
RAIRO-Inf. Theor. Appl. 38 (2004) 91-115

DOI: 10.1051/ita:2004006

FINITE COMPLETION OF COMMA-FREE CODES
PART 1

Nguyen Huong Lam1

Abstract. This paper is the first step in the solution of the problem
of finite completion of comma-free codes. We show that every finite
comma-free code is included in a finite comma-free code of particular
kind, which we called, for lack of a better term, canonical comma-free
code. Certainly, finite maximal comma-free codes are always canon-
ical. The final step of the solution which consists in proving further
that every canonical comma-free code is completed to a finite maximal
comma-free code, is intended to be published in a forthcoming paper.

Mathematics Subject Classification. 68R15, 68S05.

1. Introduction

In this paper we consider (finite) comma-free codes and their completion prob-
lem. We sketch a few lines on their origin, history and development. Comma-free
codes were defined rigorously in 1958, as mathematical objects, in Golomb, Gor-
don and Welch [3], although a rudimentary notion had been suggested by Crick,
Griffith and Orgel earlier in 1957 [2], in connection with the famous discovery of
DNA structure [14]; for more details on the biological origin of the problem, see [4],
or [1], annotation to Chapter VII.

During the late 1950s and the 1960s there had been quite extensive investiga-
tion on comma-free codes of constant length (block codes), free from biological
considerations. Then the main line of study was concerned with the maximal size
of comma-free codes of a given length and on alphabets with a fixed number of
letters. The most impressive achievement was a proof by Eastman [5] of a con-
jecture of Golomb, Gordon and Welch [3] on the maximal number of words in a

Keywords and phrases. Comma-free code, completion, finite maximal comma-free code.

1 Hanoi Institute of Mathematics, 18 Hoang Quoc Viet Road, 10 307 Hanoi, Vietnam;

e-mail: nhlam@math.ac.vn
c© EDP Sciences 2004

92 N.H. LAM

comma-free code on the alphabet comprising an odd number of letters; see [1],
Chapter VII, for alternative proofs.

The research on variable-length comma-free codes was initiated a bit later, in
1969 [12], and it still goes on as of 1998 [6]. In the later paper some language-
theoretic aspects of maximal comma-free codes are discussed. We would like to
remark that we actually lack a satisfactory, elegant characterization of maximal
comma-free codes.

Several problems often encountered in theory of codes are of the following kind:
given code belongs to some special family of codes, is it possible to complete it
within this family? For instance, it is trivial to see that every finite prefix code can
be embedded into a finite maximal prefix code. It also represents little difficulty
to prove that every finite infix code can be completed to a finite maximal infix
code [7]. The case of general codes is more difficult. It was proved by Markov [10]
and subsequently by Restivo [11] that there exist finite codes that are not included
in any finite maximal codes. More on the negative side we can mention the case
of bifix codes [1] (Chap. III).

In this paper, we manage to prove that every finite comma-free code has a finite
completion, or in other words, is included in a finite maximal comma-free code.
Thus we give the affirmative answer to the completion problem for another class
of codes.

Our solution is complex, so we divide it into two parts. First, we attempt to
complete every finite comma-free code to a (finite) comma-free code of a special
kind, which we call canonical comma-free codes. Canonical comma-free codes are
defined by a neat condition which warrants that, if not maximal, they can be
made into maximal comma-free codes by adding “not very” long words. This
part is the content of the present paper. Next, we prove, by a concrete and
explicit construction, that every canonical comma-free code is completed to a
finite maximal comma-free code. This final part we hope to publish in another
paper.

The present paper is structured as follows: following this introduction, Section 2
introduces standard notation and basic notions. In Section 3, canonical words, the
“bricks” with which a completion is built, are introduced and studied. Section 4,
the most heavy, describes the construction, a repeated process, which is entitled to
produce desired finite completions. Of course, the number of steps to be repeated
should be determined by the code at the starting point. This is proved by means of
the notions of index and type of right borders. This section prepares the ground
for the definition of canonical comma-free codes and the completing procedure
itself in the last Section 5.

2. Notions and notation

Our terminology is standard and the notions are few. Let A be a finite alphabet.
Then A∗ denotes the set of words on A, including the empty word 1, and as usual
A+ = A∗ − {1}. (We often use the plus and minus signs to denote the union and

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 93

difference of two sets.) The set A∗ is equipped with the concatenation as product.
For w ∈ A∗ we denote by |w| the length of the word w. For subsets X, X ′ of A∗,
we denote

XX ′ = {xx′ : x ∈ X, x′ ∈ X ′}
X0 = {1}

X i+1 = X iX, i = 0, 1, 2, . . .

maxX = max {|x| : x ∈ X}·

Let u and v be two words of A∗. The word u is a factor of v if v = xuy, a right
factor if v = xu and left factor if v = uy for some words x, y ∈ A∗. A factor u of
v is proper if it is not the empty word or the whole word v. A subset of words is
an infix code if no word of it is a factor of another, hence an infix code is a prefix,
suffix and bifix code, all at a time. For a subset X of A∗, we denote by P (X) and
S(X) the set of prefixes and suffixes of X , respectively.

We are in a position to define the principal objects of this paper [13].

Definition 2.1. A set X ⊆ A+ is said to be a comma-free code if X2∩A+XA+ =∅.
A comma-free code is maximal if it is not included in any other comma-free

codes. A completion of a comma-free code is a maximal comma-free code contain-
ing it. Every comma-free always has completions, in view of Zorn’s lemma. In this
paper we deal exclusively with finite comma-free codes and finite completions.

Example 2.2 [8]. Let A2 = X + Y be a partition of the set of words of length 2
and let k > 0. Then

C = {a1 . . . akb1 . . . bk : a1b1 ∈ X, aibi ∈ Y, i > 1}

is a comma-free code.

Comma-free codes are closely connected with the notion of overlapping. We
say that the two words u and v overlap if

u = tw, v = ws

for some non-empty words s, t ∈ A+ and w ∈ A+, or equivalently,

us = tv

for some non-empty words s, t such that |t| < |u| and |s| < |v|. We call the
equalities above overlapping equalities for a pair of words u, v and we call s a right
border and t a left border of the pair of overlapping words u, v. A right (left) border
of a subset X is a right (left, resp.) border of any pair of overlapping words in X .
We denote the sets of left borders and right borders of X by L(X) and R(X),
respectively.

94 N.H. LAM

Throughout this paper, comma-free codes are assumed not to be subsets of
the alphabet, just because for those comma-free codes the completion problem is
trivial: the alphabet!

3. Precanonical and canonical words

In this section we introduce the concept of precanonical words and canonical
words and study their properties in detail. One of the important conclusions
is that the existence of canonical words means that the comma-free code under
consideration is not maximal.

3.1. Precanonical words

Let X be a finite comma-free code, t be a positive integer.

Definition 3.1.1. The word w is said to be a left X-precanonical word of tag t,
if every right factor of w of length longer or equal to t has a left factor in R(X).

We also define the symmetrical version.

Definition 3.1.2. The word w is said to be a right X-precanonical word of tag t,
if every left factor of w longer equal to t has a right factor in L(X).

Clearly, a left X-precanonical word w of tag t has the form

w = us, u ∈ A∗, s ∈ A+, |s| = t

and for every right factor u′, including 1, of u

u′s ∈ R(X)A∗.

Similarly, a right X-precanonical word w of tag t has the form

w = su, u ∈ A∗, s ∈ A+, |s| = t

and for every left factor u′, including 1, of u

su′ ∈ A∗L(X).

We often use the concept of precanonical word under the following variation. Let
m be a non-negative integer.

Definition 3.1.3. The word w is said to be a left X, m-precanonical word if and
only if it is a left X-precanonical word of tag |w| − m.

Definition 3.1.4. The word w is said to be a right X, m-precanonical word if and
only if it is a right X-precanonical word of tag |w| − m.

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 95

Clearly, if w is a left X, m-precanonical word then we can write w in the form

w = us, s ∈ A+, u ∈ A∗, |u| = m

and for every right factor u′ of u

u′s ∈ R(X)A∗.

Similarly, if w is a right X, m-precanonical word then we can write w in the form

w = su, s ∈ A+, u ∈ A∗, |u| = m

and for every left factor u′ of u

su′ ∈ A∗L(X).

Here we make no emphasis on the tag.
It follows immediately from the definition that the concept of precanonical word

bears a dual (symmetric) character. A left precanonical word of a comma-free
code is a right precanonical word for the mirror image of this code. Therefore it
is natural to see that almost all assertions in this paper are valid, and formulated,
for both left and right precanonical words, but in their proofs, we are silent about
the treatment for one or another case. The reason for this is evident: the proofs
for both parts are just identical, only in another way around.

Definition 3.1.5. A left (right) X, m-precanonical word is called minimal left
(right, resp.) X, m-precanonical, m ≥ 0, if it has no proper left (right, resp.)
factor which is a left (right, resp.) X, m-precanonical word.

The set of X, m-precanonical words is not finite, for any fixed m, but the set of
minimal ones is finite because of the following proposition.

Proposition 3.1.6. If w = us (w = pu), |u| = m, is a minimal left (right, resp.)
X, m-precanonical word then there is a right (left, resp.) factor u′ of u such that
u′s ∈ R(X) (pu′ ∈ L(X), resp.). As a consequence, |s| < maxX (|p| < max X,
resp.).

Proof. Suppose that there is no such right factor. Then for every factorization
u = u2u1 let r(u1) be the longest word of R(X) which is a left factor of u1s. By
assumption |u1s| > |r(u1)|, hence

|us| = |u2u1s| > |u2r(u1)|.

Let u = ū2ū1 be a factorization for which |ū2r(ū1)| attains the maximum. Note
that |ū2r(ū1)| > |u|, since when u1 = 1, we get at least |ur(1)| > |u|. Now it is
straightforward to see that ū2r(ū1) is also a left X, m-precanonical word, but it is
a proper left factor of u. A contradiction. The proposition is proved. �

The following observation follows directly from the definition.

96 N.H. LAM

Remark 3.1.7. Every right (left) factor of length longer or equal to t of a
left (right, resp.) X-precanonical word of tag t is also a left (right, resp.) X-
precanonical word of tag t. More concretely, every right (left) factor of length
t + k of a left (right, resp.) X-precanonical word of tag t is a left (right, resp.)
X, k-precanonical word of tag t.

Every left (right) factor of length longer or equal to t of a left (right, resp.)
X-precanonical word of tag t is also a left (right, resp.) X-precanonical word of
tag t. (It is vacuously true but useless, by definition, that any word of length less
than t is left (and right) X-precanonical of tag t!)

Every left (right, resp.) X-precanonical word of tag t is left (right, resp.)
X-precanonical word of every tag t′, t′ ≥ t, consequently, every left (right) X, m-
precanonical word is left (right, resp.) X, m′-precanonical word for every integer
m′, 0 ≤ m′ ≤ m.

In what follows when the reference to the code X is clear, or is irrelevant, from
the context, we often omit it saying simply “X-precanonical”, “m-precanonical”,
etc. or just “precanonical”. The following remark describes the situation we shall
encounter in a later proof.

Remark 3.1.8. Let us be a minimal left X, |u|-precanonical word. There exists
then a right factor u1 of u such that u1s ∈ R(X); we can assume that u1 is
the shortest right factor satisfying this property. If u1 �= 1, then for every proper
right factor u2 (including 1) of u1, on one hand u2s /∈ R(X) and on the other hand
u2s ∈ R(X)A∗ as u2s is a left X, |u2|-precanonical word. Therefore u2s ∈ R(X)A+

which shows that |s| > 1 as R(X) does not contain 1 and we can choose u2 = 1;
then we can write s = s1a for s1 ∈ A+ and a ∈ A. Consequently, u2s1 ∈ R(X)A∗

for all proper right factors u2, including 1, of u1, which in turn means that u2s1

is still a left X, |u2|-precanonical word, for every proper right factor u2 of u1,
including 1.

We present some technical statements which will be in use later.

Proposition 3.1.9. Let X be a finite comma-free code, Y be a subcode of X and let
a1 . . . ak . . . ak+t (ak+t . . . ak . . . a1) be a left (right, resp.) Y, k-precanonical word
(of tag t) for a non-negative integer k, a positive integer t and letters a1, . . . , ak,
ak+1 . . . , ak+t. Then for any integer d such that d > 0 and d ≤ k + 1 there exists
an integer i such that i ≤ k + t and d ≤ i < d + maxY − 1 for which a1 . . . ai

(ai . . . a1, resp.) has no right (left, resp.) factor in L(X) (R(X), resp.) of length
less than or equal to d.

Proof. We suppose on the contrary that for every i, i ≤ k + 1 and d ≤ i <
d + maxY − 1, the word a1 . . . ai has a right factor in L(X) of length less than or
equal to d.

Set i(0) = d. We have
ai(1) . . . ai(0) ∈ L(X)

for some i(1), 1 ≤ i(1) ≤ i(0) and 1 + i(1) − i(0) ≤ d. Since i(1) ≤ d ≤ k + 1 and

|ai(1) . . . akak+1 . . . ak+t| = t + k + 1 − i(1) ≥ t,

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 97

by definition, ai(1) . . . akak+1 . . . ak+t has a left factor in R(Y), that is

ai(1) . . . ai(2) ∈ R(Y)

for some i(2), i(1) ≤ i(2) ≤ k + t. We must have

i(0) < i(2)

in virtue of the comma-freeness of X . Note that

i(2) = i(1) + i(2) − i(1)

≤ i(0) + max Y − 2
= d + maxY − 2 < d + maxY − 1.

Now we repeat the argument with i(2) playing the role of i(0) and so on; the
assumption by contradiction allows us to obtain the chain

1 ≤ . . . < i(3) < i(1) ≤ i(0) < i(2) < . . . ≤ k + t

of integers. But this is impossible, as k and t are fixed. �

Corollary 3.1.10. Let Y, Z be subcodes of a finite comma-free code X. If, for
some integers k > 0, t > 0, the word a1 . . . akak+1 . . . ak+t is simultaneously a left
Y, k-precanonical word of tag t and a right Z, t-precanonical word (of tag k) with
letters a1, . . . , ak, ak+1 . . . , ak+t then k < maxZ − 1.

Proof. Suppose that k ≥ maxZ − 1. By the previous proposition (with d = k)
there is an integer i such that k + t ≥ i ≥ k and

a1 . . . ai

has no right factor in L(X) of length less than or equal to k. In particular, it
has no right factor in L(Z), as L(Z) ⊆ L(X) and maxL(Z) ≤ max Z − 1 ≤ k.
However, as k ≤ i ≤ k+t, and being a right Z, t-precanonical word, a1 . . . ai should
have a right factor in L(Z): contradiction! �

3.2. Canonical words

Let X be a finite comma-free code and m be an integer greater than or equal to
maxX : m ≥ max X . Consider the following set of words of the form aus satisfying

98 N.H. LAM

the following conditions:
1. a is a letter: a ∈ A, u is a word of length m: u ∈ A∗, |u| = m, s is a

nonempty word: s ∈ A+;
2. us is a left X, m-precanonical word;
3. aus has no left factor in R(X): aus /∈ R(X)A∗;
4. aus has no factor in X : aus /∈ A∗XA∗.

These words are the main objects of this subsection.

Definition 3.2.1. A word of the form aus, a ∈ A, u ∈ A∗, s ∈ A, is said to be
left X, m-canonical word if it satisfies the conditions 1, 2, 3 and 4 above.

Similarly, we have the symmetric version:

Definition 3.2.2. A word of the form pvb is said to be right X, m-canonical word
if it satisfies the following conditions:

1. b ∈ A, |v| = m, p ∈ A+;
2. pv is a right X, m-precanonical word;
3. pvb /∈ A∗L(X);
4. pvb /∈ A∗XA∗.

One direct consequence of the definitions is that all left, as well as all right, X, m-
canonical words are not factors of X2. Indeed, say yausz = x1x2 for a left X, m-
canonical word aus and y, z ∈ A∗, x1, x2 ∈ X . First, we notice that

|x2| ≤ m < m + |sz| = |usz|.

Next, as |x1| ≤ m, we have

|x2| = |yausz| − |x1| = |y| + m + 1 + |sz| − |x1| > m + |sz| − m = |sz|.

Two equalities above show that x2 is a right factor of usz of length greater than
|sz|, which implies that x2 has a left factor in R(X), but this is impossible because
of the comma-freeness of X .

Definition 3.2.3. A left (right) X, m-canonical word is called minimal left (right,
resp.) X, m-canonical if it does not contain properly any left (right, resp.) X, m-
canonical words as left (right, resp.) factors.

We denote the sets of minimal left and minimal right X, m-canonical words by
T (X, m) and U(X, m), respectively. We give the characterization of the minimal
canonical words, similar to the case of minimal precanonical words.

Proposition 3.2.4. If aus (pvb) is a minimal left (right, resp.) X, m-canonical
word then us (pv, resp.) is a minimal left (right, resp.) X, m-precanonical word.
Consequently, |s| < maxX ≤ m (|p| < max X ≤ m, resp.) and T (X, m)
(U(X, m), resp.) is finite.

Proof. Let aus be a minimal X, m-canonical word. If us is not minimal, then for
some proper left factor s1 of s, us1 is a left X, m-precanonical word. Hence aus1

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 99

is also a left X, m-canonical word and aus is no more minimal left X, m-canonical
word, contradiction. Therefore us is minimal precanonical word. The last claim
follows from the Proposition 3.1.6. �

Given a finite comma-free code X , when left (right, resp.) X, m-canonical words
exist? For their existence, first of all, there must exist left (right, resp) X, m-
precanonical words which form a subset of the following set. Let E(X) denote the
set of all words that avoid X (i.e. they have no factors in X) and that have no
left factors in R(X) and no right factors in L(X). In symbols

E(X) = A∗ − R(X)A∗ − A∗L(X)− A∗XA∗.

It is not difficult to see that E(X) contains all words which are both left and
right X, m-canonical words for all m ≥ 0. We have the following criterion for
non-emptiness of T and U .

Theorem 3.2.5. The set T (X, m) (U(X, m)) of minimal left (right, resp.) X, m-
canonical words is not empty if and only if E(X) contains a left (right, resp.)
X, m-precanonical factor. Specifically, if a word of E(X) contains a left (right,
resp.) X, m-precanonical factor, it contains a word in T (X, m) (U(X, m), resp.).

Proof. The “if” part is evident by the remark preceding the theorem. For the
opposite direction, the “only if” part, let suppose that E(X) contains a word e
which has a left X, m-precanonical factor us, i.e.

e = zusy

for some z, y ∈ A∗. First, z ∈ A+ because e /∈ R(X)A∗. Further, we can assume
that z is chosen as of minimal length among all possible factorizations like one
above, i.e. us is chosen as the left-most occurrence of any left X, m-precanonical
factors. This means that if we write z = z′a, for a ∈ A and z′ ∈ A∗, we have
aus /∈ R(X)A∗, which shows that aus is a left X, m-canonical which, indeed, has
a minimal left X , m-canonical left factor. This proves the “only if” direction and
the theorem follows. �

Now we reveal one of the main purposes which the concept of canonical word
is introduced for.

Theorem 3.2.6. The sets X + T (X, m) and X + U(X, m) both are comma-free
codes for all m ≥ maxX.

Proof. We prove the assertion for X + T (X, m), the other case is handled in the
same way.

If X+T (X, m) is not a comma-free code then we have seven cases of “incidence”
to consider all of which we shall show lead to contradictions.

1. x1y = lx2r for some x1, x2 ∈ X , y ∈ T (X, m) and l, r ∈ A+. We write
y = aus for a ∈ A, u ∈ A+, |u| = m, s ∈ A+.

100 N.H. LAM

If |l| < |x1| then y ∈ R(X)A∗ which is against the definition of T (X, m). If,
otherwise, |x1| ≤ l then y contains a factor x2 in X which is against also the
definition of T (X, m).

2. yx1 = ausx1 = lx2r, where x1, x2 ∈ X, y ∈ T (X, m); l, r, a, u, s have the
same meaning as in the previous case.

If 0 < |r| < |x2r| ≤ |x1| then x2 is a (proper) factor of x1 which is impossible
because of the comma-freeness of X . If 0 < |r| < |x1| < |x2r| ≤ |sx1| then
s ∈ A∗L(X); at the same time, because of the minimality of the precanonical word
us, we have s ∈ S(X): these two facts are in a contradiction with the comma-
freeness of X . Next, the case |r| < |x1| < |sx1| ≤ |x2r| (≤ |usx1|) implies, as us is
left precanonical, that x2 ∈ R(X)A∗, which is impossible by comma-freeness of X .
Finally, the case |r| ≥ |x1| shows that x2 is a factor of y violating the definition of
T (X, m).

3. x1x2 = lyr for some x2, x2 ∈ X , y ∈ T (X, m), l, r ∈ A+. We see at one that
this case is impossible because all words of T (X, m) are not factors of X2.

4. y1x = ly2r, where y1, y2 ∈ T (X, m), x ∈ X , l, r ∈ A+. We write y1 =
a1u1s1, y2 = a2u2s2 with the usual meaning for a1, a2, u1, u2, s1, s2. So we have
a1u1s1x = la2u2s2r.

First, note that 1 = |a1| ≤ |l|. If |l| ≤ |a1u1| then a2u2s2 ∈ R(X)A∗ because
u1s1 is left X-precanonical: a contradiction with the comma-freeness of X . If
|l| > |a1u1| then |s2r| < |x| < |u2s2r| (note that |u2| = m > |s1|) and x ∈
R(X)A∗, because u2s2 is left X-precanonical, which is again a contradiction with
the comma-freeness of X .

5. xy1 = ly2r = xa1u1s1 = la2u2s2, where x ∈ X , y1, y2 ∈ T (X, m) and
a1, a2, u1, u2, s1, s2, l, r have the usual meaning as in the preceding case.

The case |l| < |x| (< |a2u2|, certainly, as |x| ≤ m = |u2|) implies that a1u1s1 ∈
R(X)A∗ as u2s2 is left precanonical. This is impossible since y1 ∈ T (X, m). The
case |x| = |l| implies that y1 is not minimal left canonical word as r ∈ A+, a
contradiction. The case |x| < |l| ≤ |xa1u1| implies y2 ∈ R(X)A∗ as u1s1 is left
precanonical, which is also impossible since y2 ∈ T (X, m). Finally, |l| > |xa1u1| is
plainly impossible because |s1| < m = |u2|.

6. y1y2 = lxr = a1u1s1a2u2s2, where y1, y2 ∈ T (X, m), x ∈ X and a1, a2,
u1, u2, s1, s2, l, r have the usual meaning as above.

The case 1 = |a1| ≤ |l| ≤ |a1u1| shows that x ∈ R(X)A∗, which violates
the comma-freeness of X . The case |a1u1| < |l| < |a1u1s1| shows that y2 ∈
R(X)A∗, as s1 ∈ S(X), x ∈ X , this is against the definition of y2 ∈ T (X, m). The
case |a1u1s1| ≤ |l| shows that x is a factor of y2: impossible. Finally, the last
alternative:

7. y1y2 = ly3r for y1, y2, y3 ∈ T (X, m) and l, r ∈ A+. We have y1 = a1u1s1,
y2 = a2u2s2 and y3 = a3u3s3 with a1, a2, a3, u1, u2, u3, s1, s2, s3 having the same
meaning as above.

First, note that 1 = |a1| ≤ |l|. We have to consider the following cases that are
all impossible, the reasons for this we indicate in parentheses:

• |l| ≤ |a1u1| (y3 /∈ R(X)A∗);
• |a1u1| < |l| < |a1u1s1| (y2 /∈ R(X)A∗);

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 101

• |l| = |a1u1s1| (y2 is minimal left canonical word);
• |a1u1s1| < |l| ≤ |a1u1s1a2u2| (y3 /∈ R(X)A∗);
• |a1u1s1a2u2| < |l| (|s2| < m).

The proof is completed. �
We state a basic property of T (X, m) and U(X, m), which shows that, when

applied the constructions T and U bring no new left and right precanonical words,
resp. (They could apparently only reduce the sets of canonical words.)

Proposition 3.2.7. Let Y = X +T (X, m) (Y = X +U(X, m)). Then every right
(left, resp.) border in R(Y) (L(Y), resp.) has a (non-empty) left (right, resp.)
factor which is a right (left, resp.) border in R(X) (L(X), resp.).

Proof. Let r ∈ R(Y) be a right border of the pair of overlapping words y1, y2 of Y :

ly2 = y1r.

We consider all cases that can happen.
1. y1 ∈ X , y2 ∈ X . Certainly, r ∈ R(X), we have nothing to prove.
2. y1 ∈ X , y2 ∈ T (X, m). We write y2 = aus, a ∈ A, u ∈ A+, |u| = m, s ∈ A+.

Since |u| = m ≥ |y1|, we have |la| ≤ |y1| < |lau| which implies that |us| > |r| > |s|
and r ∈ R(X)A∗ as y2 is left X-canonical.

3. y1 ∈ T (X, m), y2 ∈ X . We have then ly2 = ausr with y1 = aus and a, u, s, l
having the usual meaning. Since |l| ≥ 1 and |r| < |y2| we get |r| < |y2| ≤ |usr|. If
|y2| ≤ |sr| then r ∈ R(X)A∗ as s ∈ S(X); otherwise |y2| > |sr| then we get also
r ∈ R(X)A∗ because us is left X-precanonical. Finally

4. y1, y2 ∈ T (X, m), so y1 = a1u1s1, y2 = a2u2s2, where a1, a2 ∈ A, u1, u2 ∈
A+, |u1| = |u2| = m, s1, s2 ∈ A+. We have

la2u2s2 = a1u1s1r

with |l| < |y1|. First, |a1u1| < |l|, otherwise a2u2s2 ∈ R(X)A∗: a contradiction:
y2 is a left canonical word. Hence, we get |s2| < |r| ≤ |u2s2|, as |l| < |y1| and
|u| = m > |s1|, which implies r ∈ R(X)A∗ because u2s2 is left precanonical. The
theorem is proved. �

We derive an immediate consequence.

Corollary 3.2.8. Let Y = X + T (X, m) (Y = X + U(X, m)). Then every left
(right, resp.) Y, m-precanonical word is also a left (right, resp.) X, m-precanonical
word.

Proof. Straightforward by definition. Observe that R(X) ⊆ R(Y) and A∗ −
R(Y) ⊆ A∗ − R(X)A∗. �

The following theorem, which is also an easy corollary of Proposition 3.2.7,
describes the effect of elimination of “long” precanonical factors under T and U .

102 N.H. LAM

Theorem 3.2.9. Let Y = X + T (X, m) (Y = X + U(X, m)). Then E(Y) does
not contain left (right, resp.) Y, m-precanonical factors.

Proof. Suppose that a certain word e of E(Y) contains a left Y, m-precanonical
factor. By the preceding corollary this factor is also a left X, m-precanonical
word. Since e ∈ E(Y) ⊆ E(X), by Theorem 3.2.5, e contains a minimal left X, m-
canonical factor, i.e. a factor in T (X, m) ⊆ Y . But this is a contradiction, as
E(Y) avoids Y , which proves the theorem. �

The next section sets a departure point for the completing process, in which the
constructions T and U are repeated alternatively to eliminate long precanonical
factors, both left and right, in the sets E. The main objective is to show that
we can succeed in doing this in a finite number of steps that only depends on the
original (finite) comma-free code X .

4. Constructions T and U and their right borders

The present section contains rather an extensive treatment, so we divide it into
several subsections for easier presentation. We begin with the main construction
which is an iterated process.

4.1. Constructions T and U

Let X0 be a finite comma-free code, k and λ positive integers, λ is sufficiently
large. We define the sequence of finite comma-free codes

X0, Y1, . . . , X2k, Y2k+1

as follows.
Y1 = X0 + U(X0, λn0)
X2 = Y1 + T (Y1, n1)
.
X2k = Y2k−1 + T (Y2k−1, n2k−1)
Y2k+1 = X2k + U(X2k, λn2k)

where n0 = maxX0, n2 = maxX2, . . ., n2k = maxX2k and n1 = (λ + 1)n0,
n3 = (λ+1)n0 +(λ+1)n2 +n1, . . ., n2k+1 = (λ+1)n0 + . . .+(λ+1)n2k +n2k−1.

We get then the ascending chain

X0 ⊆ Y1 ⊆ · · · ⊆ X2k ⊆ Y2k+1.

We are going to establish some inequalities relating the ni’s and the maximal
length of Yi’s. Note that

maxY2i+1 ≤ (λ + 1)n2i

for i = 0, . . . k by the relations Y2i+1 = X2i + U(X2i, λn2i) and n2i = max X2i.

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 103

Further,
n2i−1 ≤ n2i ≤ maxY2i−1 + n2i−1

for i = 1, . . . , k by the relations X2i = Y2i−1 + T (Y2i−1, n2i−1). Hence

n2i−1 ≤ n2i < 2n2i−1

for i = 1, . . . , k. On the other hand, by definition, we have

(λ + 1)n2i−2 ≤ n2i−1

for i = 1, . . . , k. We highlight the following, and what is more important in the
sequel,

(λ + 1)n2i−2 ≥ maxU(X2i−2, λn2i−2)

for every i = 1, . . . , k and, consequently,

n2i ≥ n2i−1 > maxU(X2i−2, λn2i−2).

We should remark that λ is arbitrarily large but fixed integer throughout the
construction. The question how large λ is depends on the later applications and
we shall specify it there.

Setting for short
U0 = U(X0, λn0)
T1 = T (Y1, n1)
.
T2k−1 = T (Y2k−1, n2k−1)
U2k = U(X2k, λn2k),

we have
Y2i+1 = U2i + T2i−1 + . . . + T1 + U0 + X0

for i = 0, 1, . . . , k and

T2i−1 ⊆ X2i = T2i−1 + U2i−2 + . . . + T1 + U0 + X0

for i = 1, 2, . . . k. Remark that X0, U0, T1, . . . , T2k−1, U2k are all disjoint.

4.2. Right borders and simple right borders: Index and type

In this subsection we investigate right borders in detail, more exactly, simple
right borders, which are defined as follows. We retain the notation of the previous
subsection.

Definition 4.2.1. A right border s of Y2k+1 is called simple right border if it
does not contain any other right border of Y2k+1 as a proper left factor, i.e.,
s ∈ R(Y2k+1) but s /∈ R(Y2k+1)A+.

We distinguish the right borders by means of their index, defined as follows.

104 N.H. LAM

Definition 4.2.2. Index of a right border s is the least integer i, such that s is a
right border of the overlapping equality y2s = ly1, where |l| < |y2|, y1, y2 ∈ Y2k+1

and y1 ∈ Ti or y1 ∈ Ui respective to i odd or even, or −1 if y1 ∈ X0.

The following technical feature of simple right borders will only be used later
in estimating their length.

Proposition 4.2.3. Let s be a simple right border of index i. If s is a right factor
of a word t = ajujsj ∈ Tj with j ≤ i then s is a proper right factor of sj.

Proof. Clearly s �= t, so s is right factor of ujsj . Suppose that sj is a right
factor of s. Since ujsj is a left Yj , nj-precanonical word, |uj | = nj , we see that
s has then a left factor s′ ∈ R(Yj) ⊆ R(Y2k+1). By simplicity of s, s′ = s,
therefore, s ∈ R(Yj) which shows that the index of s is at most j − 1 as Yj =
Uj−1+Tj−2+. . .+T0+U0+X0, which is against the assumption. This contradiction
proves the proposition. �

We comes now to the main task of this section, to define the concept of type.
Our purpose is to assign, in any way, not necessarily unique, to each simple right
border s of Y2k+1 an integral value t(s) such that

−1 ≤ t(s) ≤ k

called type of s; then we shall show, and what is the main service of the concept,
that

1. if t(s) = −1 then s ∈ S(X0), in particular, |s| < maxX0;
2. if t(s) ≥ 0 then s ∈ S(U2t(s)) and |s| > (λ − 2k + 1)n2t(s).

To begin with, suppose that s has index j. We have then an equality

y2s = ly1

with y2 ∈ Y2k+1, y1 ∈ Tj or y1 ∈ Uj and |l| < |y2| (or equivalently |s| < |y1|).
If j = −1, that is, y1 ∈ X0, we define at once t(s) = −1. Clearly, in this case

s ∈ S(X0). Otherwise, j ≥ 0, we distinguish the following cases:
1. j even, j = 2j(1), 0 ≤ j(1) ≤ k and y1 ∈ U2j(1). We define t(s) = j(1) and

we write by definition
y1 = p2j(1)v2j(1)a2j(1)

where a2j(1) ∈ A, v2j(1) ∈ A+, |v2j(1)| = λn2j(1), p2j(1) ∈ A+ and |p2j(1)| < n2j(1).
Clearly |s| < |y1| ≤ maxU2j(1) = max U2t(s). We have two issues concerning s.

(a) |s| ≥ |v2j(1)a2j(1)|. In this case |s| > λn2j(1) = λn2t(s);
(b) 0 < |s| < |v2j(1)a2j(1)|. We can write then

v2j(1)a2j(1) = p̄s

for some word p̄ ∈ A+, which is a right factor of y2 ∈ Y2k+1. Since v2j(1) is a
right X2j(1)-precanonical word of tag |p2j(1)| which is less than n2j(1) (as a right
factor of p2j(1)v2j(1), see Rem. 3.1.7), we should have |p̄| < n2j(1) − 1, otherwise,

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 105

p̄ has a right factor in L(X2j(1)), which contradicts the comma-freeness of Y2k+1.
Therefore

|s| = |v2j(1)a2j(1)| − |p̄| > λn2j(1) + 1 − (n2j(1) − 1) = (λ − 1)n2j(1) + 2.

Hence
|s| > (λ − 1)n2t(s);

2. j odd, j = 2j(1) + 1, j(1) < k and y1 ∈ T2j(1)+1. We write

y1 = a2j(1)+1u2j(1)+1s2j(1)+1

where a2j(1)+1 ∈ A, u2j(1)+1 ∈ A+, |u2j(1)+1| = n2j(1)+1, s2j(1)+1 ∈ A+, |s2j(1)+1| <
n2j(1)+1. In view of Proposition 4.2.3 |s| < |s2j(1)+1|, hence

s2j(1)+1 = s̄′1s

with s̄′1 ∈ S(Y2k+1). As y1 is a minimal right Y2j(1)+1-canonical word, there exists
a right factor p̄′2 of u2j(1)+1 such that

p̄′2s2j(1)+1 ∈ R(Y2j(1)+1).

We choose p̄′2 as the shortest possible right factor satisfying this property. We
have

y4p̄
′
2s2j(1)+1 = l3y3

with some y3, y4 ∈ Y2j(1)+1, |p̄′2s2j(1)+1| < |y3|.
Further, if again y3 ∈ T2j(3)+1 for some j(3) < j(1) then we write

y3 = a2j(3)+1u2j(3)+1s2j(3)+1

with a2j(3)+1 ∈ A, u2j(3)+1 ∈ A+, |u2j(3)+1| = n2j(3)+1, s2j(3)+1 ∈ A+ and
|s2j(3)+1| < n2j(3)+1 for which

y4p̄
′
2s2j(1)+1 = l3a2j(3)+1u2j(3)+1s2j(3)+1.

Note that we have again by Proposition 4.2.3 that s is a proper right factor of
s2j(3)+1. Now, depending on the following alternatives

(i) |s| < |s2j(3)+1| ≤ |s2j(1)+1|;
(ii) |s2j(1)+1| < |s2j(3)+1| ≤ |p̄′2s2j(1)+1|;
(iii) |p̄′2s2j(1)+1| < |s2j(3)+1| ;

we have respectively
(i’) s2j(3)+1 = s̄1s with s̄1 a right factor of s̄′1;
(ii’) s2j(3)+1 = p̄2s̄

′
1s with p̄2 a right factor of p̄′2. Note that then p̄2s̄

′
1s =

p̄2s2j(1)+1 is a left Y2j(1)+1, |p̄2|-precanonical and, because of the minimality of

106 N.H. LAM

p̄′2, it is not a minimal left Y2j(1)+1, |p̄2|-precanonical word if |p̄2| < |p̄′2| (see
Rem. 3.1.8);

(iii’) s2j(3)+1 = s̄3p̄
′
2s2j(1)+1 with s̄3 a right factor of y4 ∈ Y2j(1)+1 ⊆ Y2k+1.

Thus, generally, we can write for convenience

s2j(3)+1 = s̄3p̄2s̄1s

where s̄1 and s̄3, which may be empty, belong to S(Y2k+1) and p̄2 is a right factor
of p̄′2, which may also be empty, and if |p̄2| > 0 then p̄2s̄1s is a left Y2j(1)+1, |p̄2|-
precanonical word and, moreover, if 0 < |p̄2| < |p̄′2|, it is not a minimal left
Y2j(1)+1, |p̄2|-precanonical word.

Suppose that we have repeated the argument for t times, t > 1, to obtain the
sequence

1 ≤ j(2t − 1) < · · · < j(3) < j(1) < k,

the words

y1 = a2j(1)+1u2j(1)+1s2j(1)+1 ∈ T2j(1)+1

. .

y2t−1 = a2j(2t−1)+1u2j(2t−1)+1s2j(2t−1)+1 ∈ Tj(2t−1)+1

with the usual notation, and the words

s2j(1)+1 = s̄1s

.

s2j(2t−1)+1 = s̄2t−1p̄2t−1 . . . p̄2s̄1s

where s̄1, . . . , s̄2t−1 ∈ S(Y2k+1), p̄2, . . . , p̄2t−2 are right factors of p̄′2, . . . , p̄
′
2t−2,

respectively, p̄2i . . . s̄1s is left Y2j(i)+1, |p̄2i|-precanonical if |p̄2i| > 0, and it is so
but not minimal if 0 < |p̄2i| < |p̄′2i| for i = 1, . . . , t − 1.

Now we are at the step t+1. Reasoning as in all steps before, let p̄′2t be a right
factor of u2j(2t−1)+1, as short as possible, such that

p̄′2ts2j(2t−1)+1 ∈ R(Y2j(2t−1)+1).

Observe that, as before, p̄′2ts2j(2t−1)+1 is a left Y2j(2t−1)+1, |p̄2t|-precanonical word.
We choose now an overlapping relation for the right border p̄′2ts2j(2t−1)+1

y2t+2p̄
′
2ts2j(2t−1)+1 = l2t+1y2t+1

with |p̄′2ts2j(2t−1)| < |y2t+1| for some words y2t+1, y2t+2 ∈ Y2j(2t−1)+1.
We suppose further that at this moment we do not have y2t+1 ∈ Ti for any

i ≤ 2k + 1 as before, but instead

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 107

(a) y2t+1 ∈ X0. In this case we assign the type −1 to s. We have certainly
s ∈ S(X0) and |s| < maxX0;

(b) y2t+1 ∈ U2i for some i ≥ 0. In this case, we assign the type i to s. We
describe some properties of s. We have as usual y2t+1 = p2iv2ia2i with a2i ∈ A,
v2i ∈ A+, |v2i| = λn2i, p2i ∈ A+, |p2i| < n2i; and

y2t+2p̄
′
2ts2j(2t−1)+1 = l2t+1p2iv2ia2i

or
y2t+2p̄

′
2ts̄2t−1p̄2t−2 . . . p̄2s̄1s = l2t+1p2iv2ia2i.

We estimate the length of s. On the one hand, obviously

|s| < |y2t+1| ≤ maxU2i = maxU2t(s).

On the other hand, to bound |s| from below, we observe that

|p̄′2ts̄2t−1p̄2t−2 . . . p̄2s̄1s| > |v2ia2i|

for, otherwise, in view of the fact that p2iv2ia2i is right X2i-precanonical of tag
|p2i|, y2t+2 has a right factor in L(X2i) that is in contradiction with the comma-
freeness of Y2k+1.

If |v2ia2i| ≤ |s| then we get immediately

|s| ≥ |v2i| + 1 = λn2i + 1.

If, otherwise,

|s| < |v2ia2i| < |p̄′2ts̄2t−1p̄2t−2 . . . p̄2s̄1s| < |p2iv2ia2i| = |y2t+1|

then we show that

|p̄′2t| ≤ n2i − 1, |p̄2t−2| ≤ n2i − 1, . . . , |p̄2| ≤ n2i − 1

and
|s̄2t−1| < n2i − 1, . . . , |s̄1| < n2i − 1.

Consider first the case of p̄′2t. If

|v2ia2i| ≤ |s̄2t−1p̄2t−2 . . . , p̄2s̄1s|

which implies
n2i − 1 ≥ |p2i| > |p̄′2t|

so we are done. For the other case

|v2ia2i| > |s̄2t−1p̄2t−2 . . . p̄2s̄1s|

108 N.H. LAM

we have
|y2t+2p̄

′
2t| > |l2t+1p2i|.

If p̄′2t = 1, we have nothing to prove, |p̄′2t| = 0 < n2i − 1; otherwise, in case

s̄2t−1p̄2t−2 . . . p̄2s̄1s

is a left Y2j(2t−1)+1, |p̄′2t|-precanonical word and for the right factor p̄′′2t of length
|p̄′2t| − 1 of p̄′2t,

p̄′′2ts̄2t−1 . . . p̄2s̄1s

is a left Y2j(2t−1)+1, |p̄′′2t|-precanonical, but not minimal, word because of the as-
sumption on the (minimal) length of p̄′2t. Consequently,

p̄′′2ts̄2t−1 . . . p̄2s̄1s
′,

where s′a2i = s, is also a left Y2j(2t−1)+1, |p̄′′2t|-precanonical word.
Suppose that |p̄′′2t| ≥ n2i − 1. Then by Remark 3.1.7

p̄′′2ts̄2t−1 . . . p̄2s̄1s
′

being a right factor of p2iu2i is also a right X2i, |p̄′′2t|-precanonical word. But this
is in contradiction with the Corollary 3.1.10 which says that |p̄′′2t| < n2i − 1. So
we must have |p̄′′2t| < n2i − 1, and |p̄′2t| ≤ n2i − 1.

The proofs for the cases |p̄2t−2| ≤ n2i − 1,. . ., |p̄2| ≤ n2i − 1 are just the same,
only note that p̄2t−2, . . . , p̄2 are right factors of p̄′2t−2, . . . , p̄

′
2, respectively, on which

the assumption of minimal length is made.
As of the cases of s̄2t−1, . . . , s̄1 the proofs are in the same vein but simpler. We

prove, for example,
|s̄2t−1| < n2i − 1,

the remaining cases are just identical. If

|p̄2t−2 . . . p̄2s̄1s| ≥ |v2ia2i|

then
|s̄2t−1| < |p2i| ≤ n2i − 1.

If, otherwise,
|p̄2t−2 . . . p̄2s̄1s| < |v2ia2i|

then
|y2t+2p̄

′
2ts̄2t−1| ≥ |l2t+1p2i|.

Again, as p2iv2ia2i is right X2i, n2i-precanonical word (of tag |p2i|), it follows that

y2t+2p̄
′
2ts̄2t−1 ∈ L(X2i)A∗.

Therefore, we should have |s̄2t−1| < n2i−1, since in the opposite case, the inequal-
ity |s̄2t−1| ≥ n2i − 1 ≥ maxL(X2i) leads to s̄2t−1 ∈ L(X2i)A∗, which contradicts
the comma-freeness of Y2k+1 as s̄2t−1 ∈ S(Y2k+1).

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 109

Now we are in a position to bound |s| from below. Since |v2i| = λn2i and
each of the values |s̄1|, . . . , |s̄2t−1| is less than n2i − 1 and each of the values
|p′2t|, |p′2t−2|, . . . , |p′2| is no more than n2i − 1, we get

|s| > |v2ia2i| − |p′2ts̄2t−1 . . . p̄2s̄1|
> λn2i + 1 − t(n2i − 1) − t(n2i − 2) = (λ − 2t)n2i + 3t + 1

> (λ − 2t)n2i.

From the chain
1 ≤ j(2t − 1) < · · · < j(3) < j(1) < k

we deduce t < k and finally we get

|s| > (λ − 2(k − 1))n2i.

Summarizing, we have so far established
1. every simple right border s of Y2k+1 has type t(s), which lies between −1

and k;
2. if t(s) = −1 then s is a right factor of X0; in particular |s| < max X0;
3. if t(s) ≥ 0 then s is a right factor of U2t(s); in particular |s| < maxU2t(s)

and |s| > min (λn2t(s), (λ−1)n2t(s), (λ−2(k−1))n2t(s)) > (λ−2k+1)n2t(s).
We are just one step away from the following.

Theorem 4.2.4. For a simple right border s of Y2k+1, if t(s) = −1 then s is
a right factor of X0, in particular |s| < maxX0. If t(s) ≥ 0 then s is a right
factor of U2t(s) and (λ − 2k + 1)n2t(s) < |s| < max U2t(s), moreover, s is a right
X2t(s), m2t(s)-canonical word with tag less than n2t(s) and m2t(s) > (λ− 2k)n2t(s).

Proof. We have to show only the last claim. Suppose that t(s) ≥ 0. Since s is
a right factor of some word of U2t(s), which is a (minimal) right X2t(s), λn2t(s)-
canonical word of tag less than n2t(s) then s is a right X2t(s), m2t(s)-canonical word
of the same tag and for some m2t(s). From the fact that |s| > (λ−2(k−1))n2t(s) >
(λ − 2k + 1)n2t(s), we see at once that

m2t(s) > (λ − 2k)n2t(s)

which concludes the proof. �

5. Canonical comma-free codes

In this section, as a first step in completing finite comma-free code to a finite
maximal one, we introduce the concept of canonical comma-free code and we prove
that every finite comma-free code is included in a finite canonical comma-free code.
We continue using the notation of the previous section.

110 N.H. LAM

5.1. Basic theorems. Canonical comma-free code

Let λ ≥ 2k + 2 and g ≥ n2k+1. We have the following instrumental result.

Theorem 5.1.1. If E(Y2k+1) has a left Y2k+1, g-precanonical factor then there
exists a left border s ∈ R(Y2k+1) such that s ∈ S(X0) but s /∈ R(X2k), hence
s /∈ R(Y2k−1).

Proof. Let
a1 . . . agag+1 . . . ag+t,

where a1, . . . , ag+t are letters, be a left Y2k+1, g-precanonical factor of E(Y2k+1)
(of tag t). We prove the following

Claim k. For every positive integer i,

i ≤ g − (λ + 1)n2k

the word
ai . . . agag+1 . . . ag+t

has no left factors which are right borders of type k.
In order to prove this, suppose by contradiction that ai . . . agag+1 . . . ag+t has

a left factor
s = ai . . . ahah+1

which is a simple right border of type k. By Theorem 4.2.4, |s| < max U2k, which
is less than (λ + 1)n2k, hence h + 1 ≤ g as g − i ≥ (λ + 1)n2k, and s is a right
X2k, m2k-canonical word of tag less than n2k and with m2k ≥ (λ−2k)n2k ≥ 2n2k.
To be more precise, we write

s = ai . . . afaf+1 . . . ahah+1,

where |ai . . . af | < n2k, h − f = m2k and

s′ = ai . . . afaf+1 . . . ah

is a right X2k-precanonical word of tag f − i + 1. Put d = h − n2k, e = h − 2n2k.
Certainly,

i ≤ f ≤ e < d < h < g.

We show that for every integer j in the range

e < j ≤ d

the word
aj . . . agag+1 . . . ag+t

has no left factor which is a simple right border of Y2k+1 of type k.
In fact, if it has such a right border

aj . . . aj+h′

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 111

as a left factor, which we present, as a right Y2k+1, m2k-canonical word (as X2k ⊆
Y2k+1), as follows:

aj . . . aj+f ′−1aj+f ′ . . . aj+h′−1aj+h′

where
n2k > f ′ > 0, h′ − f ′ = m2k.

Now observe that
j + f ′ < j + n2k ≤ d + n2k = h

and

h = e + 2n2k < j + 2n2k < j + f ′ + 2n2k < j + f ′ + m2k = j + h′,

hence
h + 1 < j + h′.

These two inequalities show that, with respect to the right Y2k+1, m2k-canonical
word aj . . . aj+h′ of tag f ′, the word aj . . . ah+1 and, therefore, the word ai . . . ahah+1

have a right factor which is in L(Y2k+1). But it is impossible, because ai . . . ahah+1

is a right Y2k+1-canonical word. Therefore for every j, e < j ≤ d,

aj . . . agag+1 . . . ag+t

must have a left a factor which is a right border of type less than k and which
is of length less than maxU2(k−1) < n2k−1 ≤ n2k. But this contradicts Proposi-
tion 3.1.9 with respect to the right X2k-precanonical word s′ (herewith, X2k = Y)
which says that there should be an integer j such that

e = d − n2k−1 < d − maxU2(k−1) < j ≤ d,

for which aj . . . agag+1 . . . ag+t has no such a factor! This total contradiction proves
Claim k.

Thus ai . . . agag+1 . . . ag+t has left factors that are simple right borders only of
type less than k, for every i ≤ g − (λ + 1)n2k. By an argument entirely identical
to the one above, we can further establish for every l ≤ 0.

Claim l. For every i ≤ g − (λ + 1)n2k − . . . − (λ + 1)n2l the word

ai . . . agag+1 . . . ag+t

has no left factors which are simple right borders of type greater than or equal
to l.

When l = 0, we finally get that for every integer i satisfying

i ≤ g − (λ + 1)n2k − . . . − (λ + 1)n0 = (g − n2k+1) + n2k−1

the word
ai . . . agag+1 . . . ag+t

has only right simple borders of Y2k+1 of type −1 as left factors.

112 N.H. LAM

Now that E(Y2k+1) ⊆ E(X2k) and E(X2k) has no factors that are left X2k, n2k−1-
precanonical words, it immediately follows that there exists a (simple) right border
of Y2k+1 of type −1, meaning that it is a right factor of X0, and it is not a right
border of X2k. This achieves the proof of the theorem. �

All we have done so far is to prepare the ground for the following statement.

Theorem 5.1.2. Let k = |S(X0)|+1 and λ = 2k+2 then E(Y2k+1) does not con-
tain any left Y2k+1, n2k+1-precanonical factors. Consequently, E(Y2k+1) contains
neither left nor right Y2k+1, n2k+1-precanonical factors.

Proof. We first show that if two adjacent members of the sequence Y1, Y3, . . . , Y2k+1

equal then it stabilizes from that place on. For instance, we prove that

X2i = Y2i+1

implies
Y2i+1 = X2i+2

for any i, 0 < i < k. (The other case is handled analogously.) The equality

Y2i+1 = X2i+2

is equivalent to
T (Y2i+1, n2i+1) = ∅

or the same
T (X2i, n2i+1) = ∅.

The equality above holds, since

X2i = Y2i−1 + T (Y2i−1, n2i−1),

by Theorems 3.2.9 and 3.2.5, T (X2i, n2i−1) = ∅ and n2i+1 > n2i−1.
We now turn to the proof of the theorem itself. If Y2k+1 = X2k, we are done,

since E(X2k) has no left X2k, n2k−1-precanonical factors, while n2k−1 < n2k+1.
Otherwise, we see by the stability observation above that for 0 < i ≤ k

X2i �= Y2i−1,

or equivalently,
T (Y2i−1, n2i−1) �= ∅

which means that E(Y2i−1) contains left Y2i−1, n2i−1-precanonical factors.
By Theorem 5.1.1, as λ = 2k+2 ≥ 2i+2, there exist a word si−1 ∈ S(X0) such

that si−1 ∈ R(Y2i−1) but si−1 /∈ R(Y2i−3) for each 1 < i ≤ k. Now if in addition
E(Y2k+1) has a left Y2k+1, n2k+1-precanonical factor, then there exists sk ∈ S(X0)
such that sk ∈ R(Y2k+1) and sk /∈ R(Y2k−1). This implies that s1, . . . , sk are all
distinct, hence k ≤ |S(X0)|. But this is impossible because of the presumed value
of k, which proves the first claim. The last claim is straightforward. �

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 113

The Theorem 5.1.2 motivates the central notion of this paper. Let N be a
positive integer.

Definition 5.1.2. A comma-free code X is said to be N -canonical if E(X) con-
tains no left X, N -precanonical factor and no right X, N -precanonical factors. A
comma-free code is said to be canonical if it is N -canonical for some positive
integer N .

Evidently, this definition is equivalent to the next, which is more explicit.

Definition 5.1.3. A comma-free code X is called N -canonical if for any word
w ∈ E(X) and any factorization w = xuy with x, y, u ∈ A∗ and |u| ≥ N , there
exist factorizations u = pp′ = ss′ such that xp ∈ E(X) and s′y ∈ E(X), or just
the same, xp /∈ A∗L(X) and s′y /∈ R(X)A∗.

In other words, a comma-free code X is N -canonical if and only if for any word
w ∈ E(X) and for any integer n, 0 < n ≤ |w| there is a left factor p and a right
factor s of w such that p, s ∈ E(X) (or just the same p /∈ A∗L(X), s /∈ R(X)A∗)
and n ≤ |p|, |s| < n + N . We can imagine that for an N -canonical comma-free
code X and for every word w of E(X) the left factors and the right factors of w
which are also in E(X) are distributed uniformly (no more than an N -distance
apart).

Example 5.1.3. Let A = {a, b}; the set {bab} is a 2-canonical comma-free code,
for which R = {ab}; L = {ba} and which is not maximal as {bab, baa} is a comma-
free code. Moreover, it can be proved that every one-word comma-free code is
canonical.

5.2. Completing to canonical comma-free codes

Now we come to the culminating point of this section, the completion theorem.

Theorem 5.2.1. Every finite comma-free code X can be completed to a finite
N -canonical comma-free code Y with

maxY ≤ 4(λ + 1)2(λ + 2)maxX0

if k = 2 or
maxY ≤ 2k−1(λ + 1)2(λ + 2)k−2maxX0

if k > 2 and
N = 2k−1(λ + 1)(λ + 2)k−1maxX0

where k = |S(X)| + 1, λ = 2k + 2.

Proof. We see by Theorem 5.1.2 that X = X0 is included in Y2k+1 which is a
n2k+1-canonical finite comma-free code. We estimate n2k+1 and maxY2k+1.

By the inequalities

maxY2i+1 ≤ (λ + 1)n2i, i = 0, 1, . . . , k

114 N.H. LAM

and
n2i < 2n2i−1, i = 1, . . . , k

we have
max Y2i+1 < 2(λ + 1)n2i−1, i = 1, . . . , k.

By definition, for 1 < i ≤ k,

n2i+1 − n2i−1 = (λ + 1)n0 + · · · + (λ + 1)n2i = n2i−1 − n2i−3 + (λ + 1)n2i

< n2i−1 + 2(λ + 1)n2i−1 = (2λ + 3)n2i−1.

Hence
n2i+1 < (2λ + 4)n2i−1

for i > 1. Due to this relation and the fact that k ≥ 2 and n3 < (2(λ+1)2 +2(λ+
1))n0 a trite calculation yields

n2k+1 ≤ 2k(λ + 1)(λ + 2)kmaxX0

and
maxY2k+1 ≤ 4(λ + 1)2(λ + 2)maxX0

if k = 2, or else

maxY2k+1 ≤ 2k−1(λ + 1)2(λ + 2)k−2maxX0

if k > 2, as desired to prove. �

6. Concluding remarks

As said before, Theorem 5.2.1 represents the first stage of the problem of finite
completion of comma-free code by proving that there always exists a finite N -
canonical comma-free code containing a given finite comma-free code X . We can
figure out that the procedure is actually an effective one. To wit, starting from a
finite comma-free code X , the sets Y1, Y3, . . . , Y2k+1 are effectively constructible,
at least by the fact that the sets of left and right m-canonical words are always
finite for all m, putting aside complexity considerations.

We would like to remark that the estimates do not tend to be best possible;
rather, we present them in a more or less quantitative manner to give flavor of
the method. The present work is a full exposition of [9], with a slight modifica-
tion concerning the sequence n0, n1, . . . , n2k, n2k+1. This is carried out to ensure
that E(Y2k+1) is free of n2k+1-precanonical factors, however, at the expense of
somewhat larger bounds on max Y2k+1.

We hope to publish the remaining part of the solution, namely, the proof that
every finite N -canonical comma-free code, for all N > 0, has a finite completion,
in another paper.

FINITE COMPLETION OF COMMA-FREE CODES. PART 1 115

Acknowledgements. I am greatly indebted to the referee for the comments and suggestions
of high expertise.

References

[1] J. Berstel and D. Perrin, Theory of Codes. Academic Press, Orlando (1985).
[2] F.H.C. Crick, J.S. Griffith and L.E. Orgel, Codes without Commas. Proc. Natl. Acad. Sci.

USA 43 (1957) 416-421.
[3] S.W. Golomb, B. Gordon and L.R. Welch, Comma-free Codes. Canad. J. Math. 10 (1958)

202-209.
[4] S.W. Golomb, L.R. Welch and M. Delbrück, Construction and Properties of Comma-free

Codes. Biol. Medd. Dan. Vid. Selsk 23 (1958) 3-34.
[5] W.L. Eastman, On the Construction of Comma-free Codes. IEEE Trans. Inform. Theory

IT-11 (1965) 263-267.
[6] C.M. Fan and H.J. Shyr, Some Properties of Maximal Comma-free Codes. Tamkang J.

Math. 29 (1998) 121-135.
[7] M. Ito, H. Jürgensen, H.J. Shyr and G. Thierrin, Outfix and Infix Codes and Related Classes

of Languages. J. Comput. Syst. Sci. 43 (1991) 484-508.
[8] B.H. Jiggs, Recent Results in Comma-free Codes. Canad. J. Math. 15 (1963) 178-187.
[9] N.H. Lam, Finite Completion of Comma-free Codes. Part I, in Proc. DLT. Springer-Verlag,

Lect. Notes Comput. Sci. 2450 (2002) 357-368.
[10] Al. A. Markov, An Example of an Idependent System of Words Which Cannot Be Included

in a Finite Complete System. Mat. Zametki 1 (1967) 87-90.
[11] A. Restivo, On Codes Having No Finite Completions. Discret Math. 17 (1977) 306-316.
[12] R.A. Scholtz, Maximal and Variable Word-length Comma-free Codes. IEEE Trans. Inform.

Theory IT-15 (1969) 555-559.
[13] H.J. Shyr, Free Monoids and Languages. Lecture Notes, Hon Min Book Company, Taichung

(1991).
[14] J.D. Watson and F.C.H. Crick, A Structure for Deoxyribose Nucleic Acid. Nature 171 (1953)

737.

Communicated by J. Berstel.
Received April 22, 2003. Accepted February 10, 2004.

To access this journal online:
www.edpsciences.org

