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ASYMPTOTIC BEHAVIOUR OF BI-INFINITE WORDS ∗

Wit Foryś1

Abstract. We present a description of asymptotic behaviour of lan-
guages of bi-infinite words obtained by iterating morphisms defined on
free monoids.
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1. Introduction

Having a morphism h : A∗ → A∗, and a word w ∈ A+ one can consider an
infinite iteration h on w. Depending on the word and the morphism there are,
in general, several possible results of the iteration. We are interested in the case
when the result of the iteration process is an infinite word.

The aim of our paper is to describe an asymptotic behaviour of languages of
bi-infinite words obtained by iterating morphisms defined on free monoids. The
problem was investigated recently by Narbel in [8, 9] but imposing on the consid-
ered morphisms the restriction that they are expansive. According to the sugges-
tions of Narbel in [9] we extend the considerations for morphisms not necessarily
expansive. The obtained results generalize those presented by Narbel in [9] and
give a description for both – expansive and non expansive cases. Our results are
in the close correspondence with those of Shallit and Wang [10]. However they
considered bi-infinite fixed points of morphisms.

Bi-infinite words are very essential in symbolic dynamics giving a description
of a motion in the past, future and at the present. Specified families of bi-infinite
words substitute subshifts – a symbolic counterparts of discrete dynamical sys-
tems. Among various types of subshifts there are subshifts generated by iterating
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a morphism – for example Thue-Morse subshift. This is the main motivation for
undertaking the research.

The investigations of asymptotic behaviour of bi-infinite words obtained by
iterating morphisms is strongly motivated also within the formal language theory.
We refere here to the papers [1–6,8–10].

The paper is organized as follows. In Section 2 some definitions and notions
are introduced. In particular we define a metric on bi-infinite words. Within this
framework asymptotic properties are studied. In Section 3 we recall some results
about iterations of morphisms. Section 4 contains particular results character-
izing asymptotic behaviour of bi-infinite words. The main result of the paper,
Theorem 5.1, is presented in Section 5.

2. Notations and definitions

Let A be any non-empty, finite set called an alphabet. We denote by A∗ the
free monoid generated by A and by A+ = A∗ \ {1} the free semigroup where 1 –
the empty word stands for identity. For any X ⊂ A the set of all letters from X
that occur in a word w ∈ A∗ is denoted by alphX w. A letter from X that occurs
in w as the first (counted from the left) is denoted by firstX w. We need also
sometimes the position of the first letter from X in w. Let firstX,Z w denote the
pair (a, i) where a = firstX w and is the i-th letter in the word w (counting starts
from 0). Dually we introduce lastX w as a letter from X that occurs in w as the
last and lastX,Z w as the counterpart of firstX,Z w.

We extend both of these introduced notations for right-infinite and left-infinite
words respectively. A word w ∈ A+ is primitive if there is no word v �= w such
that w ∈ v∗. Recall that two words v, w ∈ A+ are conjugates v ≈ w, if there exist
u1, u2 ∈ A∗ such that v = u1u2 and w = u2u1. The shift σ : (A∪1)Z → (A∪1)Z is
defined as a function by putting for any x ∈ (A ∪ 1)Z, k ∈ Z, σ(x)(k) = x(k + 1).
In a similar way we define σ−1 to fulfil the condition σ−1(x)(k) = x(k − 1). We
use in the sequel iterates of σ and σ−1 denoted by σn and σ−n (n-fold composition
of σ and σ−1 respectively).

Let Ω denote the set of all functions w : Z → A ∪ {1} such that if w(i) ∈ A
and w(j) ∈ A for i ≤ j ∈ Z then w(k) ∈ A for i ≤ k ≤ j and 0 ∈ supp w
where suppw = w−1(A). Any element of Ω is called a word. From the definition
it follows that supp w is a discrete interval for any word w. A restriction of a
word w to a discrete interval included in Z is called a factor of w and denoted by
w[i, j], w(−∞, i) etc. according to the form of the interval. Note that a factor is
not necessarily a word but is of course a partial function defined on Z. We say
that a word w ∈ Ω is factorized in factors u1, v, u2 and denote it by w = u1vu2 if
there exist k, l ∈ Z and k ≤ l such that

u1 = w(−∞, k], v = w(k, l], u2 = w(l, +∞).

The case k = l in the above definition means that the factorization is of the form
w = u1u2.
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Any factor x of a word w can be extended to a function defined on Z putting for
all integers outside the factor’s domain the value 1. Shifting the obtained function
by σk for a suitable k we obtain a word x ∈ Ω. Hence we say that the factor x
defines a word x (in fact an equivalence class). Again for simplicity we denote
a word defined by a factor x by the same symbol x. We will use in the sequel
properties of words defined by factors as properties of the factors.

In this framework one can consider any finite non-empty word w in A∗ as
a function such that suppw is a finite interval containing 0. In the case when
supp w = [0, | w | −1] we say that it is the normal form of a finite word w. In
a similar way right-infinite and left-infinite words w can be considered and their
normal forms introduced having supp w equal to [0, +∞) or (−∞, 0] respectively.
Hence we can consider Ω as the set of words – finite, one-sided infinite and bi-
infinite. For a word w ∈ Ω the value w(0) is called the origin of w.

Finally, for any w in Ω we introduce the notation σ∗(w) for the set σ∗(w) =
{σk(w) ∈ Ω : k ∈ Z} and extend it to any language L ⊂ A∗ as follows

σ∗(L) =
⋃

w∈L

σ∗(w).

We interpret all sequences in σ∗(w) as a symbolic description of the same dynamics.
They differ only in the point of the observation has started (the origin). From this
point of view it is obvious to identify all words in σ∗(w). More formally one can
consider the quotient space Ω/σ∗ where two bi-infinite words u, w are equivalent
if and only if σ∗(u) = σ∗(w). In this framework finite words and one-sided infinite
words are embedded into Ω/σ∗.

To avoid notational complications and to make all our results more readable we
use a phrase “a word w” in all cases where the position of the origin is unessential.
Hence in all these cases one can consider w as an equivalence class in Ω/σ∗. We
will use a phrase “equal modulo the origin” when we would like to stress the fact
that words are functions in Ω and they are in the same equivalence class. In all
cases when origins are essential (for example considering convergency) the origins
of words will be explicitly pointed out.

In the definitions of a metric that we introduce now the essential role is played
by the origin of considered words. Define the metric on Ω by putting for any
w �= v in Ω, d(w, v) = 2−(k+1) where k is the maximal nonnegative integer such
that w[−k, k] = v[−k, k] if k exists. In the opposite case put k = −1. In case
w = v put d(w, v) = 0. Note that for words w, v which have only the same origin
that is w(0) = v(0) we have d(w, v) = 1

2 ·
Let h : A∗ → A∗ be a morphism of a free monoid A∗. We will extend h to Ω

and then to Ω/σ∗. We will use in the sequel so called pointed words, that is, words
in Ω and unpointed words, that is, equivalence classes in Ω/σ∗. It enforces us to
define an extension of a morphism on Ω which fulfils morphism conditions and
transforms in some way the origin of a word.

Let a finite nonempty word w be in the normal form. Hence supp w = [0, k]
for some k ∈ N. For i = 0, ..., k w(i) is the only word in [w] ∈ Ω/σ∗ such that
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w(i) = σi ◦ w. It means that w(i) fixes the origin on the i-th letter of the finite
word w. For a bi-infinite word w = ...a−1aa1... for which w(0) = a let us fix i ∈ N

such that 0 ≤ i ≤| h(a) | −1. Define

h(i)(w) = h(i)(...a−1aa1...) = ...h(a−1)h(i)(a)h(a1)...

where h(i)(a) = h(a)(i). Hence h(i) fixes the origin on the i-th letter of the
word h(a) considered in the normal form.

Observe that the introduced definition of h(i) agrees with the definition of the
infinite iteration of h of Shallit and Wang [10]. Namely, let h(a) = w = vLavR

for some vL, vR ∈ A∗, a ∈ A and consider a word h(a) in the normal form. Let
| vLa |= i. In [10] an infinite iteration of h on the letter a, depending on i is defined
as the bi-infinite word having the following factorization

h∗,i(a) = ...h2(vL)h(vL)vLavRh(vR)h2(vR)...

and such that h∗,i(a)(−∞, 0] = ...h2(vL)h(vL)vLa.
The integer i fixes the origin in h∗,i(a) by pointing out the origin in the sub-

word vLavR.
It is easy to observe that in the introduced framework the sequence of finite

iterations of h(i)(a) denoted by hn,i(a) converges to h∗,i(a) if n grows to infin-
ity. Hence the infinite iteration of h in the above sense is denoted in the sequel
by h∗,i(a) for a suitable i and a letter a.

A bi-infinite word w is a fixed point of a morphism h if the words w and h(w)
are equal modulo the origin. We denote this fact by h(w) = w.

Our research is focused on the set of all finite iterations of a morphism on letters
from the alphabet. We consider these iterations as pointed words because we are
interested in the asymptotic behaviour of iterations. This set is denoted by Lh for
a fixed morphism h and is defined as

Lh =
⋃

n∈N,a∈A

[hn(a)]

where [hn(a)] denotes the equivalence class of a finite word hn(a). Equivalently
Lh = σ∗{hn(a) ∈ Ω : a ∈ A, n ∈ N} where hn(a) denotes the finite word hn(a) in
the normal form.

Considering the asymptotic behaviour of the set Lh we define the boundary set
of Lh denoted by ∂Lh as the set of all words w ∈ Lh \ Lh where Lh denotes the
closure of Lh in the metric space (Ω, d).
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In the sequel we use the following notations according to Head [5]:

M = {a ∈ A : ∃r ∈ N \ {0}, hr(a) = 1};
MR = {a ∈ A : ∃r ∈ N \ {0}, hr(a) ∈ M∗aM∗};
IMR = {a ∈ A \ MR : ∃r ∈ N \ {0}, hr(a) ∈ (MR ∪ M)+ \ M∗};

E = {a ∈ A : ∃r ∈ N \ {0}, hr(a) = wLawR, wLwR ∈ (A+ \ M∗)};
IE = {a ∈ A \ E : ∃r ∈ N \ 0}, hr(a) ∈ A∗EA∗}·

Letters in M are called mortal, in MR monorecursive and in E expansive. Letters
in IMR or IE lead to a monorecursive or expansive letter, respectively.

Note that for any letter a ∈ MR ∪ E there exists the smallest positive inte-
ger N(a) such that hN(a)(a) ∈ A∗aA∗.

We will illustrate the introduced notions, as well as the obtained in the sequel
results considering all along the paper a morphism h defined below.

Example 2.1. Let A = {a, b, c, d, e, a′, b′, c′} be an alphabet. Let h be defined as
follows

a → be a′ → eb′

b → ae b′ → ea′

c → aea′ c′ → a′ea
d → aea e → e.

We have: M = ∅, MR = {e}, IMR = ∅, E = {a, b, a′, b′}, IE = {c, c′, d}. If for the
use of this example only we add to the alphabet A two letters f, g and extend the
morphism h putting h(f) = eg and h(g) = 1 then M = {g} and IMR = {f}·

A word w ∈ ∂Lh is said to be a pasted word (of left-infinite and right-infinite
words), if there exist

(i) vL ∈ ∂Lh left-infinite, vR ∈ ∂Lh right-infinite,
(ii) a finite word m ∈ (M ∪ MR)∗ such that w = vLmvR modulo the origin.

Let δLh denote the set of all words w ∈ ∂Lh which are the pasted words or left
or right infinite words. The set δLh was characterized in [9] by Narbel assuming
that the considered morphisms are expansive. Just from the definition the set of
pasted words δLh is included into the boundary set ∂Lh. Presented below example
shows that, in general, it is a strict inclusion. Words of ∂Lh that remain outside
the set δLh are the subject of consideration in Matyja [7].

Example 2.2. Add a letter f to the alphabet A and extend again for the use of
this example only the morphism h putting h(f) = efe. Now we have ωefeω ∈ ∂Lh

and eω ∈ ∂Lh as the limit of the sequence h2n(a′) = e2na′ for n ∈ N. Similarly
ωe ∈ ∂Lh. However ωefeω /∈ δLh as f ∈ E.

The aim of the paper is to establish a description and properties of the words
in δLh by means of the iterations of the morphism h and fixed point property.
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3. Preliminary results

In this section we recall some basic facts about morphism iteration and words
which are obtained during this operation. We start with two lemmas which sum-
marize some results within combinatorics on words obtained by Head [4], Head
and Lando [5] and Foryś and Head [2]. The proofs are omitted and any inter-
ested reader is requested to consult the references. This part presents results of
finite words only. One can consider the words as equivalence classes or as finite
sequences of letters (normal forms). In the same manner morphism iterations can
be considered.

Lemma 3.1 [4, 5]. The sets M, MR, IMR , E, IE , are pairwise disjoint and
effectively constructable.

Let us denote MF = M ∪ MR ∪ IMR for a fixed morphism h : A∗ → A∗.
For any a ∈ E there exists the smallest integer ra such that the condition (i)
hra(a) ∈ (M+

F \ M∗)aA∗ is fulfiled.
Hence we obtain a partition of E. Any block in this partition, denoted by Rr

M

consists of all letters a ∈ E that have the same common minimal exponent r for
the condition (i). During the iteration of h if a letter a ∈ Rr

M occurs as the first
letter from E on some stage of the iteration process then after every r iterations
the configuration repeats. We define in the same manner and for the same reasons
subsequent partitions of E changing the condition (i) respectively to:

(ii) hra(a) ∈ M∗a(A+ \ M∗);
(iii) hra(a) ∈ A∗a(M+

F \ M∗);
(iv) hra(a) ∈ (A+ \ M∗)aM∗.

The blocks of the defined partitions are denoted by Rr, Lr
M and Lr respectively.

Taking into account only non-empty of the introduced above sets we define

Ir
RM

= {a ∈ (E ∪ IE) \ Rr
M : ∃s ∈ N, hs(a) ∈ M∗

F Rr
MA∗},

Ir
R = {a ∈ (E ∪ IE) \ Rr : ∃s ∈ N, hs(a) ∈ M∗

F RrA∗},
Ir
LM

= {a ∈ (E ∪ IE) \ Lr
M : ∃s ∈ N, hs(a) ∈ A∗Lr

MM∗
F },

Ir
L = {a ∈ (E ∪ IE) \ Lr : ∃s ∈ N, hs(a) ∈ A∗LrM∗

F}·

Letters in Ir
RM

are exactly those which are outside Rr
M but lead to a letter in RM .

Iterating h on a letter from Ir
RM

we obtain after s iterations a letter a ∈ Rr
M – the

first letter from E that occurs in this iteration. And after every r iterations of h
the configuration repeats. The similar meaning is for Ir

R, Ir
LM

and Ir
L.

Example 3.2. Continuing considerations of the morphism h defined in Exam-
ple 2.1 we have MF = {e}. For r = 2 we obtain L2

M = R2 = {a, b}, R2
M = L2 =

{a′, b′} and finally I2
RM

= {c′}, I2
R = {c, d}, I2

LM
= {c′, d}, I2

L = {c}·
Lemma 3.3 [5]. The defined sets Rr

M , Ir
RM

, Rr, Ir
R, Lr

M , Ir
LM

, Lr, Ir
L, are

effectively constructable for any r ∈ [1, �A]. If r > �A then all the sets are empty.



ASYMPTOTIC BEHAVIOUR OF BI-INFINITE WORDS 33

For a word w ∈ M∗
F we have h�A(w) ∈ (M∪MR)∗ and there are two possibilities:

1. alphMR(h�A(w)) �= ∅. Thus alphMR(h�A(w)) = {a1, ..., ap} and for every
i ∈ {1, ..., p} there exists a least integer ri ∈ [1, �A] such that hri(ai) ∈
M∗aiM

∗. In this case we denote l.m.(w) = l.c.m.{r1, ..., rp} and call this
number the least common multiple of the word w ;

2. alphMR(h�A(w)) = ∅. In this case we put l.m.(w) = 1.

For the sake of completeness we recall some properties of finite iterates of mor-
phisms.

Lemma 3.4 [5]. Let v ∈ M+
F \M∗, K = l.m.(v) and P = 2(�A)K. The following

statements are true:
(i) hP+i(v) = hP+nK+i(v) for any n ∈ N and i ∈ [0, K − 1];
(ii) hP+i(v) �= hP+nK+j(v) for i, j ∈ [0, K − 1] and i �= j.

The above properties are true for S = �A + (�A)K in the place of P .

Lemma 3.5 [5]. For a ∈ Rra , b ∈ Lrb let us denote Pa = �Ara, Pb = �Arb. The
following statements are true:

(i) hPa+ira(a) is a prefix of hPa+(i+1)ra(a), for any i ∈ N;
(ii) hPb+irb(b) is a suffix of hPb+(i+1)rb(b), for any i ∈ N.

The above properties are true for Sa = �Mra, Sb = �Mrb in the place of Pa, Pb,
respectively.

4. Some results characterizing δLh

If a ∈ Ir
R ∪ Rr then there exists the smallest integer sa ∈ [0, �A] such that

hsa(a) ∈ waRrA∗, wa ∈ M∗
F . In the following lemma the symbol Na is used to

denote l.c.m.(r, l.m.(wa)).

Lemma 4.1. Let a ∈ Ir
R ∪ Rr. For an arbitrary (but fixed) n ∈ N we denote

w = hn+3(�A)Na(a) and (c, i) = firstE,Z(w). Let j ∈ N point out the (first) position
of c in hNa(c).

The following statements are true:
(i) (hNa)∗,j(w(i)) is in δLh and so [(hNa)∗,j(w(i))] is in δLh/σ∗;
(ii) among all the possible words w defined in the above manner for n ∈ N

there exist exactly Na nonequivalent words and they are given by n ∈
[0, Na − 1]. Hence there exist exactly Na mutually different equivalence
classes in δLh/σ∗ generated by these words.

Proof. According to the assumptions hsa(a) ∈ waa1A
∗ where a1 ∈ Rr. Hence

denoting ta = �ANa + n− sa we have w ∈ hta+2�ANa(wa) · hta+2�ANa(a1)A∗. Now
from Lemma 3.4 we obtain the equality

hNa
(
hta+2�ANa(wa)

)
= hta+2�ANa(wa).
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Lemma 3.5 implies that for any p ∈ N the word hpNa(hta+2�ANa(a1)) is a prefix of
h(p+1)Na(hta+2�ANa(a1)). Thus c, the origin of w and the first letter from E which
occurs in w, is also the first letter from E in hpNa(hta+2�ANa(a1)) and also the
first letter from Rr in w. This implies that w ∈ hta+2�ANa(wa)hta+2�ANa(a1)A∗ is
also in Lh.

Observe that for any p ∈ N the word hpNa(hta+2�ANa(wa) · hta+2�ANa(a1))
is a prefix of h(p+1)Na(hta+2�ANa(wa) · hta+2�ANa(a1)) and the word hpNa(w) ∈
hta+2�ANa(wa)hpNa(hta+2�ANa(a1))A∗ is also in Lh. This implies that there exists
a limit word (hNa)∗,j(w(i)) which is right-infinite and it is in δLh. Directly from
the definition of Na it follows that it is the smallest positive integer such that
hNa((hNa)∗,j(w(i))) = (hNa)∗,j(w(i)). This means that among all the possible
words w defined in the above manner for n ∈ N there exist exactly Na nonequiv-
alent words and they are given by n ∈ [0, Na − 1]. �

Corollary 4.2. For a, b ∈ Ir
R ∪ Rr, n ∈ N we denote wa

n = hn+3(�A)Na(a) and
wb

n = hn+3(�A)Nb(b). The counterpart of wa ∈ M∗
F for b is denoted by wb.

The following three conditions are equivalent:
(i) there exists k ∈ [0, Nb − 1] such that hn+3(�A)Na−sa(wa)=hn+3(�A)Nb−sb+k

(wb) and firstE(hn+3(�A)Na(a)) = firstE(hn+3(�A)Nb+k(b));
(ii) the intersection of the sets {(hNa)∗,(in)(wa

n))}n∈[0,Na−1] and {(hNb)∗,(jn)

(wb
n))}n∈[0,Nb−1] is not empty;

(iii) the sets {[(hNa)∗,(in)(wa
n))]}n∈[0,Na−1], {[(hNb)∗,(jn)(wb

n))]}n∈[0,Nb−1]

coincide.

Proof. Assuming (i) observe that for a fixed n there exists k ∈ [0, Nb − 1] such
that hn+3�ANa−sa(wa) = hn+3�ANb−sb+k(wb) and

firstE

(
hn+3�ANa(a)

)
= firstE

(
hn+3�ANb+k(b)

)
.

Analogously as in the proof of the above lemma we conclude that for any q ∈ N

firstE

(
hn+3�ANa(a)

)
= firstE

(
hqNa(hn−sa+3�ANa(a1))

)

= firstE

(
hn+3�ANb+k(b)

)
.

Additionally

hn+3�ANa(a), hn+3�ANb+k(b) ∈ hta+2�ANa(wa) · hta+2�ANa(a1)A∗.

Thus (
hNb

)∗ (
hn+3�ANb+k(b)

) ∈
{(

hNa
)∗,(in)

(wa
n))

}
n∈N

.

Finally according to the above lemma

(
hNb

)∗ (
hn+3�ANb+k(b)

) ∈
{(

hNb
)∗,(jn) (

wb
n)

)}
n∈N

.
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The implication in the opposite direction is easy to prove. The equivalence of the
conditions (ii) and (iii) is obvious. �
Observation 4.3. The symmetric results for Lemma 4.1 and Corollary 4.2 are
true for a, b ∈ Ir

L ∪ Lr.

Notice that the symmetry mentioned above and in the sequel includes also the
exchange of firstE,Z(w) by lastE,Z(w).

Example 4.4. From Example 3.2 follows that a ∈ I2
R ∪R2. We have Na = 2 and

for n = 0, 1 there are two words w = h0+3·8·2(a) = ae48 and w = h1+3·8·2(a) = be49

for which firstE,Z(w) = (a, 0) and firstE,Z(w) = (b, 0) respectively and j = 0
points out the first position of a in h2(a) and the first position of b in h2(b).
Lemma 4.1 implies that (h2)∗,0(w(0)) = aeω and (h2)∗,0(w(0)) = beω are in δLh.
Observation 4.3 implies that also ωea′ and ωeb′ are in δLh.

If a ∈ Ira

RM
∪ Rra

M then there exists the smallest integer sa ∈ [0, �A] such that
hsa(a) ∈ waRra

MA∗, where wa ∈ M∗
F . Hence for some va ∈ M+

F \ M∗we obtain
hsa+ra(a) ∈ hra(wa)vaRra

MA∗. In the lemma presented now the following notation
is used: Ma = l.m.(wava), Na = l.c.m.(ra, Ma), Ka = l.m.(va).

Lemma 4.5. Let a ∈ Ira

RM
∪ Rra

M . For an arbitrary (but fixed) n ∈ N we denote
w = hn+3(�A)Na(a) and (c, i) = firstMR,Z(w). Let j ∈ N point out the (first)
position of c in hNa(c).

1. The following statements are true
(i) (hNa)∗,j(w(i)) is in δLh;
(ii) among all the possible words w defined in the above manner for n ∈

N there exist exactly Ma nonequivalent words and they are given by
n ∈ [0, Ma − 1]. Hence there exist exactly Ma mutually different
equivalence classes in δLh/σ∗ generated by these words.

2. Let a ∈ Ira

RM
∪Rra

M , b ∈ Irb

RM
∪Rrb

M and w, v denote words obtained for a, b
respectively (in the manner as w for a in the above). It is decidable,
whether or not the words (hNa)∗,j(w(i)) and (hNb)∗,l(v(k)) are equivalent.

Proof. The fact that a ∈ Ira

RM
∪ Rra

M implies that there exists the smallest integer
sa ∈ [0, �A] such that hsa(a) ∈ waa1A

∗, a1 ∈ Rra

M , wa ∈ M∗
F . Hence hsa+ra(a) ∈

hra(wa)vaa1A
∗, and va ∈ M+

F \ M∗. By the definition of Rra

M it follows that

hsa+ra(a) ∈ hra(wa)vaa1A
∗ = hra(wa)hra−1(u0)hra−2(u1)...h0(ura−1)a1A

∗

and if i ∈ [0, ra − 1] then

hi+1(a1) ∈ hi(u0)hi−1(u1) · ... · h0(ui)Rra

MA∗,

where ui ∈ M∗
F .

Observe that because va ∈ M+
F \ M∗ there exists ui such that ui ∈ M+

F \ M∗.
Let Ka = l.m.(va). There exist numbers k, l ∈ N such that Na = kra = lKa. From
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the above we derive that

hsa+kra(a) ∈
hNa(wa) · h(k−1)ra+ra−1(u0)...h(k−1)ra+0(ura−1) · ... · hra−1(u0)...h0(ura−1)a1A

∗,

hsa+lKa(a) ∈ hNa(wa)h(l−1)Ka+Ka−1(u0)...h0(ura−1) · a1A
∗.

Now denoting

y = h(k−1)ra+ra−1(u0)...h(k−1)ra+0(ura−1) · ... · hra−1(u0)...h0(ura−1)

we have for any p ∈ N

hsa+pNa(a) ∈ hpNa(wa)h(p−1)Na(y)h(p−2)Na(y)...h0(y)a1A
∗.

Let us denote by ta = (�A)Na + n− sa (n fixed). Thus for p large enough we have

hn+pNa(a) = hsa+(p−(�A))Na+(�ANa+n−sa)(a)

= hsa+(p−(�A))Na+ta(a) ∈ h(p−�A)Na+ta(wa)h(p−�A−1)Na+ta(y)·
· h(p−�A−2)Na+ta(y)...hta(y) · hta−1(u0)...h0(ut)Rra

MA∗

for some t ∈ [0, ra − 1].
From the assumptions it follows that

h(3�A−�A)Na+ta(wa)h(3�A−�A−1)Na+ta(y) ∈ (MR ∪ M)+ \ M∗,

and the word (h(3�A−�A)Na+ta(wa)h(3�A−�A−1)Na+ta(y)) is a prefix of w. Hence
iterating hNa on w(i) we obtain for q = 1, 2...

(
hNa

)q,j
(
w(i)

)
∈ h(q+3�A−�A)Na+ta(wa)h(q+3�A−�A−1)Na+ta(y)·

· h(q+3�A−�A−2)Na+ta(y)...hta(y)hta−1(u0)...h0(ut)Rra

MA∗.

If q ≥ i, then Lemma 3.4 implies that

h(q+3�A−#A−i)Na+ta(y) = h2�ANa+ta(y) ∈ u+

where u ∈ A∗ is a primitive word. Moreover it follows again from Lemma 3.4 that

h(q+3�A−�A)Na+ta(wa) = h2�ANa+ta(wa)

and there exists a word x ∈ A∗ of minimal length such that h2(�A)Na+ta(wa) ∈ xu∗.
Hence there exist the limit word (hNa)∗,j(w(i)) ∈ xu...u... This word is right-
infinite and it is in δLh and so its equivalence class is in δLh/σ∗.



ASYMPTOTIC BEHAVIOUR OF BI-INFINITE WORDS 37

Observe that (Lem. 3.4) hMa(h2(�A)Na+ta(y) = h2(�A)Na+ta(y) which implies
that hMa(u) = u where Ma is the smallest integer such that hMa(xu) = xu.
Taking into account the fact that no letters from E ∪ IE occur in xu we conclude
that Ma is the smallest integer such that hMa,j((hNa)∗,j(w(i))) = (hNa)∗,j(w(i))
which implies finally that among all the possible words w defined in the above
manner for n ∈ N there exist exactly Ma nonequivalent words and they are given
by n ∈ [0, Ma − 1].

Now let us consider two words:

(
hNa

)∗,j
(
w(i)

)
=

(
hNa

)∗,j
(
hna+3(�A)Na(a)(i)

)
= xauω

a

and (
hNb

)∗,l
(
v(k)

)
=

(
hNb

)∗,l
(
hnb+3(�A)Nb(b)(k)

)
= xbu

ω
b .

There are two possible cases:
(1) if ua and ub are not conjugate words then (hNa)∗,j(w(i)) and (hNb)∗,l(v(k))

are not equivalent also;
(2) if ua ≈ ub then there exists a word uR such that uRua is a prefix of ubub.

There exists a word yb of minimal length and such that xbuR ∈ybu
∗
a. Thus

(hNa)∗,j(w)(i)) = (hNb)∗,l(v)(k)) if and only if xa = yb .

Hence in the both cases the equivalency of the considered words is decidable. �

Corollary 4.6. For a ∈ Ira

RM
∪ Rra

M , b ∈ Irb

RM
∪ Rrb

M and n, m ∈ N we denote
wn = hn+3(�A)Na(a) and vm = hm+3(�A)Nb(b). The following two conditions are
equivalent:

(i) the intersection of the sets {(hNa)∗,j(wn)}n∈[0,Ma−1], and {(hNb)∗,l

(vm)}m∈[0,Mb−1] is not empty;
(ii) the sets {[(hNa)∗,j(wn)]}n∈[0,Ma−1] and {[(hNb)∗,j(vm)]}m∈[0,Mb−1] coin-

cide and Ma = Mb.

Proof. Assuming (i) we have equality hNa,j(wn) = hNb,l(vm) = xauω
a . Arguing

in the similar way as in the above lemma we find the smallest integers Ma, Mb

such that hMa(xaua) = xaua and hMb(xaua) = xaua. Lemma 3.3 implies that
Ma = Mb. The result 1 in the above lemma finishes the proof of the implication
(i) ⇒ (ii). The implication in the opposite direction is obvious. �

Observation 4.7. The symmetric results for Lemma 4.5 and Corollary 4.6 are
true for a ∈ Ira

LM
∪ Lra

M .

Example 4.8. From Example 3.2 follows that a′ ∈ I2
RM

∪R2
M . We have Na′ = 2,

Ma′ = 1 and for n = 0 there is a word w = h0+3·8·2(a′) = e48a′ for which
firstMR,Z(w) = (e, 0) and j = 0 points out the first position of e in h2(e). Lemma 4.5
implies that (h2)∗,0(w(0)) = eeω is in δLh. Observation 4.7 implies that also ωee
is in δLh.
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From Lemmas 3.1 and 3.3 it follows that the set LMRM = {aub ∈ A∗ : ∃c ∈
E ∪ IE , h(c) ∈ A∗aubA∗, a ∈ Ira

LM
∪ Lra

M , b ∈ Irb

RM
∪ Rrb

M , u ∈ M∗
F } is finite and

effectively constructable.
Now let us consider aub ∈ LMRM , where a, b ∈ A. One can find the small-

est integers sa, sb ∈ [0, �A] such that hsa(a) ∈ A∗Lra

Mwa and hsb(b) ∈ wbR
rb

MA∗

where wa, wb ∈ M∗
F . Hence hsa+ra(a) ∈ A∗Lra

Mvahra(wa) and hsb+rb(b) ∈
hrb(wb)vbR

rb

MA∗, where va, vb ∈ M+
F \ M∗.

We use in the sequel the following notations.

Ka = l.m.(va), Kb = l.m.(vb), Mab = l.c.m.(Ka, l.m.(wauwb), Kb),

and Nab = l.c.m.(ra, rb, Mab).

Thus for any n ∈ [0, Nab − 1] we have hn+3(�A)Nab(aub) ∈ A∗Lra

MmRrb

MA∗, where
m ∈ M+

F \ M∗.

Lemma 4.9. Let aub ∈ LMRM . For an arbitrary (but fixed) n ∈ N we denote
w = hn+3(�A)Nab(aub) and (c, i) = firstMR,Z(hn+3(�A)Nab(b)). Let k ∈ N point out
the (first) position of the letter c in w, that is, k =| hn+3(�A)Nab(au) | +i. Finally
let j ∈ N point out the first position of the letter c in hNab(c).
1. The following statements are true:

(i) (hNab)∗,j(w(k)) is in δLh;
(ii) it is decidable, whether or not a word obtained in (i) is periodic;
(iii) if for some n ∈ [0, Mab − 1] the word (hNab)∗,j(w(k)) is not periodic then

among all the possible words (hNab)∗,j(w(k)) defined in the above manner
for n ∈ N there exist exactly Mab nonequivalent words and they are given
by n ∈ [0, Mab − 1]. Hence there exist exactly Mab mutually different
equivalence classes in δLh/σ∗ generated by these words.

2. For aub, dve ∈ LMRM denote w = hn+3(�A)Nab(aub) and v = hm+3(�A)Nde(dve).
It is decidable, whether or not two words (hNab)∗,j(w(k)) and (hNde)∗,p(v(r)) are
equivalent. Hence it is decidable, whether or not two equivalence classes
[(hNab)∗,j(w(k))] and [(hNde)∗,p(v(r))] coincide.

Proof. We apply to the letters a, b the argumentation from Lemma 4.5 and come
to the following conclusions.

If p is large enough then denoting

y = h(iab−1)rb+rb−1(v0)...h(iab−1)rb+0(vrb−1) · ... · hrb−1(v0)...h0(vrb−1)

we have for some t ∈ [0, rb − 1].

hn+pNab(b) = hsb+(k−#A)Nab+(#ANab+n−sb)(b)

= hsb+(k−#A)Nab+tb(b) ∈ h(k−Q)N1+tb(wb)h(k−Q−1)N1+tb(y)·
· h(k−Q−2)N1+tb(y)...h0+tb(y) · ... · htb−1(v0)...h0(vt)Rrb

MA∗.
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If q is large enough then denoting

z = h0(ura−1)...hra−1(u0) · ... · h(jab−1)ra+0(ura−1)...h(jab−1)ra+ra−1(u0)

we have for some s ∈ [0, rb − 1]

hn+qNab(a) ∈ A∗Lra

Mh0(us)...h0+ta−1(u0)hta(z) · ... · h(k−�A−2)Nab+ta(z)·
· h(k−�A−1)Nab+ta(z)h(k−�A)Nab+ta(wa).

Applying again the argumentation from Lemma 4.5 we obtain two primitive words
ub, ua and words xb, xa of the minimal length such that h2�AN1+tb(wb) ∈ xbu

∗
b and

h2�AN1+ta(wa) ∈ u∗
axa. The equality hn+(j+3�A)N1(u) = hn+3�AN1(u) (Lem. 3.4)

finally leads to the conclusion that there exist the limit word (hNab)∗,j(w(k)). There
exists f ∈ E∪IE such that h(f) = uLaubuR where uL, uR ∈ A∗. This means that
there exists the limit word

lim
α→∞

(
hNab

)α,j
(
hn+3(�A)Nab(uL)

(
w(k)

)
hn+3(�A)Nab(uR)

)
∈ ωuaxayuxbubu

ω
b

and these two limits are equal. Hence (hNab)∗,j(w(k)) is bi-infinite and it is in
∂Lh. It can be factorized in the form (hNab)∗,j(w(k)) = vLhn+3(�A)Nab(u)xbubu

ω
b .

The words vL and xbubu
ω
b are left and right-infinite and according to the previous

lemma are in δLh and so is (hNab)∗,j(w(k)).
The fact that among all the possible words w defined in the above manner

for n ∈ N there exist exactly Mab nonequivalent words and they are given by
n ∈ [0, Ma − 1] can be proved in a similar way as in Lemma 4.5.

For the word (hNab)∗,j(w(k)) let us consider two possible cases:

(1) if ua �≈ ub (not conjugates) then (hNab)∗,j(w(k)) is not a periodic word;
(2) if ua ≈ ub then there exists a word zL such that ubzL is a suffix of uaua.

Thus (hNab)∗,j(w(k)) is periodic if and only if zLxayuxb ∈ u∗
b .

From the above considerations and Lemma 3.4 we conclude that it is decid-
able whether or not the word (hNab)∗,j(w(k)) is periodic, which proves (ii). If
(hNab)∗,j(w(k)) is not a periodic word then from (ii) and Lemma 3.4 there exist no
numbers n1, n2 ∈ [0, Mab−1], n1 �= n2 such that (hNab)∗,j(hn1+3(�A)Nab)(k)(aub) ∈
[(hNab)∗,j(hn2+3(�A)Nab)(k)(aub)] which proves (iii).

It remains to prove 2. It is decidable whether or not two equivalence classes of
words: (hNab)∗,j(w(k)) ∈ ωuaxayuxbubu

ω
b and (hNde)∗,p(v(r)) ∈ ωucxcyvxdudu

ω
d

are equal. Namely:
(1) if ua �≈ uc or ub �≈ ud then the equality does not hold;
(2) if ua and uc are equivalent or ub and ud are equivalent and the words

(hNab)∗,j(w(k)) and (hNde)∗,p(v(r)) are periodic, then the two equivalence
classes are equal;

(3) if ua, uc are equivalent and ub, ud are equivalent then there exist words
uL, uR such that uauL is a suffix of ucuc and uRub is a prefix of udud. Hence
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(hNde)∗,p(v(r)) ∈ ωuauLxcyvxduRuω
b and there exist words xR, yR of the

minimal length such that xayuxb ∈ xRu∗
b and uLxcyvxduR ∈ yRu∗

b . There
exist also xL, yL of the minimal length such that xR ∈ u∗

axL and yR ∈
u∗

ayL. Now taking into account that in the considered case at least one of
the words (hNab)∗,j(w(k)), (hNde)∗,p(v(r)) is not periodic we conclude that
the equivalence classes are equal if and only if xL = yL. This completes
the proof of the lemma. �

Example 4.10. We have LMRM = {aea′}, Maa′ = 1, Naa′ = 2. For n = 0 there
is a word w = h0+3·8·2(aea′) = ae48ee48a′ for which firstMR,Z(h48(a′)) = (e, 0),
k = 50 and j = 0 points out the first position of e in h2(e). Lemma 4.9 implies
that (h2)∗,0(w(50)) = ωeeeω is in δLh.

Let us introduce two sets

LMR = {aub ∈ A∗ : ∃c ∈ E ∪ IE , h(c) ∈ A∗aubA∗,

a ∈ Ira

LM
∪ Lra

M , b ∈ Irb

R ∪ Rrb , u ∈ M∗
F },

LRM = {aub ∈ A∗ : ∃c ∈ E ∪ IE , h(c) ∈ A∗aubA∗,

a ∈ Ira

L ∪ Lra , b ∈ Irb

RM
∪ Rrb

M , u ∈ M∗
F}·

From Lemmas 3.1 and 3.3 these sets are finite and effectively constructable.
Now let aub ∈ LMR, a, b ∈ A. There exists f ∈ E ∪ IE , such that h(f) ∈
A∗aubA∗, u ∈ M∗

F . One can find the smallest integers sa, sb ∈ [0, �A] such that
hsa(a) ∈ A∗Lra

Mwa, hsb(b) ∈ wbR
rbA∗, where wa, wb ∈ M∗

F . Moreover hsa+ra(a) ∈
A∗Lra

Mvahra(wa) where va ∈ M+
F \ M∗.

Let Mab = l.c.m.(l.m.(vawauwb), rb), Nab = l.c.m.(ra, Mab). Hence for any
n ∈ [0, Nab − 1] it holds hn+3(�A)Nab(aub) ∈ A∗Lra

MmRrbA∗, where m ∈ M+
F \M∗.

Lemma 4.11. Let aub ∈ LMR. For arbitrary (but fixed) n ∈ N we denote w =
hn+3(�A)Nab(aub) and (c, i) = firstE,Z(hn+3(�A)Nab(b)). Let k ∈ N point out the
position of the letter c in w, that is, k =| hn+3(�A)Nab(au) | +i. Finally let j ∈ N

point out the first position of the letter c in hNab(c).
1. The following statements are true

(i) (hNab)∗,j(w(k)) is in δLh;
(ii) among all the possible words w defined in the above manner for n ∈ N

there exist exactly Mab nonequivalent words and they are given by n ∈
[0, Mab − 1]. Hence there exist exactly Mab mutually different equivalence
classes in δLh/σ∗ generated by these words.

2. For aub, dve ∈ LMR denote w = hn+3(�A)Nab(aub) and v = hm+3(�A)Nde(dve).
It is decidable, whether or not two words (hNab)∗,j(w(k)) and (hNde)∗,p(v(r)) are
equivalent. Hence it is decidable, whether or not two equivalence classes
[(hNab)∗,j(w(k))] and [(hNde)∗,p(v(r))] coincide.

Proof. Denote by ta = (�A)Nab+n−sa, tb = (�A)Nab+n−sb for a fixed n. By the
definition of Nab there exists a number jab ∈ N such that Nab = jabra. It is clear
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that hsa(a) ∈ A∗a1wa, a1 ∈ Lra

M , hsb(b) ∈ wbb1A
∗, b1 ∈ Rrb and if i ∈ [0, ra − 1]

then hi+1(a1) ∈ A∗Lra

Mh0(ui)h1(ui−1) · ... · hi−1(u1)hi(u0), where ui ∈ M∗
F .

The fact that va ∈ M+
F \ M∗ implies that there exists j ∈ [0, ra − 1] such that

uj ∈ M+
F \ M∗.

Now let y = h0(ura−1) · ... · h(jab−1)ra+ra−1(u0), where ui ∈ M∗
F . Thus for p

large enough

hn+pNab(a) ∈ A∗Lra

Mh0(ul)...h0+ta−1(u0)hta(y) · ... · h(p−(�A)−2)Nab+ta(y)·
· h(p−(�A)−1)Nab+ta(y)h(p−(�A))Nab+ta(wa).

Hence for g ∈ N

(
hNab

)g,j
(
w(k)

)
∈ A∗Lra

Mh0(ul)...h0+ta−1(u0)·
· hta(y) · ... · h(g+3(#A)−(�A)−2)Nab+ta(y)h(g+3(#A)−(�A)−1)Nab+ta(y)·
· h(g+3(#A)−(�A))Nab+ta(wa)...hn+(g+3(#A)Nab(u)h(g+2(#A))Nab+tb(wb)·

·
(
hn+3(�A)Nab(b)

)(i)

A∗.

Note that according to Lemma 3.4 it holds for g ≥ i

h(g+3(�A)−(�A)−i)Nab+ta(y) = h2(�A)Nab+ta(y) ∈ u+

where u is a primitive word.
Denoting

z = hta+2(�A)Nab(wa)hn+3(�A)Nab(u)htb+2(�A)Nab(wb).

Lemma 3.4 implies that

h(g+3(�A)−(�A))Nab+ta(wa)hn+(g+3(�A))Nab(u)h(g+2(�A))Nab+tb(wb) = z.

Hence the sequence (hNab)g,j(w(k)) converges to (hNab)∗,j(w(k)) when g → ∞.
As mentioned in the above there exists f ∈ E ∪ IE , such that h(f) ∈ uLaubuR,

u ∈ M∗
F , uL, uR ∈ A∗. This implies that from the sequence of equivalence classes

{(hNab)g(hn+Nab(uL)hn+Nab(aub)hn+Nab(uR))} g∈N one can choose the sequence
of words with origins c and all the words from the sequence are in Lh. We have

lim
g→∞(hNab)g,j(w(k)) =ω uz(hNab)∗,j(htb+2(�A)Nab(b1)(i)).

The limit word is bi-infinite and is in ∂Lh. Now observe that

ωuz(hNab)∗,j(htb+2(�A)Nab(b1)(i)) = vLmCvR
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where

mC = hn+3(�A)Nab(u) ∈ (M ∪ MR)∗

and

vL and vR = htb+2(�A)Nab(wb)(hNab)∗,j(htb+2(�A)Nab(b1)(i))

are left-infinite and right-infinite words. According to Lemmas 4.1 and 4.5 these
words are in δLh. It implies finally that (hNab)∗,j(w(k)) is a pasted word, an element
of δLh.

Taking into account that for every n ∈ N any of the words in (i) is of the form
ωuz(hNab)∗,j(htb+2(�A)Nab(b1)(i)) and that alphE∪IE(uz) = ∅ the justification of
(ii) follows.

For the proof of the statement 2 consider two words: w = hn+3(�A)Nab(aub)
and v = hm+3(�A)Nde(dve). As above there exist ua, za, vd, zd such that w =
ωuaza(hNab)∗,j(htb+2(�A)Nab(b1)(i)) and v = ωudzd(hNde)∗,p(hte+2(�A)Nde(e1)(r)).

If w and v are equal then ua and ud have to be equal. If the last equality is
true then there exists a word uL such that uauL is a suffix of udud. There exists
also a word yR such that the length of yR is minimal and uLzd ∈ u∗

ayR. From
Lemmas 3.3, 3.4 and properties of primitive words it follows that w = v if and
only if zR = yR and first (htb+2(�A)Nab(b1)) = first (hte+2(�A)Nde(e1). Hence the
decidability stated in 2 is proved. �

Observation 4.12. The symmetric results for Lemma 4.11 hold for aub ∈ LRM .

Example 4.13. We have LMR = {aea}, Maa = 2, Naa = 2. For n = 0, 1 there
are two words w = h0+3·8·2(aea) = ae48eae48 and w = h1+3·8·2(a) = be49ebe49 for
which firstE,Z(h48(a)) = (a, 0), k = 50 and j = 0 points out the first position of a in
h2(a) and b in h2(b) respectively. Lemma 4.11 implies that (h2)∗,0(w(50)) = ωeaeω

and (h2)∗,0(w(50)) = ωebeω are in δLh.

The following two lemmas are from the paper Matyja [7]

Lemma 4.14 [7]. Let a ∈ Rr and w ∈ A∗ be a primitive word. Let j ∈ N denote
the first position of a in hr(a).

(hr)∗,j(a(0)) = w(j)wω if and only if

(i) h2(�A)r(a) = u0au1az, where a does not occur in u0u1;
(ii) h(�A−1)r(au1) ∈ w+;
(iii) hr(w) ∈ w+w.

Now let us denote by P r a subset of primitive words defined as follows.

P r =
{
w ∈ A+|w primitive, firstRr ,Z(w) = (a, t), (hr)∗,t(a(0)) = w(t)wω

}
·

The set P =
⋃

r∈[1,�A] P
r is finite and effectively constructable what can be derived

from Lemmas 3.1, 3.2 and the previous lemma.
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Lemma 4.15 [7]. Let v ∈ P r and h :A∗ → A∗ be a morphism.
(i) r is the smallest integer, such that hr(v) ∈ v+v.
(ii) Let a ∈ Rra ∩ alphE(v) and t ∈ N point out the position of the letter a in

the word hra(a(0)). Then the words (hra)∗,t(a(0)) and y(0)x(yx)ω are equal
modulo the origin, where v = xy.

Observation 4.16. The symmetric results for Lemma 4.15 holds for a ∈ Lra .

From Lemmas 3.1 and 3.2 the set LR = {aub ∈ A∗ : ∃c ∈ E ∪ IE , h(c) ∈
A∗aubA∗, a ∈ Ira

L ∪ Lra , b ∈ Irb

R ∪ Rrb , u ∈ M∗
F} is finite end effectively con-

structable.
For aub ∈ LR there exist the smallest integers sa, sb ∈ [0, �A] such that hsa(a) ∈
A∗Lrawa, hsb(b) ∈ wbR

rbA∗, where wa, wb ∈ M∗
F .

Let Nab = l.c.m.(ra, l.m.(wauwb), rb). For any n ∈ [0, Nab − 1] it holds
hn+3(�A)Nab(aub) ∈ A∗a1mb1A

∗, hn+3(�A)Nab(b) ∈ mbb1A
∗, where a1 ∈ Lra,

b1 ∈ Rrb , m, mb ∈ (M ∪ MR)∗ and mbb1 is a suffix of mb1. Let p =| a1mb1 |.
Now we are ready to formulate

Lemma 4.17. Let aub ∈ LR, a, b ∈ A. For an arbitrary (but fixed) n ∈ [0, Nab−1]
we denote w = hn+3(�A)Nab(aub) and (b1, i) = firstE,Z(hn+3(�A)Nab(b)). Let k ∈ N

point out the position of the letter b1 in the word w, that is, k =| hn+3(�A)Nab(au) |
+i. Finally let j ∈ N point out the first position of the letter b1 in hNab(b1).
1. Nab is the smallest integer such that (hNab)∗,j(wk) = (hNab)∗,j((a1mb1)(p)) ∈
δLh and the equivalence class of (hNab)∗,j(wk) is in δLh/σ∗.
2. If z is a primitive word then the following conditions are equivalent:

(i) (hNab)∗,j((a1mb1)(p)) ∈ ωzzzω;
(ii) there exists a number r ∈ [1, �A] and the word v ∈ P r such that a1mb1 is

a factor of vv and v ≈ z.

3. It is decidable, whether or not the equivalence classes of the periodic words
characterized in 1 are equal.

Proof. From Lemmas 3.4 and 3.5 and the construction of the word
(hNab)∗,j(wk), repeating the argumentation from Lemmas 4.1, 4.9 and 4.11 we
prove the statement 1.

Now assume 2(i). Lemma 4.1 and the fact that b1 ∈ Rrb imply that
(hNab)∗,j(b1) = xzzω where x is a suffix of z. Similarly (hrb)∗,j(b1) = xzzω. Hence
there exists a primitive word v such that v ≈ z and xz is a prefix of vv and v ∈ P rb .
The word a1mb1 is a factor of vv and in consequence 2(ii) follows from 2(i).

Assume now 2(ii). Taking into account the fact that b1 ∈ Rrb and on the basis
of Lemma 4.15 we obtain (hrb)∗,j(b1) = yvvω where y is a suffix of v. Hence there
exists a word u such that u ≈ v and yv is a prefix of uu. It is straightforward to
observe that (hrb)∗,j(b1) = uuω. From the description of a1mb1 we conclude that
a1mb1 is a factor of uu.

According to Lemma 4.14 it follows that hrb(u) ∈ u+u. Since rb is a divisor
of Nab we conclude that the word hiNab(a1mb1) is a factor of hiNab(uu) ∈ u+u for
i ∈ N. Hence the equality (hNab)∗,j((a1mb1)(p)) = ωuuuω follows directly from the
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statement 1. Just from the assumptions u ≈ z, and there exists a word z = v1av2

such that (hNab)∗,j((a1mb1)(p)) ∈ ωzzzω.
The statement 3 follows according to the fact that two periodic words are in

relation if and only if their primitive periods are in relation.
This completes the proof of the lemma. �

Lemma 4.18. Let aub ∈ LR, a, b ∈ A. For an arbitrary (but fixed) n ∈ [0, Nab−1]
we denote w = hn+3(�A)Nab(aub) and (b1, i) = firstE,Z(hn+3(�A)Nab(b)). Let k ∈ N

point out the position of the letter b1 in w, that is, k =| hn+3(�A)Nab(au) | +i.
Finally let j ∈ N point out the first position of the letter b1 in hNab(b1). For
cvd ∈ LR, c, d ∈ A we denote w = hm+3(�A)Ncd(cvd) and let r be the counterpart
of k, p of j.

The following statements are true:

(i) {(hNab)∗,j(w(k))}n∈N is a set of Nab words in δLh;
(ii) it is decidable, whether or not the words (hNab)∗,j(w(k)) and (hNcd)∗,p(w(r))

are equal;
(iii) if (hNab)∗,j(w(k)), (hNcd)∗,p(w(r)) are two different words then their equiv-

alence classes are equal if and only if there exist s ∈ [1, �A] and z ∈ P r

such that

(
hNab

)∗,j
(
w(k)

)
,

(
hNcd

)∗,p
(
w(r)

)
∈ ωzzzω.

Proof. The statement (i) follows directly from Lemma 4.17.
Now observe that

(
hNab

)∗,j
(
w(k)

)
= wL (a1mb1)

(e1)
wR where e1 =| a1mb1 |

and
(
hNcd

)∗,p
(
w(r)

)
= vL (c1nd1)

(e2)
vR where e2 =| c1nd1 |

for some one-sided infinite words wL, wR, vL, vR, finite words m, n and letters
a1, b1, c1, d1.

From Lemma 3.3 and the proof of Lemma 4.17 the equality wL(a1mb1)(e1)wR =
vL(c1nd1)(e2)vR holds if and only if a1mb1 = c1nd1 which proves (ii).

For the proof of (iii) let us assume that words (hNab)∗,j(w(k)) and (hNcd)∗,p(w(r))
are equal modulo the origin. First consider the case:

(∗)



(
hNab

)∗,j (
w(k)

)
= wL (a1mb1)

(e1)
w0c1nd1vR

(
hNcd

)∗,p (
w(r)

)
= wLa1mb1w0 (c1nd1)

(e2)
vR

where w0 ∈ A∗.
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If K = l.c.m.(Nab, Ncd), then there exists the smallest positive integer t ∈
N \ {0} such that

(
htK

)j
(
(a1mb1)(e1)

)
= ... (a1mb1)

(e1) w0c1nd1...,

(
htK

)p
(
(c1nd1)(e2)

)
= ...a1mb1w0 (c1nd1)

(e2)
...

Since htK(v) = ...vw1v... then for k ≥ 1 we have

(∗∗) (
htK

)k+1
(v) = ...vukvwk+1vukv...

where u1 = w1, ui+1 = uivwi+1vui for i ∈ {1, 2, ..., k − 1}·
For every finite factor of (htK)∗(v) considered as a finite word with the origin

fixed on b1 or d1 there exists the number s ∈ N\{0} such that this word is a factor
of (htK)s(v) with the origin fixed on b1 or d1 respectively (see Lem. 4.17). Hence
from Lemma 4.17 and the condition (∗) above we have

(
htK

)∗,j
(
vw1v

(k)
)

= wLv(k)vR,

(
htK

)∗,j
(
v(k)

)
= wLv(k)vR,

(
htK

)∗,p
(
v(r)

)
= wLv(r)vR.

Since htK(v(k)) = ...v(k)w1v..., (htK)∗,p(v(r)) = ...vw1v
(r)... then by induction on

k we obtain

(
htK

)k
(
vw1v

(k)
)

= ...vukvwk+1v
(k)uk... ,

(
htK

)k+1
(
v(k)

)
= ...v(k)ukvwk+1vukv... ,

(
htK

)k+1
(
v(r)

)
= ...vukvwk+1vukv(r)uk...

From the above, Lemmas 3.4 and 3.5 we conclude that for any
i ∈ {1, 2, ..., k} words vuivwi+1v

(k)ui, v(k)uivwi+1vuiv are factors of (htK)∗,j(v(k))
and vuivwi+1vuiv

(r) is a factor of (htK)∗,p(v(r)).
Hence for k ≥ 1 and every i ∈ {1, 2, ..., k}

(∗ ∗ ∗) uivwi+1 = wi+1vui.

For every k ≥ 1 there exist nk ∈ N \ {0}such that

(
htK

)nk (v(r)) = ...vukvwk+1vukv(r)ukvwk+1vukv...
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The above observations and properties (∗∗), (∗ ∗ ∗) imply that for every k ≥ 1

(
htK

)nk (v(r)) =

...vwk+1(vwk)2(vwk−1)2
2
...(vw1)2

k

v(r)(w1v)2
k

...(wk−1v)2
2
(wkv)2wk+1v...

Hence

(htK)∗,p(v(r)) =ω (vw1)vσ(r)(w1v)ω

and

(
hNcd

)∗,p
(
w(r)

)
=

(
hNcd

)∗,p
(
v(r)

)
=ω (vw1)v(r)w1(vw1)ω,

(
hNab

)∗,j
(
w(k)

)
= wLv(k)vR =ω (vw1) v(k)w1(vw1)ω .

Thus there exists a primitive word zp such that vw1 ∈ z+
p . By Lemma 4.17 there

exist a number r ∈ [1, �A] and a word z ∈ P r such that z ≈ zp. It is not difficult
to observe that the similar proof works when we drop the assumption (∗). �

Example 4.19. We have LR = {a′ea}, Na′a = 2. For n = 0, 1 there are two words
w = h0+3·8·2(a′ea) = e48a′eae48 and w = h1+3·8·2(a′ea) = e49b′ebe49 for which
firstE,Z(h48(a)) = (a, 0) and firstE,Z(h49(a)) = (b, 0) respectively, k = 50 and
j = 0 points out the first position of a in h2(a) and the first position of b in h2(b).
Lemma 4.18 implies that (h2)∗,0(w(50)) = ωea′eaeω and (h2)∗,0(w(50)) = ωeb′ebeω

are in δLh.

5. Main result

Now we are able to formulate and prove the main result of our paper charac-
terizing pasted words, that is, words in δLh. Remind that the set of pasted words
is a subset of the boundary set ∂Lh and both are in the metric space (Ω, d). In
presented below theorem we consider equivalence classes of pasted words so we
work in Ω/σ∗. In the sequel [w] denotes an equivalence class of a word w ∈ Ω.

Theorem 5.1. Let h : A∗ → A∗ be a morphism.

1. For any equivalence class [w] ∈ δLh/σ∗ there exists a representant of the
class such that it is a fixed point of hN for some effectively computable
integer N and is constructable as an infinite iterate of hN on some letter
in A.

2. It is decidable whether or not the equivalence classes [w] and [v] in δLh/σ∗

are equal.
3. The set δLh/σ∗ is finite. Hence there exists an algorithm describing effec-

tively (in the sense of 1) the set δLh/σ∗.
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Proof. Assume first that w ∈ ∂Lh is right-infinite and that a sequence {zi}i∈N of
words of Lh converges to w. Now there are two possibilities:

(i) firstE(w) = ∅, then w = mau1, where m ∈ M∗ and firstMR,Z(w) = (a, e).
In this case denote wa = (mau1)(e). Notice that wa ∈ [w];

(ii) firstE,Z(w) = (b, f) then w = mbu2, where m ∈ (M ∪ MR)∗. In this case
denote wb = (mbu2)(f). Notice that wb ∈ [w].

For s ∈ {a, b} one can choose from {[zi]}i∈N a sequence {zs
i }i∈N of words with

origins which converges to ws. Hence there exists for s ∈ {a, b} a subsequence
{zs

ik
}k∈N such that zs

ik
∈ hn+nkr(c), where c ∈ E∪IE , nk ∈ N, and numbers n ∈ N,

r ∈ [1, �A] are the smallest ones such that firstE,Zhn+jr(c) = firstE,Zhn+(j+1)r(c)
for each j ∈ N. Now Lemmas 4.1 and 4.5 imply that there exists the smallest
integer p ∈ N \ {0} such that the sequence ys

k = hn+k·p·r(c) converges to ws in
both of the above cases. Again from Lemmas 4.1 and 4.5 it follows that there
exists an integer N , such that N is a divisor of p · r and ws is a fixed point of hN .
That is wa = (hN )∗,e(wa) where e =| h(a) | −1 and similarly for wb.

By symmetry we obtain the same result for left-infinite word w ∈ ∂Lh. This
lead us to the conclusion that all one-sided infinite words in ∂Lh (and in δLh) are
described by Lemmas 4.1 and 4.5 and imply for this type of words the statement
1 of the theorem.

Now assume that w ∈ ∂Lh is a pasted word. Hence w = umv where m ∈
(M ∪ MR)∗ and u, v ∈ ∂Lh are left and right infinite, respectively. It means that
hN1(us) = us and hN2(vr) = vr for some us a word in [u] such that s is the
origin of u and vr in [v] with r as the origin and for some positive integers N1, N2.
According to Lemma 3.4 there exists the smallest integer N ∈ N \ {0} such that
hN(m) = m and puting l.c.m(N1, N2, N) = L we have:

(i) umv is a fixed point of hL if the origin of umv is equal r ∈ E and if s ∈ MR

(Lem. 4.11);
(ii) umv is a fixed point of hL if the origin of umv is equal s in all other cases.

Thus all pasted words in ∂Lh are described by Lemmas 4.9, 4.11, 4.17 and 4.18,
what finishes the proof of the statement 1.

The statement 2 and 3 follows directly from Lemmas 3.1, 3.3, 4.1, 4.5, 4.9, 4.11,
4.14 and 4.17, 4.18 what finishes the proof of the theorem. �

Example 5.2. Taking for example an equivalence class [ωeb′ebeω] ∈ δLh/σ∗ and
ωeb′ebeω ∈ [ωeb′ebeω] such that the origin is set on the e between b′ and b observe
that h2(ωeb′ebeω) = ωeb′ebeω and (h2)∗,0(b′eb(2)) = ωeb′ebeω. On the base of all
examples we have δLh equals

{aeω, beω, ωea′, ωeb′, eeω, ωee, ωeeeω, ωeaeω, ωebeω, ωea′eaeω, ωeb′ebeω}·
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