for 0 < n ≤ 20 and
0 ≤ i ≤ n are reported in Tables 1 and 2, respectively.

We observe that, in a similar way, one can introduce the distributions DL and
DH . By Lemma 2.9 it follows easily that DL = DR and DH = DK , so that we
shall not consider them in the sequel.

Proposition 4.1. The following relations hold:

DR(i, n) = DK(i, n) = 0 for i > n ≥ 0,

DR(n, n) = DK(0, n) = 0 for n > 0,

DR(0, 0) = DK(0, 0) = 1, DR(0, n) = DK(n, n) = d for n > 0,

DR(n − 1, n) = d(d − 1) for n ≥ 2, DR(0, 1) = d,

DK(n − 1, n) = 2d(d − 1) for n ≥ 3, DK(1, n) = d(d − 1)n−1 for n > 1,
n∑

m=0

DK(m, n) =
n∑

m=0

DR(m, n) = dn for n ≥ 0.

Proof. The relations on the first two lines are trivial consequences of equation (1).
Since Rε = Kε = 0, one has DR(0, 0) = DK(0, 0) = 1. Moreover, for a word
w 6= ε one has Rw = 0 or Kw = |w| if and only if w is a power of a letter.
Since there are d words of length n > 0 which are powers of a letter, one obtains
DR(0, n) = DK(n, n) = d.

Let w be a word of length n ≥ 2 such that Rw = n − 1 or Kw = n − 1.
This implies that Gw ≥ n − 2. By Lemma 3.3, w has one of the following forms:
abn−1, an−1b, (ab)bn/2caδ, with a, b ∈ A and δ ∈ {0, 1}. If a = b, then w = an,
Rw = 0 < n − 1, and Kw = n. Thus a 6= b. Now let us suppose that n ≥ 3. If
w = abn−1 or w = (ab)bn/2caδ, then Kw = n − 1 and Rw = 1; if, on the contrary,
w = an−1b, then Kw = 1 and Rw = n − 1. As there are d(d − 1) words of each
kind, we conclude that for n ≥ 3,

DR(n − 1, n) = d(d − 1) and DK(n − 1, n) = 2d(d − 1).

If n = 2, then w = ab and Rw = 1. The number of such words is again d(d − 1).
We conclude that for n ≥ 2, DR(n − 1, n) = d(d − 1). All the d letters a ∈ A are
such that Ra = 0. Thus DR(0, 1) = d.
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Table 3.
1
2DG(i, n), 0 ≤ i ≤ n ≤ 20, n > 0.

i

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0

2 1 1 0

3 0 3 1 0

4 0 4 3 1 0

5 0 2 10 3 1 0

6 0 0 18 10 3 1 0

7 0 0 21 29 10 3 1 0

8 0 0 24 61 29 10 3 1 0

9 0 0 20 111 82 29 10 3 1 0

10 0 0 8 189 190 82 29 10 3 1 0

11 0 0 0 279 405 215 82 29 10 3 1 0

12 0 0 0 359 837 512 215 82 29 10 3 1 0

13 0 0 0 427 1615 1158 556 215 82 29 10 3 1 0

14 0 0 0 460 2931 2571 1334 556 215 82 29 10 3 1 0

15 0 0 0 478 4973 5540 3112 1385 556 215 82 29 10 3 1 0

16 0 0 0 480 8073 11510 7103 3321 1385 556 215 82 29 10 3 1 0

17 0 0 0 456 12613 23154 15885 7756 3391 1385 556 215 82 29 10 3 1 0

18 0 0 0 352 19095 45204 34828 17861 8060 3391 1385 556 215 82 29 10 3 1 0

19 0 0 0 128 28051 86041 74811 40502 18804 8135 3391 1385 556 215 82 29 10 3 1 0

20 0 0 0 0 39503 160145 157840 90251 43329 19143 8135 3391 1385 556 215 82 29 10 3 1 0

Let w be a word of length n > 1 such that Kw = 1. This implies that the
last letter of w, say a, does not occur elsewhere in w. Therefore, w = ua, with
u ∈ (A \ {a})n−1. Since for any a ∈ A there are (d − 1)n−1 such words, it follows
that DK(1, n) = d(d − 1)n−1.

Finally, the last formula derives from the fact that DR and DK are distribution
functions among the words of each length.

Now let us introduce the distribution function DG of the maximal length of a
repeated factor in a word. It is defined as: for all i ≥ 0 and n > 0,

DG(i, n) = Card({v ∈ An | Gv = i})·

In the case d = 2, the values of DG(i, n)/2 for n > 0 and 0 ≤ i ≤ n ≤ 20 are
reported in Table 3.

Proposition 4.2. The following relations hold:

DG(n − 1, n) = d for n ≥ 1,

DG(n − 2, n) = 3d(d − 1) for n ≥ 3,

DG(0, 2) = d(d − 1),
n∑

i=0

DG(i, n) = dn for n ≥ 1.

Proof. A word of length n has a repeated factor of length n− 1 if and only if it is
a power of a single letter. This proves that DG(n − 1, n) = d.

By Lemma 3.3 a word w of length n ≥ 2 has a repeated factor of maximal
length n − 2 if and only if it has one of the forms of equation (4), with a, b ∈ A
and a 6= b. If n ≥ 3, these words are all distinct and in number of 3d(d − 1), so
that DG(n − 2, n) = 3d(d − 1). If n = 2, then the preceding words reduce to the
words ab, with a, b ∈ A and a 6= b. The number of these words is then d(d − 1).
This shows that DG(0, 2) = d(d − 1).



CHARACTERISTIC PARAMETERS 81

The last formula derives from the fact that DG is a distribution function among
the words of each length.

Proposition 4.3. Let i, n > 0. One has

DG(i − 1, n) 6= 0 if and only if i ≤ n < i + di.

Proof. Let w ∈ An be a word such that Gw = i− 1. Since Rw ≤ i, by Lemma 3.1
one has:

i ≤ n ≤ i − 1 + di.

Hence, if DG(i − 1, n) 6= 0, then i ≤ n ≤ i − 1 + di. Let us prove now that if
i ≤ n ≤ i − 1 + di, then DG(i − 1, n) 6= 0. If i < n, then by Corollary 3.8, there
exists a word u ∈ An such that Ku ≤ Ru = i. Thus, by equation (2), Gu = i − 1
and this proves that DG(i − 1, n) 6= 0. If i = n, then by the previous proposition
one has DG(i − 1, n) = DG(n − 1, n) = d 6= 0, which concludes the proof.

Proposition 4.4. For any m > 0, one has

DG(m − 1, dm + m − 1) = (d − 1)!d
m−1

ddm−1
.

Proof. By Lemma 3.5, DG(m−1, dm +m−1) is equal to the number of de Bruijn
words of order m on a d-letter alphabet so that the result follows by equation (5).

It is useful to introduce in the sequel the functions D≥
R and D>

K defined as: for
all i, n ≥ 0,

D≥
R(i, n) = Card({v ∈ An | Rv = i ≥ Kv})

and

D>
K(i, n) = Card({v ∈ An | Kv = i > Rv})·

We shall set also, for all i, n ≥ 0,

D<
R(i, n) = DR(i, n) − D≥

R(i, n) and D≤
K(i, n) = DK(i, n) − D>

K(i, n).

Of course, one has D≥
R(i, n) ≤ DR(i, n) and D>

K(i, n) ≤ DK(i, n).

Proposition 4.5. Let d > 1, i ≥ 0, and n > 0. One has

D>
K(i, n) = DK(i, n) if and only if i = 0 or i >

n

2

and

D≥
R(i, n) = DR(i, n) if and only if i ≥ n

2
·
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Proof. If i = 0, then in view of Proposition 4.1, DK(i, n) = 0 = D>
K(i, n). If

i > n/2, then by Corollary 2.8 for any w ∈ An such that Kw = i one has Kw > Rw,
so that D>

K(i, n) = DK(i, n). Similarly, if i ≥ n/2, for any w ∈ An such that
Rw = i one has Rw ≥ Kw, so that D≥

R(i, n) = DR(i, n).
Conversely, for 0 < i ≤ n/2, consider the word v = an−ibi where a and b are two

distinct letters of the alphabet A. One has |v| = n, Kv = i, and Rv = n − i ≥ i.
This proves that D>

K(i, n) < DK(i, n). Similarly, for any i < n/2, consider the
word w = aibn−i. One has |w| = n, Rw = i, and Kw = n− i > i. This proves that
D≥

R(i, n) < DR(i, n).

Lemma 4.6. For all i, n > 0, one has

DG(i − 1, n) = D≥
R(i, n) + D>

K(i, n).

Proof. Let us verify that

{w ∈ An | Gw = i − 1} =

{w ∈ An | Rw = i ≥ Kw} ∪ {w ∈ An | Kw = i > Rw}· (8)

For any element v belonging to the right hand side of the previous equation, one
has Gv = max{Rv, Kv} − 1 = i − 1, so that v ∈ {w ∈ An | Gw = i − 1}.
Conversely, take an element v such that Gv = i− 1. Thus either Rv = i ≥ Kv and
v ∈ {w ∈ An | Rw = i ≥ Kw} or Kv = i > Rv and v ∈ {w ∈ An | Kw = i > Rw}.
This proves equation (8). Since the union in equation (8) is disjoint, one has
DG(i − 1, n) = D≥

R(i, n) + D>
K(i, n).

From the previous lemma one derives the following theorem which shows that
the distribution DR is determined by DG and vice versa:

Theorem 4.7. For all i, n > 0 one has

DR(i, n + 1) = DR(i, n) + (d − 1)DG(i − 1, n). (9)

Proof. Let w ∈ An. If Rw = i ≥ Kw, then by Lemma 2.3 one has that for all
x ∈ A, Rwx = Rw. If Rw = i < Kw, then by Lemma 2.4 there exists a unique
letter a such that Rwa = Rw. If Rw < i = Kw, then from Lemma 2.4, for d − 1
letters x ∈ A, Rwx = Kw = i. In this way, we obtain

dD≥
R(i, n) + D<

R(i, n) + (d − 1)D>
K(i, n)

distinct words v ∈ An+1 such that Rv = i. Now, let us prove that these are the
only words v of length n + 1 such that Rv = i. Indeed, let v ∈ An+1 with Rv = i
and write v = wa with w ∈ An and a ∈ A. By Proposition 2.1, either Rw = i or
Kw = i > Rw. This ensures that any word v ∈ An+1 such that Rv = i can be
obtained by extending on the right a word w ∈ An such that Rw = i ≥ Kw or
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Rw = i < Kw or Rw < i = Kw. Thus,

DR(i, n + 1) = dD≥
R(i, n) + D<

R(i, n) + (d − 1)D>
K(i, n)

= dD≥
R(i, n) + DR(i, n) − D≥

R(i, n) + (d − 1)D>
K(i, n)

= DR(i, n) + (d − 1)(D≥
R(i, n) + D>

K(i, n)),

and the conclusion follows from Lemma 4.6.

In the sequel, we follow the convention that a sum
∑s

i=t ai holds 0 if t > s.

Corollary 4.8. For all i, n > 0 one has

DR(i, n) = (d − 1)
n−1∑

m=i

DG(i − 1, m).

Proof. If n ≤ i, then by Proposition 4.1, DR(i, n) = 0 and the result follows
from our convention on the sums. Let us then suppose n > i. By iteration of
equation (9) one has

DR(i, n) = DR(i, i) + (d − 1)
n−1∑

m=i

DG(i − 1, m).

Since DR(i, i) = 0, the result follows:

Proposition 4.9. Let i, n > 0. One has

DG(i − 1, n) ≤ DR(i, n) + DK(i, n)

where equality holds if and only if d = 1 or i > n/2.

Proof. The statement is trivially true if d = 1. Thus we suppose d > 1. If i > n/2,
then by Lemma 4.6 and Proposition 4.5, one has

DG(i − 1, n) = D≥
R(i, n) + D>

K(i, n) = DR(i, n) + DK(i, n).

Conversely, if i ≤ n/2, by Proposition 4.5, D>
K(i, n) < DK(i, n). Since D≥

R(i, n) ≤
DR(i, n), by Lemma 4.6 one has

DG(i − 1, n) = D≥
R(i, n) + D>

K(i, n) < DR(i, n) + DK(i, n)

and this proves our assertion.

The following noteworthy relation among DR(i, n) and DK(i, n) holds when
i ≥ n/2.

Proposition 4.10. For any n > 0 and any i ≥ n/2, one has

DR(i, n) = dDR(i, n − 1) + (d − 1)DK(i, n − 1).
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Proof. By Theorem 4.7, one has

DR(i, n) = DR(i, n − 1) + (d − 1)DG(i − 1, n − 1).

Since i > (n−1)/2, by Proposition 4.9, DG(i−1, n−1) = DR(i, n−1)+DK(i, n−1)
so that DR(i, n) = dDR(i, n − 1) + (d − 1)DK(i, n − 1).

Proposition 4.11. For all i, n ≥ 0 one has

DR(i, n + 1) ≥ DR(i, n),

where equality holds if and only if d = 1 or n ≥ di + i or n < i.

Proof. If i = 0 or n = 0 the result follows from Proposition 4.1. Let us then
suppose i, n > 0. From equation (9) one has immediately DR(i, n) ≤ DR(i, n+1).
Moreover equality holds if and only if

(d − 1)DG(i − 1, n) = 0.

In view of Proposition 4.3 this occurs if and only if d = 1 or n ≥ di+i or n < i.

Proposition 4.12. For any integers i ≥ 0 and n > 0 one has

DK(i, n + 1) ≥ (d − 1)DK(i, n).

Moreover, if d > 1, i > 1, and n ≥ i − 1, then

DK(i, n + 1) > (d − 1)DK(i, n).

Proof. Since by Proposition 4.1, DK(0, n) = DK(0, n + 1) = 0, the statement is
true in the case i = 0.

Let us suppose i > 0. Let w ∈ An be such that Kw = i. Let us set kw = ak′
w,

with a ∈ A. For any b ∈ A \ {a} we consider the word v = bw. By Lemma 2.6
one has Kv ≥ Kw = i and, since kw is not repeated in v, it follows Kv = Kw = i.
In this way one can obtain (d − 1)DK(i, n) words of length n + 1 with a minimal
unrepeated suffix of length i. Hence,

DK(i, n + 1) ≥ (d − 1)DK(i, n).

Now, let us suppose that d > 1, i > 1, and n ≥ i − 1. If n > i, we consider
the word u = ban−ibi, with a and b distinct letters. One has that u ∈ An+1

and Ku = i. Moreover, this word cannot be obtained by the previous procedure
because its first letter is equal to the first letter of ku. This proves that, in this
case, DK(i, n + 1) > (d − 1)DK(i, n). If n = i, then, as n ≥ 2, by Proposition 4.1
one has DK(n, n + 1) = 2d(d − 1) and DK(n, n) = d, so that DK(n, n + 1) >
(d−1)DK(n, n). Finally, for n = i−1, the result follows since DK(n+1, n+1) = d
and DK(n + 1, n) = 0.



CHARACTERISTIC PARAMETERS 85

Now let us introduce the following function: for i ≥ 0 and n > 0,

D∗
G(i, n) =

∑

j≥i

DG(j, n) = Card({w ∈ An | Gw ≥ i}·

In other terms, D∗
G(i, n) is the number of words of length n having at least one

repeated factor of length i. From the definition, one has that for i ≥ 0 and n > 0

D∗
G(i, n) = DG(i, n) + D∗

G(i + 1, n). (10)

The following holds:

Theorem 4.13. For i ≥ 0 and n > 1 one has

D∗
G(i, n) = dD∗

G(i, n − 1) + D>
K(i + 1, n). (11)

Proof. We shall prove that

{v ∈ An | Gv ≥ i} =

{w ∈ An−1 | Gw ≥ i}A ∪ {v ∈ An | Kv = i + 1 > Rv}·
(12)

Moreover, the union will be disjoint. First of all, let us prove the inclusion “⊇”.
Indeed, if w ∈ An−1 and Gw ≥ i, then, for any x ∈ A, one has Gwx ≥ i and if
v ∈ An and Kv = i + 1 > Rv, then Gv = i.

Now, let us prove the inclusion “⊆”. Let v ∈ An be a word such that Gv ≥ i.
We can write v as v = wx, with w ∈ An−1 and x ∈ A. Now either Gw ≥ i, and in
this case, v ∈ {w ∈ An−1 | Gw ≥ i}A, or Gw < i. In this latter case, since Gv ≥ i,
v has a repeated suffix of length i, so that Kv ≥ i+1. However, by Proposition 2.1,
Kv = Kwx ≤ Kw +1 ≤ Gw +2 ≤ i+1 and Rv = Rwx ≤ max{Rw, Kw} = Gw +1 <
i + 1. Hence, Kv = i + 1 > Rv. This proves equation (12).

Let us prove now that the union in equation (12) is disjoint. Indeed, sup-
pose that v = wx, w ∈ An−1, x ∈ A, is a word of An such that Gw ≥ i and
Kv = i + 1 > Rv. By Proposition 2.1, two cases may occur:

Case 1. Kv = Kw + 1, Rv = Rw. In this case, Kw = i, Rw ≤ i. Thus
Gw = max{Rw, Kw} − 1 < i, which is a contradiction.

Case 2. Rv = max{Rw, Kw}. In this case, one has Rv = Gw + 1 ≥ i + 1, which
is a contradiction.

Since Card(A) = d, by equation (12) and the fact that in that equation union
is disjoint, the result follows:

We observe that from the previous theorem one has that for i ≥ 0 and n > 1,
D∗

G(i, n) ≥ dD∗
G(i, n−1). If n > i, by iterating this relation one obtains D∗

G(i, n) ≥
dn−i−1D∗

G(i, i + 1). Since D∗
G(i, i + 1) = DG(i, i + 1) = d, it follows

D∗
G(i, n) ≥ dn−i.
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Corollary 4.14. For i ≥ 0 and n > 0 one has

D∗
G(i, n) =

n−i−1∑

m=0

dmD>
K(i + 1, n − m).

Proof. If i = 0, one has D∗
G(0, n) = dn =

∑n−1
m=0 dmD>

K(1, n − m) since, as one
easily verifies, D>

K(1, 1) = d and D>
K(1, j) = 0 for j > 1. If i ≥ n, the result is

trivial. Thus we consider the case 0 < i < n. By iterating equation (11) and
taking into account that D∗

G(i, i) = 0, the result follows:

Corollary 4.15. For i ≥ 0 and n > 1 one has

D∗
G(i + 1, n) = dD∗

G(i, n − 1) − D≥
R(i + 1, n).

Proof. From equation (10) and Lemma 4.6 one has

D∗
G(i, n) = DG(i, n) + D∗

G(i + 1, n) = D≥
R(i + 1, n) + D>

K(i + 1, n) + D∗
G(i + 1, n).

By Theorem 4.13, the result follows:

Corollary 4.16. For i ≥ 0 and n > 0 one has

DG(i, n) =
n−i−1∑

m=0

dm(D>
K(i + 1, n − m) − D>

K(i + 2, n− m)).

Proof. Since DG(i, n) = D∗
G(i, n) − D∗

G(i + 1, n) and D>
K(i + 2, i + 1) = 0, the

statement follows easily from Corollary 4.14.

By the previous corollary one derives the following iterative formula for DG:

DG(i, n + 1) = dDG(i, n) + D>
K(i + 1, n + 1) − D>

K(i + 2, n + 1).

Now, we introduce the map DS defined for all i, n ≥ 0 as

DS(i, n) =
∑

w∈S(i,n)

Card(Bw),

where S(i, n) denotes the set of symmetric words of order i and length n (cf.
Sect. 3). In the case d = 2, the values of DS(i, n)/2 for 0 ≤ i ≤ n ≤ 20 are
reported in Table 4.

Theorem 4.17. For any i, n ≥ 0 one has

D>
K(i + 1, n + 1) = D>

K(i, n) + DS(i, n).
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Table 4.
1
2DS(i, n), 0 ≤ i ≤ n ≤ 20.

i

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1

1 0 0

2 0 2 0

3 0 0 0 0

4 0 0 6 0 0

5 0 0 4 0 0 0

6 0 0 0 11 0 0 0

7 0 0 0 18 0 0 0 0

8 0 0 0 28 21 0 0 0 0

9 0 0 0 32 37 0 0 0 0 0

10 0 0 0 16 83 25 0 0 0 0 0

11 0 0 0 0 183 315 57 0 0 0 0 0

12 0 0 0 0 291 151 44 0 0 0 0 0 0

13 0 0 0 0 394 402 88 0 0 0 0 0 0 0

14 0 0 0 0 442 937 240 51 0 0 0 0 0 0 0

15 0 0 0 0 476 1907 588 107 0 0 0 0 0 0 0 0

16 0 0 0 0 504 3561 1554 305 70 0 0 0 0 0 0 0 0

17 0 0 0 0 560 6187 3758 834 164 0 0 0 0 0 0 0 0 0

18 0 0 0 0 576 10155 8391 2132 410 75 0 0 0 0 0 0 0 0 0

19 0 0 0 0 256 16279 18077 5492 1130 189 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 25174 37357 13472 2862 501 118 0 0 0 0 0 0 0 0 0 0

Proof. Let us first verify that

D>
K(i + 1, n + 1) =

∑

w∈{v∈An|Kv=i≥Rv}
Card(Bw). (13)

By Proposition 2.1, for any w ∈ {v ∈ An | Kv = i ≥ Rv} there are exactly
Card(Bw) letters x which extend w in a word wx of length n+1 such that Kwx =
i + 1 > Rwx = Rw. To complete the proof of equation (13) we have to show that
any word v ∈ An+1 such that Kv = i + 1 > Rv can be obtained by extending on
the right a word of the set {v ∈ An | Kv = i ≥ Rv}. In other terms, we prove that,
for any w ∈ An and x ∈ A, if Kwx = i + 1 > Rwx, then Kw = i ≥ Rw. Indeed, by
Proposition 2.1, one has either

Kw = Kwx − 1 = i and Rw = Rwx ≤ i,

or

Kwx ≤ Kw ≤ Rwx.

Since this latter case gives a contradiction, equation (13) is proved.
We notice that if w is a word such that Kw = i > Rw, then by Lemma 2.4

Card(Bw) = 1. Thus, we can rewrite the right hand side of equation (13) as

D>
K(i, n) +

∑

w∈S(i,n)

Card(Bw),

which concludes the proof.

Corollary 4.18. For any i, n such that n ≥ i ≥ 0 one has

D>
K(i, n) =

i∑

m=1

DS(i − m, n − m).
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Proof. The proof is obtained by iteration from Theorem 4.17, taking into account
that D>

K(0, n − i) = 0.

We recall that a word w is called periodic-like [3] if k′
w (or h′

w) has no internal
occurrence in w. For instance, the word w = abccbccab is periodic-like since
k′

w = ab has no internal occurrence in w.
Let P be the set of periodic-like words of A∗. We introduce the map DP defined

for all i, n ≥ 0 as

DP (i, n) = Card({w ∈ P ∩ An | Kw = i})·

In other terms, DP (i, n) gives the number of periodic-like words of length n having
the shortest unrepeated suffix of length i. Since the minimal period of a periodic-
like word w is equal to |w|−Kw +1 [3], DP (i, n) gives the number of periodic-like
words of length n and minimal period n − i + 1.

The following theorem shows that the distribution DK is determined by DP

and vice versa:

Theorem 4.19. For all i, n ≥ 0 one has

DK(i, n + 1) = dDK(i, n) + DP (i, n + 1) − DP (i + 1, n + 1).

Proof. We prove that

A{v ∈ An | Kv = i} =

{w ∈ An+1 \ P | Kw = i} ∪ {w ∈ P ∩ An+1 | Kw = i + 1}· (14)

Indeed, let v ∈ An be such that Kv = i and x be a letter. By Lemma 2.6 either
Kxv = i or Kxv = i + 1. In the first case, k′

xv = k′
v, so that k′

xv is repeated in
v and, consequently, it has an internal occurrence in xv. Thus, xv ∈ An+1 \ P .
In the second case, k′

xv = kv, so that k′
xv is unrepeated in v and, consequently, it

has no internal occurrence in xv. Thus, xv ∈ P ∩An+1. This proves the inclusion
“⊆”.

Conversely, suppose that w ∈ {u ∈ An+1 \ P | Ku = i} ∪ {u ∈ P ∩ An+1 |
Ku = i + 1} and write w = xv, with x ∈ A. By the previous argument, either
w 6∈ P and Kw = Kv or w ∈ P and Kw = Kv + 1. In both cases, one gets Kv = i
and therefore w ∈ A{v ∈ An | Kv = i}. This proves the inclusion “⊇”.

By equation (14), since the union is disjoint, one derives

dDK(i, n) = DK(i, n + 1) − DP (i, n + 1) + DP (i + 1, n + 1),

from which the result follows.

In this section we have considered several functions related to the structure of
words of each length on a given alphabet, such as

DR, DG, D∗
G, D>

K , D≥
R , and DS .
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It is worth noting that, as a consequence of the previous theorems and propositions,
the values of any of these functions can be easily computed by knowing the values
of only one of them, e.g., DS . Moreover, DK is determined by DP and vice versa.
Therefore, all distributions and related functions depend on the class of symmetric
words and on the class of periodic-like words, which are ‘narrow’ subclasses of the
class of all words (cf. [4], Sect. 3).

5. Diagonal behaviour

In this section, we shall confine ourselves to consider only the case where d =
Card(A) > 1 even though some results hold true even for d = 1.

We study the “diagonal behaviour” of DR, DK , and DG, i.e., the behaviour,
for any fixed m ≥ 0 of the functions DR(t, m + t), DK(t, m + t), and DG(t, m + t)
with respect to the variable t. We show that, for any i, n ≥ 0, one has DK(i, n) ≤
DK(i + 1, n + 1), where equality holds if and only if i > n/2. In other terms, the
values of DK on the points of a diagonal line (t, m + t)t≥0 are initially increasing
and ultimately constant. Similar properties hold for D∗

G and D>
K . Moreover, one

has

DR(t, m + t) ≤ DR(m, 2m) and DG(t, m + t) ≤ DG(m, 2m),

where the “=” sign holds in the first equation if and only if t ≥ m and in the
second one if and only if t ≥ m − 1.

Proposition 5.1. For any i, n ≥ 0 one has

DK(i + 1, n + 1) ≥ DK(i, n),

where equality holds if and only if i > n/2.

Proof. For i > n/2 equality holds. Indeed, from Propositions 4.5 one has that
D>

K(i, n) = DK(i, n) and D>
K(i + 1, n + 1) = DK(i + 1, n + 1). Moreover, by

Proposition 3.7, S(i, n) = ∅, so that the result follows from Theorem 4.17.
Now, suppose that i ≤ n/2. In the case i = 0, from Proposition 4.1 one derives

that DK(0, n) < DK(1, n + 1). Thus, we suppose i > 0. Let w be a word of An

such that Kw = i. From Proposition 2.1, since Bw 6= ∅, there exists at least one
letter x ∈ A such that Kwx = Kw + 1 = i + 1. This proves that

Card({v ∈ An | Kv = i}) ≤ Card({v ∈ An+1 | Kv = i + 1}),

i.e., DK(i, n) ≤ DK(i + 1, n + 1). In order to prove that inequality is strict, it
suffices to show that there exists at least one word w ∈ An such that Kw = i and
Card(Bw) > 1; indeed, this implies the existence of at least two right extensions
of w in the set {v ∈ An+1 | Kv = i + 1}. In fact, take the word w = an−ibai−1,
where a and b are two distinct letters of A. In such a case, since n− i > i− 1, one
has k′

w = ai−1 and Bw = {a, b}.
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The following corollary shows that for n/2 < i ≤ n, DK(i, n) depends only on
the difference n − i:

Corollary 5.2. For any integers i and n such that n ≥ i ≥ 0 one has

DK(i, n) ≤ DK(n − i + 1, 2(n − i) + 1),

where equality holds if and only if i > n/2.

Proof. Let us suppose first i > n/2. For any t > 0 one has

n − i + t >
2(n − i) + t

2
·

Hence, since i > n/2, by an iterated application of Proposition 5.1 it follows

DK(n − i + 1, 2(n− i) + 1) = DK(n − i + 2, 2(n− i) + 2) = · · · = DK(i, n).

Now let us suppose that i ≤ n/2. Then by Proposition 5.1 one has

DK(i, n) < DK(i + 1, n + 1) ≤ DK(i + 2, n + 2)

≤ · · · ≤ DK(n − i + 1, 2(n− i) + 1),

which proves our assertion.

Proposition 5.3. For any i, n ≥ 0 one has

D>
K(i + 1, n + 1) ≥ D>

K(i, n),

where inequality is strict if and only if 2i ≤ n ≤ di + i − 1.

Proof. From Proposition 3.7 for any i, n ≥ 0 one has S(i, n) 6= ∅ if and only if
2i ≤ n ≤ di + i − 1. Since, for any w ∈ A∗, Card(Bw) > 0 the result follows from
Theorem 4.17.

Proposition 5.4. For any i ≥ 0 and n > 0 one has

D∗
G(i + 1, n + 1) = D∗

G(i, n) +
n−i−1∑

m=0

dmDS(i + 1, n − m).
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Proof. By Corollary 4.14 and Theorem 4.17 one has

D∗
G(i + 1, n + 1) =

n−i−1∑

m=0

dmD>
K(i + 2, n + 1 − m)

=
n−i−1∑

m=0

dmD>
K(i + 1, n− m) +

n−i−1∑

m=0

dmDS(i + 1, n − m)

= D∗
G(i, n) +

n−i−1∑

m=0

dmDS(i + 1, n − m).

Proposition 5.5. For any i ≥ 0 and n > 0 one has

D∗
G(i + 1, n + 1) ≥ D∗

G(i, n),

where equality holds if and only if i ≥ bn/2c.
Proof. If i ≥ bn/2c, then n < 2i + 2. Thus, by Proposition 3.7 one has that for
0 ≤ m ≤ n − i − 1, S(i + 1, n − m) = ∅. Therefore, from Proposition 5.4, one has
D∗

G(i + 1, n + 1) = D∗
G(i, n).

If, on the contrary, i < bn/2c, then n ≥ 2i+2. Thus, by taking m = n−2i−2, by
Proposition 3.7 one has S(i+1, n−m) = S(i+1, 2i+2) 6= ∅. Since for any w ∈ A∗,
Card(Bw) > 0, from Proposition 5.4 one derives D∗

G(i + 1, n + 1) > D∗
G(i, n).

Now we introduce the functions D∗
R and D∗

K defined as follows: for i, n ≥ 0,

D∗
R(i, n) =

∑

m≥i

DR(m, n) = Card({w ∈ An | Rw ≥ i}

and

D∗
K(i, n) =

∑

m≥i

DK(m, n) = Card({w ∈ An | Kw ≥ i}·

In other terms, for i > 0, D∗
R(i, n) is the number of words of length n having at

least one special factor of length i − 1 and D∗
K(i, n) is the number of words of

length n having a repeated suffix of length i − 1.

Proposition 5.6. For i ≥ 0 and n > 0 one has

D∗
R(i + 1, n + 1) ≥ D∗

R(i, n),

where equality holds if and only if i ≥ n/2 or in the case where i = 0, n = 1, and
d = 2. Moreover, for i, n ≥ 0 one has

D∗
K(i + 1, n + 1) ≥ D∗

K(i, n),

where equality holds if and only if i > n/2.
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Proof. If i = 0, then D∗
R(0, n) = dn and D∗

R(1, n + 1) = dn+1 − d ≥ dn. Moreover,
dn+1 − d = dn if and only if n = 1 and d = 2. Let us now suppose that i > 0. By
Corollary 4.8 one has

DR(i, n) = (d − 1)
n−1∑

m=i

DG(i − 1, m),

so that

D∗
R(i, n) =

n−1∑

j=i

DR(j, n) = (d − 1)
n−1∑

j=i

n−1∑

m=j

DG(j − 1, m)

= (d − 1)
n−1∑

m=i

D∗
G(i − 1, m).

By replacing i and n by i + 1 and n + 1, respectively, one has

D∗
R(i + 1, n + 1) = (d − 1)

n∑

m=i+1

D∗
G(i, m) = (d − 1)

n−1∑

m=i

D∗
G(i, m + 1).

By Proposition 5.5, for i ≤ m ≤ n − 1 one has D∗
G(i − 1, m) ≤ D∗

G(i, m + 1).
Moreover, the “=” sign holds in all these relations if and only if i−1 ≥ b(n−1)/2c
or, equivalently, if and only if i ≥ n/2.

To prove the second inequality, observe that

D∗
K(i, n) =

n∑

j=i

DK(j, n) and D∗
K(i + 1, n + 1) =

n∑

j=i

DK(j + 1, n + 1).

By Proposition 5.1, for i ≤ j ≤ n, one has DK(j, n) ≤ DK(j +1, n+1). Moreover,
the “=” sign holds in all these relations if and only if i > n/2. One concludes that
D∗

K(i, n) ≤ D∗
K(i + 1, n + 1), where equality holds if and only if i > n/2.

Proposition 5.7. For any i, n ≥ 0 one has

D∗
R(i + 1, n + 1) ≤ dD∗

R(i, n) and D∗
K(i + 1, n + 1) ≤ dD∗

K(i, n).

For any i ≥ 0 and n > 0 one has

D∗
G(i + 1, n + 1) ≤ dD∗

G(i, n).

Proof. Let v be a word of An+1 such that Rv ≥ i + 1. We can write v = xw with
x ∈ A and w ∈ An. By Lemma 2.6 one has Rw ≥ Rv − 1 ≥ i. This proves that

{v ∈ An+1 | Rv ≥ i + 1} ⊆ A{w ∈ An | Rw ≥ i}·
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Therefore,

D∗
R(i + 1, n + 1) ≤ dD∗

R(i, n).

In a similar way one proves that D∗
K(i+1, n+1) ≤ dD∗

K(i, n). By Corollary 4.15,
it follows that D∗

G(i + 1, n + 1) ≤ dD∗
G(i, n).

Proposition 5.8. For any i > 0 and n > 1, one has

DR(i, n) ≤ (d − 1)D∗
G(i − 1, n − 1),

where equality holds if and only if i ≥ bn/2c.
Proof. By Corollary 4.8 one has

DR(i, n) = (d − 1)
n−1∑

m=i

DG(i − 1, m).

By equation (10), for i ≤ m ≤ n − 1, one has

DG(i − 1, m) = D∗
G(i − 1, m) − D∗

G(i, m).

Hence, we can write

n−1∑

m=i

DG(i − 1, m) =
n−1∑

m=i

(D∗
G(i − 1, m) − D∗

G(i, m))

= D∗
G(i − 1, n − 1) − D∗

G(i, i)

+
n−1∑

m=i+1

(D∗
G(i − 1, m − 1) − D∗

G(i, m)).

By Proposition 5.5, one has D∗
G(i, m) ≥ D∗

G(i− 1, m− 1). Moreover, if i ≥ bn/2c,
then, for i+1 ≤ m ≤ n−1 one has i−1 ≥ b(m−1)/2c, so that by Proposition 5.5,
D∗

G(i, m) = D∗
G(i − 1, m − 1). On the contrary, if i < bn/2c, then D∗

G(i, n − 1) >
D∗

G(i − 1, n − 2). Since D∗
G(i, i) = 0, we have shown that

n−1∑

m=i

DG(i − 1, m) ≤ D∗
G(i − 1, n − 1),

where equality holds if and only if i ≥ bn/2c. From this the assertion follows.

From the preceding proposition and Corollary 4.8 one easily derives the follow-
ing noteworthy proposition:

Proposition 5.9. For any i > 0 and n > 1, one has

n−1∑

m=i

DG(i − 1, m) ≤
n−1∑

m=i

DG(m − 1, n − 1).
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Proposition 5.10. For any integers i and n such that n ≥ i ≥ 0 one has

DR(i, n) ≤ DR(n − i, 2(n− i)),

where equality holds if and only if i ≥ n/2.

Proof. Let us suppose first i ≥ n/2. By Proposition 5.8,

DR(i, n) = (d − 1)D∗
G(i − 1, n − 1)

and

DR(n − i, 2(n − i)) = (d − 1)D∗
G(n − i − 1, 2(n− i) − 1).

Since n−i−1 ≤ i−1 and for −1 ≤ p ≤ 2i−n−2 one has n−i+p ≥ b(2(n−i)+p)/2c,
by an iterated application of Proposition 5.5, one obtains

D∗
G(n − i − 1, 2(n− i) − 1) = D∗

G(n − i, 2(n− i)) = · · · = D∗
G(i − 1, n − 1).

One derives

DR(i, n) = DR(n − i, 2(n− i)).

Now, let us suppose i < n/2. By Proposition 5.8,

DR(i, n) ≤ (d − 1)D∗
G(i − 1, n − 1)

and

DR(n − i, 2(n − i)) = (d − 1)D∗
G(n − i − 1, 2(n− i) − 1).

Since i−1 < n−i−1 and i−1 < b(n−1)/2c, one has D∗
G(i−1, n−1) < D∗

G(i, n) and,
by an iterated application of Proposition 5.5, D∗

G(i, n) ≤ D∗
G(n−i−1, 2(n−i)−1).

It follows DR(i, n) < DR(n − i, 2(n− i)).

Proposition 5.11. For 0 ≤ i < n, one has

DG(i, n) ≤ DG(n − i − 1, 2(n − i) − 1),

where equality holds if and only if i ≥ bn/2c.
Proof. By Proposition 4.9 one has

DG(i, n) ≤ DR(i + 1, n) + DK(i + 1, n),

where equality holds if and only if i + 1 > n/2 or, equivalently, i ≥ bn/2c. By
Proposition 5.10 one has

DR(i + 1, n) ≤ DR(n − i − 1, 2(n − i − 1)) = DR(n − i, 2(n − i) − 1),
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with equality if and only if i + 1 ≥ n/2 and by Corollary 5.2 one has

DK(i + 1, n) ≤ DK(n − i, 2(n− i) − 1)

with equality if and only if i ≥ bn/2c. One derives, in view of Proposition 4.9,

DG(i, n) ≤ DR(n − i, 2(n − i) − 1) + DK(n − i, 2(n− i) − 1)
= DG(n − i − 1, 2(n− i) − 1).

Moreover, if i ≥ bn/2c the equality holds, while if i < bn/2c the inequality is strict
since DK(i + 1, n) < DK(n − i, 2(n− i) − 1).

By Proposition 4.10 and Corollary 5.2 one derives the following proposition,
whose proof we omit for the sake of brevity:

Proposition 5.12. For any n > 0 and any i ≥ n/2, one has

DR(i, n) = (d − 1)dn−i
n−i∑

t=1

d−tDK(t, 2t − 1).

As we have previously seen, when i > n/2 the functions DR, DK , and DG are
constant on the “diagonals”, i.e., the values of DR(i, n), DK(i, n), and DG(i, n)
depend uniquely on the difference n − i. More precisely, from Propositions 5.10,
5.1, and 5.11 for any n ≥ 0 and any i ≥ n/2 one has

DR(i, n) = DR(i + 1, n + 1),

for any n ≥ 0 and any i > n/2 one has

DK(i, n) = DK(i + 1, n + 1),

and for any n > 1 and any i ≥ bn/2c one has

DG(i, n) = DG(i + 1, n + 1).

We have also shown (cf. Prop. 5.1) that DK , as well as other functions like D∗
G

and D∗
R, satisfies the stronger diagonal property: for all i, n ≥ 0

DK(i, n) ≤ DK(i + 1, n + 1).

In other words the value of the function on the pair (i, n) is less than or equal
to the value of the function on the pair (i + 1, n + 1). By using a computer, we
verified that in the case d = 2 and 1 ≤ n ≤ 25 (see Tab. 3 for n ≤ 20) one has

DG(i, n) ≤ DG(i + 1, n + 1).
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We conjecture that this property is true for all d and n. We remark that if the
conjecture is true, then, by using Corollary 4.8, one can easily derive that the same
property is satisfied by DR.
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