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AN UPPER BOUND ON THE SPACE COMPLEXITY
OF RANDOM FORMULAE IN RESOLUTION ∗

Michele Zito1

Abstract. We prove that, with high probability, the space complexity
of refuting a random unsatisfiable Boolean formula in k-CNF on n

variables and m = ∆n clauses is O
�
n · ∆− 1

k−2

�
.
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1. Introduction

The importance of studying the complexity of (propositional) proof systems
comes from its close relationship with long-standing open problems in Complexity
Theory such as NP =? Co-NP [8]. The complexity measure related to the classical
notion of time is the size of a proof, viz. the number of lines used in the proof.

Recently Esteban and Torán [11] suggested a measure for the space complexity
of refusing an unsatisfiable formula in a proof system called resolution (subsequent
work [2] extended this notion to other proof systems). Although several results [2,
11,18] are, by now, known on the space complexity of various classes of formulae,
a precise quantitative analysis of the space needed to prove the unsatisfiability of
random formulae has remained, until recently, somewhat elusive.

As a step toward the solution of this problem, we point out that a combina-
tion of a variant of the classical Davis and Putnam [10] algorithm and a linear time
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algorithm for 2-SAT outputs resolution refutations of any unsatisfiable random
formula within the space bounds stated in the following theorem:

Theorem 1.1. For each k ≥ 3, let φ be an unsatisfiable random k-CNF formula
on n variables and m = ∆n clauses. There is an a = a(k) > 0 and a ∆0 =
∆0(k) such that, with probability approaching one as n goes to infinity, the space
complexity of φ is at most an ·∆− 1

k−2 +O(1) for ∆ ≥ ∆0.

The remainder of this paper is organised as follows. In Section 2 we introduce
all relevant notations and technical results; in Section 3 we describe the class of
refutations that will be the object of our analysis; in Section 4 we give full details of
the proof of Theorem 1.1; Section 5 is devoted to final remarks and open problems.

2. Preliminaries

Let a finite set of variables X = {x1, . . . , xn} be given. A literal is either x0

or x1 for any x ∈ X , but we will often follow the common practice and denote x0

(resp. x1) by ¬x (x). We identify clauses with sets of literals, but we will often
abuse the notation and write x ∈ C to denote the fact that the variable x occurs
in the clause C as either x0 or x1. A formula is a(n ordered) sequence of clauses
φ = (C1, . . . , Cm). The size of a formula, denoted |φ|, is the number of clauses it
contains. A formula is in k-conjunctive normal form (or k-CNF) if |Ci| ≤ k for all
i ∈ {1, . . . ,m}. In all the subsequent treatment ∆ will denote the clause density
m/n of the given formula.

Let Ck,n denote the set of all clauses with exactly k literals of k distinct variables
defined from X . A random formula is obtained by selecting uniformly at random,
independently and with replacement m clauses from Ck,n. Let Fk,n

m denote the
resulting probability space on the set of all k-CNF formulae over n variables and
m clauses. We will write φ ∼ Fk,n

m to signify that φ is obtained by the process
outlined above. In all the subsequent treatment we say that an event E , depending
on a parameter n, holds with high probability (w.h.p.) if it holds with probability
approaching one as n tends to infinity.

A truth-assignment is a mapping α that assigns “false” or “true” (usually de-
noted by 0 or 1) to each variable in its domain Dom(α). We write |α| for |Dom(α)|.
Given a clause C, a variable x, and a value ν ∈ {0, 1}, the restriction of C to x = ν,
C
∣∣
x=ν

, is C if x 6∈ C, is one if xν ∈ C and it is C \ {x1−ν} otherwise. If φ is a
formula, then φ

∣∣
x=ν

is the sequence
(
C1

∣∣
x=ν

, . . . , Cm′
∣∣
x=ν

)
for all C ∈ φ such that

C
∣∣
x=ν
6= 1 If α is a truth-assignment with domain Dom(α) = {xj1 , . . . , xjt} then

C
∣∣
α

denotes the clause

(
· · ·
(
C
∣∣
xj1=α(xj1 )

) ∣∣
xj2=α(xj2 )

· · ·
)
·

The meaning of φ
∣∣
α

is defined similarly. For i ∈ {0, . . . , k}, let Ci(φ, α) denote
the set of clauses of size i in φ

∣∣
α
. We say that a formula φ is true (false) under



ON THE SPACE COMPLEXITY OF RANDOM FORMULAE 331

the assignment α if φ
∣∣
α

is empty ({} ∈ φ∣∣
α
). A formula is satisfiable if there exists

a truth-assignment α (also known as satisfying assignment) such that φ is true
under α.

A (resolution) refutation of a formula φ = (C1, . . . , Cm) is a sequence of clauses
π = (D1, . . . , Dt) such that Dt = {} and for all i ∈ {1, . . . , t− 1} either Di = Cj

for some j ∈ {1, . . . ,m} or Di is obtained from Dj and Dk (with j, k < i) by the
resolution rule:

{x, l1, l2, . . . }, {¬x, t1, t2, . . . } → {l1, l2, . . . , t1, t2, . . . }·
The two clauses to the left of “→” are called premises, the clause to the right is
called resolvent. The size of refutation π, |π| is t. Clearly, φ is unsatisfiable if and
only if there exists a refutation of φ.

2.1. Space complexity of derivations

Following [11], a k-CNF formula φ has a refutation bounded by space s if there
exists a sequence of formulae φ1, . . . , φt with

1. φ1 ⊆ φ;
2. |φi| ≤ s, for all i ∈ {1, . . . , t};
3. φi+1 is obtained from φi by deleting (if wished) some clauses, adding the

resolvent of two clauses in φi, and adding (if wished) some clauses of φ;
4. {} ∈ φt.

The space complexity of φ, denoted by space(φ) is the minimum s such that there
exists a refutation of φ bounded by space s.

Each refutation π of a k-CNF φ can be represented as a directed acyclic graph
(dag) Gφ,π: clauses in π correspond to nodes in Gφ,π, with the clauses of φ asso-
ciated with Gφ,π’s source nodes, {} associated with the (only) sink of Gφ,π, and
each application of the resolution rule corresponding to an internal node of Gφ,π

associated with some clause D with two incoming edges leaving the nodes associ-
ated with D1 ∪ {x} and D2 ∪ {¬x} respectively, with D = D1 ∪D2. A refutation
is tree-like if its underlying dag is a tree. Unless ambiguity arises, from now on
π will refer to either a refutation of φ or its corresponding dag. There is a nice
relationship between the space complexity of φ and the number of pebbles needed
in a particular pebbling game G played on Gφ,π.

Pebbling Game G. Given a connected dag with one sink the aim of
the game is to put a pebble on the sink of the graph (the only node with
no outgoing edge) according to the following rules:
1. a pebble can be placed on any initial node (i.e. a node with no

predecessor);
2. a pebble can be removed from any node at any time;
3. a pebble can be placed on any internal node provided there is a

pebble on all its parents.
The following lemma is an immediate consequence of the definitions:

Lemma 2.1 [11]. For any formula φ, space(φ) coincides with the minimum num-
ber of pebbles needed to win G on any graph Gφ,π, where π is a refutation of φ.
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Using this result it is possible to analyse the space needed for refuting a for-
mula through techniques used for bounding the number of pebbles used/needed
to play G. The following result is a consequence of Lemma 2.1.

Theorem 2.2 [11]. If φ has a tree-like refutation of size S, then space(φ) ≤
dlogSe+ 1.

From this and the fact that any unsatisfiable formula has a tree-like refutation
of size at most 2n, it follows immediately that space(φ) ≤ n+ 1 for any formula φ
over n variables.

Although refutations of unsatisfiable k-CNF formulae for k ≥ 3 may require non
constant space, unsatisfiable 2-CNF formulae can always be refuted in constant
space.

Theorem 2.3. space(φ) = O(1), for any 2-CNF formula φ.

2.2. A technical result

A fundamental conjecture about Fk,n
m states that there is a θk independent of n,

the unsatisfiability threshold, such that a φ ∼ Fk,n
m is almost certainly satisfiable

(resp. unsatisfiable) if m/n < θk (m/n > θk). The value of such a threshold has
been determined [12] for k = 2 and θ2 = 1 but only upper an lower bounds are
known for k ≥ 3 (see [1] and [14] for the currently available best bounds for k = 3).
The following result, which implies θ2 < 1 + ε for any ε > 0, will be used in the
proof of the Theorem 1.1.

Lemma 2.4. Let φ ∼ F2,n
cn . The probability that φ be satisfiable is at most

2n(3/4)cn.

Proof. The expression 2n(3/4)cn is exactly the expected number of satisfying as-
signments of φ ∼ F2,n

cn . The result follows from the Markov inequality. �

2.3. Polynomial inequalities

The following result will be used in the proof of Theorem 1.1.

Lemma 2.5. Let a,∆ be positive real numbers, let p be a positive integer larger
than one and q ∈ {1, 2}. There exist two sequences of real numbers ∆p,q = ∆p,q(a),
and up,q = up,q(a,∆), such that the inequality xp − a∆(x − 1)q < 0 is satisfied if
∆ > ∆p,q and 2 ≤ x < up,q.

Proof. We will sketch the proof for q = 2 (the proof for q = 1 follows the same
lines, but most of the algebraic expressions involved are simpler). For p = 2, the
given inequality is equivalent to(

1− 1
a∆

)
x2 − 2x+ 1 > 0

which is satisfied for x >
(
1− (a∆)−

1
2

)−1

if a∆ > 1. Let ∆2,2 = 1
a , and

u2,2 = +∞.
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For each p ≥ 3 it is intuitively obvious that, provided a∆ is sufficiently large,
it is possible to find an open interval Ip ⊆ (1,+∞) such that the given inequality
is satisfied for x ∈ Ip. The least upper bound of the points of such an interval can
be found by solving the associated equation

xp − a∆(x − 1)2 = 0.

For p = 3, such equation (see [20]) has the following three real solutions if ∆ > 27
4a

x1 = −2
3
√
a2∆2 − 6a∆cos

τ

3
+
a∆
3

x2 = −2
3
√
a2∆2 − 6a∆cos

τ − 2π
3

+
a∆
3

x3 = −2
3
√
a2∆2 − 6a∆cos

τ + 2π
3

+
a∆
3

where τ = arccos −a3∆3+9a2∆2−27a∆/2

(a2∆2−6a∆)3/2 . Notice that τ ∈ [0, π]. The inequalities
x1 ≤ 1 ≤ x2 ≤ x3 follow from elementary properties of the trigonometric functions.
Let ∆3,2 = 27

4a , and u3,2 = x3.

For p = 4 the given equation has solutions [19]

x1 =

sr
a2∆2

36
− a∆

3
cos

τ

3
+

a∆

6
+

sr
a2∆2

36
− a∆

3
cos

τ + 2π

3
+

a∆

6

+

sr
a2∆2

36
− a∆

3
cos

τ − 2π

3
+

a∆

6
,

x2 =

sr
a2∆2

36
− a∆

3
cos

τ

3
+

a∆

6
−
sr

a2∆2

36
− a∆

3
cos

τ + 2π

3
+

a∆

6

−
sr

a2∆2

36
− a∆

3
cos

τ − 2π

3
+

a∆

6
,

x3 = −
sr

a2∆2

36
− a∆

3
cos

τ

3
+

a∆

6
+

sr
a2∆2

36
− a∆

3
cos

τ + 2π

3
+

a∆

6

−
sr

a2∆2

36
− a∆

3
cos

τ − 2π

3
+

a∆

6
,

x4 = −
sr

a2∆2

36
− a∆

3
cos

τ

3
+

a∆

6
−
sr

a2∆2

36
− a∆

3
cos

τ + 2π

3
+

a∆

6

+

sr
a2∆2

36
− a∆

3
cos

τ − 2π

3
+

a∆

6

(where τ = arccos 18a2∆2−a3∆3

(a2∆2−12a∆)
3
2
) which are real as long as all the functions inside

the square roots are positive and the argument of the arccos function is between
−1 and +1. This happens for ∆ > 16/a. If this is the case then x1 is the largest
solution and x1 ≥ 2.
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Solutions to polynomial equations of degree at least five cannot be expressed
by simple algebraic expressions involving radicals and the four arithmetic opera-
tions [17]. Although complicated expressions do exist (see [15,16]) the constraints
on x obtained by solving the weaker inequality xp − a∆ < 0 will suffice for our
purposes. Therefore, for p ≥ 5, let ∆p,2 = 2

a

p and up,2 = (a∆)
1
p . �

3. An algorithm

Let Y = {xj1 , xj2 , . . . , xjt} ⊆ X with t to be fixed later. For any integer b ≥ 1
the set Yb = {xjb

, . . . , xjt} is called a final segment of Y , with the convention that
Y1 = Y and Yb = {} if b > t. Consider the following modification of the classical
Davis et al. [9] resolution algorithm:

Function RoughDLL (φ: k-CNF; Y : set of variables; α: truth-assignment):
Boolean

if φ = {} return true
else if {} ∈ φ return false
else if Y = {}

return 2SAT-solver(C2(φ, α))
else

Let x be the smallest index variable in Y ;
Y ← Y \ {x};
return RoughDLL(φ

∣∣
x=0

, Y, α ∪ {x = 0}) ∨
RoughDLL(φ

∣∣
x=1

, Y, α ∪ {x = 1});

where 2SAT-solver(. . . ) is a function deciding 2-SAT.
The algorithm recursively resolves a fraction t

n of the variables of the formula φ,
then it calls a solver for 2-SAT on any unfinished recursion branch. If the input
formula φ is unsatisfiable then a call to RoughDLL(φ, Y, {}) will return the correct
“false” answer provided either {} ∈ φ∣∣

α
or C2(φ, α) is unsatisfiable, for every α

with Dom(α) = Y . Furthermore, the recursive calls to RoughDLL naturally induce
a rooted binary tree, Tφ,Y , whose internal nodes are labelled by the variables that
are set at a particular step, with the out-edges of a node labelled by the two
possible assignments to its associated variable. Each path from the root in Tφ,Y

corresponds to a partial assignment α with Dom(α) ⊆ Y . Each leaf is labelled
by either a clause of φ that becomes empty or by the set C2(φ, α). If all the
formulae C2(φ, α) are unsatisfiable, Tφ,Y can be transformed into a refutation of
φ, by working from the clauses labelling the leaves and the refutations obtained
for each C2(φ, α) towards the root of Tφ,Y . Theorem 1.1 will be proved by showing
that w.h.p. the refutations defined in this way can be pebbled with (relatively)
few pebbles.
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4. Proof of the main theorem

Since ∆ > θk the set of satisfiable formulae in Fk,n
∆n is very small. In the

following we assume φ to be unsatisfiable. We will prove that it is possible to
choose t so that RoughDLL ends with a “false” answer w.h.p. If this is the case,
the refutation built using the algorithm in Section 3 is formed by joining the
refutations for C2(φ, α) to the complete binary tree of depth t corresponding to
the branching of RoughDLL. By Theorem 2.2 this tree can be pebbled using t+ 1
pebbles. The result then follows from Theorem 2.3 applied to C2(φ, α) for each α.

To complete the proof note that, conditioned on the fact that |C2(φ, α)| = Ω(n)
for each α on Y , the event

“RoughDLL does not end with a ‘false’ answer”

is implied by the event

“there is an α with Dom(α) = Y , such that C2(φ, α) is satisfiable”

and the probability of the latter is at most∑
α:Dom(α)=Y Pr[C2(φ, α) ∈ SAT].

Let “ψ ∈SAT” denote the event “the formula ψ is satisfiable”. For each α we can
compute Pr[C2(φ, α) ∈ SAT] conditioning on the size X of C2(φ, α):

Pr[C2(φ, α) ∈ SAT] = Pr[C2(φ, α) ∈ SAT | X < dn] Pr[X < dn]
+ Pr[C2(φ, α) ∈ SAT | X ≥ dn] Pr[X ≥ dn]

≤ Pr[X < dn] + Pr[C2(φ, α) ∈ SAT | X ≥ dn]

where d > 0 is some constant to be fixed later.
Since clauses in φ are selected independently and with replacement from Ck,n,

given Y and α on Y , in each of the m = ∆n trials there is a fixed probability of
selecting a clause C such that C

∣∣
α

is a 2-clause. This is exactly the probability
of choosing k − 2 variables from Y with a sign fixed by the assignment α and
the remaining two arbitrarily in the set X \ Y . Hence, the random variable x
has a binomial distribution with parameters m and p =df Pr[C

∣∣
α

is a 2-clause].
Furthermore

p =
4
(
n−t
2

)(
t

k−2

)
2k
(
n
k

)
= 22−k

(
k

2

)
(n− t)(n− t− 1)

t!
(t− k + 2)!

(n− k)!
n!

= 22−k

(
k

2

)
t

n

(
1− t− 1

n− 1

)(
1− t− 1

n− 2

) k−3∏
i=1

t− i
n− i− 2

> 22−k

(
k

2

)
t

n

(
1− t

n

)2 k−3∏
i=1

t− i
n− i− 2
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where the last inequality holds as long as t < n
2 , and the product is empty for

k = 3.

Claim. For every k ≥ 4, if t ≥ k2 there exists a ck > 0 such that
∏k−3

i=1
t−i

n−i−2 ≥
ck
(

t
n

)k−3.

From the claim above it follows that

Pr[C
∣∣
α

is a 2-clause] > ck

(
k

2

)(
1− t

n

)2(
t

2n

)k−2

·

Finally, using standard Chernoff-type bounds [13], for any ε > 0,

Pr

[
X < (1− ε)ck

(
k

2

)(
1− t

n

)2(
t

2n

)k−2

∆n

]
≤ Pr[X < (1− ε)mp]

≤ e−
ε2
2 ck(k

2)(1− t
n )2( t

2n )k−2
∆n.

The second probability in the expression for Pr[C2(φ, α) ∈ SAT] is bounded using
Lemma 2.4, since, conditioned on |C2(φ, α)| to have some known value z ≥ dn,
clauses in C2(φ, α) are distributed according to F2,n−t

z . More precisely, since the
probability of satisfying a formula decreases as the number of clauses in the formula
increases, the sought probability satisfies:

Pr[C2(φ, α) ∈ SAT | X ≥ d(n− t)] ≤ nO(1) Pr[C2(φ, α) ∈ SAT | X = d(n− t)]

where d = (1− ε)ck
(
k
2

) (
1− t

n

) (
t

2n

)k−2 ∆.
Finally, putting everything together, the overall error probability is at most

exp

{
−n
[
ε2ck∆

2

(
k

2

)(
1− t

n

)2(
t

2n

)k−2

− t ln 2
n

]}

+nO(1) exp

{
−n
[
(1− ε)3∆t

2n

(
1− t

n

)2

ln
4
3
− ln 2

]}
·

Setting t/n = 1/x, the proof of the theorem can be completed by solving the
following optimisation problem (where c3 = 1):

max x

s.t. (1 − ε)ck∆
(
k

2

)(
1− 1

x

)(
1
2x

)k−2

− 1 > 0,

ε2ck∆
2

(
k

2

)(
1− 1

x

)2( 1
2x

)k−2

− ln 2
x

> 0,

(1 − ε)3∆
2x

(
1− 1

x

)2

ln
4
3
− ln 2 > 0.



ON THE SPACE COMPLEXITY OF RANDOM FORMULAE 337

For k = 3, the first constraint is weaker than the third one. By Lemma 2.5, the
maximisation problem is feasible for

x >

(
1− 2

ε

√
ln 2
3∆

)−1

x >
a∆
3
− 2

3

√
a2∆2 − 6a∆cos

τ − 2π
3

x <
a∆
3
− 2

3

√
a2∆2 − 6a∆cos

τ + 2π
3

where a = 3(1 − ε) (1− ln 3
ln 4

)
, and τ = arccos −a3∆3+9a2∆2+27a∆/2

(a2∆2−6a∆)3/2 provided ∆ >

max
{

9

4(1−ε)(1− ln 3
ln 4 )

, 4 ln 2
3ε2

}
. If ∆ > 4·312 ln 2

3·212ε2 , the first lower bound is smaller than

the upper bound in the third line, and therefore x can be set to any sufficiently
close lower bound on a∆

3 − 2
3

√
a2∆2 − 6a∆cos τ+2π

3 . Let ε be the solution to

9
4(1− ε) (1− ln 3

ln 4

) =
4 · 312 ln 2
3 · 212ε2

·

For sufficiently small δ > 0 one can set

t

n
=

1

(1− ε)∆ (1− ln 3
ln 4

)(
1−

√
1− 2

(1−ε)∆(1− ln 3
ln 4 )

cos τ+2π
3

)
− δ
·

For k > 3 the first constraint is stronger than the third one: the expression on
the left of the ‘>’ sign in the first constraint is smaller than that in the third
constraint for

x >
1
2

[
ckk(k − 1)
12 ln(4/3)

] 1
k−3

·

The quantity on the right-hand side is less than two for k ≥ 4.
For k = 4, if ∆ > (ε2+2(1−ε) ln 2)3

3ε4c4(1−ε)2 ln 2 then the least upper bound on the set of
points x that satisfy the first constraint is smaller than the similar quantity related
to the second constraint. Thus, by Lemma 2.5, the given optimisation problem is
feasible for x < u3,1 (where a = 3

2 (1 − ε)c4 and ε can be chosen so that the lower
bound on ∆ is minimised). For a sufficiently small δ > 0, then one can set

t

n
=

1√
(1−ε)c4∆

2

(
cos τ

3 +
√

3 sin τ
3

)− δ
where τ = arccos 3√

2(1−ε)c4∆
·

A similar argument applies for k = 5, and t
n can be defined again as O(n∆− 1

k−2 )

provided ∆ > 2(ε2+2(1−ε) ln 2)4

5ε6c5(1−ε)2 ln 2 and ε is chosen so that the bound on ∆ is minimal.
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For k ≥ 6 we resort to the weaker bound given in Lemma 2.5. We can set

t

n
=

{
1
2

[
(1− ε)ck∆

2

(
k

2

)] 1
k−2

− δ
}−1

provided ε is chosen so that ε2

2(1−ε) ln 2 = 1 and ∆ > 22k−2

(1−ε)ckk(k−1) ·

5. Final remarks and open questions

In this paper we presented a class of refutations which can be associated with
high probability with any given unsatisfiable random k-CNF formula on n variables
andm = ∆n clauses. A pebbling game can be played on the directed acyclic graphs
corresponding to these refutations and relatively few pebbles are sufficient to win
such game. As a consequence of this an upper bound can be obtained on the space
complexity of refuting unsatisfiable random k-CNF formulae in resolution.

It should be said also that slightly weaker bounds can derived, avoiding most of
the technicalities in this paper, from results on the size of the refutations produced
by the algorithm outlined above [3]. However the numerical precision sought in
this paper, can perhaps be better understood by reading the author’s original
motivations. The result presented came about as part of an investigation on the
unsatisfiability threshold (see Sect. 2.2) of random k-CNF formulae and its related
properties. It is believed [6] that formulae with a clause to variable ratios close to
the threshold point are computationally hard. The fact that w.h.p. such formulae,
at least for not too large values of ∆ > θk, have large resolution refutations (see [7]
and the subsequent improvement in [3]) can be seen as supporting such a claim.
The results in [4] prove that a similar phenomenon occurs if one looks at space
complexity instead of size. The result in this paper gives an upper bound on
the space complexity for values of ∆ not much bigger that the unsatisfiability
threshold.

The analysis presented might be tightened by using refined bounds [5] on the
probability that a random 2-CNF formula on n variables and m > n clauses be
satisfiable. Moreover, “more efficient” refutations might exist. However, the lower
bound Ω

(
n ·∆− 1+ε

k−2−ε

)
proved in [4] (for any ε ∈ (0, 1/2)) rules out the possibility

of a significant improvement on the results presented.
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