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ON MULTIPLICATIVELY DEPENDENT
LINEAR NUMERATION SYSTEMS,

AND PERIODIC POINTS

Christiane Frougny
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Abstract. Two linear numeration systems, with characteristic poly-
nomial equal to the minimal polynomial of two Pisot numbers β and
γ respectively, such that β and γ are multiplicatively dependent, are
considered. It is shown that the conversion between one system and
the other one is computable by a finite automaton. We also define a
sequence of integers which is equal to the number of periodic points of
a sofic dynamical system associated with some Parry number.
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1. Introduction

This work is about the conversion of integers represented in two different nu-
meration systems, linked in a certain sense. Recall that the conversion between
base 4 and base 2 is computable by a finite automaton, but that conversion be-
tween base 3 and base 2 is not. More generally, two numbers p > 1 and q > 1
are said to be multiplicatively dependent if there exist positive integers k and `
such that pk = q`. A set of natural numbers is said to be p-recognizable if the
set of representations in base p of its elements is recognizable by a finite automa-
ton. Bűchi has shown that the set {qn | n ≥ 0} is p-recognizable only if p and
q are multiplicatively dependent integers [5]. In contrast, the famous theorem of
Cobham [7] states that the only sets of natural numbers that are both p- and
q-recognizable, when p and q are two multiplicatively independent integers >1,
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are unions of arithmetic progressions, and thus are k-recognizable for any integer
k > 1. Several generalizations of Cobham’s theorem have been given, see for in-
stance [6, 8, 10, 17, 25]. In particular this result has been extended by Bès [4] to
non-standard numeration systems.

The most popular non-standard numeration system is probably the Fibonacci
numeration system. Recall that every non-negative integer can be represented as a
sum of Fibonacci numbers, which can be chosen non-consecutive. It is also possi-
ble to represent an integer as a sum of Lucas numbers. Since Fibonacci and Lucas
numbers satisfy the same recurrence relation, the question of the conversion be-
tween Lucas representations and Fibonacci representations is very natural. In [22]
and [23], the relation between the Fibonacci sequence and the Lucas sequence is
examined from another point of view. A sequence of non-negative integers (vn)n≥0

is said to be exactly realizable if there exists a dynamical system (S, σ), where S
is a compact metric space and σ : S → S is an homeomorphism, for which for all
n ≥ 1, vn is the number of periodic points of period n, that is,

vn = #{s ∈ S | σn(s) = s}·

The authors give a necessary and sufficient condition for a sequence to be exactly
realizable in certain cases. In particular, they prove that amongst the sequences
satisfying the Fibonacci recurrence un = un−1 + un−2, the unique (up to scalar
multiples) exactly realizable sequence is the one of Lucas numbers, and the dynam-
ical system is the golden mean shift, that is to say, the set of bi-infinite sequences
on the alphabet {0, 1} such that a 1 is always followed by a 0.

A linear numeration system is defined by an increasing sequence of integers
satisfying a linear recurrence relation. The generalization of the Cobham’s theorem
by Bès [4] is the following one: let two linear numeration systems such that their
characteristic polynomials are the minimal polynomials of two multiplicatively
independent Pisot numbers3; the only sets of natural numbers such that their
representations in these two systems are recognizable by a finite automaton are
unions of arithmetic progressions.

From the result of Bès follows that the conversion between two linear numera-
tion systems U and Y linked to two multiplicatively independent Pisot numbers
cannot be realized by a finite automaton. In this paper, we prove that the conver-
sion between two linear numeration systems U and Y such that their characteristic
polynomials are the minimal polynomials of two multiplicatively dependent Pisot
numbers is computable by a finite automaton. This implies that a set of inte-
gers which is U -recognizable is then also Y -recognizable. Note that in [6] it is
proved that if U and V are two linear numeration systems with the same char-
acteristic polynomial which is the minimal polynomial of a Pisot number, then a
U -recognizable set is also V -recognizable.

The paper is organized as follows. First we recall several results which will
be of use in this paper. In particular, the normalization in a linear numeration

3A Pisot number is an algebraic integer such that its algebraic conjugates are strictly less
than 1 in modulus. The golden mean and the natural numbers are Pisot numbers.
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system consists in converting a representation on a “big” alphabet onto the so-
called normal representation, obtained by a greedy algorithm. Here the system U
is fixed. It is shown in [15] that, basically, when the sequence U is linked to a
Pisot number, like the Fibonacci numbers are linked to the golden mean, then
normalization is computable by a finite automaton on any alphabet of digits. In
the present work we first construct a finite automaton realizing the conversion
from Lucas representations to Fibonacci representations. Then we consider two
sequences of integers U and V . If the elements of V can be linearly expressed
(with rational coefficients) in those of U , and if the normalization in the system
U is computable by a finite automaton, then so it is for the conversion from
V -representations to U -representations. From this result we deduce that if U and V
have for characteristic polynomial the same minimal polynomial of a Pisot number,
with different initial conditions, then the conversion from V -representations to
U -representations is computable by a finite automaton.

Next we introduce two different linear numeration systems associated with a
Pisot number β of degree m. The first one, Uβ , is defined from the point of view
of the symbolic dynamical system defined by β. We call it Fibonacci-like, because
when β is equal to the golden mean, it is the Fibonacci numeration system. The
second one, Vβ , is defined from the algebraic properties of β. More precisely, for
n ≥ 1, the n-th term of Vβ is vn = βn + βn

2 + · · ·+ βn
m, where β2, . . . , βm are the

algebraic conjugates of β. We call it Lucas-like, because when β is equal to the
golden mean, it is the Lucas numeration system. The conversion from Vβ to Uβ

(or any sequence with characteristic polynomial equal to the minimal polynomial
of β) is shown to be computable by a finite automaton.

Then we consider two linear numeration systems, U and Y , such that their
characteristic polynomial is equal to the minimal polynomial of a Pisot number
β, or γ respectively, where β and γ are multiplicatively dependent. Then the
conversion from Y to U is shown to be computable by a finite automaton (Th. 2).

The Lucas-like sequence Vβ plays a central role in the proof of Theorem 2. In
fact, it is also closely related to the number of periodic points of the symbolic
dynamical system Sβ associated with β. Here we do not need the assumption
that β is a Pisot number. A Parry number is a real number β such that the beta-
expansion of 1 (see Sect. 2.4) is eventually periodic or finite. Such numbers are
usually called beta-numbers after Parry [21]. Note that a Pisot number is a Parry
number [2]. From now on β is a Parry number, and the Fibonacci-like sequence and
the Lucas-like sequence are defined as in the Pisot case. If the symbolic dynamical
system Sβ associated with β is of finite type, that is to say if the beta-expansion
of 1 is finite, then the sequence Vβ is exactly realized by Sβ . This is no more the
case when the symbolic dynamical system associated with β is not of finite type,
but is sofic, i.e. the beta-expansion of 1 is infinite eventually periodic. We define
a sequence Rβ which is exactly realized by Sβ in the sofic case. It is shown that
the set of greedy representations of the natural numbers in the linear numeration
system defined by Rβ is not recognizable by a finite automaton, and consequently
the conversion between Rβ and Vβ cannot be realized by a finite automaton, even
if β is a Pisot number.
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Section 9 is devoted to the quadratic case study as an example for the general
case. We end this paper by exploring the connection between the Lucas-like se-
quence Vβ and the base β-representations for the case where β is a Pisot quadratic
unit. Note that in [14] we have proved that the conversion from Uβ-representations
to folded β-representations is computable by a finite automaton, and in [16], that
this is possible only if β is a quadratic Pisot unit.

Part of this work has been presented in [13].

2. Preliminaries

2.1. Words

An alphabet A is a finite set. A finite sequence of elements of A is called a word,
and the set of words on A is the free monoid A∗. The empty word is denoted by
ε. The set of infinite sequences or infinite words on A is denoted by AN. Let v
be a non-empty word of A∗, denote by vn the concatenation of v to itself n times,
and by vω the infinite concatenation vvv · · · . An infinite word of the form uvω is
said to be eventually periodic. A factor of a (finite or infinite) word w is a finite
word f such that w = ufv.

2.2. U-representations

The definitions recalled below and related results can be found in the survey [20]
(Chap. 7). We consider a generalization of the usual notion of numeration system,
which yields a representation of the natural numbers. The base is replaced by
an infinite increasing sequence of integers. The basic example is the well-known
Fibonacci numeration system.

Let U = (un)n≥0 be a strictly increasing sequence of integers with u0 = 1.
A U -representation of a non-negative integer N is a finite sequence of integers
(di)k≥i≥0 such that N =

∑k
i=0 diui. Such a representation will be written (N)U =

dk · · · d0, most significant digit first.
Among all possible U -representations of a given non-negative integer N one

is distinguished and called the normal U -representation of N ; it is also called
the greedy representation, since it can be obtained by the following greedy al-
gorithm [11]: given integers m and p let us denote by q(m, p) and r(m, p) the
quotient and the remainder of the Euclidean division of m by p. Let k ≥ 0 such
that uk ≤ N < uk+1 and let dk = q(N, uk) and rk = r(N, uk), and, for i = k − 1,
. . . , 0, di = q(ri+1, ui) and ri = r(ri+1, ui). Then N = dkuk + · · · + d0u0. The
normal U -representation of N is denoted by 〈N〉U . The normal U -representation
of 0 is the empty word ε. The set of greedy or normal U -representations of all
the non-negative integers is denoted by G(U). In this work, we consider only the
case where the sequence U is linearly recurrent. Then the numeration system
associated with U is said to be a linear numeration system. The digits of a nor-
mal U -representation are contained in a canonical finite alphabet AU associated
with U .
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Let D be a finite alphabet of integers and let w = dk · · · d0 be a word of
D∗. Denote by πU (w) the numerical value of w in the system U , that is, πU (w)
=

∑k
i=0 diui. The normalization in the system U on D∗ is the partial function

νU,D∗ : D∗ → A∗
U that maps a word w of D∗ such that N = πU (w) is non-negative

onto the normal U -representation of N .
Let U and V be two sequences of integers, and let D be a finite alphabet of inte-

gers. The conversion from the numeration system V to the numeration system U
on D∗ is the partial function χ : D∗ → A∗

U that maps a V -representation dk · · · d0

in D∗ of a non-negative integer N =
∑k

i=0 divi onto the normal U -representation
of N . In fact the alphabet D plays no peculiar role, and we will simply speak of
the conversion from V to U .

2.3. Beta-expansions

We now consider numeration systems where the base is a real number β > 1.
Representations of real numbers in such systems were introduced by Rényi [24]
under the name of beta-expansions. Let the base β > 1 be a real number. First
let x be a real number in the interval [0, 1]. A representation in base β of x is
an infinite sequence of integers (xi)i≥1 such that x =

∑
i≥1 xiβ

−i. A particular
beta-representation, called the beta-expansion, can be computed by the “greedy
algorithm”: denote by byc and {y} the integer part and the fractional part of
a number y. Set r0 = x and let for i ≥ 1, xi = bβri−1c, ri = {βri−1}. Then
x =

∑
i≥1 xiβ

−i, where the xi’s are elements of the canonical alphabet Aβ =
{0, . . . , bβc} if β is not an integer, or Aβ = {0, . . . , β − 1} if β is an integer. The
beta-expansion of x is denoted by dβ(x).

Let D be a finite alphabet of integers. The normalization in base β on DN is
the partial function νβ,DN : DN → AN

β that maps a word (xi)i≥1 of DN such that
x =

∑
i≥1 xiβ

−i ∈ [0, 1[ onto the β-expansion of x.
Secondly, we consider a real number x greater than 1. There exists k ∈ N such

that βk ≤ x < βk+1. Hence 0 ≤ x/βk+1 < 1, thus it is enough to represent
numbers from the interval [0, 1], since by shifting we will get the representation
of any positive real number. A β-representation of an x =

∑
k≤i≤−∞ xiβ

i will be
denoted by (x)β = xk · · ·x0.x−1x−2 · · ·

If a representation ends in infinitely many zeros, like v0ω, the ending zeros are
omitted and the representation is said to be finite.

A Pisot number is an algebraic integer such that its algebraic conjugates are
strictly less than 1 in modulus. It is known that if β is a Pisot number then dβ(1)
is finite or infinite eventually periodic [2].

2.4. Symbolic dynamical systems

The reader may consult [19] for more details on these topics. Let A be a
finite alphabet, recall that AN is endowed with the product topology and the shift
σ defined by σ((xi)i≥1) = (xi+1)i≥1. It is a compact metric space and σ is a
homeomorphism. A symbolic dynamical system is a closed shift-invariant subset
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of AN. It is said to be a system of finite type if it is defined by the interdiction of a
finite set of factors. It is said to be sofic if the set of its finite factors is recognizable
by a finite automaton. Note that a system of finite type is sofic. The same notions
can be defined for bi-infinite sequences and subsets of AZ.

Denote by Dβ the set of β-expansions of numbers of [0, 1[. The closure of Dβ

in AN

β is a symbolic dynamical system, called the beta-shift Sβ. The following
results are known: the beta-shift is of finite type if and only if if the β-expansion
of 1, dβ(1), is finite, and the beta-shift is sofic if and only if dβ(1) is eventually
periodic [2].

By abuse, we will keep the same name of beta-shift for the set of bi-infinite
sequences such that each right tail is in the one-sided beta-shift. We denote by
Pern(Sβ) the number of periodic elements of period n under the shift of Sβ .

Following [22, 23] we say that a sequence of non-negative integers V = (vn)n≥0

is exactly realizable if there exists a beta-shift Sβ such that for every n ≥ 1,
vn = Pern(Sβ).

2.5. Automata

We refer the reader to [9]. An automaton over A, A = (Q,A,E, I, T ), is a
directed graph labelled by elements of A. The set of vertices, traditionally called
states, is denoted by Q, I ⊂ Q is the set of initial states, T ⊂ Q is the set of
terminal states and E ⊂ Q×A×Q is the set of labelled edges. If (p, a, q) ∈ E, we
denote p a−→ q. The automaton is finite if Q is finite. A subset H of A∗ is said
to be recognizable by a finite automaton if there exists a finite automaton A such
that H is equal to the set of labels of paths starting in an initial state and ending in
a terminal state. A 2-tape automaton with input alphabet A and output alphabet
B is an automaton over the non-free monoid A∗ ×B∗: A = (Q,A∗ ×B∗, E, I, T )
is a directed graph the edges of which are labelled by elements of A∗ × B∗. The
automaton is finite if Q and E are finite. The finite 2-tape automata are also
known as transducers. A relation R of A∗×B∗ is said to be computable by a finite
automaton if there exists a finite 2-tape automaton A such that R is equal to the
set of labels of paths starting in an initial state and ending in a terminal state.
A function is computable by a finite automaton if its graph is computable by a
finite 2-tape automaton. These definitions extend to relations (and functions) of
infinite words as follows: a relation R of infinite words is computable by a finite
automaton if there exists a finite 2-tape automaton such that R is equal to the
set of labels of infinite paths starting in an initial state and going infinitely often
through a terminal state. Recall that the set of relations computable by a finite
automaton is closed under composition and inverse.

2.6. Previous results

In this work we will make use of the following results. Let U be a linearly recur-
rent sequence of integers such that its characteristic polynomial is exactly the mini-
mal polynomial of a Pisot number. Then the set G(U) of normal U -representations
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of non-negative integers is recognizable by a finite automaton, and, for every al-
phabet of positive or negative integers D, normalization νU,D∗ is computable by
a finite automaton [15]. Normalization in base β, when β is a Pisot number, is
computable by a finite automaton on any alphabet D [12]. Addition and multi-
plication by a fixed positive integer constant are particular cases of normalization,
and thus are computable by a finite automaton, in the system U and in base β.
These results on normalization do not extend to the case that β is a Parry number
which is not a Pisot number.

3. Fibonacci and Lucas

Let us recall that the Fibonacci numeration system is defined by the sequence F
of Fibonacci numbers

F = {1, 2, 3, 5, 8, 13, . . .}·
The canonical alphabet is AF = {0, 1} and the set of normal representations is
equal to G(F ) = 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗ ∪ ε. Words containing a factor 11 are
forbidden.

The Lucas numeration system is defined by the sequence L of Lucas numbers

L = {1, 3, 4, 7, 11, 18, . . .}·

The canonical alphabet is AL = {0, 1, 2} and the set of normal representations
is equal to G(L) = G(F ) ∪ (G(F ) \ ε){02} ∪ {2}. We give in Table 1 below the
normal Fibonacci and Lucas representations of the first natural numbers.

Table 1. Normal Fibonacci and Lucas representations of the
11 first integers.

N Fibonacci Lucas

1 1 1
2 10 2
3 100 10
4 101 100
5 1000 101
6 1001 102
7 1010 1000
8 10000 1001
9 10001 1002
10 10010 1010
11 10100 10000

The Fibonacci and the Lucas sequences both have for characteristic polynomial

P (X) = X2 −X − 1.
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The root > 1 of P is denoted by ϕ, the golden mean, and its algebraic conjugate
by ϕ′. Since ϕ+ϕ′ = 1, for coherence of notations with the general case, we denote
F = (Fn)n≥0 and L = (Ln)n≥1. Recall that for every n ≥ 1, Ln = ϕn + ϕ′n. The
associated dynamical system is the golden mean shift, which is the set of bi-infinite
sequences on {0, 1} having no factor 11.

Although the following result is a consequence of the more general one below
(Th. 5.1), we give here a direct construction.

Proposition 3.1. The conversion from a Lucas representation of an integer to
the normal Fibonacci representation of that integer is computable by a finite au-
tomaton.

Proof. First, for every n ≥ 3, we get Ln = Fn−1 + Fn−3. Take N a positive
integer and a L-representation (N)L = dk · · ·d1, where the di’s are in an alphabet
B ⊇ {0, 1, 2}, and k ≥ 4. Then N = dkLk + · · · + d1L1, thus N = dkFk−1 +
dk−1Fk−2 + (dk−2 + dk)Fk−3 + · · ·+ (d3 + d5)F2 + (d2 + d4)F1 + (d1 + d2 + d3)F0,
hence the word dkdk−1(dk−2 +dk) · · · (d3 +d5)(d2 +d4)(d1 +d2 +d3) is a Fibonacci
representation of N on a certain finite alphabet of digits D.

The conversion from a word of the form dk · · ·d1 in B∗, where k ≥ 4, onto a
word of the form dkdk−1(dk−2 + dk) · · · (d3 + d5)(d2 + d4)(d1 + d2 + d3) on D∗ is
computable by a finite automaton A = (Q,B ×C,E, {ε}, {t}): the set of states is
Q = {ε} ∪ B ∪ (B × B) ∪ {t} where {t} is the unique terminal state. The initial

state is ε. For each d in B, there is an edge ε
d/d→ d. For each d and c in B,

there is an edge d
c/c→ (d, c). For each (d, c) ∈ B × B and a in B, there is an edge

(d, c)
a/a+d→ (c, a). For each (d, c) ∈ B × B and a in B, there is a terminal edge

(d, c)
a/a+c+d→ t. Words of length less than 4 are handled directly.

Then it is enough to normalize in the Fibonacci system on D∗, and it is known
that this is realizable by a finite automaton, see Section 2.6.

In Figure 1 we give an automaton realizing the conversion from normal Lucas
representations to Fibonacci representations on {0, 1, 2}∗({ε}∪{3}). States of the
form (d, c) are denoted by dc. Note that this automaton is not deterministic on
inputs. Since we are dealing with normal Lucas representations, the automaton
has less states than the one constructed in the proof of Proposition 3.1 above.
To decrease the complexity of the drawing, we introduce more than one terminal
state. Terminal states are indicated by an outgoing arrow. The result must be
normalized afterwards.

4. A technical result

We now consider two linearly recurrent sequences U = (un)n≥0 and V =
(vn)n≥0 of positive integers. The result below is the generalization of Proposi-
tion 3.1.
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Figure 1. Conversion from normal Lucas representations to
Fibonacci representations.

Proposition 4.1. If there exist r rational constants λi’s for 1 ≤ i ≤ r and K ≥ 0
such that for every n ≥ K, vn = λ1un+r−1 + · · · + λrun, and if the normalization
in the system U is computable by a finite automaton on any alphabet, then the
conversion from a V -representation of an integer to the normal U -representation
of that integer is computable by a finite automaton.

Proof. One can assume that the λi’s are all of the form pi/q where the pi’s belong
to Z and q belongs to N, q 6= 0. Let N be a positive integer and consider a
V -representation (N)V = bj · · · b0, where the bi’s are in an alphabet of digits
B ⊇ AV . Then qN = bjqvj + · · · + b0qv0. Since for n ≥ K, qvn = p1un+r−1

+ · · · + prun, and v0, v1, . . . , vK−1 can be expressed in the system U , we get
that qN is of the form qN = dj+r−1uj+r−1 + · · · + d0u0. Since each digit di,
for 0 ≤ i ≤ j + r − 1, is a linear combination of q, p1, . . . , pr, the bi’s and the
coefficients of the U -representation of the first terms v0, v1, . . . , vK−1, we get
that di is an element of a finite alphabet of digits D ⊃ AU . By assumption,
νU,D∗ is computable by a finite automaton. It remains to show that the function
which maps νU,D∗(dj+r−1 · · · d0) = 〈qN〉U onto 〈N〉U is computable by a finite
automaton, and this is due to the fact that it is the inverse of the multiplication
by the natural q, which is computable by a finite automaton in the system U , see
Section 2.6.

5. Common characteristic polynomial

The Fibonacci and the Lucas numeration systems are examples of different
numeration systems having the same characteristic polynomial, but different initial
conditions.
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Theorem 5.1. Let P be the minimal polynomial of a Pisot number of degree m.
Let U and V be two sequences with common characteristic polynomial P and dif-
ferent initial conditions. The conversion from a V -representation of a positive
integer to the normal U -representation of that integer is computable by a finite
automaton.

Proof. Since the polynomial P is the minimal polynomial of a Pisot number, nor-
malization in the system U is computable by a finite automaton on any alphabet
(see Sect. 2.6). On the other hand, the family {un, un+1, . . . , un+m−1 | n ≥ 0}
is free, because the annihilator polynomial is the minimal polynomial. Since U
and V have the same characteristic polynomial, it is known from standard results
of linear algebra that there exist rational constants λi such that, for each n ≥ 0,
vn = λ1un+m−1 + · · · + λmun. The result follows then from Proposition 4.1.

6. Two numeration systems associated

with a Parry number

Let β be a Parry number, i.e. the β-expansion of 1 is finite or eventually
periodic. We define two numeration systems associated with β.

6.1. Fibonacci-like numeration system

First suppose that the β-expansion of 1 is finite, dβ(1) = t1 · · · tN . A linear
recurrent sequence Uβ = (un)n≥0 is canonically associated with β as follows

un = t1un−1 + · · · + tNun−N for n ≥ N

u0 = 1, and for 1 ≤ i ≤ N − 1, ui = t1ui−1 + · · · + tiu0 + 1.

The characteristic polynomial of Uβ is thus

K(X) = XN − t1X
N−1 − · · · − tN .

Suppose now that the β-expansion of 1 is infinite eventually periodic,

dβ(1) = t1 · · · tN(tN+1 · · · tN+p)ω

with N and p minimal. The sequence Uβ = (un)n≥0 is the following one

un = t1un−1 + · · · + tN+pun−N−p + un−p − t1un−p−1 − · · · − tNun−N−p

for n ≥ N + p,

u0 = 1, and for 1 ≤ i ≤ N + p− 1, ui = t1ui−1 + · · · + tiu0 + 1.
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The characteristic polynomial of Uβ is now

K(X) = XN+p −
N+p∑
i=1

tiX
N+p−i −XN +

N∑
i=1

tiX
N−i.

Note that in general K(X) may be reducible. Since K(X) is defined from the
beta-expansion of 1, we will say that it is the beta-polynomial of β.

The system Uβ is said to be the canonical numeration system associated with β.
In [3] it is shown that the set of normal representations of the integers G(Uβ) is
exactly the set of finite factors of the beta-shift Sβ . The numeration system Uβ

is the natural one from the point of view of symbolic dynamical systems. The set
G(Uβ) is recognized by a finite automaton, see Section 8.

6.2. Lucas-like numeration system

Now we introduce another linear recurrent sequence Vβ = (vn)n≥0 associated
with β a Parry number of degree m as follows. Denote by β1 = β, β2, . . . , βm the
roots of the minimal polynomial P (X) = Xm − a1X

m−1 − · · ·am of β. Set

v0 = 1, and for n ≥ 1, vn = βn
1 + · · · + βn

m.

Then the characteristic polynomial of Vβ is equal to P (X). The set G(Vβ) is
recognized by a finite automaton [15].

As an example let us take β = ϕ the golden mean. Then Uϕ is the set of
Fibonacci numbers, and Vϕ is the set of Lucas numbers (for n ≥ 1). If β is
an integer, then the two systems Uβ and Vβ are the same, the standard β-ary
numeration system.

6.3. Conversion in the Pisot case

Now we suppose that β is a Pisot number.

Proposition 6.1. Let β be a Pisot number such that its beta-polynomial K(X)
is equal to its minimal polynomial. Let U be any linear sequence with charac-
teristic polynomial equal to K(X) (in particular Uβ). The conversion from the
linear numeration system Vβ to the linear numeration system U (and conversely)
is computable by a finite automaton.

Proof. It comes from the fact that U and Vβ have the same characteristic polyno-
mial, which is the minimal polynomial of a Pisot number. Thus normalization in
both systems is computable by a finite automaton on any alphabet, and the result
follows by Theorem 5.1.
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7. Multiplicatively dependent numeration systems

First recall that if β is a Pisot number of degree m then, for any positive
integer k, βk is a Pisot number of degree m (see [1]). Two Pisot numbers β and γ
are said to be multiplicatively dependent if there exist two positive integers k and
` such that βk = γ`. Then β and γ have the same degree m.

Theorem 7.1. Let β and γ be two multiplicatively dependent Pisot numbers.
Let U and Y be two linear sequences with characteristic polynomial equal to the
minimal polynomial of β and γ respectively. Then the conversion from the Y -
numeration system to the U -numeration system is computable by a finite automa-
ton.

Proof. Set δ = βk = γ`. As above, let Vβ = (vn)n≥0 with v0 = 1 and vn =
βn

1 + · · · + βn
m for n ≥ 1. The conjugates of δ are of the form δi = βk

i , for
2 ≤ i ≤ m. Set W = (wn)n≥0 with wn = δn

1 + · · · + δn
m for n ≥ 1. Then W is

the Lucas-like numeration system associated with δ. Now, for n ≥ 1, wn = vkn.
Thus any W -representation of an integer N of the form (N)W = dj · · · d0 gives
a Vβ-representation (N)Vβ

= dk0k−1dj−10k−1 · · · d10k−1d0, and thus the conver-
sion from W -representations to Lucas-like Vβ -representations is computable by a
finite automaton. The same is true for the conversion from W -representations to
Vγ-representations. By Proposition 6.1 the conversion from Y to Vγ , and that from
Vβ to U are computable by a finite automaton, and the result follows.

A set S of natural numbers is said to be U -recognizable if the set {< n >U |
n ∈ S} of normal U -representations of the elements of S is recognizable by a finite
automaton. The following result is an immediate consequence of Theorem 7.1.

Corollary 7.2. Let β and γ be two multiplicatively dependent Pisot numbers.
Let U and Y be two linear sequences with characteristic polynomial equal to the
minimal polynomial of β and γ respectively. Then a set which is U -recognizable is
Y -recognizable as well.

8. Periodic points

Let β be a Parry number. The beta-shift Sβ is sofic, i.e. the set of its finite
factors is recognizable by a finite automaton, and periodic points of Sβ are pe-
riodic bi-infinite words that are labels of bi-infinite paths in the automaton that
recognizes it.

The determination of the number of periodic points of the beta-shift Sβ is
important, because the entropy of Sβ is equal to

h(Sβ) = lim
n→∞

1
n

log Pern(Sβ) = log β

see [19] (Th. 4.3.6).
Note that, for any prime q, Perq(Sβ) ≡ Per1(Sβ) mod q, see [23].
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In the sequel, we assume that the minimal polynomial P (X) of β and its beta-
polynomial K(X) are identical, of degree m. As above, let Vβ = (vn)n≥0 with
vn = βn + βn

2 + · · · + βn
m for n ≥ 1.

8.1. The finite type case

If dβ(1) = t1 · · · tN , then Sβ is a system of finite type. We construct an automa-
ton Aβ which recognizes the set of factors of Sβ. There are N states q1, . . . , qN .
For each i, 1 ≤ i < N, there is an edge labelled ti from qi to qi+1. For 1 ≤ i ≤ N ,
there are edges labelled by 0, 1, . . . , ti − 1 from qi to q1. The adjacency matrix
of Aβ is the companion matrix M of K(X), defined by, for 1 ≤ i ≤ N

M [i, 1] = ti

M [i, i+ 1] = 1

and other entries equal to 0.

Proposition 8.1. Let β be a Parry number such that dβ(1) = t1 · · · tN . Then for
n ≥ 1, vn = trace (Mn) = Pern(Sβ).

Proof. Since M is the adjacency matrix of a system of finite type, the number of
periodic points of period n in Sβ is equal to trace (Mn), see for instance [19]. On
the other hand, since M is the companion matrix of the minimal polynomial of β,
we have that trace (Mn) = βn

1 + · · · + βn
N = vn for n ≥ 1.

Corollary 8.2. When dβ(1) is finite, the Lucas-like sequence Vβ is exactly realized
by the beta-shift Sβ.

8.2. The infinite sofic case

This is the case when dβ(1) = t1 · · · tN(tN+1 · · · tN+p)ω . We construct an au-
tomaton Aβ which recognizes the set of factors of Sβ . There are N + p states q1,
. . . , qN+p. For each i, 1 ≤ i < N + p, there is an edge labelled ti from qi to qi+1.
There is an edge labelled tN+p from qN+p to qN+1. For 1 ≤ i ≤ N + p, there are
edges labelled by 0, 1, . . . , ti − 1 from qi to q1. The adjacency matrix of Aβ is the
matrix M defined by for 1 ≤ i ≤ N + p

M [i, 1] = ti

M [i, i+ 1] = 1 for i 6= N + p

M [N + p,N + 1] = 1

and other entries equal to 0.

Proposition 8.3. Let β be a Parry number such that

dβ(1) = t1 · · · tN (tN+1 · · · tN+p)ω.

Then for n ≥ 1, vn = trace (Mn).



306 CH. FROUGNY

Proof. Remark that M is not the companion matrix of P (X). The companion
matrix C is in that case the following one

C[i, 1] = ti for 1 ≤ i ≤ p− 1
C[p, 1] = tp + 1
C[i, 1] = ti − ti−p for p+ 1 ≤ i ≤ N + p

C[i, i+ 1] = 1 for 1 ≤ i ≤ N + p

and other entries equal to 0. By a straightforward computation, it is possible
to show that the matrices M and C are similar. More precisely, there exists a
matrix Z such that M = Z−1CZ, where Z is defined by, for 1 ≤ i, j ≤ N + p

Z[i, j] = 1 if i ≡ j mod p and i ≥ j

= 0 otherwise.

Therefore trace (Mn) = trace (Cn) = βn
1 + · · · + βn

N+p = vn for n ≥ 1.

Contrarily to what happens in the case where the system is of finite type, in
the sofic case different loops in the automaton Aβ may have the same label, see
Section 9.2 for the quadratic case. So Pern(Sβ) is not equal to vn.

Proposition 8.4. Let β a Parry number such that

dβ(1) = t1 · · · tN (tN+1 · · · tN+p)ω.

Then for n ≥ 1,

Pern(Sβ) = vn − p if p divides n
Pern(Sβ) = vn otherwise.

Proof. Recall that dβ(1) is strictly greater in the lexicographic order <lex than the
shifted sequences σi(dβ(1)) for i > 1, reference [21].

First, suppose that for each i, 1 ≤ i ≤ p, tN+i < t1. Then in the automaton Aβ

there are two loops with label tN+1 · · · tN+p, one starting from state q1 and the
other one from state qN+1.

Second, suppose that there exists 1 ≤ i < p maximum such that t1 · · · ti
= tN+1 · · · tN+i = w. Then necessarily tN+i+1 < ti+1. Thus there is a path

q1
w−→ qi+1

tN+i+1−→ q1

and since tN+i+2 · · · tN+p <lex t1 · · · tp−i−1, there is a loop with label tN+i+2 · · ·
tN+p from q1. Thus there are two loops with label tN+1 · · · tN+p.

So there are p times two loops with same label, a circular permutation
of the word tN+1 · · · tN+p. Thus when counting the periodic bi-infinite words
in the automaton that are labels of loops, we must remove p of them each time
the period is a multiple of p.
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Corollary 8.5. The sequence Rβ = (rn)n≥1 defined by r0 = 1, and for n ≥ 1,
rn = vn − p if p divides n and rn = vn otherwise, is exactly realized by the sofic
beta-shift Sβ.

Proposition 8.6. The sequence Rβ is a linear recurrent sequence, of character-
istic polynomial (Xp − 1)K(X).

Proof. Let us rewrite the minimal polynomial of β as K(X) = XN+p−a1X
N+p−1

− · · · − aN+p. Hence, for n ≥ N + p+ 1,

vn = a1vn−1 + · · · + aN+pvn−N−p.

Suppose that p does not divide n. Then

rn = vn =
∑

1≤i≤N+p

p6 |n−i

airn−i +
∑

1≤i≤N+p

p|n−i

ai(rn−i + p).

Thus

rn =
∑

1≤i≤N+p

airn−i +
∑

1≤i≤N+p

p|n−i

p. (1)

Similarly
rn−p =

∑
1≤i≤N+p

airn−p−i +
∑

1≤i≤N+p

p|n−p−i

p.

Therefore, since the two last sums in rn and rn−p respectively are equal,

rn =


 ∑

1≤i≤N+p

airn−i


 + rn−p −

∑
1≤i≤N+p

airn−p−i.

If p divides n then

rn = −p+
∑

1≤i≤N+p

airn−i +
∑

1≤i≤N+p

p|n−i

p (2)

and the result follows as above. Hence the characteristic polynomial of Rβ is equal
to (Xp − 1)K(X).

Proposition 8.7. The set G(Rβ) of normal Rβ-representations of the natural
numbers is not recognizable by a finite automaton.

Proof. Suppose that G(Rβ) is recognizable by a finite automaton. Then the set

H = {〈rn − 1〉Rβ
| n ≥ 1}
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of words of G(Rβ) that are maximal for the lexicographic order is recognizable
by a finite automaton as well, see [26]. It is also known, by [18], that the
normal Rβ-representation of rn − 1, for n large enough, begins with a prefix
of the form t1 · · · tN (tN+1 · · · tN+p)j for some integer j, because β is the domi-
nant root of the characteristic polynomial J(X) = (Xp − 1)K(X) of Rβ, and
dβ(1) = t1 · · · tN (tN+1 · · · tN+p)ω.

Denote by K ′(X) the opposite of the reciprocal polynomial of K(X), K ′(X)
= −1+t1X+· · ·+tp−1X

p−1+(tp+1)Xp+(tp+1−t1)Xp+1+· · ·+(tN+p−tN)XN+p.
Similarly, let J ′(X) = K ′(X) −XpK ′(X).

By a direct computation, one gets, for each j ≥ 1

J ′(X) + 2XpJ ′(X) + · · · + (j + 1)XpjJ ′(X) =

K ′(X) +XpK ′(X) + · · · +XpjK ′(X) − (j + 1)Xp(j+1)K ′(X). (3)

We introduce a notation: if w = w0 · · ·wn is a word, ψ(w) = w0+w1X+· · ·+wnX
n

is the polynomial associated with w (with increasing powers). The signed digit
−d is denoted by d̄. We then get, for each j ≥ 1

K ′(X) +XpK ′(X) + · · · +XpjK ′(X) =

ψ(1̄t1 · · · tN (tN+1 · · · tN+p)j+1) +Xp(j+1)ψ(1t̄1 · · · t̄N ). (4)

Case 1. p ≥ N + 1.
From equations (3) and (4) follows that, for n = N+p(j+2)+`, with 1 ≤ ` ≤ p,

rn − 1 has a Rβ-representation of the form

(rn − 1)Rβ
= t1 · · · tN (tN+1 · · · tN+p)jw(n)

where w(n) is a word of length 2p+ `, corresponding to the polynomial

W (n)(X) = tN+1 + tN+2X + · · · tN+pX
p−1

+Xp−N−1 − t1X
p−N − · · · − tNX

p−1

− (j + 1)Xp−N−1K ′(X) −X2p+`−1. (5)

The difference between W (N+p(j+3)+`) and W (N+p(j+2)+`) is equal to
−Xp−N−1K ′(X). The word associated with −Xp−N−1K ′(X) is of the form
s = 0p−N−11t̄1 · · · tp−1(−tp − 1)(t1 − tp+1) · · · (tN − tN+p)0`, and the value of s in
the system Rβ is equal to πRβ

(s) = rN+p+` − t1rN+p+`−1 − · · · − tp−1rN+`+1 −
(tp + 1)rN+` + (t1 − tp+1)rN+`−1 + · · · + (tN − tN+p)r`.

Suppose that N + p + ` is not divisible by p. From equation (1) follows that
πRβ

(s) is equal to the positive constant

C(`) =
∑

1≤i≤N+p

p|N+`−i

p.
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For 1 ≤ ` ≤ p fixed such that N + p + ` is not divisible by p, let I(`) = {n ∈ N |
n = N + p(j + 2) + `, j ≥ 1}. Let κ(n) = πRβ

(w(n)). The family (κ(n))n∈I(`) is
thus strictly increasing. Remember that the length |w(n)| is equal to 2p+ `.

If κ(n) < r2p+`, then the normal Rβ-representation of rn − 1 is of the form
〈rn − 1〉Rβ

= t1 · · · tN (tN+1 · · · tN+p)jz(n) where z(n) is a word of length 2p + `,
equal to the normal Rβ-representation of w(n), prefixed by an adequate number
of 0’s.

If κ(n) ≥ 2p + `, then let h be the smallest positive integer such that πRβ

((tN+1 · · · tN+p)hw(n)) < rp(h+2)+`. Then

〈rn − 1〉Rβ
= t1 · · · tN (tN+1 · · · tN+p)j−hz(n)

where z(n) is a word of length p(h + 2) + ` that is the normal Rβ-representation
of (tN+1 · · · tN+p)hw(n). From this follows that the set {〈rn − 1〉Rβ

| n ∈ I(`)} is
not recognizable by a finite automaton, and so it is for the set H itself.

Case 2. p < N + 1.
Let k be the smallest integer ≥ 2 such that N+1 ≤ kp. Then from equations (3)

and (4) follows that, for n = N + p(j + 2) + `, with 1 ≤ ` ≤ p, rn − 1 has a Rβ-
representation of the form

(rn − 1)Rβ
= t1 · · · tN (tN+1 · · · tN+p)j+1−kw(n)

where w(n) is a word of length p(k + 1) + `, corresponding to the polynomial

W (n)(X) = (tN+1 + tN+2X + · · · tN+pX
p−1)(1 +X + · · · +Xk)

+Xk(Xp−N−1 − t1X
p−N − · · · − tNX

p−1)

− (j + 1)K ′(X)Xpk−N−1 −Xp(k+1)+`−1. (6)

With the same reasoning as in Case 1, we show that H is not recognizable by a
finite automaton.

9. Example: The quadratic case

Here we are interested only in the case where the root β > 1 of the polynomial
P (X) = X2 − aX − b, with a and b in Z, is a Parry number, which is the case
only if a ≥ b ≥ 1, or if a ≥ 3 and −a+ 2 ≤ b ≤ −1. Note that β is in fact a Pisot
number. We denote the conjugate of β by β′, |β′| < 1.

9.1. The finite type case

Suppose that a ≥ b ≥ 1. Then the β-expansion of 1 is dβ(1) = ab, and the
canonical alphabet is Aβ = {0, . . . , a}. Forbidden words are those containing a
factor in the finite set I = {ab, a(b+ 1), . . . , aa}, hence the dynamical system Sβ
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associated with β is of finite type. It is the set of bi-infinite sequences in the
automaton described in Figure 2.

Figure 2. Automaton in the finite type case.

The matrix M of Sβ is

M =
(
a 1
b 0

)
·

The Fibonacci-like sequence Uβ is defined by un = aun−1 + bun−2 for n ≥ 2, with
u0 = 1 and u1 = a+ 1.

The Lucas-like sequence Vβ is defined by vn = avn−1 + bvn−2 for n ≥ 3, with
v0 = 1, v1 = β + β′ = a and v2 = β2 + β′2 = a2 + 2b. In the special case in which
a = b = 1 (Fibonacci), this definition gives v0 = v1 = 1, which is not allowed, since
the sequence must be stricly increasing. This case has been handled in Section 3.

Note that, for n ≥ 1

vn =
a− 2b
a− b+ 1

un +
2a+ 2b− ab

a− b+ 1
un−1.

The sequence Vβ is exactly realizable. It is proved in [23] that if a and b are
in N, if ∆ = a2 + 4b is not a square, and if a and a2 + 2b are relatively prime,
then a sequence V satisfying the polynomial P is exactly realizable if and only
if v2

v1
= a2+2b

a .

9.2. The infinite sofic case

Suppose that a ≥ 3 and −a + 2 ≤ b ≤ −1. Then dβ(1) = (a − 1)(a + b − 1)ω

and the canonical alphabet is Aβ = {0, . . . , a − 1}. The dynamical system Sβ

associated with β is sofic: it is the set of bi-infinite sequences in the automaton
described in Figure 3. A word is forbidden if and only if it contains a factor in the
set I = {(a− 1)(a+ b− 1)nd | a+ b ≤ d ≤ a− 1, n ≥ 0}, which is recognizable by
a finite automaton.

The matrix M of Sβ is

M =
(

a− 1 1
a+ b− 1 1

)
·
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Figure 3. Automaton in the sofic case.

The companion matrix of β is

C =
(
a 1
b 0

)
·

The Fibonacci-like sequence Uβ is defined by un = aun−1 + bun−2 for n ≥ 2, with
u0 = 1 and u1 = a.

The Lucas-like sequence Vβ is defined by vn = avn−1 + bvn−2 for n ≥ 3, with
v0 = 1, v1 = β + β′ = a and v2 = β2 + β′2 = a2 + 2b.

Note that, for n ≥ 1 we have

vn = 2un − aun−1.

We have that, for n ≥ 1, Pern(Sβ) = vn − 1, since there are two different loops
labelled by (a + b − 1) in the automaton of Figure 3, one from state 1 and the
other one from state 2, because 0 < a+ b− 1 ≤ a− 2.

The sequence Rβ = (rn)n≥0 defined by

rn = (a+ 1)rn−1 + (b− a)rn−2 − brn−3

for n ≥ 3, and r0 = 1, r1 = a− 1, r2 = a2 + 2b− 1 and r3 = a3 + 3ab− 1, exactly
realizes the beta-shift.

Example 9.1. Take a = 3 and b = −1. Then β = 3+
√

5
2 , dβ(1) = 21ω, and

Uβ = {1, 3, 8, 21, 55, 144, 377, . . .} is the sequence of Fibonacci numbers of even in-
dex; Vβ = {1, 3, 7, 18, 47, 123, 322, . . .} is the sequence of Lucas numbers of even in-
dex n for n ≥ 1. The sequence which exactly realizes Sβ is Rβ = {1, 2, 6, 17, 46, 122,
321, . . .}. The setH = {〈rn−1〉Rβ

| n ≥ 1} is equal toH = {1, 21, 220, 2121, 21200,
211201, 2111210, 21111211, 211111220, 2111112000, . . .}.

10. Quadratic Pisot units

Here β is a quadratic Pisot unit, that is to say the root > 1 of the polynomial
P (X) = X2 − aX − 1, with a ≥ 1, or of the polynomial P (X) = X2 − aX + 1,
with a ≥ 3. In that case there are nice properties connecting the numeration
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in the systems Uβ and Vβ and in base β. It is known that, when β is a qua-
dratic Pisot unit, every positive integer has a finite β-expansion [15], the conver-
sion from Uβ-representations to β-representations folded around the radix point
is computable by a finite automaton [14], and this property is characteristic of
quadratic Pisot units [16].

As an example, we give in Table 2 the ϕ-expansions of the first integers.

Table 2. ϕ-expansions of the 11 first integers.

N ϕ-expansions

1 1.
2 10.01
3 100.01
4 101.01
5 1000.1001
6 1010.0001
7 10000.0001
8 10001.0001
9 10010.0101
10 10100.0101
11 10101.0101

We now make the link with the Lucas-like numeration Vβ .

10.1. Case β2 = aβ + 1

First suppose that a ≥ 2. The following result is a simple consequence of the
fact that for n ≥ 1, vn = βn + β′n and that β′ = −β−1.

Lemma 10.1. Let B be a finite alphabet of digits containing AVβ
. If (N)Vβ

=
dk · · · d0, with di ∈ B, then (N)β = dk · · · d0.d̄1d2d̄3 · · · (−1)kdk.

Note that the digits in (N)β are elements of the alphabet B̃ = {d, d̄ | d ∈ B}.
Then the β-expansion of N is obtained by using the normalization νβ,B̃N (which
is computable by a finite automaton).

Now we treat the case a = 1. The connection between Lucas representations
and representations in base the golden mean ϕ is the following one.

Lemma 10.2. Let B be a finite alphabet of digits containing AL. If (N)L =
dk · · · d1, with di ∈ B, then (N)ϕ = dk · · · d10.d̄1d2 · · · (−1)kdk.

As above, the ϕ-expansion of N is obtained by using the normalization νϕ,B̃N .

10.2. Case β2 = aβ − 1

Then dβ(1) = (a− 1)(a− 2)ω.
The following lemma is just a consequence of the fact that for n ≥ 1, vn =

βn + β′n and that β′ = β−1.
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Lemma 10.3. Let B be a finite alphabet of digits containing AVβ
. If (N)Vβ

=
dk · · · d0, with di ∈ B, then (N)β = dk · · · d0.d1 · · · dk.

Proposition 10.4. If dk · · · d0 is the normal Vβ-representation of N then dk · · ·
d0.d1 · · ·dk is the β-expansion of N .

Proof. Note that G(Vβ) = {w ∈ G(Uβ) | w 6= w′(a − 1)(a − 2)n, n ≥ 1}. Now,
it is enough to show that if w = dk · · · d0 is in G(Vβ), then dk · · ·d1d0d1 · · ·dk

contains no factor in I = {(a − 1)(a − 2)n(a − 1) | n ≥ 0}. First, w has no
factor in I since G(Vβ) ⊂ G(Uβ). Second, d0d1 · · · dk has no factor in I either,
because I is symmetrical. Third, suppose that g = dk · · · d1d0d1 · · · dk is of the
form g = g′(a− 1)(a− 2)j(a− 2)n−j(a− 1)g′′, with w = g′(a − 1)(a− 2)j . Then
w /∈ G(Vβ), a contradiction.
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