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A BOUND FOR THE ω-EQUIVALENCE PROBLEM
OF POLYNOMIAL D0L SYSTEMS

Juha Honkala1,∗

Abstract. We give a bound for the ω-equivalence problem of poly-
nomially bounded D0L systems which depends only on the size of the
underlying alphabet.
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1. Introduction

Infinite words generated by iterated morphisms are widely studied in combina-
torics of words and language theory, see [8]. Culik II and Harju [1] have shown
that equivalence is decidable for infinite words generated by D0L systems. This is
one of the deepest results concerning iterated morphisms.

While the ω-equivalence problem for D0L systems is known to be decidable, very
little is known about bounds for the problem. Here, by a bound we understand
an integer computable from two given D0L systems which indicates how many
initial terms in the sequences have to be compared with respect to the prefix
order to decide whether the systems are ω-equivalent. No such bounds have been
explicitly given in the general case. It is an open problem whether there exists a
bound depending only on the cardinality of the alphabet. Indeed, no such bound
is known even for the D0L sequence equivalence problem.

In this paper we give a bound for the ω-equivalence problem of polynomially
bounded D0L systems which depends only on the cardinality of the alphabet. To
obtain this result we first use elementary morphisms (see [3]), and then apply the
recently established bound for the sequence equivalence problem of polynomially
bounded D0L systems (see [6]).
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It is assumed that the reader is familiar with the basics concerning D0L systems,
see [7, 8]. For infinite D0L words see also [2, 4, 5].

2. Definitions and results

We use standard language-theoretic notation and terminology. In particular,
the cardinality of a finite set X is denoted by card(X) and the length of a word
w ∈ X∗ is denoted by |w|. By definition, the length of the empty word ε equals
zero. If w is a nonempty word, first(w) is the first letter of w. If w ∈ X∗ and
x ∈ X , then |w|x is the number of occurrences of the letter x in the word w. If
w ∈ X∗ and Z ⊆ X we denote

|w|Z =
∑

z∈Z

|w|z .

If w ∈ X∗, the set alph(w) is defined by

alph(w) = {x ∈ X | |w|x ≥ 1}·

Two words u, v ∈ X∗ are called comparable if one of them is a prefix of the other.
A D0L system is a triple G = (X, h, w) where X is a finite alphabet, h : X∗ −→

X∗ is a morphism and w ∈ X∗ is a word. The sequence S(G) generated by G
consists of the words

w, h(w), h2(w), h3(w), . . .
The language L(G) of G is defined by

L(G) = {hn(w) | n ≥ 0}·

A D0L system G = (X, h, w) is called polynomially bounded (or polynomial) if
there exists a polynomial P (n) such that

|hn(w)| ≤ P (n) for all n ≥ 0.

A D0L system G = (X, h, w) is polynomially bounded if and only if there does
not exist a letter x ∈ alph(L(G)) such that for some n ≥ 1 we have |hn(x)|x ≥ 2
(see [9]).

Suppose G = (X, h, w) is a D0L system such that w is a prefix of h(w) and
L(G) is infinite. Then we denote by ω(G) the unique infinite word having prefix
hn(w) for all n ≥ 0. If, on the other hand, G = (X, h, w) is a D0L system such
that w is not a prefix of h(w) or L(G) is finite, we say that ω(G) does not exist.

Suppose G = (X, h, w) is a D0L system such that ω(G) exists. Then, if v is a
prefix of ω(G) and |w| ≤ |v|, the word v is a proper prefix of h(v).

Let Gi = (X, hi, wi), i = 1, 2, be D0L systems. G1 and G2 are called sequence
equivalent if S(G1) = S(G2). G1 and G2 are called ω-equivalent if both ω(G1) and
ω(G2) exist and are equal.
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Next, if m is a positive integer, denote

A(m) = 4m+2((m + 2)! + 1)(m+2)2 .

The following result is proved in [6].

Theorem 1. Let m be a positive integer. If Gi = (X, hi, w), i = 1, 2, are polyno-
mially bounded D0L systems and card(X) ≤ m, then

S(G1) = S(G2)

if and only if

hn
1 (w) = hn

2 (w) for all 0 ≤ n ≤ A(m).

The purpose of this paper is to prove a similar result for the ω-equivalence problem
of polynomially bounded D0L systems.

Let G = (X, h, a) be a D0L system such that a ∈ X . Denote X1 = X −{a}. G
is called a 1-system if

1. h(a) ∈ aX∗
1 ;

2. h(x) ∈ X∗
1 if x ∈ X1;

3. L(G) is infinite;
4. if x ∈ X1, then x occurs infinitely many times in ω(G).

In the preliminary section of [1] Culik II and Harju show that in studying the
ω-equivalence problem for D0L systems it suffices to consider 1-systems.

Let Gi = (X, hi, a), i = 1, 2, be 1-systems. We say that G1 and G2 satisfy the
growth condition if there do not exist integers 1 ≤ s ≤ card(X)2, 1 ≤ j1, . . . , js ≤ 2
and a letter x ∈ X such that

|hjs . . . hj1(x)|x ≥ 2. (1)

If m is a positive integer, denote

C(m) = 2(m! + 1)m+1

and

ω(m) = 2(A(m + 1) + 2)(C(m) + 1).

Now we can state the main result.

Theorem 2. Let m be a positive integer. If Gi = (X, hi, a), i = 1, 2, are polyno-
mially bounded 1-systems and card(X) ≤ m, then

ω(G1) = ω(G2)
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if and only if
(i) G1 and G2 satisfy the growth condition;
(ii) all words in the set

{hin . . . hi1(a) | 0 ≤ n ≤ ω(m), i1, . . . , in ∈ {1, 2}}

are comparable.

It is not difficult to see that to check condition (ii) in Theorem 2 only 2ω(m)
comparisons are needed.

If Gi = (X, hi, a), i = 1, 2, are polynomially bounded ω-equivalent 1-systems
then the growth and comparability conditions of Theorem 2 hold. Indeed, the ω-
equivalence implies the comparability condition while the growth condition follows
by Lemma 7 in [4]. In the following sections we prove that the conditions of
Theorem 2 are also sufficient for the ω-equivalence.

3. Simplification of 1-systems

In this section we simplify 1-systems by using elementary morphisms as in [3].
First we recall some results from [6].

Let h : X∗ −→ X∗ be a morphism. The set of cyclic letters is defined by

CYCLIC(h) = {x ∈ X | |h(x)|x ≥ 1}·

The relation ≤h on X is defined by setting

x ≤h y

for x, y ∈ X if and only if there is n ≥ 0 such that

|hn(x)|y ≥ 1.

If Z ⊆ X , a letter z ∈ Z is called ≤h-minimal in Z if x ≤h z holds for no
x ∈ Z − {z}.
Lemma 3. Let G = (X, h, w) be a polynomially bounded D0L system such that
CYCLIC(h) = X. Then the relation ≤h is a partial order on alph(L(G)).

Proof. See [6]. �
Let now hi : X∗ −→ X∗, i = 1, 2, be morphisms. Then the triple (f, p1, p2)

simplifies the pair (h1, h2) if the following conditions hold:
1. there is an alphabet Y such that f : X∗ −→ Y ∗ and pi : Y ∗ −→ X∗,

i = 1, 2, are morphisms;
2. there exist sequences i11, . . . , i1k and i21, . . . , i2k of elements from {1, 2}

such that

h1hi11 . . . hi1k
= p1f, h2hi21 . . . hi2k

= p2f ; (2)
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3. the morphisms pi and fpi, i = 1, 2, are elementary;
4. CYCLIC(fpi) = Y , i = 1, 2.

Note that k, i11, . . . , i1k, i21, . . . , i2k are not uniquely determined by the triple
(f, p1, p2). Any value of k such that there exist i11, . . . , i1k, i21, . . . , i2k satis-
fying (2) is called an index of the triple (f, p1, p2). Whenever we consider a
triple (f, p1, p2) simplifying a pair (h1, h2) it is tacitly assumed that Y , k and
i11, . . . , i1k, i21, . . . , i2k are as above.

A morphism h : X∗ −→ X∗ is called nontrivial if h(X) 6= {ε}. If hi : X∗ −→
X∗, i = 1, 2, are morphisms, the pair (h1, h2) is called nontrivial if all products of
h1 and h2 are nontrivial.

Lemma 4. Let m be a positive integer. If X is an alphabet with at most m letters,
hi : X∗ −→ X∗, i = 1, 2, are morphisms and the pair (h1, h2) is nontrivial, then
there exists a triple (f, p1, p2) simplifying the pair (h1, h2) and having index k such
that 2m ≤ k ≤ C(m).

Proof. See [6]. �

The following lemmas study in detail the simplification of 1-systems.

Lemma 5. Let Gi = (X, hi, a), i = 1, 2, be 1-systems and let (f, p1, p2) simplify
the pair (h1, h2). Denote first(f(a)) = c and Y1 = Y − {c}. Then

(i) fpi(c) ∈ cY ∗
1 ;

(ii) fpi(y) ∈ Y ∗
1 if y ∈ Y1, i = 1, 2.

Proof. Because G1 and G2 are 1-systems, pif(a) ∈ aX∗
1 and pif(x) ∈ X∗

1 if
x ∈ X1. Hence pi(c) ∈ aX∗

1 implying f(a) ∈ cY ∗
1 and f(x) ∈ Y ∗

1 if x ∈ X1.
Therefore fpi(c) ∈ cY ∗

1 .
Let y ∈ Y1. Because |fpi(y)|y ≥ 1 there is a letter x ∈ X such that |f(x)|y ≥ 1.

If x ∈ X1 then pif(x) ∈ X∗
1 and pi(y) ∈ X∗

1 . If x = a then y ∈ alph(c−1f(a)) and
pi(c−1f(a)) ∈ X∗

1 implying again that pi(y) ∈ X∗
1 . It follows that fpi(y) ∈ Y ∗

1 . �

Lemma 6. Let Gi = (X, hi, a), i = 1, 2, be 1-systems and let (f, p1, p2) simplify
the pair (h1, h2). Assume that the words p1fp2f(a) and p2fp1f(a) are comparable
and that the D0L systems (Y, fpi, y), for y ∈ Y and i = 1, 2, are polynomially
bounded. Denote first(f(a)) = c and Y1 = Y − {c}. Suppose e is ≤fp1-minimal in
Y1 and ≤fp2-minimal in Y1. Denote g1 = fp1fp2, g2 = fp2fp1 and Z = {x ∈ X |
|f(x)|e ≥ 1}. Then

(i) |fpi(e)|e = 1, i = 1, 2;
(ii) |fpi(y)|e = 0 if y ∈ Y1 − {e}, i = 1, 2;

(iii) |g1(c)|e = |g2(c)|e;
(iv) |p1fp2(c)|Z = |p2fp1(c)|Z ;
(v) |p1fp2(e)|Z = |p2fp1(e)|Z = 1;

(vi) |p1fp2(y)|Z = |p2fp1(y)|Z = 0 if y ∈ Y1 − {e}.
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Proof. Because e ∈ CYCLIC(fpi) and (Y, fpi, e) is polynomially bounded we
have |fpi(e)|e = 1. Because e is ≤fpi-minimal in Y1 we have |fpi(y)|e = 0 if
y ∈ Y1 − {e}. This implies also

|g1(c)|e = |fp1fp2(c)|e = |fp1(c)|e + |fp2(c)|e
= |fp2(c)|e + |fp1(c)|e = |fp2fp1(c)|e = |g2(c)|e.

To prove (iv) observe that one of the words p1fp2(c) and p2fp1(c) is a prefix of
the other, say p1fp2(c) = p2fp1(c)v where v ∈ X∗

1 . Then

|fp1fp2(c)|e = |fp2fp1(c)|e + |f(v)|e.

By (iii) it follows that |v|Z = 0. Hence |p1fp2(c)|Z = |p2fp1(c)|Z .
Finally, because

|fp1fp2(e)|e = |fp2fp1(e)|e = 1
and

|fp1fp2(y)|e = |fp2fp1(y)|e = 0
if y ∈ Y1 − {e}, we get (v) and (vi). �
Lemma 7. Let Gi = (X, hi, a), i = 1, 2, be 1-systems and let (f, p1, p2) having
index k ≥ 2card(X) simplify the pair (h1, h2). Denote first(f(a)) = c and Y1 =
Y − {c}. Assume that all words in the set

{hin . . . hi1(a) | 0 ≤ n ≤ k + 2}

are comparable. Then alph(pif(a)) = X and alph(fpifpj(c)) = Y for all i, j ∈
{1, 2}.
Proof. First, we claim that pif(a) is a prefix of ω(G1) for i = 1, 2. If not, let wi be
the longest common prefix of pif(a) and ω(G1). Then h1(wi) is a common prefix
of h1pif(a) and ω(G1) which is longer than wi. This contradicts the assumption
that h1pif(a) and pif(a) are comparable.

A similar argument shows that pif(a) is also a prefix of ω(G2) for i = 1, 2.
Because Gi, i = 1, 2, are 1-systems we have

alph(hn
1 (a)) = alph(hn

2 (a)) = X

for n ≥ card(X). Because pif contains at least card(X) terms equal to h1 or at
least card(X) terms equal to h2 when it is regarded as a product of h1 and h2,
this implies that

alph(pif(a)) = X, i = 1, 2.

Hence alph(pi(Y )) = X , i = 1, 2. Because fp1 is elementary alph(fp1(Y )) = Y
implying that alph(f(X)) = Y . Therefore

Y ⊆ alph(f(X)) ⊆ alph(fpif(a)) ⊆ alph(fpifpj(c))

for i, j ∈ {0, 1}. �
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4. Reduction to the sequence equivalence

The following two lemmas are the most essential step in the deduction of The-
orem 2 from Theorem 1.

Let a, X1 and Z be as in Lemma 6. If u ∈ aX∗
1ZX∗

1 , let α(u) be the longest
prefix of u belonging to aX∗

1Z.

Lemma 8. We continue with the notations and assumptions of Lemma 6. Suppose
|p1fp2(c)|Z = |p2fp1(c)|Z ≥ 1. If n is a positive integer and the words p1fp2g

n
1 (c)

and p2fp1g
n
2 (c) are comparable then

α(p1fp2g
n
1 (c)) = α(p2fp1g

n
2 (c)). (3)

Conversely, if (3) holds for all n ≥ 1, then ω(G1) = ω(G2).

Proof. Let n be a positive integer. Because |p1fp2(c)|Z = |p2fp1(c)|Z ≥ 1, the
words p1fp2g

n
1 (c) and p2fp1g

n
2 (c) belong to aX∗

1ZX∗
1 . By Lemma 6 we have

|p1fp2g
n
1 (c)|Z = |p1fp2(c)|Z + |gn

1 (c)|e
= |p1fp2(c)|Z + n|g1(c)|e
= |p2fp1(c)|Z + n|g2(c)|e
= |p2fp1(c)|Z + |gn

2 (c)|e
= |p2fp1g

n
2 (c)|Z . (4)

Assume then that the words p1fp2g
n
1 (c) and p2fp1g

n
2 (c) are comparable. By (4)

we have (3).
Conversely, assume that (3) holds for all n ≥ 1. Denote H1 = (X, p1fp2f, a) and

H2 = (X, p2fp1f, a). By (4) the languages L(H1) and L(H2) are infinite because
|g1(c)|e ≥ 1. Hence ω(H1) and ω(H2) exist. Equations (3) and (4) together
imply that ω(H1) and ω(H2) have arbitrarily long common prefixes. Therefore
ω(H1) = ω(H2). To prove that ω(G1) = ω(G2) assume ω(G1) and ω(G2) are
not equal and let w be the longest common prefix of ω(G1) and ω(G2). Then
h1(w) and h2(w) are not comparable. On the other hand, because w is also a
prefix of ω(H1) = ω(H2), the words p1fp2f(w) and p2fp1f(w) are comparable
and have prefixes h1(w) and h2(w), respectively. This contradiction proves that
ω(G1) = ω(G2). �

Lemma 9. We again continue with the notations and assumptions of Lemma 6
and suppose that |p1fp2(c)|Z = |p2fp1(c)|Z ≥ 1. Assume that the D0L systems
(X, p1fp2f, p1fp2(c)) and (X, p2fp1f, p2fp1(c)) are polynomially bounded. If (3)
holds for 1 ≤ n ≤ A(1 + card(X)) + 1 then (3) holds for all n ≥ 1.

Proof. The claim follows by Theorem 1 because the sequences obtained from

(α(p1fp2g
n
1 (c)))n≥1
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and
(α(p2fp1g

n
2 (c)))n≥1

by barring the last letter of every term are polynomially bounded D0L sequences
over an alphabet with at most 1 + card(X) letters. �

Next, we show that if we simplify polynomially bounded 1-systems satisfying the
growth condition then the resulting D0L systems are polynomially bounded, too.

Lemma 10. Suppose Gi = (X, hi, a), i = 1, 2, are 1-systems satisfying the growth
condition. Then there do not exist integers s ≥ 1, 1 ≤ j1, . . . , js ≤ 2 and a letter
x ∈ X such that (1) holds.

Proof. Suppose on the contrary that there exist integers s ≥ 1, 1 ≤ j1, . . . , js ≤ 2
and a letter x ∈ X such that (1) holds. Choose s, j1, . . . , js and x so that s
is as small as possible. By considering the derivation tree of hjs . . . hj1(x) it is
seen that there exist a nonnegative integer t, letters x0, . . . , xt ∈ X and pairs
(xt+1, xt+1), . . . , (xs, xs) ∈ X × X satisfying the following conditions:

(i) x0 = x and xs = xs = x;
(ii) hjγ+1(xγ) ∈ X∗xγ+1X

∗ for 0 ≤ γ ≤ s − 1;
(iii) hjγ+1(xγ) ∈ X∗xγ+1X

∗ for t + 1 ≤ γ ≤ s − 1;
(iv) hjt+1(xt) ∈ X∗xt+1X

∗xt+1X
∗.

By the minimality of s, no letter appears twice in the sequence x0, . . . , xt and no
pair appears twice in the sequence (xt+1, xt+1), . . . , (xs, xs). Furthermore, none of
(x1, x1), . . . , (xt, xt) appears among the pairs. But then

s ≤ card(X)2,

which is a contradiction because G1 and G2 satisfy the growth condition. �

Lemma 11. Suppose Gi = (X, hi, a), i = 1, 2, are 1-systems satisfying the growth
condition. Let (f, p1, p2) simplify the pair (h1, h2) and denote first(f(a)) = c. Then
the D0L systems (X, p1fp2f, x), (X, p2fp1f, x), (Y, fpi, c) and (Y, fp1fp2, c) for
x ∈ X, i = 1, 2, are polynomially bounded.

Proof. The claims follow by Lemma 10. �
Now we are ready to prove Theorem 2. For that purpose let m be a positive

integer and let Gi = (X, hi, a), i = 1, 2, be 1-systems such that card(X) ≤ m.
Assume that G1 and G2 satisfy the growth condition and that all words in the set

{hin . . . hi1(a) | 0 ≤ n ≤ ω(m), i1, . . . , in ∈ {1, 2}}

are comparable. To conclude the proof of Theorem 2 it suffices to show that
ω(G1) = ω(G2).

First, by Lemma 4 there is a triple (f, p1, p2) which simplifies the pair (h1, h2)
and has index k such that 2m ≤ k ≤ C(m). As before, denote first(f(a)) = c,
Y1 = Y − {c}, g1 = fp1fp2 and g2 = fp2fp1. By Lemma 11 the D0L systems
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(X, p1fp2f, x), (X, p2fp1f, x), (Y, fpi, c) and (Y, fp1fp2, c) for x ∈ X , i = 1, 2,
are polynomially bounded. Also, by Lemma 7, the D0L systems (Y, fpi, y) are
polynomially bounded for y ∈ Y , i = 1, 2. Further, by Lemmas 3 and 7 the
relations ≤fp1fp2 and ≤fpi , i = 1, 2, are partial orders on Y .

Now, let e ∈ Y1 be ≤fp1fp2 -minimal in Y1. Such a letter exists because ≤fp1fp2

is a partial order on a finite set. Then e is also ≤fpi-minimal in Y1 for i = 1, 2.
Indeed, if y ∈ Y1 and |fp1(y)|e ≥ 1 then |fp1fp2(y)|e ≥ |fp1(y)|e ≥ 1 because
|fp2(y)|y ≥ 1. Similarly, if y ∈ Y1 and |fp2(y)|e ≥ 1 we have |fp1fp2(y)|e ≥
|fp1(e)|e ≥ 1. In both cases, because e is ≤fp1fp2 -minimal in Y1, necessarily y = e
which proves that e is ≤fpi -minimal in Y1 for i = 1, 2.

Next, denote Z = {x ∈ X | |f(x)|e ≥ 1}. By Lemma 7 we have |p1fp2(c)|Z =
|p2fp1(c)|Z ≥ 1. Now we are in a position to apply Lemmas 8 and 9. By as-
sumption, the words p1fp2g

n
1 (c) and p2fp1g

n
2 (c) are comparable for 0 ≤ n ≤

A(m + 1) + 1. By Lemma 8 we have (3) for 1 ≤ n ≤ A(m + 1) + 1. By Lemma 9
we get (3) for all n ≥ 1. Then ω(G1) = ω(G2) by Lemma 8.
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