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HEREDITARY PROPERTIES OF WORDS ∗

József Balogh1 and Béla Bollobás2

Abstract. Let P be a hereditary property of words, i.e., an infinite
class of finite words such that every subword (block) of a word belonging
to P is also in P . Extending the classical Morse-Hedlund theorem, we
show that either P contains at least n+1 words of length n for every n
or, for some N , it contains at most N words of length n for every n.
More importantly, we prove the following quantitative extension of this
result: if P has m ≤ n words of length n then, for every k ≥ n + m, it
contains at most �(m + 1)/2��(m + 1)/2� words of length k.

Mathematics Subject Classification. 05C.

1. Introduction

For a set A and a natural number n, a word of length n over the alphabet A,
or, simply, an n-word, is a sequence w = (w1, w2, . . . , wn) = (wi)n

i=1 with wi ∈ A
for every i. A finite word is an n-word for some n. We write Wn(A) for the set
of all n-words over A, and W∗(A) = ∪∞

n=1Wn(A) for the set of all finite words
over A. The length of a word w ∈ W∗(A) is denoted by |w|. A Z-word over A is
a Z-sequence

w = (. . . , w−2, w−1, w0, w1, w2, . . .) = (wi)∞−∞
with wi ∈ A for every i, and we denote by WZ(A) the set of Z-words over A.
Similarly, an N-word is an N-sequence w = (w1, w2, . . .) = (wi)∞i=1, and WN(A) is
the set of N-words. An infinite word is a Z-word or an N-word.

When there is no danger of confusion, we frequently suppress various parameters
like A, n, Z and N. Thus a word may mean an n-word, a Z-word or an N-word.
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Also, we shall frequently omit the brackets in our notation; thus w1w2 . . . wn means
the same as (w1, . . . , wn). Given a word w = . . . wi . . ., we call the wi the letters
or digits of w.

An n-block of a word w = (wi) is an n-word of the form wj+1wj+2 . . . wj+n

for some j. For simplicity, we shall frequently say that a word u is a subword
of w, or u is in w, or w contains u, if u is an n-block of w, where n is the
length of u.1 Note that a word of length N has N − n + 1 n-blocks, i.e., sub-
words of length n; in particular, a word of length n + 1 has two subwords of
length n. The set of n-blocks of a word w is denoted by Pn(w), and the func-
tion n �→ |Pn(w)| is the speed or complexity of the word w. For example, if
w = . . . 0101010 . . . , then P3(w) = {010, 101}, and |Pn(w)| = 2 for n ≥ 1. Simi-
larly, for a set W of words and a natural number n, we put Pn(W ) = ∪w∈WPn(w),
and define n �→ |Pn(W )| to be the speed or complexity of the set W . Thus, if
W = {. . . 0001000 . . . , . . . 1110111 . . . , . . . 00001111 . . .} then |Pn(W )| = 3n − 1
for n ≥ 3. A Z-word w = (wi) is n-periodic if for every t ∈ Z, we have wt = wn+t.
Similarly an N-word w = (wi) is eventually n-periodic if there is an N ∈ N such
that for every t > N we have wt = wt+n.

The basic result concerning the complexity of a word is the classical theorem
of Morse and Hedlund [6] stating that if w is a Z-word then either it is periodic
and so |Pn(w)| is constant for n large enough, or |Pn(w)| ≥ n + 1 for every n
(see for the precise statement Th. 2). There are words such that |Pn(w)| = n + 1
for every n, for example, the Z-word . . . 0001000 . . . and the Fibonacci N-word
0 1 0 01 010 01001 01001010 . . . . The Fibonacci word is constructed from the
sequence of finite words a1, a2, . . . defined as follows: a1 = 0, a2 = 01 and for k ≥ 3
the word ak+1 is the concatenation of ak and ak−1 (in this order): ak+1 = akak−1.
Equivalently, the Fibonacci sequence is obtained from 0 by repeatedly substituting
01 for 0 and 0 for 1. Thus a3 = 01 0, a4 = 010 01, a5 = 01001 010, and so on.
The words a1, a2, . . . are ‘nested’: if the kth digit of an is i then for m > n the
kth digit of am is also i. The Fibonacci N-sequence is the ‘union’ of the finite
sequences a1, a2, . . .

The complexity of infinite sequences has been studied in great detail in many
papers; see, e.g., Ferenczi [2], Tijdeman [7] and Heinis [4]. Here we shall consider
some analogous problems concerning the complexity of a hereditary property of
finite words. In keeping with the terminology applied to other combinatorial struc-
tures, we call an infinite set of finite words over a fixed alphabet a property of words.
A property P of words is hereditary if every subword of a word in P is also in P .
Equivalently, a hereditary property is the collection P of all subwords of a set of
words, i.e., P = P(W ) for some set of words W , as defined above.

Also, a property P ⊂ W∗(A) is hereditary if it is the collection of all words
containing no subword of a given family F of words (usually called a family of
forbidden words):

P = P(¬F) = {w ∈ W∗(A) : no block of w belongs to F}.
1Note that we use the term “subword” in a different way from the usual one; usually 111 is

a subword of 0101010.
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As before, writing Pn for the set of n-words in P , the function n �→ |Pn| is the
speed or complexity of P .

In case P is defined by forbidding finitely many words, i.e., P = P(¬F) for a
finite set F , the complexity function n �→ P(¬F) can be calculated exactly using
recurrence equations. However, in the general case, i.e., when F is infinite, the
complexity function is rather mysterious.

Our main aim in this paper is to investigate what slow-growing functions may
arise as complexities of hereditary properties of words. In the next section we
shall prepare the ground for this; in particular, we shall prove the classical Morse-
Hedlund theorem and one of the tools we shall use, the Fine-Wilf theorem. In
Section 3 we shall extend the Morse-Hedlund Theorem for hereditary properties
of words, and present our main result, a quantitative form of this extension, which
is shown to be best possible. In Section 4 we construct a hereditary property
whose speed oscillates rather wildly, and in Section 5 we make some concluding
remarks.

2. Basic observations

In preparation for the results in Section 3, we introduce a little more terminology
and make some observations.

A word graph over an alphabet A is a directed graph with loops whose edges
(including loops) are decorated or coloured with elements of A such that no two
edges with the same initial vertex have the same decoration, but all the edges
with the same terminal vertex have the same decoration. (In particular, there is
at most one loop at every vertex.)

Given a word w, let Gk(w) be the word graph whose vertices are the k-words
in w, and a vertex u sends an edge of decoration i to a vertex v if w contains a
(k +1)-word ending in i whose first k-word is u and second (and last) k-word is v.
Equivalently, v is obtained from u by omitting its first letter and adding i as its
last letter. We call Gk(w) the k-de Bruijn graph of w or simply the k-word graph
of w. Similarly, given a set W of words, Gk(W ) = ∪w∈W Gk(w) is the k-word
graph of W .

Let us collect some observations concerning k-word graphs into the following
lemma.

Lemma 1. (i) A word graph G is a k-word graph iff any two walks of length at
most k ending in the same vertex have the same sequence of decorations, and any
two walks of length k with the same sequence of decorations end in the same vertex.
If every vertex is the terminal vertex of a walk of length k then the alphabet of the
k-word graph is the set formed by the decorations of the edges.

(ii) A k-word graph is of the form Gk(w) for some n-word w iff it has a (directed)
walk of length n − k + 1 passing through all edges.

Proof. We shall prove the only assertion that is not entirely trivial, namely the
sufficiency of the conditions in (i). Suppose G satisfies the conditions; our aim is
to assign a word w(x) to each vertex x and define a suitable set W of (k+1)-words.
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Given a vertex x of G, assign a k-word w(x) to x as follows. If there is a walk of
length k ending in x, set w(x) = i1i2 . . . ik, where i1, i2, . . . , ik are the decorations
of the edges of this walk. Otherwise, pick a walk of maximal length � ending in x,
and set w(x) = j1j2 . . . jk−�i1i2 . . . ik, where i1, i2, . . . , ik are the decorations of
the edges of the path (ending in an edge decorated with i�) and j1, j2, . . . , jk−�

are letters chosen to ensure that different vertices get assigned different words.
The conditions on G imply that different words are assigned to different vertices.
Finally, for every edge eh = xy, let wh be the (k + 1)-word in which the first
k-word is w(x) and the second (and last) is w(y). The way we assigned words to
the vertices ensures the existence of wh, completing the proof of the sufficiency of
the conditions for a word graph to be a k-word graph. �

We shall write uv for the concatenation of the finite words u and v; we also
call uv the product of u and v. Thus, if u = (ui)n

1 and v = (vj)m
1 then uv is the

(n + m)-word u1u2 . . . unv1v2 . . . vm. Similarly, if u ∈ Wn(A) and a ∈ A then ua
denotes the (n+1)-word u1u2 . . . una. The symbol w∗

k denotes a word of length k,
and w∗ stands for a finite word. Thus, the equation uw∗

p = w∗
pu means that the

word u is periodic with period p: if u = (ui)n
1 then up+j = uj for 1 ≤ j ≤ n − p.

Note that in the equation uw∗
p = w∗

pu the two occurrences of w∗
p need not denote

the same p-letter word. Also, the equation uw∗
p = w∗u is trivially equivalent to

uw∗
p = w∗

pu since it implies that |uw∗
p| = |u| + p = |w∗| + |u| = |w∗| + |u|, so

|w∗| = p.
In this notation, the word graph Gk(w) of w ∈ Wk(A) contains an edge from

u ∈ Wk(A) to v ∈ Wk(A), decorated by a ∈ A if ua = bv for some b ∈ A, or
ua = w∗v.

Let us recall that with the aid of k-word graphs one can give a very simple
proof of the following strong form of the Morse-Hedlund theorem.

Theorem 2. (i) Let w be a Z-word such that |Pk(w)| ≤ k for some k. Then there
is an n such that w is n-periodic and |Pm(w)| = n for every m ≥ n.
(ii) Let w be an N-word such that |Pk(w)| ≤ k for some k. Then there is an n
such that w is eventually n-periodic and |Pm(w)| = n for every m ≥ n.

Proof. (i) The statement is trivial, if |P1(w)| = 1, hence we shall assume that
|P ′(w)| ≥ 2. If two words in Pk+1(w) have different initial k-words then they
are themselves different. Consequently, the complexity |Pk(w)| is a monotone
increasing sequence, and so if |Pk(w)| ≤ k for some k then |Pn−1(w)| = |Pn(w)| =
n for some n, i.e., the (n−1)-word graph G = Gn−1(w) has n vertices and n edges.
Since G has a walk containing all the edges, and every vertex in G has indegree at
least 1 and outdegree at least 1, the graph G is an (oriented) n-cycle. Therefore,
the word w is n-periodic and |Pm(w)| = n for every m ≥ n, as claimed.

(ii) Proceeding as in (i), we find that in Gn−1(v) every vertex has outdegree at
least 1 and, with the exception of at most one vertex (the word v1 . . . vn−1), all
vertices have indegree at least 1. This implies that Gn−1(v) is a cycle together
with a path ending on the cycle. (This path may have length 0.) Consequently, v
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Figure 1. The graph G13;6,10.

becomes periodic if we omit its initial segment formed by the blocks correspond-
ing to the vertices of Gn−1(v) not on the cycle, and so |Pm(w)| = n for every
m ≥ n. �

One of the tools in our investigation of words of low complexity is the Fine-Wilf
theorem [3] which, for the sake of completeness, we prove next.

For integers 1 ≤ p ≤ n, let Gn;p be the graph with vertex set [n] in which ij is
an edge if |i − j| = p. Also, for 1 ≤ p < q < n, let Gn;p,q = Gn;p ∪ Gn;q; thus, if
1 ≤ i < j ≤ n then ij is an edge of Gn;p,q iff j − i is p or q, as in Figure 1. Clearly,
a word w = w1w2 . . . wn has periods p and q iff wi = wj for every edge ij of Gn;p,q.
Equivalently, p and q are periods of w if the wi are constant on the components
of Gn;p,q, i.e., wi = wj whenever i and j are vertices of the same component
of Gn;p,q. Note also that if i and j belong to the same component of Gn;p,q then
i− j is a multiple of (p, q), the greatest common divisor of p and q. In particular,
Gn;p,q has at least (p, q) components, no matter what n is. If n is fairly small then
the structure of Gn;p,q is especially simple, as shown by the lemma below.

Lemma 3. For n ≤ p+ q− (p, q) the graph Gn;p,q has p+ q−n components, each
of which is a path.

Proof. Let us start by showing that every component is a path. For 1 ≤ i ≤ (p, q)
the subgraph of Gn;p,q induced by the set of vertices congruent to i modulo (p, q)
is a union of some components of Gn;p,q and is isomorphic to Gn′;p′,q′ , where p′ =
p/(p, q), q′ = q/(p, q), so that (p′, q′) = 1, and n′ = �(n−i)/(p, q)	+1 ≤ p′+q′−1.
Hence in proving that every component of Gn;p,q is a path, we may assume that p
and q are relatively prime.

Let then 1 ≤ p < q < n ≤ p + q − 1, with p and q relatively prime. We claim
that Gn;p,q is a forest. Suppose that this is not the case, and let C = i1i2 . . . i� be
a cycle in Gn;p,q, with the convention that i�+1 = i1. Note that if ab and bc are
distinct edges of Gn;p,q and c − b = q then a − b = p. Similarly, if bc and cd are
distinct edges and c − b = q then c − d = p. (In particular, every vertex of Gn;p,q

has degree at most two.) Consequently, assuming, as we may, that i2 − i1 = q,
the sequence i − 1, i2, . . . , i�, i�+1 = i1 is such that every increase is by q and
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every decrease is by p, i.e., ij+1 − ij = q whenever ij+1 > ij and ij+1 − ij = −p
whenever ij+1 < ij . Since the total increase equals the total decrease, there are
positive integers a and b with a + b = � ≤ n ≤ p + q − 1 such that ap = bq.
(Clearly, a is the number of ‘p-edges’ of the cycle C and b is the number of “q-
edges”.) Since p and q are relatively prime, q|a and p|b; in particular, a ≥ q and
p ≥ p, so that � = a+ b ≥ p+ q, contradicting that � ≤ n ≤ p+ q−1. Hence Gn;p,q

is indeed a forest.
To complete the proof of our lemma, set s = p + q − n. Note that each of the

2s vertices p− s + 1, p− s + 2, . . . , p and q − s + 1, q − s + 2, . . . , q has degree one,
and every other vertex of Gn;p,q has degree two. As Gn;p,q is a forest, this implies
that there are exactly s components, each of which is a path. �

The Fine-Wilf theorem is an immediate consequence of this simple lemma.

Theorem 4. Let w be a word of length n with periods p and q. If (p, q) is not a
period of w then n ≤ p + q − (p, q) − 1, and this inequality is best possible.

Proof. To simplify the notation, we set r = (p, q).
(i) Let w = w1w2 . . . wn be a word with periods p and q > p, where n = p+q−r.

We claim that r is also a period of w. To see this, note that by Lemma 3 the
graph Gn;p,q has precisely r components, so each subgraph induced by the vertices
congruent to some number i modulo r = (p, q) is connected. Hence, w is constant
on congruence classes modulo r, i.e., r = (p, q) is also a period of w.

(ii) Let n = p + q − r − 1. Then, by Lemma 3, the graph Gn;p,q has r + 1
components. (In fact, all we need is that there are at least r + 1 components:
this follows from the fact that Gn;p,q has 2r + 2 vertices of degree one and all
other vertices have degree two.) Then the word w = w1w2 . . . wn, where wi is (the
label of) the component of i in Gn;p,q, has periods p and q but not r = (p, q). �

After this preparation, we are ready to turn to the new results of this paper.

3. Hereditary properties of low complexity

What can we say about the complexity of a hereditary property P of finite
words? If it is bounded, is it eventually constant? If it is unbounded, can it be
smaller than a rather slowly-growing function, or does it have to “jump” above a
certain level? As these questions concern low speeds, in answering them the size of
the alphabet A will not matter beyond the trivial condition that it is at least two,
so we shall take A = {0, 1}. Clearly, given n0 > m ≥ 2 we may have |Pn| = m for
every n ≥ n0 and |Pn0−1| > m; indeed, this is the case if for n < n0 the set Pn

consists of all 2n words of length n, and for n ≥ n0 a word of length n belongs
to Pn iff it has at most one digit 1, and that digit is among the first m−1 digits of
the word. Also, we may have |Pn| = n + 1 for n ≥ n0, as shown by a property P
such that for n ≥ n0 a word of length n is in Pn iff it has at most one digit 1.
Our aim is to prove an analogue of the Morse-Hedlund theorem showing that these
are the slowest speeds of hereditary properties of finite words. To prove our results
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x0

x1x2

xp−1xp−2

y1 y2

yq−1 yq−2

Figure 2. The word graph H1.

we shall need the following key observation, for which we need to define some new
graphs:

Let H1 be the word graph shown in Figure 2. Thus H1 is the union of a p-cycle
and a q-cycle sharing a single vertex x0:

x0 → x1 → · · · → xp−1 → x0,

x0 → y1 → · · · → yq−1 → x0,

with a1 and a2 
= a1 the decorations of the edges x0x1 and x0y1. Similarly, let H2

be the word graph

x0 → x1 → · · · → xp−1 → z1 → z2 → . . .

· · · → zr → x0 → y1 → · · · → yq−1 → z1

shown in Figure 3, with a1 and a2 
= a1 decorating the edges x0x1 and x0y1. Note
that H2 is obtained by gluing together a (p + r)-cycle and a (q + r)-cycle along a
path of length r. The graph H3 is shown in Figure 4: it consists of a p-cycle and
a q-cycle joined together by a path of length r. Let H4 denote the graph shown in
Figure 5 consisting of two disjoint cycles, a p-cycle x0 → x1 → · · · → xp−1 → x0

and a q-cycle y0 → y1 → · · · → yq−1 → y0, and a vertex u with a path to each
of the cycles, u → z1 → · · · → zr → x0 and u → v1 → · · · → vs → y0. Let us
define H5 analogously, reversing the orientations of the paths from u to the cycles
(see Fig. 6). Let H ′

4 be obtained from H4 by identifying the two cycles; thus H4

consists of a cycle and two vertex disjoint paths to the cycle starting from a vertex
not on the cycle. Similarly, let H ′

5 be obtained from H5 by identifying the two
cycles in H5.

Lemma 5. Suppose Gn is an n-word graph of order at most n. Then Gn contains
none of H1, H2, H3, H4, H5, H

′
4 and H ′

5 as a subgraph.
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x0x1

x2

xp−1

xp−2

y1

y2

yq−1

yq−2

z1

z2

zr

Figure 3. The word graph H2.

x0

x1x2

xp−1xp−2

y1 y2

yq−1 yq−2

z1 zr−1

y0

Figure 4. The word graph H3.

Proof. (i) Suppose that H1 is a subgraph of G. Our aim is to derive the contra-
diction that

n ≤ p + q − 2 < p + q − 1 = |V (H1)|. (1)

Clearly, we need to prove only the first inequality of (1). Let u1 be the p-word
formed by the decorations of the edges on the p-cycle x0x1 . . . xp−1x0, so that
x0u1 = w∗

px0, and let u2 be the corresponding q-word defined by the decorations
on the q-cycle x0y1 . . . yq−1x0, so that x0u2 = w∗

qx0. Recall that a1 
= a2, where ai

is the first letter of ui.
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x0

x1x2

xp−1xp−2

y1 y2

yq−1 yq−2

z1

zr

v1

vs

y0

u

Figure 5. The word graph H4.

x0

x1x2

xp−1xp−2

y1 y2

yq−1 yq−2

z1

zr

v1

vs

y0

u

Figure 6. The word graph H5.

Since x0u1 = w∗
px0, the word x0 has period p; also, x0u2 = w∗

qx0 implies that q
is a period as well. Furthermore, the former relation tells us that the letter of x0

in position n − p + 1 is a1, and the latter tells us that the letter of x0 in position
n − q + 1 is a2. Consequently, |(n − p + 1) − (n − q + 1)| = |p − q| is not a period
of x0, and so (p, q) is not a period either. Hence, by Theorem 4,

n ≤ p + q − 2,

implying (1).
(ii) Secondly, suppose that G contains H2. As in (i), we shall show that n is

too small to make it possible for G to contain H2, namely that

n ≤ p + q + r − 2 < p + q + r − 1 = |V (H2)|. (2)

To see this, let u1 and u2 be the products of the decorations on the two x0 − z1

paths, and let v be given by the decorations on the z1 − x0 path. Recall that
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a1 
= a2, where ai is the first letter of ui. Recall that |u1| = p, |u2| = q, |v| = r,
x0u1 = w∗

pz1, x0u2 = w∗
qz1 and z1v = w∗

rx0.
Set w = z1v. Then

wu1v = z1vu1v = w∗
rx0u1v = w∗

p+rz1v = w∗
p+rw,

so w is (p + r)-periodic, and its letter in position n − (p + r) + 1 is a1; similarly,
w is (q + r)-periodic and its letter in position n − (q + r) + 1 is a2. Since a1 
= a2

and |(n − (p + r) + 1) − (n − (q + r) + 1)| = |p − q|, we see that p 
= q and |p − q|
is not a period of w. Hence, (p + r, q + r) is not a period of w. Consequently, by
Theorem 4,

|w| = n + r ≤ (p + r) + (q + r) − 2,

implying (2).
(iii) Suppose that G contains H3. This time our aim is to prove that

n ≤ p + q + r − 2 < p + q + r − 1 = |V (H3)|. (3)

Proceeding as in the previous cases, let u1 be the product of the decorations of
the cycle x0x1 . . . xp−1x0, and let u2 be defined by y0y1 . . . yq−1y0. Also, let v be
given by the path x0z1 . . . zr−1y0. Let us write a for the first letter in u1 and b for
the first letter in v. Then a and b decorate edges leaving the same vertex, x0, so
a 
= b. Note that |u1| = p, |u2| = q and |v| = r.

Define the (n − r)-word w by

wv = y0, i.e., x0 = w∗
rw.

Then
x0u1 = w∗

px0 = w∗
pw∗

rw = w∗
p+rw

and
x0u1 = w∗

rwu1.

Consequently,
wu1 = w∗

pw,

so w has period p, and in position |w| − |u1| + 1 = |w| − p + 1 it has the letter a.
Also,

wvu2 = y0u2 = w∗
qy0 = w∗

qwv,

so q is also a period of w, and b is the letter in position |w| − q + 1 in w. Since
a 
= b, this implies that p 
= q and p − q is not a period of w. In particular, (p, q)
is not a period of w either, so

|w| = n − r ≤ p + q − 2,

implying (3).
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(iv) Suppose now that G contains H4, with r ≥ s, say. Now, for a contradiction
we shall prove that

n ≤ p + q + max{r, s} < p + q + r + s + 1 = |V (H4)|. (4)

Let a denote the decoration of the edge uz1 and b that of uv1. Define the (n−r−1)-
word w by setting

w∗
r+1w = u.

This implies that
ww∗

r+1 = x0 and w∗
r−sww∗

s+1 = y0. (5)

As there is a u − x0 walk of length r + 1 whose first edge is decorated by a,
the (n − r)th digit of x0 is a. Since the word x0 is p-periodic, for every i, the
(n− r− ip)th digit of the word x0 (whenever it exists), is a; by (5), the same holds
for the word w as well.

Similarly, there is a u − y0 walk of length s + 1 whose first edge is decorated
by b, and so the (n − s)th digit of y0 is b. The word y0 is q-periodic, and so for
every j, the (n − s − jq)th digit of y0 (whenever it exists) is b. Using (5), this
implies that for every j, the n−s−jq−(r−s) = (n−r−jq)th digit of w (whenever
it exists) is b. If n ≥ p + q + max{r, s} then that both a and b appear in w, and
their distance from each other is a multiple of (p, q). This implies that (p, q) is not
a period of w. Consequently, by Theorem 4,

|w| = n − r − 1 ≤ p + q − 2,

proving (4).
(v) Suppose that G contains H5, with r ≥ s, say. Now we shall derive a

contradiction by proving that

n ≤ p + q + max{r, s} − 1 < p + q + r + s + 1 = |V (H5)|. (6)

Define the (n − r − 1)-word w by

ww∗
r+1 = u.

Then we also have

w∗
r+1w = x0 and w∗

s+1ww∗
r−s = y0.

The p-periodicity of x0 and the q-periodicity of y0 imply that w has periods both p
and q.

First, we consider the case when r = s. Since the vertices x0 and y0 are
different, hence there is a position t where these two words differ. If the first
inequality in (6) was false, then |w| ≥ max{p, q}; therefore there are integers i
and j satisfying r + 1 < t + ip and r + 1 < t + iq. Then in w there were different
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digits in the positions t + ip− r − 1 and t + jq − r − 1. This implies that (p, q) is
not a period of w, and so, by Theorem 4,

|w| = n − r − 1 ≤ p + q − 2,

implying (6).
Let us turn to the case when r > s. Let a be the decoration of the edge x0x1

and b that of x0z1. Since the initial vertices of the two edges are same, we have
a 
= b. There is an i, satisfying s−r ≡ i (mod q), such that there is an (r+1)-walk
from yi to u, where the walk may go around the y-cycle several times. This means
that the edge yiyi+1, with i + 1 taken modulo q, has decoration b. Similarly, there
is a j satisfying s−r−p ≡ j(mod q), such that there is an (r+p+1)-walk from yj

to u. Observe that there is a (p + r + 1)-walk from x0 to u (going first around the
x-cycle), where the decoration of the first edge of the walk is a. This implies that
the decoration of the edge yjyj+1 is also a, with j + 1 taken modulo q. Since the
edges yiyi+1 and yjyj+1 have different colours, we find that (p, q) is not a period
of w. Hence, by Theorem 4, we see that |w| = n − r − 1 ≤ p + q − 2, proving (6).

(vi) The proof of (iv) can be applied to the graph H ′
4. The only difference is

that now p = q, and |V (H ′
4)| = p + r + s + 1.

(vii) The proof of (v) can be applied to the graph H ′
5. Assume G contains

an H ′
5. Our aim is now to show that

n ≤ p + max{r, s} < p + r + s + 1 = |V (H ′
5)|. (7)

Following the proof of part (v), observe that there cannot exist two x0 − u paths
of the same lengths under the assumption (7). The rest of the argument is the
same as in (v); here p = q and for every i we have xi = yi+t, where the indices are
understood modulo t. �

We are now ready to prove the first of our main results.

Theorem 6. Let P be a hereditary property of finite words over an alphabet A.
Then |Pn| is either bounded, or at least n + 1 for every n.

Proof. Suppose that, contrary to the assertion of the theorem, |Pn| is unbounded
and |Pm| ≤ m for some integer m. Our aim is to arrive at a contradiction.

Since |Pn| is unbounded, the alphabet A contains at least two letters, and there
is an integer M > 3m such that |PM | ≥ |A|4m.

Let RM,m be the set of M -words (over A, as always) that become periodic with
period at most m after the deletion of the first m and last m digits. Clearly

|RM,m| ≤ |A|2m
m∑

i=1

|A|i < |A|3m+1,

so PM \ RM,m 
= ∅. Let wM ∈ PM \ RM,m.
Let G = Gm(wM ) be the m-word graph of wM . Note that wM has M − m

blocks of length m + 1, and the sequence of these (m + 1)-blocks gives an oriented
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walk T = u1u2 . . . uM−m+1 in G going through every edge uv as many times as the
number of (m + 1)-blocks isomorphic to [u, v], the (m + 1)-word in which the first
m-word is u and the second (and last) is v. Also, as |Pm| ≤ m, the graph G has
at most m vertices, and as |T | = M −m+1 > m, some vertices are repeated in T .
Let s be the minimal index such that us = uj for some j > s, and t be the maximal
index such that ut = uj for some j < t. Then the vertices us, us+1, . . . , ut span the
2-core H of G, the maximal subgraph in which every vertex has indegree at least 1
and outdegree at least 1. The existence of the walk T implies that the graph G
consists of H , together with a path leading to H and a path leaving H . (A path
may have only one vertex and no edge.) Furthermore, since wM /∈ RM,m, each of
these paths has fewer than m vertices outside H , so H is non-empty. Again, since
wM /∈ RM,m, the number of vertices of H is at most m < M − 2m, hence the
2-core H cannot be a single cycle. Consequently, H contains at least two cycles,
so it contains either two cycles sharing an oriented path or two cycles joined by a
path.

To be precise, H (and so G) contains a subgraph of the form H1, H2 or H3,
with some p, q and r natural numbers. By Lemma 5, the existence of Hi in G for
i = 1, 2, 3 leads to a contradiction. �

It is tempting to conjecture that more is true than claimed by Theorem 6,
namely that, just as in the Hedlund-Morse theorem, if the speed of a hereditary
property is bounded then it is eventually constant. In fact, this is not the case.

Theorem 7. (i) For s ≥ 1 there is a hereditary property P such that lim sup |Pn| =
s2 and lim inf |Pn| = 2s − 1; also, |P4rs| = s2 and |P(4r−2)s| = 2s − 1 for every
r ≥ 1.

(ii) Similarly, for s ≥ 1 there is a hereditary property P such that lim sup |Pn| =
s(s+1) and lim inf |Pn| = 2s; also, |P4rs| = s(s+1) and |P(4r−2)s| = 2s for every
r ≥ 1.

Proof. (i) As usual, we take our alphabet to be A = {0, 1}. For i ≥ 0, write [0]i for
the word of length i in which every letter is 0, and define [1] analogously. (Thus
[0]0 = [1]0 is the empty word.) For n ≥ 2s, set

Wn = {w = [1]i[0]n−i−j [1]j , 0 ≤ i, j ≤ s − 1},

so that Wn ⊂ Wn and |Wn| = s2. Let P be the hereditary property consisting of
all subwords of words in ∪∞

r=1W4rs.
By construction, |P4rs| = s2 and |Pn| ≤ s2 for every n. Also, if w ∈ P(4r−2)s

then the 1s in w form a block of length at most s − 1, which is either at the
beginning of w or at its end. Consequently, |P(4r−2)s| = 2s − 1. Furthermore, for
every n, the set Pn contains all words of length n that either start or end with a
block of 1s of length at most s − 1, so |Pn| ≥ 2s − 1.



62 J. BALOGH AND B. BOLLOBÁS

(ii) This time, define Wn as follows:

Wn = {w = [1]i[0]n−i−j [1]j , 0 ≤ i ≤ s − 1 and 0 ≤ j ≤ s},

and proceed as in (i). �
Clearly, each block of 1s in the definition of Wn in the proof above could be

replaced by a single 1 at an appropriate distance from the end, say, in the first
case Wn consists of all n-words that contain at most two 1s, each of which is either
preceded or followed by at most s − 2 0 digits and nothing else. In fact, any fixed
pattern of 1s would do in the initial block of length s − 1, provided the (s − 1)st
digit is 1, and any fixed pattern of 1s would do in the terminal block of length
s − 1, provided the (n − s)th digit (the beginning of the block) is 1.

Let us turn to the main theorem of this paper. This result is not only a quanti-
tative extension of Theorem 6 (and so of Th. 2, the Morse-Hedlund theorem), but
also shows that the examples in Theorem 7 are best possible, even if we do not
demand oscillation: if |Pn| is no more than n for some n then for no N can |PN |
be larger than indicated in Theorem 7.

Theorem 8. Let P be a hereditary property of finite words over an alphabet A such
that |Pn| = m ≤ n. Then for all k ≥ n+m we have |Pk| ≤ �(m+1)/2	·(m+1)/2�.
For n < k < n + m we have a weaker bound

(
m
2

)
. Furthermore, the inequality for

k ≥ n + m is sharp.

Proof. Let G = Gn be the n-word graph of Pk, i.e. ∪wk∈PkGn(wk). By Lemma 5
G does not contain H1, H2, H3, H4, H5, H

′
4 and H ′

5 as subgraphs.
Let us summarize what this implies so far about the structure of G.
Let C1, . . . , Ct denote the directed cycles of G. Since G contains neither H1

nor H2, these cycles are vertex-disjoint. Since G does not contain H3, there is no
walk from a cycle to another. Finally, as G does not contain any of the graphs H4,
H ′

4, H5 and H ′
5, for every vertex u not on a cycle there is at most one cycle joined

to u by a directed path of either orientation. Consequently, we can partition the
vertex set of G as

V (G) = V (C1) ∪ Vout(C1) ∪ Vin(C1) ∪ · · · ∪ V (Ct) ∪ Vout(Ct) ∪ Vin(Ct) ∪ V0,

where Vout(Ci) is the set of vertices to which a path is leading from some vertex
of Ci, Vin(Ci) is the collection of vertices from where there is a path to Ci, and
V0, which is acyclic, is the rest of the vertices.

First, assume that k ≥ n + m. Then, as k − n + 1 > m = |V (G)|, for every
k-word in Pk there is a (k−n+1)-walk in G with initial vertex in Vin(Ci)∪V (Ci)
for some i, and terminal vertex in Vout(Ci) ∪ V (Ci).

For each i, we can count the number of walks as follows. If a walk starts in
u ∈ Vin(Ci), then it must reach V (Ci) in a vertex depending only on u, and its
terminal vertex is either a unique vertex in V (Ci) or is in Vout(Ci). If a walk
starts in v ∈ V (Ci) then its terminal vertex is either a unique vertex of V (Ci),
or is in Vout(Ci). There is no (k − n + 1)-walk with initial vertex in Vout(Ci).
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Furthermore there is no (k − n + 1)-walk in V0. The structure of G implies that
there is no walk between vertex classes indexed with different numbers.

This implies that the number of (k − n + 1)-walks in G is at most

t∑

i=1

(|Vin(Ci)| + |Ci|) · (|Vout(Ci)| + 1) ≤ �(m + 1)/2	 · (m + 1)/2�. (8)

If equality holds in (8) then G has a unique cycle and V0 is empty; a further case
analysis shows that this cycle is a loop.

For k ≤ n + m − 1 a little more work is needed, since there need not be cycle
for a (k − n + 1 ≤ m)-walk in G.

Observe that between two vertices cannot exist two vertex disjoint walks of
the same length r < n. The graph spanned by V0 is acyclic, hence the number of
(k−n+1)-walks in V0 is at most

(|V0|
2

)
. In a component Vin(Ci)∪V (Ci)∪Vout(Ci)

there may be
(|Vin(Ci)|

2

)
+

(|Vout(Ci)|
2

)
more (k − n + 1)-walks. In conclusion, the

total number of (k − n + 1)-walks in G is at most

(|V0|
2

)
+

t∑

i=1

(
(|Vin(Ci)| + |Ci|) · (|Vout(Ci)| + 1) +

(|Vin(Ci)|
2

)

+
(|Vout(Ci)|

2

))
≤

(
m

2

)
, (9)

completing our proof of the main part of Theorem 8.
Theorem 7 shows that for k ≥ n + m the bound is indeed best possible. �

4. Oscillation of complexities of linear order

Theorem 2 describes N - and Z -words w with limn→∞ |Pn(w)|/n ≤ 1. It would
be interesting to determine what numbers may arise as limits limn→∞ |Pn(w)|/n,
where w is an N-word (or a Z-word).

It is known that every integer is such a limit, and it was conjectured that only
integers arise as limits (for survey of related results, see [7]). Heinis [4] proved that
the open interval (1, 2) contains no limit points. On the other hand, Heinis also
constructed a Z-word w such that lim inf |Pn(w)|/n = 3/2 and lim sup |Pn(w)|/n =
5/3. Ferenczi [1] described an N-sequence w whose speed is such that
lim inf |Pn(w)|/n = 2 and for every constant β, lim sup |Pn(w)|/nβ = ∞. Here we
show that the complexity may oscillate rather wildly.

Theorem 9. Let α(n) = o(log n) be a function monotone increasing to ∞. Then
there exist a Z-sequence w over the alphabet {0, 1} and a monotone increasing
sequence {nk}∞k=1 such that for k odd |Pnk(w)| < 2nk + α(nk) and for k even
|Pnk(w)| > 2nk/α(nk). Furthermore, there is an N-word w such that for k odd
|Pnk(w)| < nk + α(nk) and for k even |Pnk(w)| > 2nk/α(nk).
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Proof. We shall define recursively the Z-word w and the sequence {nk}∞k=1. Let n1

be an integer satisfying α(n1) > 1. Furthermore, place 0 at every position but 0
of the interval [−n1, n1] in w. To construct the rest of the word w, we position
the digits in such a way that the distance between any two 1s in w is at least n1.
This will guarantee that Pn1(w) consists of words which have at most one 1 digit,
hence |Pn1(w)| = n1 + 1 < 2n1 + α(n1).

Assume that for some k we have constructed the sequence n1, n2, . . . , nk−1, and
for some function f , the digits of w in the interval [−f(k− 1), f(k− 1)] have been
fixed. We shall consider two cases according to the parity of k.

First, we assume that k is even. Denote by At(m, w) the set of m-words of
w in which the distance of any two 1 digits is at least t. We shall choose the
rest of w in such a way that for a properly chosen nk the set Pnk(w) contains
the words intersecting w in one of the positions [−f(k − 1), f(k − 1)], and the
set Ank−1(nk, w). The recursive inequality |Ank−1(n, w)| ≤ 2 · |Ank−1(n+nk−1, w)|
implies that |Ank−1(n, w)| ≥ 2n/nk−1 . Hence, choosing nk satisfying α(nk) > nk−1,
we shall have |Pnk(w)| ≥ |Ank−1(nk, w)| ≥ 2nk/nk−1 . To ensure the contain-
ment Ank−1(nk, w) ⊂ Pnk(w), we put every words in Ank−1(nk, w) in w around
the interval [−f(k−1), f(k−1)], putting each of them on both sides, and separate
them from each other with nk−1 0 digits. These words can be placed in the interval
[−f(k), f(k)] where f(k) = f(k − 1) + (nk + nk−1)|Ank−1(nk, w)|.

Whenever k is odd, our aim is to achieve that, in addition to the words intersect-
ing w in one of the positions of [−f(k−1), f(k−1)], the set Pnk(w) should contain
only words having at most one 1 digit. As in the previous case we have seen, this is
easily achieved. This implies that |Pnk(w)| ≤ 2nk+1+2f(k−1)+1. Consequently,
choosing nk such that α(nk) < 2f(k − 1) + 2, we have |Pnk(w)| ≤ 2nk + α(nk).

To prove the second part of the theorem, simply consider the same sequence {nk}
and the N-sequence spanned by w. �

5. Concluding remarks

In addition to the complexity function studied above, there are various other
ways of measuring the wealth of patterns that can be found in words. For example,
Kamae and Zamboni [5] studied a complexity function defined by the patterns
found at various fixed spaces in a word w, rather then in blocks. To be precise,
for k1 < k2 < · · · < kn, consider the set P∗(k1, k2, . . . , kn, w) of the n-sub words
for all m located at k1 + m, k2 + m, . . . , kn + m in w. The pattern complexity of w
is P∗(n, w) = supk1<k2<···<kn

|P∗(k1, k2, . . . , kn, w)|. It was shown in [5] that w is
either (essentially) periodic or for every n, P∗(n, w) ≥ 2n. This result motivates
the following question: Given a sequence K = {k1 < k2 < . . .}, let P∗(n, K, w)
be the set of n-subwords in w in the form of k1 + m, k2 + m, . . . , kn + m. The
K-complexity of w is |P∗(n, K, w)|. This coincides with the block complexity of w
in case K = {1, 2, 3, . . .}. It would be interesting to characterize the sequences K
for which there is a word w whose K-complexity is unbounded but sublinear.
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