
Theoretical Informatics and Applications
Theoret. Informatics Appl. 36 (2002) 249–259

DOI: 10.1051/ita:2002012

WORDS OVER AN ORDERED ALPHABET
AND SUFFIX PERMUTATIONS ∗

Jean-Pierre Duval1 and Arnaud Lefebvre2

Abstract. Given an ordered alphabet and a permutation, according
to the lexicographic order, on the set of suffixes of a word w, we present
in this article a linear time and space method to determine whether a
word w′ has the same permutation on its suffixes. Using this method,
we are then also able to build the class of all the words having the same
permutation on their suffixes, first of all the smallest one. Finally, we
note that this work can lead to a method for generating a Lyndon word
randomly in linear time or for computing the set of Lyndon words of
length n.

Mathematics Subject Classification. 68R15.

Introduction

In this paper we consider the characterization of words having a given mapping σ
from [1 . . . n] onto [1 . . . n] as suffix permutation according to the lexicographic
order. Such characterization, obtained in linear time from σ, gives the way to
build the words having σ as suffix permutation. We assume the words with k
different letters to be given with the first k letters of the alphabet. This leads to
consider the minimum size of the alphabet required to build words for a given σ.
Then we observe how to build Lyndon words using previous techniques.

First of all, recall some basic definitions.

Keywords and phrases: Suffix permutation, Lyndon words.

∗ This work was partially supported by a NATO grant PST.CLG.977017.

1 LIFAR-ABISS, Faculté des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan Cedex,
France; e-mail: jean-pierre.duval@univ-rouen.fr
2 ABISS, UMR 6037 du CNRS, Faculté des Sciences, Université de Rouen,
76821 Mont-Saint-Aignan Cedex, France; e-mail: arnaud.lefebvre@univ-rouen.fr

c© EDP Sciences 2002



250 J.-P. DUVAL AND A. LEFEBVRE

Vocabulary and notations

Let Σ be an ordered alphabet. In the examples we consider letters a < b
< c < d < e . . . To a word w = x1 . . . xn, of length n, we associate its suffixes
ui = xi . . . xn for i = 1, . . . , n. We call suffix permutation of w the permutation σ
over [1 . . . n] characterized by:

uσ−1(1) < uσ−1(2) . . . < uσ−1(n).

In other words, σ(i) is the rank of suffix ui = xi . . . xn in the set of lexicographically
ordered suffixes.

Characterization of words according to a given suffix permutation

One can build the suffix tree of a word in linear time [1, 3], then in a second
pass, deduce, the suffix permutation in linear time and the Lyndon words factoriza-
tion [1]; the Lyndon words factorization is also linear, different from the one-pass
left-to-right factorization method [2] and from the tree construction in [4].

Here, we deal more precisely with the following questions:
Given a permutation σ over [1 . . . n], find the set of words having σ as the suffix

permutation. Given a word w, is σ its suffix permutation?

Our answer has the following form:
Given a permutation σ over [1 . . . n], σ is the suffix permutation of a word

w = x1 . . . xn if and only if we have:

xσ−1(1)r1xσ−1(2)r2 . . . rn−1xσ−1(n)

where each ri is an inequality relation (ri =′≤′ or ri =′<′) over letters xσ−1(i) and
xσ−1(i+1).

The sequence of ri is computed in linear time from σ and σ−1 using the
BuildRelations algorithm.

Examples

Example 0.1. Given the permutation σ = (1, 3, 5, 2, 4), a word w = x1 . . . x5 has
σ as the suffix permutation if and only if we have:

x1 ≤ x4 ≤ x2 < x5 ≤ x3.

The relation, computed in linear time from σ, allows us to verify whether a word
admits σ as the suffix permutation. Moreover it allows us to generate the set of
words admitting σ as the suffix permutation. Words with k different letters are
given using the k first letters of the alphabet.



SUFFIX PERMUTATIONS 251

Example 0.2. The word w = aabab has σ = (1, 3, 5, 2, 4) as the suffix permuta-
tion because:

x1 = a ≤ x4 = a ≤ x2 = a < x5 = b ≤ x3 = b

1 2 3 4 5
a a b a b

σ 1 3 5 2 4.

Example 0.3. The set of words admitting σ = (1, 3, 5, 2, 4) as the suffix per-
mutation is obtained, in lexicographic order according to (x1, x4, x2, x5, x3), with
x1 ≤ x4 ≤ x2 < x5 ≤ x3.

x1 x4 x2 x5 x3 w
a a a b b aabab
a a a b c aacab
a a b c c abcac
a a b c d abdac
a b b c c abcbc
a b b c d abdbc
a b c d d acdbd
a b c d e acebd

Algorithm

The sequence of ri associated to a suffix permutation σ is built in linear time
from σ and σ−1 using the following algorithm:

BuildRelations
1 Input: a permutation σ on [1 . . . n] and σ−1, σ extended by σ(n + 1) = 0
2 Output: (ri), i ∈ N, 1 ≤ i < n, such that σ is the suffix permutation
3 of a word w = x1 . . . xn if and only if xσ−1(1)r1xσ−1(2)r2 . . . rn−1xσ−1(n)

4 for k ← 1 to n− 1
5 if σ(σ−1(k) + 1) < σ(σ−1(k + 1) + 1) then
6 rk ←′≤′

7 else rk ←′<′

We establish, in Section 1, that the algorithm is correct regarding input and
output parameters and in linear time (Th. 1.1).

Alphabet cardinality

The minimum number of distinct letters necessary to build a word according to
a given suffix permutation is variable: it is equal to one plus the number of strict
inequalities generated by the BuildRelations algorithm (see Prop. 1.6).

We can see, in Section 2, that there is only one permutation of length n that
requires at least n distinct letters (Prop. 2.2 and Prop. 2.8).



252 J.-P. DUVAL AND A. LEFEBVRE

Lyndon words generation

In the last section we see how to use the method to generate randomly in
linear time the Lyndon words, smallest representative in their classes according
to the suffix permutation on words. The set of Lyndon words of length n may be
generated.

1. Algorithm correctness

In this section we see the correctness of the BuildRelations algorithm.

Theorem 1.1. The BuildRelations algorithm is correct with respect to input
and output predicates, and is in linear time in n.

Linear time achievement of the algorithm BuildRelations is from the single
loop line 4. Our main result, Proposition 1.6, is devoted to properties on input
and output conditions. As a corollary, this leads to Theorem 1.1. In the sequel we
assume:
• σ is a permutation on an integer segment [1 . . . n], extended in σ(n + 1) = 0;
• r1 . . . rn−1 are inequalities according to the conditions of lines 4 to 7 of the

algorithm BuildRelations;
• w = x1 . . . xn is a word of length n, for i ∈ N, 1 ≤ i ≤ n, ui = xi . . . xn are

suffixes, extended in un+1 the empty word.

Lemma 1.2. The following conditions are equivalent:
(a) for i, j ∈ N, 1 ≤ i, j ≤ n, σ(i) < σ(j)

if and only if ui < uj;
(a’) σ is the suffix permutation associated to the word w.

Proof. According to the definition, the suffix permutation satisfies (a). Since there
is a unique permutation satisfying (a), it is the suffix permutation. Observe the
consistency of the extension on n + 1; un+1, the empty word, is smaller than the
other suffixes, has rank 0 and σ(n + 1) = 0.

The following mapping µ from [1 . . . n] to [0 . . . n + 1] is associated to σ:

µ = σ(σ−1 + 1), i.e., for k ∈ N, 1 ≤ k ≤ n, µ(k) = σ(σ−1(k) + 1).

The following result is also of use in the third section:

Proposition 1.3. Mapping µ is a bijection from [1 . . . n] onto [0 . . . n] − {σ(1)}.
For k ∈ N, 1 ≤ k < n we have:
• rk = ” ≤ ” if and only if µ(k) < µ(k + 1);
• rk = ” < ” if and only if µ(k) > µ(k + 1).

Proof. Mapping σ is a permutation on [1 . . . n] with extension σ(n + 1) = 0. One
can easily verify that:

• σ−1 defines a permutation on [1 . . . n];



SUFFIX PERMUTATIONS 253

• (σ−1 + 1) defines a bijection from [1 . . . n] onto [2 . . . n + 1];
• σ defines a bijection from [2 . . . n + 1] onto [0 . . . n]− {σ(1)};
• µ is a bijection from [1 . . . n] onto [0 . . . n]− {σ(1)}.

In the algorithm BuildRelations line 5 the condition σ(σ−1(k) + 1)
< σ(σ−1(k + 1) + 1) can be expressed by µ(k) < µ(k + 1). It follows that if
µ(k) < µ(k + 1) then rk = “ ≤ ” else rk = “ < ”.

We define predicate P for i, j ∈ N, 1 ≤ i, j ≤ n by:

P(i, j) = [xi < xj , or, [xi = xj and σ(i + 1) < σ(j + 1)]].

Lemma 1.4. The following conditions are equivalent:
(b) for k ∈ N, 1 ≤ k < n, P(σ−1(k), σ−1(k + 1));
(b’) xσ−1(1)r1xσ−1(2) . . . rn−1xσ−1(n).

Proof. Let k be an integer, 1 ≤ k < n. We have

P(σ−1(k), σ−1(k + 1)) = [xσ−1(k) < xσ−1(k+1), or,

xσ−1(k) = xσ−1(k+1) and σ(σ−1(k) + 1) < σ(σ−1(k + 1) + 1)]

and then
P(σ−1(k), σ−1(k + 1)) = [xσ−1(k) < xσ−1(k+1), or,

xσ−1(k) = xσ−1(k+1) and µ(k) < µ(k + 1)].

According to Proposition 1.3, we have P(σ−1(k), σ−1(k + 1)) implies
xσ−1(k)rkxσ−1(k+1) and xσ−1(k)rkxσ−1(k+1) implies P(σ−1(k), σ−1(k + 1)). It
follows that (b) and (b’) are equivalent.

Before proving, in Proposition 1.6, the equivalence of conditions (a) and (b)
from Lemmas 1.2 and 1.4, recall for commodity the following properties.

Property 1.5. Let R1 and R2 two relations on X2 such that with either R = R1

or R = R2, for each (x, y) in X2 one and only one of R(x, y) or R(y, x) or x = y
conditions holds. The following conditions are equivalent:

(i) for all (x, y) in X2, if R1(x, y) then R2(x, y);
(ii) for all (x, y) in X2, if R2(x, y) then R1(x, y);
(iii) for all (x, y) in X2, R1(x, y) if and only if R2(x, y).

Proof. (i) implies (ii). Let x and y in X such that R2(x, y). Neither x = y, nor
R1(y, x) since it should imply x = y or R2(y, x) contradicting R2(x, y); it follows
that R1(x, y). Then (i) implies (ii). Similarly (ii) implies (i). Thus (i), (ii) and
(iii) are equivalent.

We can check that P is a total ordering and, then, that we are in the conditions
of Property 1.5.



254 J.-P. DUVAL AND A. LEFEBVRE

Proposition 1.6. Let r1 . . . rn−1 be the inequalities produced by the algorithm
BuildRelations. The following conditions are equivalent:

(a) for i, j ∈ N, 1 ≤ i, j ≤ n, σ(i) < σ(j) if and only if ui < uj (i.e. σ is the
suffix permutation associated to w);

(b) for 1 ≤ k < n, P(σ−1(k), σ−1(k + 1)) (i.e. word w = x1 . . . xn and inequali-
ties r1 . . . rn−1 satisfy xσ−1(1)r1xσ−1(2) . . . rn−1xσ−1(n));

(c) for i, j ∈ N, 1 ≤ i, j ≤ n, σ(i) < σ(j) if and only if P(i, j).

Proof. (a) implies (b).
Assume condition (a) holds. Let k be an integer, 1 ≤ k < n. Let i = σ−1(k)

and j = σ−1(k + 1). Then, we have k = σ(i) < σ(j) = k + 1. Thus from (a) we
deduce ui < uj . Two cases are to be considered:

• either xi < xj , it follows that P(i, j);
• or xi = xj and ui+1 < uj+1, from condition (a) we have σ(i + 1) < σ(j + 1),

it follows that P(i, j).

In both cases P(i, j), i.e., P(σ−1(k), σ−1(k + 1)). This proves (a) implies (b).

(b) implies (c).
Assume condition (b) holds. Let i, j ∈ N, 1 ≤ i, j ≤ n with σ(i) < σ(j). Let

m = σ(j)−σ(i), k = σ(i) and i0 = σ−1(k), i1 = σ−1(k+1), . . . ,im = σ−1(k+m).
Note that i0 = i and im = j. From condition (b) we have P(i0, i1), P(i1, i2),
. . . , P(im−1, im). Since P is a transitive relation, we have P(i0, im), i.e., P(i, j).
Condition: for i, j ∈ N, 1 ≤ i, j ≤ n, σ(i) < σ(j), implies P(i, j) holds. According
to Property 1.5 it follows that condition (c) holds. This proves (b) implies (c).

(c) implies (a).
Assume condition (c) holds. Suppose there are i, j ∈ N, 1 ≤ i, j ≤ n with

σ(i) < σ(j) and ui ≥ uj. Take i, j ∈ N, 1 ≤ i, j ≤ n, with the extra condition i+ j
is maximal with σ(i) < σ(j) and ui ≥ uj. From condition (c) and σ(i) < σ(j), we
have P(i, j). There is an alternative:

• either xi < xj then ui < uj which contradicts ui ≥ uj ;
• or xi = xj and σ(i + 1) < σ(j + 1). There are three cases depending on

whether i = n or not, j = n or not:
– i = n and j < n. It follows that ui+1 = ε and uj+1 6= ε. Since xi = xj

we have ui < uj which contradicts ui ≥ uj;
– i < n and j = n. It follows that σ(i + 1) > 0 and σ(j + 1) = 0

contradicting the assumption σ(i + 1) < σ(j + 1);
– i < n and j < n. It follows that σ(i+1) < σ(j+1). From the assumption

i + j maximal defecting condition ui < uj, we have ui+1 < uj+1. From
xi = xj and ui+1 < uj+1 follows that ui < uj contradicting ui ≥ uj .

In both cases it leads to ui < uj in contradiction with ui ≥ uj . It follows that
for i, j ∈ N, 1 ≤ i, j ≤ n, σ(i) < σ(j) implies ui < uj . According to Property 1.5,
condition (a) holds. This proves (c) implies (a).



SUFFIX PERMUTATIONS 255

Conditions (a), (b) and (c) are equivalent. This concludes the proof of
Proposition 1.6.

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Mappings σ and σ−1 are in direct access, constant time.
Steps 4 to 7 are in linear time in n. From Proposition 1.6 conditions (a) and (b)
are equivalent, i.e., σ is the suffix permutation for w = x1 . . . xn if and only if
condition xσ−1(1)r1xσ−1(2) . . . rn−1xσ−1(n) holds. 2

2. Suffix permutation and alphabet cardinality

In this section we see how the mapping µ = σ(σ−1 + 1), associated to a permu-
tation σ, allows us to determine directly the minimum number of different letters
required to build a word w with suffix permutation σ (Prop. 2.2). We can deduce
that n different letters can be required for a word of length n (Prop. 2.4) in a single
case (Prop. 2.8). We say that an mapping µ from [1 . . . n] to [0 . . . n] is µ-valid if
and only if there exists a permutation σ on [1 . . . n] such that µ = σ(σ−1 + 1). We
deduce the conditions such that µ is µ-valid, we define the links between µ and σ
(Lem. 2.6). Then we deduce a method to build a µ-valid mapping.

2.1. Minimum number of letters according
to a given suffix permutation

The number of different letters required to build a word admitting a given
permutation σ over [1 . . . n] as suffix permutation is from 1 to n. It is always
possible to use n different letters for a suffix permutation over [1 . . . n] but it is not
always necessary.

Example 2.1. Consider σ = (6, 5, 4, 3, 2, 1). The word w′ = fedcba, built with
6 different letters a < b < c < d < e < f , and the word w′′ = a6, have the same
suffix permutation σ.

The maximum number of n different letters can be required in some cases: we
can verify this, for a given suffix permutation, by studying µ = σ ◦ (σ−1 + 1).

Proposition 2.2. Let σ be a permutation over [1 . . . n] extended by σ(n + 1) = 0,
and µ = σ ◦ (σ−1 + 1). The minimum number of different letters required to build
a word admitting σ as the suffix permutation is equal to:

1 + card{k | 1 ≤ k < n and µ(k) > µ(k + 1)}·



256 J.-P. DUVAL AND A. LEFEBVRE

Proof. A word w = x1 . . . xn admitting σ as suffix permutation satisfies the relation

xσ−1(1)r1xσ−1(2) . . . rσ−1(n−1)xn

where r1 . . . rn−1 is the sequence built by the algorithm BuildRelations.
The minimum number of different letters is then equal to 1 plus the number of

strict inequalities in r1 . . . rn−1. According to the algorithm it is equal to:

1 + card{k | 1 ≤ k < n and µ(k) > µ(k + 1)}·

Example 2.3. Consider σ = (2, 3, 1, 4). We have σ−1 = (3, 1, 2, 4), σ−1 + 1
= (4, 2, 3, 5) and µ = (4, 3, 1, 0). The words x1 . . . xn admitting σ as the suffix
permutation have to satisfy x3 < x1 < x2 < x4. Only one word satisfies this
criterion, it is w = bcad.

2.2. Suffix permutation needing at least n distinct letters

More generally, given n, there is a unique permutation which needs at least n
distinct letters.

Proposition 2.4. Let σ be the permutation over [1 . . . n] defined for k, 0 ≤ k
≤ n− 1 by:

σ(n− k) =

{
n− k

2 if k is even
k+1
2 if k is odd.

The only word, admitting σ as the suffix permutation, is written with the n letters of
the ordered alphabet {c1 < c2 < . . . < cn} by w = x1 . . . xn with xσ−1(n−k) = cn−k.

Proof. One can verify that for i = 1 to n:

σ ◦ (σ−1 + 1)(i) =

{
n− i + 1 for i = 1 to m

n− i for i = m + 1 to n

with m = n
2 for n even, m = n−1

2 for n odd.
The mapping σ ◦ (σ−1 + 1) is strictly decreasing, consequently the word w

admitting σ as the suffix permutation verifies:

xσ−1(1)r1xσ−1(2) . . . rσ−1(n−1)xn.

It is written with n different letters: xn−k = cσ(n−k).

Remark. The permutation σ is built over [1 . . . n] by following the next two rules:
(1) going over, two by two, from position n− 1 to 1 if n is even (resp. n− 1 to

2 if n is odd), and numbering them (in an increasing manner) from 1 to n
2

(resp. from 1 to n−1
2 );



SUFFIX PERMUTATIONS 257

(2) going over, two by two, from position n to 2 if n is even (resp. n to 1 if n is
odd), and numbering them (in a decreasing manner) from n to n

2 + 1 (resp.
from n to n+1

2 ).

Example 2.5. For n = 6:
• step (1): σ(5) = 1, σ(3) = 2, σ(1) = 3;
• step (2): σ(6) = 6, σ(4) = 5, σ(2) = 4.

One can easily verify that the only word admitting σ as suffix permutation is
w = cdbeaf .

2.3. Suffix permutation according to a given number of letters

Lemma 2.6. Let µ be an mapping from [1 . . . n] to [0 . . . n]. The following two
conditions (i) and (ii) are equivalent:

(i) there exists a permutation σ over [1 . . . n] extended by σ(n+1) = 0 such that
µ = σ ◦ (σ−1 + 1) (i.e. is µ-valid);

(ii) 0 ∈ µ[1 . . . n], µ is injective and {µ−1(0), µ−2(0), . . . , µ−n(0)} = [1 . . . n].
Then if (i) holds, then µ and σ satisfy the following conditions:
(i1) σ(1) = [0 . . . n]− µ[1 . . . n];
(i2) σ(n + 1) = 0, and, for each i ∈ N, 1 ≤ i ≤ n: σ(i + 1) = µ(σ(i));
(i3) σ(n + 1) = 0, and, for each i ∈ N, 1 ≤ i ≤ n: σ(i) = µ−1(σ(i + 1));
(i4) σ(n + 1) = 0, and, for each i ∈ N, 1 ≤ i ≤ n: σ(i) = µ−n+i−1(0).

Proof. From condition (i), one can verify that conditions (i1), (i2), (i3) and (i4)
hold. Thus (ii) holds. From condition (ii), let σ−1 be defined by the condition (i4).
Then one can verify that σ−1 is a permutation on [1 . . . n], and, µ = σ(σ−1 + 1).
Then (i) and the conditions (i1), (i2), (i3) and (i4) hold.

Example 2.7. Consider µ = (4, 3, 0, 5, 2); we necessarily have

xσ−1(1) < xσ−1(2) < xσ−1(3) ≤ xσ−1(4) < xσ−1(5).

We need, at least, four different letters (one “a”, one “b”, two “c” and one “d”)
to build a suffix permutation σ such that µ = σ ◦ (σ−1 + 1):

1 2 3 4 5
µ 4 3 0 5 2
σ 1 4 5 2 3

σ−1 1 4 3 2 5.
The word w = acdbc admits σ as the suffix permutation.

From Lemma 2.6(ii) one obtain randomly a µ-valid mapping from [1 . . . n]
onto [0 . . . n] by choosing randomly in [1 . . . n] the successive values (all different)
j1, . . . , jn for µ−1(0), µ−2(0), . . . , µ−n(0). Then µ is defined by:

µ(j1) = 0, µ(j2) = j1, . . . , µ(jn) = jn−1.



258 J.-P. DUVAL AND A. LEFEBVRE

The following algorithm gives a method to generate a µ-valid mapping randomly.

µ-valid
1 Input: µ array of n integers

(Initially, each column is free)
2 Output: µ containing a µ-valid mapping
3 i← 0
4 while there exists a free column in µ do
5 j ← choose randomly the index of a free column

(column j is no more free)
6 µ[j]← i
7 i← j

As an application of Lemma 2.6, we consider the case of a µ-valid mapping
requiring n different letters.

Proposition 2.8. The only permutation σ over [1 . . . n] requiring a minimum of n
distinct letters to write a word w admitting σ as the suffix permutation is:

σ(n− k) =

{
n− k

2 if k is even
k+1
2 if k is odd.

Proof. If σ requires n distinct letters, the associated function µ = σ ◦ (σ−1

+1) is strictly decreasing in [0 . . . n]. The only decreasing function satisfying the
conditions of Lemma 2.6 is:
• µ = (n, n− 1, . . . , n

2 + 1, n
2 − 1, . . . , 0) if n is even;

• µ = (n, n− 1, . . . , n+1
2 + 1, n+1

2 − 1, . . . , 0) if n is odd.

One can verify that the presence of n
2 for n even (n+1

2 for n odd) implies a cycle
in n

2 : either µ(n
2 ) = n

2 , or, µ(n
2 ) = n

2 + 1 and µ(n
2 + 1) = n

2 (resp. n+1
2 for n odd).

The associated mapping σ is then the only one requiring n distinct letters.

3. Lyndon words

In this section we apply the previous techniques to the construction of Lyndon
words.

A Lyndon word is a word that is smaller than each of its proper suffixes. This
property is characterized here by σ(1) = 1, then by the fact that the associated
mapping µ is an injective mapping with no cycle from [1 . . . n] onto [0 . . . n]−{1}.
Constructing a µ-valid mapping (resp. a permutation σ on [1 . . . n]) leads to a
Lyndon word if and only if column 1 is the last to be filled (resp. σ(1) = 1).
Thus we generate a Lyndon word of length n randomly, and in linear time, by
generating either σ or µ.

Two words are σ-equivalent if they have the same suffix permutation σ. We
have seen how to build the smallest representative word of a given σ-class using
the BuildRelations algorithm. The σ-classes of Lyndon words are characterized



SUFFIX PERMUTATIONS 259

by σ(1) = 1. Applying this techniques by choosing randomly a permutation σ
with σ(1) = 1 we obtain a random generation of each σ-classes of Lyndon words
and the construction of their smallest representative words.

The following algorithm describes this method.

RandomLyndonWord
1 Input: n the length of the desired Lyndon word
2 Output: w = x1 . . . xn a Lyndon word
3 Random generation of σ on [1 . . . n] with σ(1) = 1
4 Generation of r1 . . . rn−1 with the BuildRelations algo-
rithm
5 xσ−1(1) ← a
6 for k ← 1 to n− 1 do
7 if rk =′≤′ then
8 xσ−1(k+1) ← xσ−1(k)

9 else xσ−1(k+1) ← next(xσ−1(k))
(next(c) is the letter following letter c in the ordered alphabet)

We assume the random generation of an integer is performed in constant time,
thus the method is linear in time in n.

To generate the smallest representative word for each σ-classes of Lyndon words
of length n, we can compute the set of permutations σ on [1 . . . n] with σ(1) = 1
and generate the smallest words associated to each σ.

4. Conclusion

In order to continue this work, we have to answer the following question: how
generating efficiently a µ-valid mapping with exactly m decreasing steps µ(k) >
µ(k + 1), leading (according to Prop. 2.4) to words with at least m + 1 different
letters?

References

[1] M. Crochemore, C. Hancart and T. Lecroq, Algorithmique du texte. Vuibert (2001).
[2] J.-P. Duval, Factorizing Words over an Ordered Alphabet. J. Algorithms 4 (1983) 363-381.
[3] E.M. McCreight, A Space-Economical Suffix Tree Construction Algorithm. J. Algorithms 23

(1976) 262-272.
[4] C. Hohlweg and C. Reutenauer, Lyndon words, permutations and trees, Rapport interne

2002-017. Université Louis Pasteur de Strasbourg.

Communicated by J. Berstel.
Received January, 2002. Accepted October, 2002.


