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Abstract. We show that the class of groups which have monoid pre-
sentations by means of finite special [λ]-confluent string-rewriting sys-
tems strictly contains the class of plain groups (the groups which are
free products of a finitely generated free group and finitely many finite
groups), and that any group which has an infinite cyclic central sub-
group can be presented by such a string-rewriting system if and only
if it is the direct product of an infinite cyclic group and a finite cyclic
group.
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1. Introduction

Several results have been proved giving algebraic characterizations of the groups
which can be presented by certain classes of finite string-rewriting system: a gen-
eral account of this subject may be found in [6]. Recall that a string-rewriting
system is said to be special if every rule rewrites a string to the empty word. In
[2], Cochet shows that a group has a presentation by a finite special confluent
string-rewriting system if and only if it is the free product of finitely many (finite
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and infinite) cyclic groups. A string-rewriting system is said to be [λ]-confluent if
it is confluent on the Thue-congruence class containing the empty word. Madlener
and Otto, in [6], prove that a group can be presented by a finite special string-
rewriting system R which is [λ]-confluent and which provides inverses of length
one for every letter (that is, for every generator x there exists a generator y such
that xy → λ and yx → λ are rules of R), if and only if it is a plain group (the free
product of a finitely generated free group and finitely many finite groups).

There is at present no known algebraic characterization of the groups presented
by finite special [λ]-confluent string-rewriting systems which do not necessarily
provide inverses of length one (the class Csp,1 from [6]). We shall show in Section 3
that this class strictly contains the class of plain groups (thereby answering a
question of Madlener and Otto) and, in Section 4, that a group which has an
infinite cyclic central subgroup has a presentation by a finite special [λ]-confluent
string-rewriting system if and only if it is the direct product of one finite and
one infinite cyclic group (Th. 4.6). In Section 5 we give some further examples
of groups which can be presented by finite special [λ]-confluent string-rewriting
systems.

2. Preliminaries

In this section we recall some of the concepts we need from group theory and
the theory of string-rewriting systems and fix notation. In general, definitions
from group theory may be found in [5] or [7], and those from string-rewriting may
be found in [1].

A set X , where each x ∈ X represents an element of a group G, is said to
be a monoid generating set for G if every element of G is represented by a word
from X∗. The word problem WX(G) of G with respect to a monoid generating set
X is the set of words in X∗ which are equal to the identity in G. The irreducible
word problem IX(G) of G with respect to a monoid generating set X is the subset
of the word problem consisting of those non-empty words which have no non-empty
proper subword which is equal to the identity.

We shall use the expression v ≡ w to mean that the words v and w are identical
as strings of symbols, and v = w to mean that v and w represent the same element
of the appropriate group. The length of the word w will be denoted by |w|, and
|w|x will denote the number of occurrences of the symbol x in w. If w ≡ uv, then
u is said to be a prefix of w, and v is said to be a suffix of w. We shall denote the
empty word (the word of length zero) by λ.

Given a finite alphabet Σ, a string-rewriting system R over Σ is a set of rules
u → v, where u and v are in Σ∗. We shall only be interested in finite string-
rewriting systems here.

We define the reduction relation ∗⇒R to be the reflexive transitive closure of ⇒R,
where w1uw2 ⇒R w1vw2 if w1, w2 ∈ Σ∗ and u → v ∈ R. If w1

∗⇒R w2 then we
say that w2 is an (R)-descendant of w1. The transitive symmetric closure of ∗⇒R,
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written as ∗⇔R, is a monoid congruence and is called the Thue congruence of R.
The congruence class of a word w is then denoted by [w].

A string-rewriting system is said to be special if every rule is of the form u → λ,
for some u ∈ Σ+. A string-rewriting system R over Σ is said to be [λ]-confluent
if, whenever u, w1, w2 ∈ [λ], with u

∗⇒R w1 and u
∗⇒R w2, then there exists v ∈ [λ]

such that w1
∗⇒R v and w2

∗⇒R v. A special string-rewriting system is [λ]-confluent
if u ∈ [λ] implies that u

∗⇒R λ. For a special string-rewriting system R, a word u
is called (R)-irreducible if u has no R-descendants other than u.

We say that string-rewriting system R over Σ presents the monoid

〈Σ : {u = v : (u → v) ∈ R}〉,

which is isomorphic to the monoid Σ∗/ ∗⇔R. We are interested here in the situation
where the monoid presented by R is a group.

When we wish to discover whether or not a group may be presented by a
finite special [λ]-confluent string-rewriting system, we shall not generally work with
string-rewriting systems directly, but shall use instead the following observation,
implicit in [6].

Proposition 2.1. Let G be a group, and X a finite monoid generating set for G.
Then G can be presented by a finite special [λ]-confluent string-rewriting system
over X if and only if it has finite irreducible word problem with respect to X.

Proof. Let R be a finite special [λ]-confluent string-rewriting system over X which
presents G. If w ∈ I = IX(G) then, since w ∈ WX(G), there is a rule u → λ
which can be applied to w. Now u is a non-empty subword of w which is equal to
the identity, so u ≡ w. We have shown that, for any w ∈ I, there must be a rule
w → λ in R. Since R has only finitely many rules, I must be finite.

Conversely, let G be a group with finite monoid generating set X such that
I = IX(G) is finite. Then {w → λ : w ∈ I} is a finite special [λ]-confluent
string-rewriting system which presents G. �

When we refer to the Cayley graph of a group we shall mean the right Cayley
graph, that is, for a group G with monoid generating set X , the graph Γ whose
vertices are the elements of G, and which has an edge labelled by x ∈ X from
vertex g1 to vertex g2 exactly when g1x = g2. For each vertex g of Γ, any word
w ∈ X∗ labels a path starting at g. The path labelled by the word w is said to
be closed if it starts and ends at the same vertex (closed paths are also known as
loops) and simple if no non-empty proper subword of w labels a loop.

It is noted in [3] that a non-empty word w labels a simple loop in the Cayley
graph of G with respect to X if and only if it is in the irreducible word problem
of G with respect to X .
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3. Special rewriting for C∞ × Ck

We know from [6] that a group can be presented by a finite special [λ]-confluent
string-rewriting system which provides inverses of length one for each generator if
and only if it is a plain group, but it is left open there as to whether or not this
continues to be the case if the condition on inverses is dropped. Our task here is
to give an example to show that this is not the case.
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Figure 1. The Cayley graph of C∞ ×Ck = 〈f : 〉× 〈a : ak〉 with
respect to the monoid generating set {f, g}, where g = af−1.

Proposition 3.1. Let G be the direct product of the infinite cyclic group and
a finite cyclic group. Then G can be presented by a finite special [λ]-confluent
string-rewriting system, but G is not plain.

Proof. Firstly, we note that G cannot be plain, since a group cannot be both a
non-trivial direct product and a non-trivial free product: see for example [5], p. 177
or [7], Problem 4.1.22.

The standard group presentation for G is 〈f : 〉 × 〈a : ak〉. Let X = {f, g},
where g = af−1. The Cayley graph of G with respect to X is shown in Figure 1.
We claim that X is a monoid generating set for G with respect to which the
irreducible word problem of G is finite.

Any element of G can be written in terms of the symbols f , f−1 and a. Since
f ∈ X , a = fg and f−1 = fk−1gk, we see that X is a monoid generating set for G.

A word w is in WX(G) if and only if it satisfies |w|f = |w|g and |w|g ≡ 0 mod k.
Together these conditions give that |w|f = |w|g = nk, and |w| = 2nk, for some
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n � 0. We shall show that if n > 1 then w cannot be in I = IX(G), so that I is
just the set of words which contain exactly k instances of f and k instances of g,
and is thus a finite set.

Assume that w ≡ z1 . . . z2nk ∈ I and that n > 1. Consider the word z1 . . . z2k.
This subword of w must contain different numbers of instances of f and g, or else
it would be equal to the identity in G. We may therefore assume without loss of
generality that it contains more instances of f than it does of g. Now suppose
that, for some i, the subword zi . . . zi+2k−1 contains more instances of f than of g.
The difference between |zi . . . zi+2k−1|f and |zi+1 . . . zi+2k|f must be at most 1,
and so |zi+1 . . . zi+2k|f � k. We cannot have |zi+1 . . . zi+2k|f = k because this
would mean that zi+1 . . . zi+2k is equal to the identity; so |zi+1 . . . zi+2k|f > k.
By induction we see that every subword of w consisting of 2k consecutive symbols
contains more instances of f than it does instances of g. Since |w| is a multiple
of 2k, we may consider w as the concatenation of n words of 2k symbols, and it is
clear that |w|f > |w|g, a contradiction. �

4. Infinite cyclic central subgroups

Having demonstrated that the class of groups which may be presented by finite
special [λ]-confluent string-rewriting systems strictly contains the plain groups,
the obvious question is:

Question 4.1. Which groups can be presented by finite special [λ]-confluent
string-rewriting systems?

We shall answer this question for groups which have an infinite cyclic central
subgroup. We start with two lemmas.

Lemma 4.2. Let X be a finite monoid generating set for the group G. Suppose
there are a finite set S ⊆ G, an element g ∈ G, and an infinite set P of pairs of
words over X such that, for all (u1, u2) ∈ P , both u1 and u2 have no non-empty
subwords equal to the identity, u1gu2 ∈ S, and u+gu− = 1 implies u+ ≡ u− ≡ λ
whenever u+ is a suffix of u1 and u− is a prefix of u2. Then IX(G) is infinite.

Proof. For each s ∈ S, let the word v̄s represent some fixed path in the Cayley
graph Γ of G connecting s to 1 so that v̄s = s−1. Since S is finite, there is an
integer B such that the length of each such path does not exceed B. Let C = |vg|,
where vg is a word representing g.

Suppose IX(G) were finite. By Proposition 2.1 there is then a finite special
[λ]-confluent string-rewriting system R over X presenting G. Let M be larger
than the length of the left hand side of any rule in R. Observe that an application
of any R-rule to the label of any path in Γ corresponds to the removal from that
path of a loop of length less than M .

Since P is infinite, there is a pair (u1, u2) ∈ P with |u1u2| > M(B+C). Consider
the word u1vgu2v̄s, where u1vgu2 = s ∈ S so that u1vgu2v̄s = 1. As (u1, u2) ∈ P ,
the application of any R-rule to (any R-descendant of) the word u1vgu2v̄s must
remove at least one edge of the loop u1vgu2v̄s outside the subpaths labelled by u1
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and u2. Therefore one reaches an R-irreducible descendant w of u1vgu2v̄s in at
most B + C steps. Hence,

|w| � |u1vgu2v̄s| − M(B + C) � |u1u2| − M(B + C) > 0.

Since w = u1vgu2v̄s = 1, this contradicts the [λ]-confluence of R and completes
the proof. �

Lemma 4.2 has the following consequence:

Lemma 4.3. Let X be a finite monoid generating set for the group G. Suppose
there are a finite set S ⊆ G and an infinite set U of words over X such that no
u ∈ U has a non-empty proper subword equal to the identity, and every u ∈ U is
equal in G to an element of S. Then IX(G) is infinite.

Proof. We may clearly assume that no element of U is equal to the identity. Then
Lemma 4.2 applies with g = 1 and P = { (λ, u) : u ∈ U }. �

We may now characterize the groups which may be presented by finite spe-
cial [λ]-confluent string-rewriting systems amongst those groups which are split
extensions with infinite cyclic quotient and finite kernel.

Proposition 4.4. A group G which is of the form H � F , where H is a finite
normal subgroup of G and F is an infinite cyclic subgroup, can be presented by a
finite special [λ]-confluent string-rewriting system if and only if G = H × F and
H is cyclic.

Proof. Proposition 3.1 tells us that the “if” part of the theorem is true.
To prove the “only if” direction, we shall assume that G is not of the form

H × F for any finite cyclic group H , and deduce that G has infinite irreducible
word problem with respect to any monoid generating set.

Let X be a finite monoid generating set for G. We may assume that there are
no redundant elements in X , since if IX(G) is infinite, then adding more elements
to X is certainly not going to make it finite.

Fix a generator f (not necessarily in X) of the infinite cyclic group F and let
φ : G → F be the natural projection of G onto F . We start by partitioning
X into three sets, P , N , and Z, where P = {x ∈ X : xφ = f i and i > 0},
N = {x ∈ X : xφ = f i and i < 0}, and Z = {x ∈ X : xφ = 1} = X ∩H . We must
have P 
= ∅ and N 
= ∅ in order that we have in X∗ both words which are equal
to f and words which are equal to f−1.

We shall split the proof that IX(G) is infinite into several cases.

Case 1. Z 
= ∅.

Fix a ∈ Z, x ∈ P and y ∈ N . We shall construct a sequence (wr : r � 0) of
distinct words which satisfy the following conditions:

(i) wr ∈ H \ {1};
(ii) wr has no non-empty proper subword which is equal to the identity;
(iii) every x in wr occurs to the left of the first y.



SPECIAL STRING-REWRITING FOR GROUPS 251

Let m, n > 0 be minimal such that xmyn ∈ H . We cannot have both xmyn = 1
and xmayn = 1, since a would then be redundant. We may therefore choose w0

to be either xmyn or xmayn so that it satisfies condition (i). The minimality of
m and n tells us that w0 satisfies condition (ii), and it is clear that w0 satisfies
condition (iii).

Assume that we have constructed wr which satisfies conditions (i), (ii) and
(iii). We cannot have both xmwry

n = 1 and xmwrayn = 1, so we may choose
wr+1 to be xmwry

n, if this is not the identity, and xmwrayn otherwise, so that
wr+1 satisfies condition (i). We need to check that wr+1 satisfies condition (ii).
If wr+1 ≡ xmwry

n then (ii) for wr+1 is easily established by considering φ-images
of subwords of wr+1. If wr+1 ≡ xmwrayn, then we must have xmwry

n = 1, and
hence ynxmwr = 1. The only non-empty subword of wr+1 which can be equal to
the identity is wra, but if this is the case then ynxm = ynxmwra = a, and a is
redundant. Condition (iii) for wr, and the fact that all of the new instances of x
are introduced on the left, and all of the new instances of y on the right, ensure
that wr+1 satisfies condition (iii).

We have constructed an infinite sequence of words wr of increasing length which
are equal to elements of the finite group H and which have no non-empty subword
equal to the identity, and we may therefore appeal to Lemma 4.3 to see that IX(G)
is infinite.

Case 2. |P | = |N | = 1, Z = ∅.

Let P = {x} and N = {y} so that X = {x, y}. If x and y commute, then G is
the direct product of an infinite cyclic group and a finite cyclic group, so we may
assume that they do not commute. Let i > 0 and j < 0 be such that xφ = f i

and yφ = f j.
If there is no k � 0 such that y−1xyk is equal to a power of x then no element of

the form xly−1xyk with any integer l and k � 0 is equal to the identity. Elemen-
tary arithmetic involving i and j shows that for each k � 0 there exists an lk � 0
satisfying xlky−1xyk ∈ ⋃

0<r�i−j f rH . Since xl′y−1 
= 1 
= y−1xyk′
for all inte-

gers l′, k′, Lemma 4.2 applies with P = {(xlk , xyk) : k � 0}, S =
⋃

0<r�i−j f rH ,
and g = y−1 to establish that IX(G) is infinite.

We may therefore choose t that is smallest among k � 0 such that y−1xyk is a
power of x. We also fix s such that y−1xyt = xs.

Observe that t > 0 lest y be a power of x, which would cause x and y to
commute. If t = 1 then y−1xy = xs. By considering the φ-images of both sides,
we have that s = 1 so that x and y commute. Therefore t > 1. Applying this
consideration to the φ-images of y−1xyt = xs, we have s < 1. Since x is not equal
to any power of y, we cannot have s = 0. Thus s < 0.

We are going to apply Lemma 4.2 with

P = {(x−sk, (xyt−1)k) : k � 0}, S = {y−1}, and g = y−1.
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First, observe that by the definition of s and t we have x−sy−1xyt−1 = y−1. From
this it follows by induction on k that

x−sky−1(xyt−1)k = y−1 ∈ S.

Clearly, x−sk has no non-empty subwords equal to the identity. We verify that
neither does (xyt−1)k. Any subword of (xyt−1)k that is not a string of y’s has the
form yn1(xyt−1)mxyn2 with ni, m � 0. If such a word is equal to the identity then
so is (xyt−1)mxyn, where n = n1 + n2 � 0. Observe that m 
= 0, for otherwise
xyn = 1 so x and y would have to commute. Since xyt−1 = yxsy−1, we have

(yxsy−1)mxyn = 1.

Applying φ, we get
ism + i + jn = 0.

As j < 0 and n � 0, we have jn � 0, and therefore i(sm + 1) � 0. Next,
sm � −1 because i > 0. In view of s < 0 < m, the only possibility for this to
hold is if s = −1, m = 1, and n = 0. Hence yx−1y−1x = 1, which implies that x
and y commute. Thus no non-empty subword of (xyt−1)k is equal to the identity.
Observe that m 
= 0, for otherwise xyn = 1 so x and y would have to commute.
Finally, suppose that u+y−1u− = 1, where u+ is a suffix of x−sk and u− is a prefix
of (xyt−1)k. Note that u− cannot be empty for otherwise xly−1 = 1 for some
l � 0. Thus

xly−1(xyt−1)mxyn = 1
for some l, m � 0 and 0 � n � t − 1. Since xyt−1 = yxsy−1 we then have

1 = xly−1(yxsy−1)mxyn = xl+smy−1xyn,

and therefore y−1xyn is equal to a power of x. Since 0 � n � t−1, this contradicts
the minimality requirement on t. Therefore u+y−1u− 
= 1. Thus all conditions of
Lemma 4.2 on P , S, and g are met, and hence IX(G) is infinite.

Case 3. |P | = 1, |N | � 2, Z = ∅.

Let P = {x}, with xφ = f i and i > 0. We construct inductively a sequence
(wr : r � 0) of words such that no prefix of wr is equal to a negative power of x.
Let w0 be a single letter word consisting of an element of N which is not equal
to a negative power of x. Such an element must exist, since if each element of
N is equal to a power of x then G must be generated by the set {x, x−1}, which
clearly cannot be the case. Let wr+1 be wry where y is an element of N such that
xlwry 
= 1 for all l � 0. Such a y must exist, since there are at least two elements
in N , and if y1 and y2 are elements of N , and l1 and l2 are natural numbers,
with l2 � l1, such that xl1wry1 = xl2wry2 = 1, then y1x

l1wr = y2x
l2wr, and thus

y1 = y2x
l2−l1 , and y1 is redundant. There can therefore be only one element y′

of N such that xlwry
′ = 1 for some l � 0, and the other elements of N must be

suitable candidates for y. Note that wr ∈ N∗, so that wr labels a simple path.
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For each wr, let tr � 0 be minimal such that (xtrwr)φ = f j with j � 0. Clearly
each word xtr wr labels a simple path, and for any r � 0 we have xtrwr ∈ fkH
with i > k � 0, so we may apply Lemma 4.3 with S =

⋃
0�k<i fkH to settle this

case.

Case 4. |P | � 2, |N | = 1, Z = ∅.

This case is similar to Case 3.

Case 5. |P | � 2, |N | � 2.

We construct words wr inductively as follows; each wr will be of the form w+w−
with w+ ∈ P ∗ and w− ∈ N∗. Let w0 ≡ x, for some x ∈ P . If wrφ = f i with
i � 0, then let wr+1 ≡ wry for some y ∈ N such that wry has no suffix equal to 1.
If wrφ = f i with i < 0, then let wr+1 ≡ xwr for some x ∈ P such that xwr has no
prefix equal to 1. We must now check that we can do this. If y1 and y2 are distinct
elements of N such that vy1 = 1 for some suffix v of wr, and uvy2 = 1 for some
suffix uv of wr, then y1 = y2u, where u ∈ P ∗, and y1 is redundant. The situation
is similar when we prefix wr by an element of P .

We now have an infinite set {wr : r � 0} of words, none of which has a subword
equal to the identity, and each of which is equal to an element of the finite set
S =

⋃
|l|�M f lH , where M is minimal such that X ⊆ ⋃

|l|�M f lH . We may
therefore apply Lemma 4.3.

This case completes the proof of Proposition 4.4. �
We shall need the following observation; for completeness we include a proof.

Lemma 4.5. If G is a virtually free group containing an infinite cyclic central
subgroup Z, then G is a semi-direct product H � F where H is a finite normal
subgroup of G and F is an infinite cyclic subgroup.

Proof. By definition, G contains a free subgroup F of finite index. Since G is
infinite, F is non-trivial.

If F is non-cyclic, then Z(F ) = 1, so that F ∩ Z = 1 (as F ∩ Z � Z(F )). But
then G contains the subgroup F ×Z, contradicting the fact that F has finite index
in G. So F is infinite cyclic and then G is virtually cyclic.

By Theorems 5.1 and 5.4 of [4], G has a finite normal subgroup H such that
G/H is isomorphic to C∞ or to C2 ∗C2. In the latter case, G/H would have trivial
centre, contradicting the fact that ZH/H must be an infinite central subgroup of
G/H . So G/H is isomorphic to C∞.

Choose a to be an element of infinite order in G such that G/H = 〈aH〉; thus
G = 〈H, a〉. Let F = 〈a〉, so that G = HF . Since F has no non-trivial finite
subgroups, we have that H ∩F = 1 and so G is the semi-direct product H � F as
required. �

We are now in a position to prove the main result of this section:

Theorem 4.6. A group G which has an infinite cyclic central subgroup can be
presented by a finite special [λ]-confluent string-rewriting system if and only if
G = H × F , where H is finite cyclic and F is infinite cyclic.
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Proof. A string-rewriting system is said to be monadic if every rule is of the form
u → v, where |u| > |v|, and |v| � 1. It is shown in [6] that the groups which can
be presented by finite monadic [λ]-confluent string-rewriting systems are exactly
the finitely generated virtually free groups, so any group which can be presented
by a finite special [λ]-confluent string-rewriting system is certainly virtually free.

If G has an infinite cyclic central subgroup then, by Lemma 4.5, G is of the
form H � F where H is a finite normal subgroup of G and F is infinite cyclic.
By Proposition 4.4, if G can be presented by a finite special [λ]-confluent string-
rewriting system, then G is the direct product of a finite and an infinite cyclic
group.

The converse follows directly from Proposition 3.1. �

5. Further examples

In this last section we shall give several more examples of groups which may
be presented by finite special [λ]-confluent string-rewriting systems. The following
example shows that there are non-abelian groups which are not plain and which
can be presented by such a system.
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Figure 2. The Cayley graph of C2k ∗Ck
C2k = 〈a, b : a2k, a2b−2〉

with respect to the monoid generating set {a, b}.

Example 5.1. The group C2k ∗Ck
C2k can be presented by a finite special [λ]-

confluent string-rewriting system. If k > 1 this group is not plain.
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Proof. The Cayley graph of C2k ∗Ck
C2k = 〈a, b : a2k, a2b−2〉 with respect to the

monoid generating set {a, b} (pictured in Fig. 2) is isomorphic as an unlabelled
graph to the Cayley graph of C∞ × Ck = 〈f : 〉 × 〈a : ak〉 with respect to {f, g},
where g = af−1 (pictured in Fig. 1). The number of closed simple loops through
any point in the two graphs must therefore be the same.

Clearly, Gk = C2k ∗Ck
C2k is neither finite nor infinite cyclic. If k > 1, the group

Gk has a non-trivial finite normal subgroup Ck = 〈a2〉. By [7] Problem 4.1.21(g),
this implies that Gk cannot be a non-trivial free product, and hence Gk is not
plain. �

The next proposition gives us a way of constructing a new group which can
be presented by a finite special [λ]-confluent string-rewriting system from a group
which has finite irreducible word problem with respect to a monoid generating set
which contains a generator of order two.

Proposition 5.2. Let G be a group with a subgroup C = 〈c〉 of order two, X
a finite monoid generating set for G, and suppose that IX(G) is finite and that
c ∈ X. Let D be a cyclic group 〈d〉 of order four and let P = G ∗C D (where c is
identified with d2). Then IX∪{d}(P ) is finite.

Proof. Let the word w represent a simple loop in the Cayley graph of P with
respect to X ∪{d}. If the only symbol in w is d then clearly |w| � 4. If w contains
any letters other than d then we may assume, by taking a cyclic permutation of
w if necessary, that the last letter of w is not d.

Now, if w contains a subword of the form dd then the word obtained by replacing
an occurrence of dd by c in w still is (labels) a simple loop. Applying similar
replacements to the resulting word we eventually arrive at a word v with length at
least half that of w and such that v does not contain any subwords of the form dd.

If d occurs in v then v has the form du1du2 . . . dun, where the ui are non-empty
words over X . By the normal form theorem for amalgamated free products at
least one of ui has to satisfy ui ∈ C because v = 1. As v is a simple loop, ui 
= 1.
Hence ui = c and therefore duid = 1. Since v is simple, this implies n = 1.
But du1 
= 1; thus d does not occur in v. So v ∈ X∗ and therefore |v| is bounded,
as is |w| � 2|v|. �

We give one further set of examples of groups with finite irreducible word prob-
lem. While the generator c in the following example is redundant, its presence
both brings the situation under the scope of Proposition 5.2 and simplifies the
proof.

Example 5.3. The direct product P = 〈c : c2〉 × 〈f1, f2, . . . , fn : 〉 ∼= C2 × Fn

has finite irreducible word problem with respect to the monoid generating set
{f1, . . . , fn, c, g1, . . . , gn} where gi = fi

−1c.

Proof. Let w be (the label of) a simple loop in the Cayley graph of P . Replace
each occurrence of gifi and figi in w by c and call the resulting word v. Since
gifi = figi = c, v is a simple loop. Observe that v has no proper subwords of the
form cc for otherwise it cannot be simple.



256 D.W. PARKES, V.YU. SHAVRUKOV AND R.M. THOMAS

Consider the word ṽ obtained by deleting from v all occurrences of c and re-
placing each occurrence of gi by the symbol fi

−1. Since v �→ ṽ corresponds to the
projection C2 × Fn → Fn and v = 1, we must have ṽ = 1. If ṽ is empty then
v ≡ cc so |w| � 2|v| = 4. Otherwise ṽ must contain a subword of the form fifi

−1

or fi
−1fi. Since neither gifi nor figi nor cc can occur in v as (proper) subwords,

a subword of the form ficgi or gicfi does. However ficgi = gicfi = 1 which, in
view of the simplicity of v implies |v| � 3 and thus |w| � 6. �
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