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µ-BICOMPLETE CATEGORIES AND PARITY GAMES

Luigi Santocanale
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Abstract. For an arbitrary category, we consider the least class of
functors containing the projections and closed under finite products,
finite coproducts, parameterized initial algebras and parameterized fi-
nal coalgebras, i.e. the class of functors that are definable by µ-terms.
We call the category µ-bicomplete if every µ-term defines a functor.
We provide concrete examples of such categories and explicitly char-
acterize this class of functors for the category of sets and functions.
This goal is achieved through parity games: we associate to each game
an algebraic expression and turn the game into a term of a categorical
theory. We show that µ-terms and parity games are equivalent, mean-
ing that they define the same property of being µ-bicomplete. Finally,
the interpretation of a parity game in the category of sets is shown to
be the set of deterministic winning strategies for a chosen player.

Mathematics Subject Classification. 18A30, 68Q65, 91A43.

1. Introduction

Several set-theoretic structures of relevance to computer science can be
described either by using the language of initial algebras or by using the lan-
guage of final coalgebras. For example, sets of finite trees, the set of terms over
a signature and, more in general, inductively defined sets are initial algebras of
some functor and this property characterizes these sets up to canonical isomor-
phism. Similarly, sets of trees with possibly infinite branches, sets of objects which
are canonical solutions of systems of equations, coinductively defined sets or coin-
ductive types, can be characterized up to isomorphism by the property of being
final coalgebras of some functor. Thus the study of initial algebras in connection

Keywords and phrases: Parity games, bicomplete categories, initial algebras, final coalgebras,
inductive and coinductive types.
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with data structures is a well developed subject and dates back at least twenty five
years [3,22]. The interest in final coalgebras is more recent, but is nowadays grown
up to a well established discipline [1,6,28]. Despite the existence of programming
languages and proof assistants that implement both inductive and coinductive
types [11, 16], it appears to us that initial algebras and final coalgebras are not
often studied simultaneously in the literature. Thus we are led to the problem of
understanding what kind of structures arise from both initial algebras and final
coalgebras and whether these structures are of any interest in computer science.

This paper is therefore meant to be an introduction to the theory of categories
having the following completeness properties: they have finite sums, finite products
and all the initial algebras and final coalgebras of the functors which can be con-
structed out of these four operations, using projection functors as building blocks.
These categories generalize µ-lattices [29, 31] and µ-algebras [26] on one side, on
the other side they partially generalize bicomplete categories [18]. For this reason
we call them µ-bicomplete.

A first concern is to show that many common categories are µ-bicomplete. It is
well known that an accessible unary endofunctor of a locally presentable category
has both an initial algebra and a final coalgebra. We adapt ideas existing in the
literature to prove that locally presentable categories are µ-bicomplete. Among
the locally presentable categories is the category of sets and functions, which is
therefore µ-bicomplete.

As it is often the case for existence theorems, the mere knowledge that a
category is µ-bicomplete is unsatisfactory. The principal goal of this paper is that
of giving an explicit description of the functors on the category of sets that arise
out of those four operations, i.e. of the functors that are definable by µ-terms. We
achieve this goal by translating the algebraic language of µ-bicomplete categories
into the combinatorial language of parity games, cf. [5] (Sect. 4). These games are
a standard tool in the theory of automata recognizing infinite objects [33]. A cen-
tral notion in this theory is that of an acceptance condition, essentially a method
for specifying a set of infinite paths in a graph. The acceptance condition by which
the set of infinite winning plays in a parity game is defined was introduced in [25]
to construct automata in normal form. Thus it should not come as a surprise
that several combinatorial problems of the theory can be reduced to the problem
of finding winning strategies in a parity game. For example, the properties of
transition systems that are definable by alternating fixed point expressions can be
checked using algorithms designed and proved correct by means of game-theoretic
ideas and analogies [12].

Generalizing ideas that relate the theory of two persons games with the the-
ory of bicomplete categories [18, 19], we show that it is possible to endow parity
games with an algebraic meaning, so that they can be considered to be terms of
a categorical theory. We show then the equivalence of this meaning to the one of
µ-terms defining µ-bicomplete categories. On the combinatorial side, parity games
can be considered as recognizers of infinite objects in a natural way: they recognize
the set of deterministic winning strategies for a chosen player. The two different
meanings of parity games, the algebraic one and the combinatorial one, are then
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shown to coincide if the category of sets and functions is being considered. This
leads to the characterization of functors denoted by µ-terms in the category of
sets: a µ-term is translated into a parity game and its denotation in this category
is the set of deterministic winning strategies for the chosen player.

This result supports the claim that the algebra of parity games is the one of
µ-bicomplete categories and that the combinatorics of µ-bicomplete categories is
the one of parity games, a claim which is meant to emphasize two possible direc-
tions of research. One goes from the algebra to the combinatorics: for example,
this work should provide a starting point for elaborating game semantics of pro-
gramming languages that implement both inductive and coinductive types. The
other direction goes from the combinatorics to the algebra: we are proposing an al-
ternative algebraic interpretation of the alternation between “finitely many times”
and “infinitely often” which occurs so often in the theory of automata recognizing
infinite objects. The alternation is usually analyzed by means of complete lattices,
of ordinals and of approximants of least fixed points that occur nested within
greatest fixed points. Our interpretation requires induction and coinduction, that
is, initial algebras and final coalgebras of functors which are natural generaliza-
tions of least and greatest fixed points. A particular motivation for developing this
work has been the possibility of describing transformations of winning strategies
by means of arrows definable in every µ-bicomplete category. We have reported
partial results on the structure of arrows of µ-bicomplete categories in [30].

On several occasions categories with similar completeness properties have been
proposed. For example, in [15] a category C is defined to be algebraically complete
if every unary endofunctor has an initial algebra. This requirement appears to be
too strong, since the only complete categories with this property turn out to be the
complete quasi-orders. It is possible to relax the requirement and ask only a given
class of functors of the form F :

∏
i∈I C - C to be closed under parameterized

initial algebras. This approach is the one proposed in [14] and leads to define
2-iteration theories [8]. This is also our approach with the proviso that we are
interested in a specific class which is required to be closed under parameterized
final coalgebras as well. In [15] final coalgebras are considered too, but they are
flattened into initial algebras: an algebraically compact category is defined there to
be an algebraically complete category such that the inverse of every initial algebra
is also a final coalgebra of the same functor.

In these and other contexts the equational properties of categorical fixed points
have been studied. Our aim here is to see these properties at work. Our starting
point will be the Bekič property. In its simplest form it is an inductive method for
showing that a system of equations admits a unique solution: a sufficient condition
for the system of equations {

x = f(x, y)
y = g(x, y)

}
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to admit a unique solution is that the system{
x = f(x, y)

}
admits a unique solution x = f †(y) for each choice of y and that either of the two
equivalent systems{

x = f †(y)
y = g(x, y)

} {
y = g(f †(y), y)

}
admits a unique solution. The analogy of the Bekič property with Gaussian elimi-
nation has been pointed in [5,32]. The equivalence between the last two systems is
moreover the root of our algebraic interpretation of parity games. We shall state
a categorical version of the Bekič property; the property stated above is recovered
when considering that a set is a poset with a discrete order, and that a poset is a
category with at most one arrow between any two objects: an initial algebra of an
endofunctor of a discrete category is nothing else but a unique fixed point. The
Bekič property allows to prove the equivalence between µ-terms and systems of
functorial equations. These seem to be better suited than µ-terms for an analysis
that emphasizes the operational aspects.

The paper is structured as follows. In Section 2 we explain the notation, intro-
duce the principal concepts and state the Bekič property. In Section 3 we define
categorical µ-terms and µ-bicomplete categories. We prove that locally presentable
categories are µ-bicomplete. In Section 4 we define parity games and their alge-
braic interpretation. We show that it is possible to interpret every parity game on
a category if and only if the category is µ-bicomplete, by giving a translation of
parity games into µ-terms and vice versa. In Section 5 we prove that the algebraic
interpretation of a parity game in the category of sets is the set of winning strate-
gies for a chosen player. We add some examples and applications of the theory so
far developed. Finally, in Section 6, we add concluding remarks.

2. Notation and preliminaries

2.1. Notation

We will use different notations for the categorical composition. Given two
arrows f : A - B and g : B - C of a category C, we use the notation
f · g : A - C for their composition. However, when dealing with functors
F : C - D and G : D - E, we prefer the notation G ◦ F , or simply GF . In
a similar way, if f : A - B is a set-theoretic function, we use f(a), fa and fa

for evaluation at a ∈ A.
We use the symbols ∂0, ∂1 for the domain and codomain functions of graphs

and categories. Given a graph S = 〈∂0, ∂1 : M - P 〉, we write m : p → q to
mean that m ∈ M , ∂0m = p and ∂1m = q. The free category over the graph S is
described as follows: its set of objects is P and an arrow from p to q is a sequence of
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transitions γ =
{
mi

}
i=1,... ,n

such that ∂0m1 = p, ∂0mi+1 = ∂1mi, i = 1, . . . n − 1
and ∂1mn = q, that is, it is a path in S from p to q; we say in this case that
n = #γ is the length of γ. Given two paths δ from p to q and γ from q to r in S,
we use the notation δ ? γ for their composition. The identity of a vertex p is the
path 1p from p to p having null length. A path δ is a prefix of γ if there exists a
path γ′ such that γ = δ ? γ′.

A morphism of graphs Φ : 〈P1, M1, ∂0, ∂1〉 - 〈P2, M2, ∂0, ∂1〉 is a pair of
functions Φ : P1

- P2, Φ : M1
- M2 such that ∂iΦ(m) = Φ(∂im), for

i = 0, 1 and m ∈ M1. We can describe a path in S as a morphism of graphs
γ : n̂ - S, where n̂ is the graph 0 → 1 → . . . → n. An infinite path in S is a
morphism of graphs γ : ω̂ - S, where ω̂ is the graph 0 → 1 → . . . → n → . . .
If δ is a finite path from p to q and γ is an infinite path such that γ0 = q, then we
write δ ? γ for the resulting infinite path. A morphism of graphs Φ : S1

- S2

induces a functor between the respective free categories, which we will denote by
the same letter Φ. Observe that if γ is a path in S1, then Φ(γ) is the morphism
of graphs γ ·Φ, thus we extend the same notation to infinite paths, letting in this
case Φ(γ) = γ · Φ.

2.2. Initial algebras of functors

Let C be a category and F : C - C be an endofunctor, an F -algebra is a
pair (c, γ), where c is an object of C and γ : Fc - c is an arrow of C. A
morphism of F -algebras f : (c, γ) - (d, δ) is an arrow f : c - d of C such
that γ · f = Ff · δ. F -algebras and their morphisms form a category CF and we
define an initial F -algebra to be an initial object in this category. More explicitly,
an F -algebra (x, χ) is initial if for each F -algebra (c, γ) there exists a unique arrow
f : x - c such that χ · f = Ff · γ. We remark that if an F -algebra (x, χ) is
initial, then the arrow χ is invertible [21].

F -coalgebras and their morphisms are defined dually and form a category CF .
We recall that a coalgebra ξ : y - Fy is final if for each coalgebra γ : c - Fc
there exists a unique arrow g : c - y such that g · ξ = γ · Fg.

If F : C × D - C is such that for every object d of D there exists an initial
algebra (Fµ(d), χd) of the functor F (−, d), then there exists a unique way to turn
the collection of objects Fµ(d) into a functor so that χd : F (Fµ(d), d) - Fµ(d)
is a natural isomorphism: for f : d - d′, Fµ(f) is the unique F (−, d)-algebra
morphism from the initial one (Fµ(d), χd) to (Fµ(d′), F (Fµ(d′), f) · χd′). We
call the arising functor Fµ : D - C a parameterized initial algebra of F . A
parameterized final coalgebra F ν of F is defined similarly.

2.3. The Bekič property

We state here the Bekič property for initial algebras of functors, a proof of
which is found in [22] (Sect. 4.2). This property will be a major tool in the proofs
that follow.
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Proposition 2.1. Consider two functors F : C × D - C, G : C × D - D,
and for each object d of D let (Fµ(d), χd) be an initial F (−, d)-algebra. Suppose
moreover that there exists an initial algebra

ξ : Fµ(z) - y ζ : G(y, z) - z

of the functor
〈
Fµ ◦ prD, G

〉
: C × D - C × D. Then the pair

χz : F (Fµ(z), z) - Fµ(z) G(ξ, z) · ζ : G(Fµ(z), z) - z

is an initial algebra of the functor
〈
F, G

〉
: C × D - C × D.

The following proposition is needed to obtain the Bekič lemma in its usual form,
see [22] or the pairing identity in [7] (Sect. 5.3.9).

Proposition 2.2. Consider two functors F : D - C, G : C × D - D, and
let (y, ξ) be an initial algebra of the functor G(F−,−) : D - D. Then the pair

idF (y) : F (y) - F (y) ξ : G(F (y),y) - y

is an initial algebra of the functor 〈F ◦ prD, G〉 : C × D - C × D. Conversely,
if

χ : F (y) - x ξ : G(x,y) - y

is an initial algebra of the functor 〈F ◦ prD, G〉, then

G(χ,y) · ξ : G(F (y),y) - y

is an initial algebra of the functor G(F−,−) : D - D.

The reader will have no difficulties to adapt the statements of Propositions 2.1
and 2.2 to construct a parameterized initial algebra of a functor

〈
F, G

〉
:

C × D × E - C × D, given a parameterized initial algebra Fµ : D × E - C

of the functor F : C × D × E - C and a parameterized initial algebra of the
functor G ◦ 〈Fµ, idD×E〉 : D × E - D.

3. µ-bicomplete categories

We define µ-bicomplete categories by mimicking the definition of µ-algebras [26]
at the level of categories: µ-terms are defined and an algebra is a µ-algebra if it is
possible to interpret all the µ-terms as expected. In a categorical context a µ-term
is to be interpreted as a functor, which generalizes the usual interpretation of a
µ-term as an order preserving function.

In the following definition we explicitly keep track of free variables in a µ-term
by means of a context X : this is simply a finite set (of variables). Later we shall
use the notation CX to denote the X-fold product of a category C with itself.
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Definition 3.1. The set µT (X) of µ-terms over a context X is defined as follows:
1. for each pair (X, x), where X is a finite set and x ∈ X , x ∈ µT (X);
2. if I is a finite set and s : I - µT (X), then

∧
Is,
∨

I s ∈ µT (X);
3. if s ∈ µT (X) and x ∈ X , then µx.s, νx.s ∈ µT (X \ {x}).

Definition 3.2. Let C be a category with finite products and finite coproducts.
We define a partial interpretation of µ-terms s ∈ µT (X) over a context X as
functors of the form ‖ s ‖ : CX - C.

1. For x ∈ X , we let ‖ x ‖ = prx : CX - C.
2. We let ‖

∧
Is ‖ =

∏
i∈I ‖ si ‖ and ‖

∨
I s ‖ =

∐
i∈I ‖ si ‖, given that all the

‖ si ‖ are defined.
3. We let ‖µx.s ‖ be the parameterized initial algebra of

‖ s ‖ : C{x} × CX\{x} - C ,

given that ‖ s ‖ is defined. Similarly we let ‖ νx.s ‖ be the parameterized final
coalgebra of ‖ s ‖. If ‖ s ‖ is not defined or if the desired initial algebras (final
coalgebras) do not exist, then we leave ‖µx.s ‖ (‖ νx.s ‖) undefined.

Definition 3.3. A category with finite products and finite coproducts C is said
to be µ-bicomplete if for each finite set of variables X and µ-term s ∈ µT (X) the
interpretation ‖ s ‖ is defined.

An alternative point of view emphasizes the class of functors which are definable
by means of µ-terms in a µ-bicomplete category. Thus we are lead to give the
following definition.

Definition 3.4. We say that a functor F : CX - CY is a µ-functor if there
exist a collection of µ-terms {sy ∈ µT (X)}y∈Y and a natural isomorphism F ∼=〈
‖ sy ‖

〉
y∈Y

.

Proposition 3.5. µ-functors are closed under composition.

Proof. Let s ∈ µT (X) and z 6∈ X , we first define sz ∈ µT ({z} ∪ X) with the
property that ‖ sz ‖ = ‖ s ‖ ◦ prX , by induction on the structure of s. We let
xz = x, (

∧
Is)

z =
∧

Is
z and (

∨
I s)z =

∨
I sz, where (sz)i = (si)z, (µx.s)z = µx.(sz)

and (νx.s)z = νx.(sz). In the last two cases we have supposed that the variable
x 6∈ {z}∪X , otherwise we can rename x in s to a variable x′ 6∈ {z}∪X and obtain
a µ-term t ∈ µT ({x′} ∪X) such that ‖ t ‖ = ‖ s ‖ and ‖µx′.t ‖ = ‖µx.s ‖ and then
we can define (µx.s)z = µx′ .(tz).

Let s : Y - µT (X) be a collection of µ-terms and let t ∈ µT (Y ). We define
now a µ-term t[s] ∈ µT (X) with the property that ‖ t[s] ‖ ∼= ‖ t ‖ ◦

〈
‖ sy ‖

〉
y∈Y

, by
induction of the structure of t. We let y[s] = sy, (

∧
It)[s] =

∧
I(t[s]), (

∨
I t)[s] =∨

I (t[s]) where t[s]i = ti[s]. Eventually, we let (µx.t)[s] = µx.(t[x, sx]) and (νx.t)[s]
= νx.(t[x, sx]), where (x, sx) : {x}∪Y - µT ({x}∪X) is such that (x, sx)y = sx

y

if y ∈ Y and (x, sx)x = x. We have supposed again and without loss of generality
that x 6∈ X . The desired statement follows.
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Let Y be a set of variables and suppose that it is the disjoint union of X and
Z. We can extend every collection s : Z - µT (X) indexed by Z to a collection
s′ : Y - µT (X) by letting s′y = sy if y ∈ Z and s′y = y if y ∈ X . Thus if
t ∈ µT (Y ) then we let

t[sz/z]z∈Z = t[s′]

where t[s′] has been defined in the proof of the above proposition. We observe
that the interpretation of ‖ t[sz/z]z∈Z ‖ is

CX

〈〈
‖ sz ‖

〉
z∈Z

, idCX

〉
- CZ × CX ‖ t ‖ - C

according to the previous proposition.

Proposition 3.6. µ-functors are closed under parameterized initial algebras and
parameterized final coalgebras.

By this property we mean that if F : CY - CX is a µ-functor and X ⊆ Y ,
so that we can represent CY as the product CX × CY \X , then we can find a
collection of µ-terms {tx ∈ µT (Y \ X)}x∈X so that

〈
‖ tx ‖

〉
x∈X

: CY \X - CX

is a parameterized initial algebra of F and, similarly, it is possible to find an
analogous representation for a parameterized final coalgebra of F . The proposition
is an immediate consequence of the Bekič property and its dual for final coalgebras.
It will also be evident from the representation of µ-functors by means of parity
functors that we describe in the next section.

We want to find concrete examples of µ-bicomplete categories. To achieve
this goal, we shall look at locally presentable categories which, in some sense,
generalize complete lattices. We briefly recall the principal concepts that define
these categories, their properties being described in the monographs [4, 23].

Let λ be a regular cardinal. A poset is λ-directed if every subset of cardinality
less than λ has an upper bound. If D : J - C is a diagram whose index
J is a λ-directed poset, then we say that D is λ-directed and that its colimit,
whenever it exists, is λ-directed. A functor T : C - D is said to be λ-accessible
if it preserves λ-directed colimits. An object c of a category C is λ-presentable
if the hom-functor C(c,−) : C - Set is λ-accessible. Thus: a category C is
locally λ-presentable if (1) it is cocomplete and (2) it has a set A of λ-presentable
objects such that every object of C is the λ-directed colimit of objects from A.
We can relax condition (1) to: (1’) it has all the λ-directed colimits, in which case
conditions (1’) and (2) define a λ-accessible category. Finally: a functor is said to
be accessible if it is λ-accessible for some regular cardinal λ. A category is said
to be locally presentable (accessible) if it is locally λ-presentable (λ-accessible) for
some regular cardinal λ.

Most of the common categories are locally presentable: the category of sets
and functions, categories of presheaves and sheaves, varieties and quasivarieties of
algebras. Thus, in the rest of this section, we shall prove:

Theorem 3.7. Every locally presentable category is µ-bicomplete.
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In order to show that a category C is µ-bicomplete, it suffices to find a class of
functors of the form CJ - C, where J ranges on finite sets, that contains the
projections and is closed under finite products, finite coproducts, and formation of
parameterized initial algebras and parameterized final coalgebras. We recall the
following facts about accessible functors:

• left and right adjoints between accessible categories are accessible ([4],
Sect. 2.23);

• if D has an initial and a final object, then a projection prC : C × D - C

is both a left and a right adjoint;
• coproducts, diagonals and products are adjoints, since

∐
a∆a

∏
:CJ - C.

Knowing that locally presentable categories are closed under finite products, we
conclude that if C is such a category, then the class of accessible functors F :
CJ - C contains the projections and is closed under finite products and fi-
nite coproducts. It is well known that initial algebras and final coalgebras of
λ-accessible unary functors exist in locally presentable categories [3, 6]; moreover
if F : C × D - C is λ-accessible, so is the unary functor F (−, d) : C - C for
each object d of D. Thus, in order to conclude that locally presentable categories
are µ-bicomplete, we need the following proposition:

Proposition 3.8. If C and D are locally presentable categories and F :
C × D - C is an accessible functor, then both the parameterized initial al-
gebra Fµ : D - C and the parameterized final coalgebra F ν : D - C are
accessible.

We are thankful to Alex Simpson for pointing out the following short proof
that relies on general properties of locally presentable categories and accessible
functors.

Proof. We only prove that F ν is accessible, since the proof for Fµ is dual. Consider
the category E with objects (c, d, ζ), where c ∈ C, d ∈ D, and ζ : c - F (c, d),
and with morphisms (f, g) : (c, d, ζ) - (c′, d′, ζ′) being maps f : c - c′ and
g : d - d′ such that ζ ·F (f, g) = f ·ζ′. Observe that there is an obvious forgetful
functor E - C × D as well as a natural transformation

E

C × D

C × D

C

11

-- F

77

prC

''
ζ

��

The 2-categorical diagram above is the inserter – cf. [20] (Sect. 4) – of prC and F
and this implies that E is accessible, since accessible categories are closed under
lax limits ([23], Sect. 5.1.8). Also, it is easily verified that the forgetful functor
E - C× D creates colimits, so that E is cocomplete, hence locally presentable.

There is a functor G : D - E mapping an object d of D to (F νd, d, ζd)
where ζd : F νd - F (F νd, d) is a final coalgebra. Then G is right adjoint to the
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accessible functor E - C × D - D, hence G is accessible. But F ν is simply

D E
G // C × D// C

prC //

which, as a composite of accessible functors, is accessible.

It is possible to directly prove Proposition 3.8 along the lines of [6]. Such a
proof also shows that if C is a locally λ-presentable category with λ > ω, then
the class of λ-accessible functors of the form CJ - C is closed under formation
of parameterized final coalgebras. The condition λ > ω is necessary, cf. [2]: the
interpretation of the µ-term νy.(x∨(y∧y)) in the category of sets is the functor that
associates to each set X the set of infinite binary trees with leaves labeled in X .
Letting X be the set N of natural numbers, we observe that there are infinitely
many binary trees whose leaves are labeled by an infinite subset of N, thus the
set of this infinite binary tree is not the inductive limit of the sets of infinite trees
whose leaves are labeled by a finite subset of N. Since N is the inductive limit of
its finite subsets, we see that this functor is not ω-accessible. Finally, since finite
products are λ-accessible in locally λ-presentable categories ([4], Sect. 1.59), we
can infer:

Proposition 3.9. If λ > ω, then every µ-functor on a locally λ-presentable cate-
gory is λ-accessible.

4. Parity games as functors

We have argued that µ-functors are closed under parameterized initial algebras:
by the Bekič property, it becomes possible to construct initial solutions of systems
of functorial equations by means of µ-terms. The arising algebraic expressions
representing the solution of a system are however large in the dimension of the
system and are not unique. Moreover, a large algebraic expression could be useless
for understanding its denotation in concrete categories. For this reason we would
like to have some kind of “smooth” terms for the theory of µ-bicomplete categories.
These terms should have a compact representation and possibly they should be
suggestive of their semantics. To achieve this goal, the central notion is that of
parity game, cf. for example [5,35]. We define it here in a slightly generalized way.

Definition 4.1. A parity game is a tuple G = 〈S, h, κ, ε〉, where
• S = 〈∂0, ∂1 : M - P 〉 is a finite graph of positions and moves;
• h : P - {1, . . . , n, ω} is a function such that, if h(p) = ω, then {m | ∂0(m)

= p } = ∅;
• κ : {1, . . . , n} - {µ, ν};
• ε : { p ∈ P |h(p) 6= ω } - {σ, π}.

We fix some terminology and notation. If h : P - {1, . . . , n, ω}, then we
shall say that n is the height of G and write hg(G) = n. For each p ∈ P , we
let Mp be the set ∂−1

0 (p). We let Pi = h−1(i), P<i =
⋃

j<i Pj , P≤i =
⋃

j≤i Pj
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for i ∈ {1, . . . , n, ω}. We shall also use the notation P≥i for the set
⋃

j≥i Pj .
Unless specified we will assume that the underlying structure of a given parity
game G is the tuple 〈S, h, κ, ε〉, S being the graph 〈P, M, ∂0, ∂1〉. A pointed parity
game is a pair 〈G, p〉 where G is a parity game and p ∈ P .

We interpret the above data as a two person game G(E), parameterized in a
choice of sets E = {Ex}x∈Pω . The graph S is a board with a set of positions P
and a set of allowed moves M . A move m ∈ M is from position ∂0(m) to position
∂1(m); observe that we allow different moves relating the same pair of positions;
also, the two players need not to alternate. From a position p the set of moves
Mp is available and player ε(p) among players σ and π must choose how to move.
The normal play condition holds: if a player cannot move, then he loses. On an
infinite play γ = γ0 → γ1 → . . . γn → . . . we will be able to find regions among
P1, . . . , Pn which are visited infinitely often, and among them we will be able to
pick a region Pi with i maximal. Then, this infinite path is a win for player σ if
and only if i is colored by ν. More formally, if we let

In γ = { i ∈ {1, . . . , n} | card{ l |h(γl) = i } = ω } , (1)

then γ is a win for player σ if and only if

κ(max In γ ) = ν .

If a play ends in a position x ∈ Pω , then player σ must choose an element e ∈ Ex,
and then he wins. If Ex = ∅, then he loses.

We remark that if Pω = ∅, then the above data and game theoretic interpre-
tation coincide with the usual one ([5], Sect. 4). From a game theoretic point of
view, we are allowed to normalize the functions h and κ, so that we can always
suppose that κ(i) = ν if and only if i is odd. In this case an infinite play γ is a
win for player σ if and only if the region visited infinitely often in γ of maximal
height is odd, whence the name of “parity game”.

In the theory of automata recognizing infinite objects the way of specifying a
set of infinite paths in a graph is called an acceptance condition. The acceptance
condition by which we specify the set of infinite winning plays for player σ was
introduced by Mostowski in [25] and is also known as a Rabin chain condition.
Under the hypothesis that κ(i) = ν if and only if i is odd and that hg(G) = 2n,
we can let Fk = P≥2k−1 and Ek = P≥2k for k = 1, . . . , n. These sets form a
decreasing chain and moreover the pairs (Fk, Ek)k=1,... ,n are Rabin pairs for the
set of infinite winning plays for player σ, meaning that an infinite path γ is a win
for player σ if and only if there exists k ∈ {1, . . . , n} such that In γ ∩ Fk 6= ∅ and
Inγ ∩ Ek = ∅. There are other ways of characterizing this acceptance condition
by means of Muller tables [24], but we won’t investigate this subject further. On
the other hand we recall that parity games are essential tools for model checking.
For example, it is shown in [13] that the problem of deciding whether player σ has
a winning strategy from a given position of a parity game is equivalent – under
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linear reduction – to the problem of deciding whether a µ-calculus formula holds
in a given model.

The goal of adding positions at infinite height is to make it possible to analyze
parity games inductively. The main tool for this is the predecessor game of a
parity game, whose construction we illustrate in Figure 1. The game on the right
is obtained from the one on the left by erasing all the moves from the region of
maximal finite height.
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Figure 1. On the left a parity game, on the right its predecessor game.

Definition 4.2. If G = 〈S, h, κ, ε〉 is a parity game of height n > 0, then its
predecessor game P (G), of height n − 1, is obtained from G by erasing all the
moves from Pn. More precisely, P (G) = 〈S′, h′, κ′, ε′〉, where:

• S′ = 〈∂0, ∂1 : ∂−1
0 (P<n) - P 〉;

• h′(p) = h(p) if h(p) < n, otherwise h′(p) = ω;
• for i ∈ {1, . . . , n − 1}, we let κ′(i) = κ(i);
• if h′(p) < n, then we let ε′(p) = ε(p).

In the following we shall endow the data defining a parity game with an algebraic
meaning. We let C be a fixed category with finite products and finite coproducts.
If G is a parity game, then for each p ∈ P<ω we let

pr(∂1, p) =
〈
pr∂1(m)

〉
m∈Mp

: CP - CMp

Ep =

{ ∏
◦pr(∂1, p) , ε(p) = π∐
◦pr(∂1, p) , ε(p) = σ

: CP - C .

For k = 1, . . . , hg(G) we let

Ek =
〈
Ep

〉
p∈Pk

: CP - CPk

and finally we let EG = Ehg(G).
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Definition 4.3. We define a partial correspondence ‖ − ‖, mapping a parity
game G to a functor ‖G ‖ : CPω - CP<ω , by induction on the height, as follows.
If hg(G) = 0, then P<ω = ∅ so that there is a unique choice of ‖G ‖. Suppose that
hg(G) = n > 0 and that ‖P (G) ‖ is defined. Let

F = ‖P (G) ‖ ◦ prCPn×CPω ,

and consider the functor

CP<n × CPn × CPω

〈
F, EG

〉
- CP<n × CPn .

If κ(n) = µ, then we let ‖G ‖ be the parameterized initial algebra of the above
functor, otherwise, if κ(n) = ν, we let ‖G ‖ be its parameterized final coalgebra.
If ‖P (G) ‖ is undefined or if the required initial algebras or final coalgebras do
not exist, then ‖G ‖ is undefined. We say that C is complete with respect to parity
games if for each parity game G, the functor ‖G ‖ : CPω - CP<ω is defined.

Whenever the functor ‖G ‖ : CPω - CP<ω is defined, it is useful to extend it
to a functor |G | : CPω - CP , in the obvious way, by setting

|G | = 〈‖G ‖, idCPω 〉 : CPω - CP<ω × CPω .

Observe that, according to Proposition 2.2, the functor prhg(G) ◦ ‖G ‖ is a param-
eterized initial algebra (or final coalgebra) of the functor EG ◦ |P (G) |. Moreover,
according to the same proposition, the value of ‖G ‖ is completely determined
up to natural isomorphism by prhg(G) ◦ ‖G ‖ and ‖P (G) ‖. Hence, in order to
prove that ‖G ‖ and ‖H ‖ are naturally isomorphic, it is enough to prove that EG

and EH are naturally isomorphic, that κ(hg(G)) = κ(hg(H)), and that ‖P (G) ‖ is
naturally isomorphic to ‖P (H) ‖.
Definition 4.4. We say that a functor F : CI - CJ is a parity functor if it is
naturally isomorphic to a functor of the form prJ ◦ |G |, where G is a parity game
such that Pω = I and J ⊆ P is a subset of positions.

If in the previous lemma I = {p} is a singleton, we will use the notation |G |p
for the functor prp ◦ |G |.

In the following two lemmas, needed in the proof of Proposition 4.12, we ex-
emplify how game theoretical ideas lift to the algebra. In 4.5 we introduce two
constructions which respectively introduce and eliminate holes in the height. The
first construction is exemplified in Figure 2. In 4.7 and 4.8 we show that regions
of contiguous heights can always be assumed to be non empty and have different
colors {µ, ν}. These constructions are shown to be algebraic invariants.

In the following definition, let ı̂ : {1, . . . , n} - {1, . . . , n + 1} be the unique
order preserving injection which avoids i ∈ {1, . . . , n + 1}.
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Figure 2. A game G on the left and the game G3,µ on the right.

Definition 4.5. Let G = 〈S, h, κ, ε〉 and suppose that hg(G) = n.

• For i = 1, . . . , n+1 and θ ∈ {µ, ν}, we define Gi,θ = 〈S, hi, κi,θ, ε〉 by letting
hi = h · ı̂ and , κi,θ(j) = κ(j) if j < i, κi,θ(i) = θ and κi,θ(j) = κ(j − 1) if
j > i.

• We define G• = 〈S, h•, κ•, ε〉 as follows: we let h• · j be the unique fac-
torization of h such that h• : P \ Pω

-- {1, . . . , k} is surjective and
j : {1, . . . , k} ⊂ - {1, . . . , n} is injective and order preserving; we let
κ• = j · κ.

Observe that hg(Gi,θ) = n + 1 and that, in the game G•, Pj 6= ∅ for j =
1, . . . , hg(G•).

Lemma 4.6. There exist natural isomorphisms ‖G ‖ ∼= ‖Gi,θ ‖ and ‖G ‖ ∼= ‖G• ‖.

Proof. The isomorphism ‖Gn+1,µ ‖ ∼= ‖G ‖ follows by observing that P (Gn+1,µ) =
G and by letting C be CP≤n , D = CPn+1 = C∅ = 1, E = CPω in Proposition 2.2:
the left projection of ‖Gn+1,µ ‖ : CPω - CP≤n × 1 is computed as ‖G ‖. An
analogous observation shows that there is an isomorphism ‖Gn+1,ν ‖ ∼= ‖G ‖.

If i ≤ n, then we can reason by induction on the height, observing that
P (Gi,θ) = P (G)i,θ and EGi,θ

= EG, so that EGi,θ
◦ |P (Gi,θ) | and EG ◦ |P (G) |

are naturally isomorphic.
On the other hand, we argue that ‖G ‖ and ‖G• ‖ are naturally isomorphic

as follows: j can be factored by a sequence of the functions ı̂, hence G can be
obtained from G• by a sequence of the operations (−)i,θ and the result follows
from our previous considerations.

Definition 4.7. We say that a parity game G is normalized if κ(i) 6= κ(i + 1) for
i = 1, . . . , hg(G) − 1 and Pi 6= ∅ for i = 1, . . . , hg(G).
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Lemma 4.8. For each parity game G there exists a normalized parity game N(G)
on the same set of positions of G such that ‖G ‖ ∼= ‖N(G) ‖.

Proof. Let G = 〈S, h, κ, ε〉 be a game with hg(G) = n + 1 > 1. We first define a
game GN . If κ(n + 1) = κ(n), then we let GN = 〈S, hN , κ, ε〉, where hN (p) = n
if h(p) = n + 1 and otherwise hN (p) = h(p). To verify that ‖G ‖ is isomorphic
to ‖GN ‖, observe that P (GN ) = P (P (G)) and that EGN =

〈
EP (G), EG

〉
and

therefore let F =
〈
‖P (P (G)) ‖ ◦ prP≥n

, EP (G)

〉
and G = EG in the statement of

the Bekič Property 2.1. Otherwise, if κ(n + 1) 6= κ(n), then we let GN = G.
We define then N(G) by induction on the height. If hg(G) ≤ 1, then N(G)

= G. Otherwise, in order to obtain N(G), we first construct N(P (G)), and then
a game G′ by adding to the region of maximal height of G transitions so that
EG′ = EG. As the last step, we let N(G) = G′

N . By induction, it is shown that
‖N(G) ‖ = ‖G ‖.

The following theorem is the main result of this section and generalizes to
categories the well known fact that a vectorial µ-calculus has no more expressive
power of its scalar version ([5], Sect. 2.7).

Theorem 4.9. A category is µ-bicomplete with respect to parity games if and only
if it is µ-bicomplete.

In order to prove the theorem we translate parity functors into collections of
µ-terms and vice versa we represent µ-terms by pointed parity games. To show
that this translation is sound the main tool is the Bekič property discussed in
Section 2.3.

Proposition 4.10. For each parity game G we can find a collection of µ-terms
{sp}p∈P , such that sp ∈ µT (Pω) and

|G | :=
〈
‖ sp ‖

〉
p∈P

.

The meaning of the symbol := is that the functorial expression on the right de-
termines the existence of the functorial expression on the left. That is, natural
transformations (needed as projections, injections and as the structure part of
initial algebras or final coalgebras) can be constructed out of the natural trans-
formations given with the interpretations of the µ-terms, so that the functorial
expression on the right together with these new natural transformations have the
universal property that determines the left-hand side of the equation up to canon-
ical isomorphism. Thus it follows:

Corollary 4.11. If C is a µ-bicomplete category, then C is complete w.r.t. parity
games.

Proof of Proposition 4.10. Clearly, it is enough to find a collection of µ-terms in-
dexed by P<ω such that ‖G ‖ :=

〈
‖ sp ‖

〉
p∈P<ω

, since then we can complete this
collection to a collection representing |G |, by letting sp be the µ-term p ∈ µT (Pω)
if p ∈ Pω.
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If hg(G) = 0, then the statement is true since P<ω = ∅ and the empty collection
of terms satisfies the requirements.

Suppose that hg(G) = n > 0 and that that κ(n) = µ. An analogous argument
works if κ(n) = ν.

By the induction hypothesis there are µ-terms {sp}p∈P with sp ∈ µT (Pn ∪Pω)
such that |P (G) | =

〈
‖ sp ‖

〉
p∈P

. According to Proposition 2.2, we can construct
the functor ‖G ‖ by means of µ-terms, provided we are able to show that the
functor EG ◦ |P (G) | admits a parameterized initial algebra which is representable
by means of µ-terms. We prove this by induction on the cardinality of Pn. If
Pn = ∅, then there is nothing to prove. Otherwise, pick p0 ∈ P , let P ′

n = Pn \{p0}
and represent the functor EG as 〈EP ′

n
, Ep0〉 where EP ′

n
=
〈
Ep

〉
p∈P ′

n
. We claim that

an initial algebra of the functor EP ′
n
◦ |P (G) | exists and is constructible by means

of µ-terms. Indeed a parity game G′ = 〈S′, h′, κ′, ε′〉 on the same set of positions
and with the same height as G, such that κ′(i) = κ(i) for i = 1, . . . , hg(G),
P (G′) = P (G), h′(p) = n if and only if p ∈ P ′

n and EG′ = EP ′
n
, is easily constructed

out of G. Since cardP ′
n < cardPn by the induction hypothesis we have a desired

representation of ‖G′ ‖ by µ-terms tp ∈ µT ({p0} ∪ Pω), for p ∈ P≤n \ {p0}.
It follows that 〈‖ tp ‖〉p∈P ′

n
is the desired representation of the initial algebra of

EP ′
n
◦ |P (G) |, since by Proposition 2.2 prP ′

n
◦ |G′ | is an initial algebra for EG′ ◦

|P (G′) | = EP ′
n
◦ |P (G) |.

Let s : Mp0
- µT (Pn ∪ Pω) be the function defined by the relation

s(m) = s∂1m

and let u ∈ µT (Pn ∪ Pω) be the µ-term defined as

u =

{ ∧
Mp0

s , ε(p0) = π∨
Mp0

s , ε(p0) = σ ,

then

Ep0 ◦ |P (G) | = ‖ u ‖ : CPn × CPω - C .

We can now construct an initial algebra of EG ◦ |P (G) | according to the Bekič
property. Let

vp0 = µp0 .(u[tp/p]p∈P ′
n

)

and for p ∈ P ′
n let

vp = tp[vp0/p0]

then the functor 〈‖ vp ‖〉p∈Pn carries a canonical structure of an initial algebra for
the functor EPn ◦ |P (G) |.
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Proposition 4.12. For each µ-term s ∈ µT (X) there exists a pointed parity game
〈G, p〉 such that Pω = X and

‖ s ‖ := |G |p .

Again, the meaning of the symbol := is that the functorial expression on the
right can be endowed with a structure so that it has the universal property which
determines the left-hand side of the equation up to canonical isomorphism. Thus
it follows:

Corollary 4.13. If C is a category complete w.r.t. parity games, then C is µ-
bicomplete.

Lemma 4.14. Let G be a parity game, we define Gp0 to be the game obtained
from G by adding a new position p0 to set of position at infinity Pω. Then there
exists a natural isomorphism ‖Gp0 ‖ ∼= ‖G ‖ ◦ prCPω .

Proof. The observation is obvious if hg(G) = 0. On the other hand, if hg(G) > 0,
then P (Gp0 ) = P (G)p0 and ‖P (Gp0) ‖ ∼= ‖P (G) ‖◦prn,ω, by induction. Moreover
EGp0 = EG ◦ prP , so that ‖Gp0 ‖ is the defined to be the initial algebra of the
functor 〈‖P (G) ‖ ◦ prn,ω ◦ prn,ω,p0

, EGp0 〉 = 〈‖P (G) ‖ ◦ prn,ω, EG〉 ◦ prP . In order
to conclude the argument, observe that the parameterized initial algebra of a
functor of the form F ◦ prC×D : C × D × E - C has the form Fµ ◦ prD, where
Fµ : D - C is the parameterized initial algebra of F : C × D - C.

Proof of Proposition 4.12. By induction on the structure of µ-terms.
For the µ-term x in context X , we let G be the parity game of height 0 on the

set of positions X , with distinguished position x ∈ X .
We analyze now the case of a term of the form

∧
Is. By duality, we implicitly

analyze the case of a term of the form
∨

I s.
We first show that given a parity game G = 〈S, h, κ, ε〉 and a subset I ⊆ P

of positions, it is possible to find a pointed parity game 〈G′, p0〉 such that |G′ |p0∼=
∏

i∈I |G |i. We define G′ = 〈S′, h′, κ′, ε′〉 as follows: S′ is obtained from S by
adding a new position p0 and moves p0 → i for each i ∈ I, h′(p0) = hg(G) + 1
and h′(p) = h(p) otherwise, κ′(hg(G) + 1) = µ, and κ′(j) = κ(j) if j ≤ hg(G),
ε′(p0) = π and ε′(p) = ε(p) otherwise. We could also have set κ′(hg(G) + 1) = ν,
leading to an equivalent construction.

Observe that P (G′) = Gp0 , therefore

‖P (G′) ‖ ◦ pr
CP ′

ω
= ‖Gp0 ‖ ◦ prC{p0}×CPω

∼= ‖G ‖ ◦ prCPω ◦ prC{p0}×CPω

∼= ‖G ‖ ◦ prCPω ◦ prCP<ω×CPω ,
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and remark that an initial algebra for ‖G ‖ ◦ prCPω is exactly ‖G ‖. Similarly

Ep0 =
∏

◦pr(∂1, p0)

∼=
(∏

i∈I

)
◦ prCP<ω×CPω .

Using Proposition 2.2 (switch the roles of F and G), compute an initial algebra
of a functor of the form 〈F ◦ prC×E, G ◦ prC×E〉 : C × D × E - C × D as
〈Fµ, G◦Fµ〉, Fµ being the initial algebra of F . In this formula let F be ‖G ‖◦prCPω

and G be (
∏

i∈I). It follows that |G′ |p0 , the right projection in this formula, is
|G′ |p0 = prp0

◦ ‖G′ ‖ ∼=
∏

i∈I ◦pri ◦ ‖G ‖ =
∏

i∈I |G |i.
We come back to the original problem of finding a representation of the functor∧

Is as a parity functor. Observing that we have solved the case of representing∧
∅ in the previous discussion, we can suppose without loss of generality that

I = {l, r}. Let 〈Gl, pl〉, 〈Gr , pr〉 be two pointed parity games representing sl and sr

respectively. Hence Gl and Gr share the same set of positions at infinity Pω = X .
Because of Lemmas 4.8 and 4.6, we can assume that hg(Gl) = hg(Gr) = n and that
κ(i) = µ if and only if i is odd for each i = 1, . . . , n. Given these assumptions, we
can construct a game

{
Gl, Gr

}
of height n, having as set of positions the disjoint

union of the sets Pω , P l
<ω, P r

<ω, by pasting together the local structures of Gl and
Gr. Recall that, for a pair of functors F : C×E - C and G : D×E - D, a pair
of initial algebras (Fµ, χ) and (Gµ, ξ) gives rise to the algebra (〈Fµ, Gµ〉, 〈χ, ξ〉) of
the functor 〈F ◦ prC×E, G ◦ prD×E〉 : C×D×E - C×D, which is moreover an
initial one. Then it is easily verified that the relation

‖
{
Gl, Gr

}
‖ ∼=

〈
‖Gl ‖, ‖Gr ‖

〉
: CPω - CP l

<ω × CP r
<ω

holds. In this way we have reduced the problem of finding a representation of
the µ-functor ‖ sl ∧ sr ‖ to the problem of finding a representation of the functor∏

i∈{pl,pr} |
{
Gl, Gr

}
|i by a pointed parity game, which we have previously solved.

Figure 3 displays the construction of the pointed parity game associated to sl∧sr.

Finally, we analyze the case of a term µx.s. By duality, we implicitly analyze
the case of a term of the form νx.s.

Let 〈G, p0〉 be a parity game such that |G |p0
∼= ‖ s ‖. Define G′ = 〈S′, h′, κ′, ε′〉

as follows:

• S′ is obtained from S by adding the move x → p0;
• h′(x) = hg(G) + 1 and κ′(hg(G) + 1) = µ, otherwise h′(p) = h(p) and

κ′(i) = κ(i) if p 6= x and i ≤ hg(G);
• ε′(x) = σ and ε′(p) = ε(p) if p 6= x.
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Figure 3. Pointed parity game for sl ∧ sr.

Observe that P (G′) = G and recall that |G′ |x is the parameterized initial algebra
of the functor in the top composite of the diagram below:

C × CX\{x}

CP<ω × CX C

CP<ω × CX

|G |

��

|P (G′) | //

prp0 //

pr(∂1,x)

��
C

`

//

Ex

��

Thus deduce that |G′ |x is also the initial algebra of the functor
∐

◦|G |p0 . Since
this functor is naturally isomorphic to |G |p0 and therefore to ‖ s ‖, we obtain the
relation ‖µx.s ‖ := |G′ |x.

5. Parity functors in the category of sets

We recall the game-theoretic interpretation of a parity game G = 〈S, h, κ, ε〉, as
a two person game G(E), parameterized in a choice of sets E = {Ex}x∈Pω . The
graph S = 〈P, M, ∂0, ∂1〉 is a board with a set of positions P and a set of allowed
moves M . A move m ∈ M is from position ∂0(m) to position ∂1(m); the graph
S has multiple edges, hence distinct moves relating the same pair of positions are
allowed. From a position p, the set of moves Mp = ∂−1

0 (p) is available, and player
ε(p) among players σ and π must choose how to move. If he cannot move, then
he loses. An infinite play γ0 → γ1 → . . . γn → . . . is a win for player σ if and only
if κ(max In γ ) = ν, the set In γ being defined by equation (1). If a play ends in a
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position x ∈ Pω, then player σ must choose an element e ∈ Ex and then he wins;
if Ex = ∅, then he loses.

A typical element of an inductively defined set is a kind of finite tree; on the
other hand, a typical element of a coinductively defined set is a kind of infinite
tree. We shall see that a similar tree-like representation is available for parity
functors on the category of sets.

Definition 5.1. Let 〈S, s0〉 be a pointed graph, a tree T over 〈S, s0〉 is a non-
empty collection of finite paths γ in S such that ∂0γ = s0, which is moreover
closed under prefixes: if γ1 ? γ2 ∈ T , then γ1 ∈ T .

Observe that a tree T over 〈S, s0〉 is itself a graph if we set γ → γ′ if and only if
γ′ = γ ? m for some m ∈ M∂1γ ; moreover ∂1 : T - S is a morphism of graphs.
In particular it makes sense to talk about an infinite path in T .

Definition 5.2. Let G be a parity game and let E = {Ex}x∈Pω be a collection of
sets. A deterministic winning strategy for player σ from position p ∈ P in the game
G(E) is a pair 〈T, λ〉 where T is a tree over 〈S, p〉 with the following properties:

• if γ ∈ T , ε(∂1γ) = π and m ∈ M∂1γ , then γ ? m ∈ T ;
• if γ ∈ T and ε(∂1γ) = σ, then there exists a unique m ∈ M∂1γ such that

γ ? m ∈ T ;
• every infinite path in the tree T is a win for player σ, that is, if γ : ω̂ - T ,

then κ(max In (γ · ∂1) ) = ν.
On the other hand, λ is a labeling of paths γ ∈ T such that ∂1γ ∈ Pω by an
element e = λ(γ) ∈ E∂1γ . We let SG,p(E) be the set of deterministic winning
strategies for player σ in the game G(E) from position p.

We shall often use τ [S], `[S] for the tree and the label of a strategy S, so that
S = 〈τ [S], `[S]〉. If 〈T, λ〉, 〈R, ρ〉 ∈ SG,p(E), then we shall write 〈T, λ〉 ⊆ 〈R, ρ〉 to
mean that T ⊆ R and λ(γ) = ρ(γ) for all γ ∈ T such that ∂1γ ∈ Pω.

Lemma 5.3. If 〈T, λ〉 ⊆ 〈R, ρ〉, then T = R and λ = ρ.

Proof. By induction on the length of γ ∈ R. If #γ = 0, then γ = 1p. Since T is
non empty, 1p?γ′ ∈ T , hence 1p ∈ T (1p belongs always to a winning strategy from
position p). If #γ = n + 1, then we can write γ = γ′ ? m where #γ′ = n. Since
γ′ ∈ R, by the induction hypothesis γ′ ∈ T as well. If ε(∂1γ

′) = π, then γ′?m′ ∈ T
for each m′ ∈ M∂1γ′ , in particular γ = γ′ ? m ∈ T . If ε(∂1γ

′) = σ, then there
exists m′ ∈ M∂1γ′ such that γ′ ? m′ ∈ T . This implies that γ′ ? m′, γ′ ? m ∈ R and
m = m′, since R is deterministic. Therefore γ′ ?m ∈ T . Finally, let γ ∈ R be such
that ∂1γ ∈ Pω. Since we have seen that γ ∈ T , it follows that ρ(γ) = λ(γ).

Observe that SG,p is a functor from the category SetPω to Set, the category of
sets and functions. Given a collection of functions {fx : Ex

- Fx}x∈Pω , we
can transform a strategy 〈T, λ〉 ∈ SG,p(E) into the strategy 〈T, f∂1 ◦λ〉 ∈ SG,p(F ),
where

( f∂1 ◦ λ )( γ ) = f∂1γ(λ(γ) ) .
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Thus, we denote by SG : SetPω - SetP≤n the functor whose p-projection is
SG,p, i.e. SG(E) =

〈
SG,p(E)

〉
p∈P≤n

. The following theorem is the main result of
this section.

Theorem 5.4. The equality

‖G ‖(E) := SG(E)

holds.

The equality above means that the collection of sets of deterministic winning
strategies satisfies the universal property involved in the definition of the parity
functor, so that it can be taken to be a concrete representation of the functor. This
equality is reminiscent of the formula of the Propositional Modal µ-Calculus which
describes the set of winning position for player σ in a parity game, cf. [12, 34].

In the rest of this section we prove Theorem 5.4. This is done by induction on
the height, observing that it holds in an obvious way if the height of G is 0. Thus
we shall suppose in the following that hg(G) = n > 0 and that the statement holds
for the predecessor game P (G). To develop the proof, we shall need a modified
version of the predecessor game that does not completely forget about the structure
in the region of maximal finite height. The delooping game, displayed on the left
in Figure 4, is devised to detect first passages through the region of maximal finite
height in a parity game.

30/.-,()*+
π

40/.-,()*+
σ

50/.-,()*+
σ

60/.-,()*+
σ

70/.-,()*+
σ

80/.-,()*+
π

11/.-,()*+ 21/.-,()*+
31/.-,()*+ 41/.-,()*+
51/.-,()*+ 61/.-,()*+
71/.-,()*+ 81/.-,()*+

11

--

//

**

��

77

oo

TT

��

// ??�������

_ _ _ _ _�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _

ω

_ _ _ _ _�

�

�

�_ _ _ _ _µ

3

_ _ _ _ _�

�

�

�_ _ _ _ _ν

2

_ _ _ _ _�

�

�

�_ _ _ _ _µ

1

Φ -

1/.-,()*+ 2/.-,()*+
3/.-,()*+
π

4/.-,()*+
σ

5/.-,()*+
σ

6/.-,()*+
σ

7/.-,()*+
σ

8/.-,()*+
π

OO

��

��

// ??�������

oo

��

��

FF

oo

[[

_ _ _ _ _�

�

�

�
_ _ _ _ _

ω

_ _ _ _ _�

�

�

�
_ _ _ _ _µ

3

_ _ _ _ _�

�

�

�
_ _ _ _ _ν

2

_ _ _ _ _�

�

�

�
_ _ _ _ _µ

1

Figure 4. The delooping game of a parity game.

Definition 5.5. The delooping game D(G) = 〈S′, h′, κ′, ε′〉 of a parity game G is
defined as follows:

• S′ is the graph whose set of positions is P≤n ×{0}+P ×{1}. For each move
m : p → p′ there is a move (m, 0) : (p, 0) → (p′, i), where i = 1 if and only if
p′ = ∂1m ∈ Pn ∪ Pω or p = ∂0m ∈ Pn;

• h′(p, 0) = h(p) and h(p, 1) = ω;
• κ′(i) = κ(i) for i = 1, . . . , n = hg(D(G)) = hg(G);
• ε′(p, 0) = ε(p).

The delooping game D(G) comes with a morphism of graphs Φ : S′ - S,
defined by Φ(p, i) = p and Φ(m, 0) = m.
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The domain of the functor SD(G) is the category SetP≤n×{1} × SetPω×{1} and
its codomain is the category SetP≤n×{0}. Under the obvious isomorphisms P ∼=
P × {1} and P≤n

∼= P≤n × {0} we shall look at this functor as having the shape

SD(G) : SetP≤n × SetPω - SetP≤n .

Lemma 5.6. There is a natural isomorphism

SD(G)
∼= 〈SP (G) ◦ prPn∪Pω

, EG〉·

Proof. Let {Ex}x∈P be a collection of sets. Observe that from a position (p, 0)
with p ∈ P<n the game D(G)(E) is exactly as the game P (G)(E′), E′ being
the collection {Ex}x∈Pn∪Pω . On the other hand, if p ∈ Pn then a strategy from
position (p, 0) in D(G)(E) is given by the choice of a tuple {em ∈ E∂1m}m∈Mp

if ε(p) = π, or by the choice of a pair (e, m) with m ∈ Mp and e ∈ E∂1m if
ε(p) = σ.

Therefore, by the previous lemma and by the induction hypothesis ‖P (G) ‖
∼= SP (G), in order to prove Theorem 5.4 it is enough to show that the collection of
sets SG(E) carries an invertible algebra structure for the functor SD(G)(−, E), and
that this structure leads to an initial algebra if κ(n) = µ and to a final coalgebra
if κ(m) = ν.

Observe that an infinite play δ is a win for player σ in D(G) if and only if Φδ is an
infinite winning play for player σ in G. Then, it is informally seen that a winning
strategy 〈R, ρ〉 for player σ from a position (p, 0) in D(G)(SG(E), E) gives rise to
a strategy from position p in G(E) as follows: player σ uses 〈R, ρ〉 as far as he can,
by identifying a position p to the position (p, 0); if this is not anymore possible,
since a position of the form (p′, 1) with p′ ∈ P≤n has been reached by means of
a play δ ∈ R, then player σ continues according to the strategy ρ(δ) ∈ SG,p′(E).
Moreover, every winning strategy from p in G(E) arises in this way. We formalize
these ideas next.

Definition 5.7.

• A path δ of D(G) is called an atom if #δ > 0, ∂1δ ∈ P ′
ω and ∂1Φδ ∈ P≤n.

If R is a set of paths in D(G), then we shall write A(R) for the set of atoms
of R.

• Let δ be a path of G and let T be a collection of paths of G with domain
∂1δ. By δ ? T we mean the set { δ ? γ | γ ∈ T }.

• Let 〈T, λ〉 ∈ SG,p(E) and δ ∈ T . By δ\〈T, λ〉 we denote the winning strategy
〈T ′, λ′〉 ∈ SG,∂1δ(E) where T ′ is the set { γ | δ ? γ ∈ T } and λ′(γ) = λ(δ ? γ)
if γ ∈ T ′ and ∂1γ ∈ Pω . We call this strategy the residual strategy of 〈T, λ〉
after the path δ.
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Lemma 5.8. The pair 〈T ′, λ′〉 = δ \ 〈T, λ〉 is a winning strategy for player σ in
the game G(E) from position ∂1δ.

Proof. Let γ ∈ T ′. If ∂1γ ∈ P≤n, then ∂1(δ?γ) = ∂1γ ∈ P≤n as well. If ε(∂1γ) = π,
then δ ?γ ?m ∈ T and γ ?m ∈ T ′ for all m ∈ M∂1γ . If ε(∂1γ) = σ, then there exists
an m ∈ M∂1γ such that δ ? γ ? m ∈ T , and henceforth γ ? m ∈ T ′. If γ ? m′ ∈ T ′,
then δ ? γ ? m′ ∈ T and therefore m = m′. Let γ be an infinite path in T ′, then
δ ? γ is an infinite path in T and since In (γ) = In (δ ? γ) we see that

κ(max In (γ)) = κ(max In (δ ? γ))
= ν .

Definition 5.9. We define an algebra

χ : SD(G)(SG(E), E) - SG(E)

in the following way. If 〈R, ρ〉 ∈ SD(G)(SG(E), E), then we let χp(R, ρ) = 〈R•, ρ•〉
where

R• = ΦR ∪
⋃

δ∈A(R)

Φδ ? τ [ρ(δ)] ,

ρ•(γ) =
{

ρ(δ), γ = Φδ, δ ∈ R,
`[ρ(δ)](γ′), γ = (Φδ) ? γ′, δ ∈ A(R),

if γ ∈ R• and ∂1γ ∈ Pω .

Lemma 5.10. χp(R, ρ) is a winning strategy for player σ in the game G(E) from
position p.

Proof. Let γ ∈ R• be such that ∂1γ ∈ P≤n. Either γ = Φδ where δ ∈ R is not an
atom, or γ = Φδ ? γ′ where δ ∈ A(R) and γ′ ∈ τ [ρ(δ)]. Similarly, an infinite path
γ in R• is either the image of infinite path in R or it is of the form γ = Φδ ? γ′

where δ ∈ A(R) and γ′ is an infinite path in τ [ρ(δ)]. The desired properties of R•
follow then from the properties of R and from the properties of ρ(δ), respectively.
For example, let γ = Φδ where δ ∈ R is not an atom. Suppose that ε(∂1Φδ) = σ
and observe that ε(∂1δ) = σ as well, since δ is not an atom. Hence we can find
m ∈ M∂1δ such that δ ? m ∈ R and therefore Φδ ? Φm ∈ R•. If Φδ ? m′ ∈ R•,
then we can find δ′ such that Φδ′ = Φδ ? m′. It follows that δ′ = δ ? m′′, where
Φm′′ = m′. Since R is deterministic, m′′ = m and hence m′ = Φm.
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Definition 5.11. We define a coalgebra

ξ : SG(E) - SD(G)(SG(E), E)

in the following way. If 〈T, λ〉 ∈ SG(E), then we let ξp(T, λ) = 〈T •, λ•〉 where

T • = { δ |Φδ ∈ T }

λ•(δ) =
{

λ(Φδ), ∂1Φδ ∈ Pω,
Φδ \ 〈T, λ〉, ∂1Φδ ∈ P≤n,

if δ ∈ T • and ∂1δ ∈ P ′
ω .

Lemma 5.12. ξp(T, λ) is a winning strategy for player σ from position p in the
game D(G)(SG(E), E).

Proof. Let δ ∈ T • and suppose that m ∈ M∂1δ and ε(∂1δ) = π. Then ε(∂1Φδ) = π,
so that Φδ ? Φm ∈ T and thus δ ? m ∈ T •. If ε(∂1δ) = σ, then δ is not an atom.
Since ε(∂1Φδ) = σ, there exists an m such that Φδ?m ∈ T . Since δ is not an atom,
the move m can be lifted to a move m′ ∈ M∂1δ such that Φm′ = m. It follows
that δ ? m′ ∈ T •. If δ ? m′′ ∈ T •, then Φm′′ = m, since T is deterministic, and
therefore m′′ = m′ since a lifting of m is unique. Finally, an infinite path δ in T •

gives rise to an infinite path Φδ in T , which is a win for player σ in the game G.
From this it follows that δ is win for player σ in D(G).

Proposition 5.13. The functions χp and ξp are inverse to each other.

Proof. Let 〈R, ρ〉 ∈ SD(G),p(SG(E), E) and 〈T, λ〉 ∈ SG,p(E). We shall show that

〈R, ρ〉 ⊆ ξp(T, λ) iff χp(R, ρ) ⊆ 〈T, λ〉·

The desired result will follow from Lemma 5.3.
Suppose first that 〈R, ρ〉 ⊆ ξp(T, λ). Thus R ⊆ Φ−1T and ΦR ⊆ T , and if

δ ∈ R is an atom, then ρ(δ) = λ•(δ) = Φδ \ 〈T, λ〉. Hence

R• = ΦR ∪
⋃

δ∈A(R)

Φδ ? τ [Φδ \ 〈T, λ〉]

⊆ T .

Consider a path γ ∈ R• such that ∂1γ ∈ Pω. If γ = Φδ, then ρ•(γ) = ρ(δ)
= λ•(δ) = λ(Φδ), and if γ = Φδ?γ′, then ρ•(γ) = `[ρ(δ)](γ′) = `[Φδ \ 〈T, λ〉](γ′) =
λ(Φδ ? γ′) = λ(γ).

Suppose now that χp(R, ρ) ⊆ 〈T, λ〉. Then ΦR ⊆ T and therefore R ⊆
Φ−1R = T •. Consider a path δ ∈ R such that ∂1δ ∈ P ′

ω . If ∂1Φδ ∈ Pω then
λ•(δ) = λ(Φδ) = ρ•(Φδ) = ρ(δ); on the other hand, if ∂1Φδ ∈ P≤n, then
λ•(δ) = Φδ \ 〈T, λ〉 = ρ(δ), since ρ(δ) ⊆ Φδ \ 〈T, λ〉. This can be seen as fol-
lows: if γ ∈ τ [ρ(δ)] then Φδ ? γ ∈ R• ⊆ T , so that γ ∈ τ [Φδ \ 〈T, λ〉]; if moreover
∂1γ ∈ Pω, then `[ρ(δ)](γ) = ρ•(Φδ ? γ) = λ(Φδ ? γ) = `[Φδ \ 〈T, λ〉](γ).
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Proposition 5.14. If κ(n) = µ, then

χ : SD(G)(SG(E), E) - SG(E)

is an initial SD(G)(−, E)-algebra.

Proof. First we construct a graph G as follows: its vertices are pairs (S, p) with
p ∈ P≤n and S ∈ SG,p(E). A transition of this graph is of the form

δ : (S, p) → (Φδ \ S, p′)

where δ is an atom such that Φδ ∈ S, ∂0Φδ = p and ∂1Φδ = p′. Observe that
the graph G is well founded: given an infinite sequence δi : (Si−1, pi−1) → (Si, pi),
i ≥ 1, we can construct the infinite path Φδ1 ? Φδ2 ? . . . which belongs to S0

and contradicts the condition on infinite paths for a winning strategy. Observe
moreover that if 〈T •, λ•〉 = ξp(T, λ) and δ ∈ A(T •), then λ•(δ) = Φδ \ 〈T, λ〉,
hence δ : (〈T, λ〉, p) → 〈λ•(Φδ), ∂1Φδ〉.

Thus, if β : SD(G)(B, E) - B is another algebra, then we can define f :
SG(E) - B, by the formula:

fp(T, λ) = βp(SD(G),p(f, E)( ξp(T, λ) ) )
= βp(SD(G),p(f, E)(T •, λ• ) )

= βp(T •, λ′ )

where

λ′(δ) =
{

λ(δ), ∂1Φδ ∈ Pω

f∂1Φδ(λ•(δ)), δ an atom

using the induction hypothesis (on the well founded graph G) that we have previ-
ously defined fp′(S′) for each pair (S′, p′) such that (〈T, λ〉, p) → (S′, p′). This is
also the unique way to define f so that χ · f = SD(G)(f, E) · β.

Proposition 5.15. If κ(n) = ν, then

ξ : SG(E) - SD(G)(SG(E), E)

is a final SD(G)(−, E)-coalgebra.

Proof. Consider a coalgebra

β : B - SD(G)(B, E) ,

we first define a graph Gβ as follows: a state of Gβ is a pair (b, p) such that p ∈ P≤n

and b ∈ Bp, and a transition (b, p) → (b′, p′) of Gβ is an atom δ ∈ τ [βp(b)] such
that ∂1Φδ = p′ and `[βp(b)](δ) = b′. Observe that in the proof of Proposition 5.14
the graph G coincides with the graph Gξ defined here.
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We now define a collection of functions {fp : Bp
- SG,p(E)}p∈P≤n

and then
split the proof of Proposition 5.15 in a sequence of lemmas: in 5.18 we show that
these functions are well defined, in 5.19 we show that this defines a morphism of
coalgebras, and finally in 5.20 we show that this is the unique such morphism.

Definition 5.16. For each p ∈ P≤n and b ∈ Bp we define fp(b) = 〈Tb, λb〉 ∈
SG,p(E) as follows. We say that γ ∈ Tb if and only if γ has a factorization of the
form

γ = Φδ1 ? . . . ? Φδk ? Φδk+1 (2)

such that
1. ∆ = (δ1, . . . , δk) is a path in Gβ such that ∂0∆ = (b, p) and ∂1∆ = (b′, p′);
2. δk+1 ∈ τ [βp′(b′)] is not an atom.

If ∂1γ ∈ Pω, then we let λb(γ) = `[βp′(b′)](δk+1).

We remark that a factorization of the form (2), without the additional
requirements 1. and 2., exists for any path γ and is unique. This follows from
the observation that the set of paths {Φδ | δ is an atom } does not contain compa-
rable elements with respect to the prefix order. Using the language of the theory
of codes [27], this set is a prefix code. Recall also that δk+1 is not an atom if either
#δk+1 = 0 or ∂1δk+1 ∈ P ′

ω implies ∂1Φδk+1 ∈ Pω.
The game-theoretic interpretation of the strategy fp(b) is as follows. From

position p, player σ uses the strategy βp(b) as long as he can. As soon as the play
reaches a position p′ such that either p′ in Pn or after one move if p ∈ Pn, this
strategy becomes unavailable. However, if one of these two cases happens, the
strategy βp(b) gives player σ the choice of an element b′ = `[βp(b)](δ) in Bp′ and
therefore the choice of a new strategy βp′(b′). Thus player σ iterates this process.
Iteration of this process is expressed by saying that the residual strategy of fp(b)
after the image of an atom δ is the strategy fp′(b′). This is the content of the next
lemma.

Lemma 5.17. Let 〈R, ρ〉 = βp(b) and let δ ∈ A(R). Then

Φδ \ fp(b) = f∂1Φδ(ρ(δ)) .

Proof. Let γ ∈ τ [f∂1Φδ(ρ(δ))], then we can write γ = Φδ1 ? . . . ? Φδk+1 and thus
Φδ ? γ = Φδ ? Φδ1 ? . . . ? Φδk+1 shows that Φδ ? γ ∈ τ [fp(b)] and γ ∈ τ [Φδ \ fp(b)].
If ∂1γ ∈ Pω then `[Φδ \ fp(b)](γ) = `[fp(b)](Φδ ?γ) = `[βp′(b′)](δk+1) and similarly
`[f∂1Φδ(ρ(δ))](γ) = `[βp′(b′)](δk+1).

Lemma 5.18. The pair fp(b) = 〈Tb, λb〉 is a winning strategy for player σ in the
game G(E) from position p.

Proof. Let γ ∈ Tb have a factorization Φδ1 ? . . . ? Φδk+1. Observe that δ1 ∈ βp(b)
∈ SD(G),p(B, E) implies that ∂0δ1 = (p, 0), hence ∂0γ = ∂0Φδ1 = p. From the
definition it is clear that Tb is closed under prefixes.
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Let γ ∈ Tb and suppose first that ε(∂1γ) = π. If m ∈ M∂1γ , then (m, 0)
∈ M∂1δk+1 , since δk+1 is not an atom, hence δ′k+1 = δk+1 ? m ∈ βp′(b′). If δ′k+1 is
not an atom, then we can write

γ ? m = Φδ1 ? . . . ? Φδk ? Φδ′k+1

and if δ′k+1 is an atom we can write

γ ? m = Φδ1 ? . . . ? Φδk ? Φδ′k+1 ? Φ1(∂1Φδ′
k+1,0) ,

If we let p′′ = ∂1Φδ′k+1 and b′′ = `[βp′(b′)](δ′k+1), then we observe 1(∂1δ′
k+1,0)

= 1(p′′,0) ∈ τ [βp′′(b′′)]. In both cases we conclude that γ ? m ∈ Tb.
If ε(∂1γ) = σ, then ε′(∂1δk+1) = σ so that δk+1 ? (m, 0) ∈ βp′(b′) for a unique

m ∈ M∂1γ . As before, we conclude that γ ? m ∈ Tb. On the other hand, if
γ ?m′ ∈ Tb, then δk+1 ? (m′, 0) ∈ βp′(b′), since such a factorization for γ is unique.
Thus m = m′, since βp′(b′) is deterministic.

Consider now an infinite path γ in Tb. Either this infinite path visits the
region Pn infinitely often, in which case it is a win for player σ, or we can write
γ = γ′ ? Φδ, where δ is an infinite play in D(G)(B, E), played according to a
given winning strategy for this game. This infinite play is a win for player σ in
D(G)(B, E) which implies that γ is a win for player σ in G(E).

Lemma 5.19. The diagram

B

SD(G)(B, E) SD(G)(SG(E), E)

SG(E)

β

��

f //

SD(G)(f,E)
//

ξ

��

commutes.

Proof. It is enough to show that for all p ∈ P≤n and b ∈ Bp

SD(G),p(f, E)(βp(b) ) ⊆ ξp( fp(b) ) .

Let 〈Tb, λb〉 = fp(b) and 〈R, ρ〉 = βp(b). If δ ∈ R, then Φδ ∈ Tb so that δ ∈ Tb
•.

Suppose now that ∂1δ ∈ P ′
ω . If ∂1Φδ ∈ Pω, then λb

•(δ) = λb(Φδ) = ρ(δ). If
∂1Φδ ∈ P≤n, that is, if δ is an atom, then λb

•(δ) = Φδ \ fp(b) = f∂1Φδ(ρ(δ)), by
Lemma 5.17.

Lemma 5.20. If a collection of functions g : B - SG(E) satisfies the relation
g · ξ = β · SD(G)(g, E), then g = f .

Proof. We will prove that gp(b) ⊆ fp(b) for all p ∈ P≤n and b ∈ Bp. In the following
let βp(b) = 〈R, ρ〉 and recall that SD(G)(g, E)(R, ρ) = 〈R, ρ′〉 where ρ′(δ) = ρ(δ)
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if ∂1Φδ ∈ Pω and ρ′(δ) = g∂1Φδ(ρ(δ)) if δ is an atom. Thus we have reduced the
relation gp(b) = χp(SD(G),p(g, E)(βp(b)) ) to the relation gp(b) = χp(R, ρ′).

As a first part, we prove by induction on the length of γ the following statement:
for each p ∈ P≤n and b ∈ Bp, if γ ∈ τ [gp(b)], then γ ∈ τ [fp(b)].

The statement is trivial if #γ = 0, since if γ ∈ τ [gp(b)], then γ = 1p and 1p

belongs to any winning strategy from position p. If #γ > 0, we argue using the
equality gp(b) = χp(R, ρ′). If γ = Φδ, then γ ∈ Tb by its definition. If γ = Φδ ? γ′,
where δ is an atom of R and γ′ ∈ τ [ρ′(δ)] = τ [g∂1Φδ(ρ(δ))], then γ′ ∈ τ [f∂1δ(ρ(δ))],
since #γ′ < #γ and using the induction hypothesis. Then it is easily seen that
γ = Φδ ? γ′ ∈ τ [fp(b)] as well.

We now prove again by induction on the length the following statement: for
each p ∈ P≤n and b ∈ Bp, if γ ∈ gp(b) and ∂1γ ∈ Pω, then `[gp(b)](γ) = `[fp(b)](γ).

The statement is again obvious if #γ = 0, since there is no such γ with ∂0γ ∈
P≤n and ∂1γ ∈ Pω. If #γ > 0, then two cases. Either γ = Φδ with δ ∈ R, in
which case `[gp(b)](γ) = ρ′•(Φδ) = ρ′(δ) = ρ(δ) = λb(γ) by the definition of f .
Or γ = Φδ ? γ′ where δ is an atom of R and γ′ ∈ τ [ρ′(δ)] = τ [g∂1δ(ρ(δ))]. In this
case

`[gp(b)](γ) = ρ′•(Φδ ? γ′) gp(b) = χp(R, ρ′)

= `[ρ′(δ)](γ′) def. of χp

= `[g∂1Φδ(ρ(δ))](γ′) def. of ρ′

= `[f∂1Φδ(ρ(δ))](γ′) induction hypothesis on γ′

= λb(Φδ ? γ′) Φδ \ fp(b) = f∂1Φδ(ρ(δ))

= λb(γ) .

This ends the proof of Proposition 5.15 too.

Thus we have completed the proof of Theorem 5.4. We end this section with
some examples illustrating the theory so far developed.

Example 5.21. We consider the set of finite lists over a set of symbols E. This is
initial algebra of the functor 1 + (Y × E) and therefore it is the denotation of the
µ-term µy.(>∨ (y∧E)). In Figure 5 we have translated this µ-term into a pointed
parity game, according to Proposition 4.12 and to a well established practice in
the model checking community. The conventions are the ones followed until now:
positions of the games, labeled by σ or π, are grouped within boxes according to
their height. The height is on the right of the boxes, the color is on the left. For
convenience of exposition, we have labeled transitions in the figure, even if this is
not strictly necessary.

It is immediate to realize that there is a bijection between lists and deterministic
winning strategies in the parity game. If we let E = {0, 1}, we have represented
in Figure 5 the list cons(cons(nil, 0), 1) in the form of a winning strategy, the tree
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µ/.-,()*+
∨/.-,()*+��

>/.-,()*+���������

∧/.-,()*+��???????

y/.-,()*+���������

::

E/.-,()*+��???????  

E/.-,()*+
σ/.-,()*+//

π/.-,()*+nil
���

�����
π/.-,()*+cons
��

]]

UU

_ _ _ _ _ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _ _ _ _ _

ω

_ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _µ

1

σ/.-,()*+
π/.-,()*+cons
��

1/.-,()*+//

σ/.-,()*+��

π/.-,()*+cons
��

0/.-,()*+//

σ/.-,()*+��

π/.-,()*+ nil
���

�����

��

Figure 5. Lists as winning strategies.

over the game. Observe that we cannot obtain infinite lists since every infinite
path on the corresponding tree would be a loss for player σ.

Example 5.22. We want to calculate an algebraic expression describing the set of
infinite trees with the following properties: 1) every node is labeled by an element
of a given set E, 2) every node has a finite (possibly empty) list of sons. According
to experience, this set could be expressed as the greatest solution of the equation

X = E × X∗ ,

that is, the final coalgebra of the functorial expression on the right. On the other
hand, we know that X∗ is the least solution of

Y = 1 + (Y × X) ,
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hence we guess that the desired algebraic expression is given by the µ-term νx.(E∧
µy.(> ∨ (y ∧ x)). We can verify that this guess is correct by transforming the µ-
term into a pointed parity game, according to Proposition 4.12, the result being
the game on the right of Figure 6. It is possible to convince ourself that a labeled

ν/.-,()*+
∧/.-,()*+��

E/.-,()*+���������

µ/.-,()*+��???????

∨/.-,()*+��

>/.-,()*+���������

∧/.-,()*+��???????

y/.-,()*+���������

::

x/.-,()*+��???????

cc

 
π/.-,()*+//

E/.-,()*+
What label ?

<<

σ/.-,()*+What list is down ?

��

π/.-,()*+ nil
���

�����
π/.-,()*+cons

???

��???
What tail ?

++ What subtree ?

``

_ _ _ _ _ _ _ _ _ _�
�
�

�
�
�

_ _ _ _ _ _ _ _ _ _

ω

_ _ _ _ _ _ _ _ _ _�
�
�

�
�
�_ _ _ _ _ _ _ _ _ _ν

2

_ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _µ

1

Figure 6. Infinite trees as winning strategies.

tree with those properties gives rise to a deterministic winning strategy for player
σ by interpreting a move by π as a question about the tree. Conversely, every such
strategy comes from a unique tree of this kind.

It is worth examining infinite paths in this game. Player σ cannot answer that
a node has an infinite list of sons: this would be done by answering infinitely often
“cons” to the question “what tail?”, without being asked the question “what list
is down?”. The region visited infinitely often of maximal height in such a play
is colored by µ, hence it is a loss for player σ. On the other hand, player σ can
answer infinitely often “cons” provided the play is going down in examining the
tree, that is, provided this answer is alternating with the question “what list is
down?”. The maximal region visited infinitely often in such a play is colored by
ν, hence it is a win for player σ.

Example 5.23. It is well known that infinite finitely branching trees can be en-
coded as infinite binary trees. Proposition 5.4 can be taken to be a generalization
of this fact, in that it shows that the elements of every nullary parity functor can
be encoded as infinite trees with a bounded out-degree.

Example 5.24. Charity [10] is a programming language designed out of cate-
gorical principles, thus recursion and corecursion are in this context synonymous
for the universal properties of initial and final coalgebras. An important prin-
ciple of this programming language states that it is possible to define an arrow
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f : µx.T (x)×B - C from an algebra in context g : T (C)×B - C, provided
T is a strong categorical datatype [9]. This means that T comes with a natural
transformation (a strength)

θT
A,B : T (A) × B - T (A × B)

satisfying associativity and unitary constrains. The explicit characterization of
set-theoretic parity functors allows the direct computation of a strength. If A and
B are two collections of sets indexed by Pω , then we can associate to a strategy
〈T, λ〉 ∈ SG,p(A) and to a collection b = {bx ∈ Bx}x∈Pω the strategy 〈T, λb〉 ∈
SG,p(A × B), where if γ ∈ T and ∂1γ ∈ Pω then λb(∂1γ) = (λ(∂1γ), b∂1γ).

6. Conclusions

The main result of this paper is the combinatorial characterization of the func-
tors on the category of sets and functions that are definable by means of µ-terms.
This characterization leads to show that the algebra of µ-bicomplete categories,
when realized in the category of sets, is closely related to the theory of automata
recognizing infinite objects. For example an automaton recognizing – by parity
condition – infinite strings over the finite alphabet Σ can be described as a triple
〈G, p, f〉, where 〈G, p〉 is a pointed parity game such that Pω = ∅, ε(p) = σ for
all p ∈ P , and f : |G |p - ‖ νx.

∨
Σ x ‖ is a function arising from labeling the

transitions of G by symbols in Σ, function which turns out to be definable in the
language of µ-bicomplete categories. A subset L ⊆ ΣN is recognizable if and only
if there exists such a triple 〈G, p, f〉, so that L is the image of f . A main mo-
tivation for developing this work was indeed to make available to this theory an
algebraic language (the one of µ-bicomplete categories) which is alternative but
also analogous to the one of µ-calculi [5].

The combinatorial characterization suggests also a way for enlarging the collec-
tion of categories which are known to be µ-bicomplete. There are several toposes
that occur in computer science – for example, the effective topos [17] – which are
not complete or cocomplete, in particular they are neither locally presentable nor
dually locally presentable. A detailed analysis of the work presented here could
show that the explicit characterization of parity functors can be carried within
intuitionistic logic. If this were the case, the characterization could be used to
show that elementary toposes with a natural number object are µ-bicomplete.

Finally, it is an open problem to understand whether this game-theoretic char-
acterization is useful to understand µ-functors in arbitrary categories. It is in
general easier to understand several algebraic equivalences in terms of game equiv-
alences. We have avoided to make precise this notion, but we conjecture that this
can be done so that two parity games are game-theoretic equivalent if and only
if their interpretations as functors are naturally isomorphic in every µ-bicomplete
category.
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