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SIMILARITY RELATIONS AND COVER AUTOMATA

Jean-Marc Champarnaud1, Franck Guingne1, 2 and
Georges Hansel1

Abstract. Cover automata for finite languages have been much stud-
ied a few years ago. It turns out that a simple mathematical structure,
namely similarity relations over a finite set of words, is underlying these
studies. In the present work, we investigate in detail for themselves
the properties of these relations beyond the scope of finite languages.
New results with straightforward proofs are obtained in this general-
ized framework, and previous results concerning cover automata are
obtained as immediate consequences.

Mathematics Subject Classification. 68Q25, 68Q45, 68W01,
68W10.

1. Introduction

Let Σ be an alphabet and Σ≤l be the subset of words of Σ∗ whose length is not
greater than the integer l. A relation over Σ≤l is semi-transitive if, given three
words x, y, z ∈ Σ≤l such that |x| ≤ |y| ≤ |z|, transitivity holds when x ∼ y ∧ y ∼ z
or y ∼ x ∧ x ∼ z. In this paper, we present a general study of similarity relations
over Σ≤l, i.e. relations that are reflexive, symmetrical and semi-transitive. We
show in particular that right invariant similarity relations are recognized by semi-
automata and we characterize minimal semiautomata recognizing a given relation.

We use these general properties to study cover automata for a finite language.
Cover automata have been introduced by Câmpeanu, Sântean and Yu in [1]. A
finite language L is said to be of order l if the length of a longest word in L is equal
to l. A cover automaton for a language L of order l is a deterministic automaton A
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such that L(A)∩Σ≤l = L. Checking word membership to L on a cover automaton
for L only requires an additional test on the length of the word. Since covering
generally reduces the size of an automaton [7], it is of practical interest to be able
to compute a minimal cover automaton for L, that is a cover automaton with a
minimal number of states. It is shown in [1] that a minimal cover automaton can
be obtained from any cover automaton for L by merging states according to a state
relation involving the right languages of the states. Minimality with respect to L
comes from the properties of the similarity relation over Σ≤l that is underlying
the state relation. This word relation, called L-similarity, has been introduced by
Kaneps and Freivalds [5] and Dwork and Stockmeyer [3].

In this paper, we show how a semiautomaton recognizing the L-similarity re-
lation can be equipped with final states to yield a cover automaton for L. This
leads to a characterization of minimal cover automata for a finite language.

Notice that several efficient algorithms have been designed for computing a
minimal cover automaton, either from a deterministic automaton recognizing L,
or from an arbitrary cover automaton for L. In [1], Câmpeanu, Sântean and Yu
present an O(n4) time and space algorithm to minimize an n-state cover automa-
ton for L. In [2], Câmpeanu, Păun and Yu provide an O(n2) time and space al-
gorithm whose input is an n-state deterministic automaton recognizing L. In [6],
Körner describes an Hopcroft-like algorithm with an O(n log n) time and O(n)
space complexity that works on both types of input.

Section 2 is devoted to a general study of similarity relations over Σ≤l and
Section 3 addresses right invariance property. The connexion between similarity
relations and semiautomata is investigated in Section 4. The application of the
study of similarity relations to the computation of a minimal cover automaton for
a finite language is developed in Section 5.

2. Similarity relations over Σ≤l

Let l be an integer. In the following, Σ≤l denotes the subset of Σ∗ of words
having a length not greater than l.

A relation ∼ over Σ≤l is semi-transitive iff for all x, y, z in Σ≤l such that
|x| ≤ |y| ≤ |z|, the following implications hold:

(i) x ∼ y and y ∼ z ⇒ x ∼ z,

(ii) x ∼ y and x ∼ z ⇒ y ∼ z.

A reflexive, symmetrical and semi-transitive relation is a similarity relation. In
the following, the relation ∼ is supposed to be a similarity relation over Σ≤l.
Two words x and y are similar (resp. dissimilar) if x ∼ y (resp. x �∼ y). A
similarity set (resp. a dissimilarity set) is a subset of pairwise similar (resp. pair-
wise dissimilar) elements of Σ≤l. A dissimilarity set is maximal if its cardinality
is maximal among dissimilarity sets. A partition of Σ≤l whose all classes are sim-
ilarity sets is called a similarity partition. A similarity partition is minimal if its
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cardinality is minimal among similarity partitions. Two similarity sets S and T
are said to be mergeable if S ∪ T is a similarity set. Hence the partition resulting
from merging two mergeable classes of a similarity partition is again a similarity
partition.

An element x ∈ Σ≤l is minimal if for all y ∈ Σ≤l, we have

y ∼ x⇒ |y| ≥ |x|.

We denote by M the set of all minimal elements of Σ≤l.

Proposition 2.1.
1) The retriction of the relation ∼ to M is an equivalence relation.
2) For all x ∈ Σ≤l, there exists at least one minimal element similar to x.

Proof.
1) It follows from the very definition of minimal elements that two minimal

similar elements have the same length. Consequently, by Condition (i),
when restricted to M , the relation ∼ is transitive.

2) Let x ∈ Σ≤l. Let y be an element of smallest length among all elements
similar to x. It follows from Condition (i) that y is a minimal element.

�

Let us fix some notation. We denote by πM = {M1, . . . , Mk} the partition of M
in equivalence classes and by C = {c1, . . . , ck} a cross-section of πM , i.e. ci ∈ Mi

for all i = 1, . . . , k. For all x ∈M , let us denote by Sx the similarity set of all the
elements similar to x. Finally, for all i = 1, . . . , k, let us set

Ti = Sci \
i−1⋃

j=1

Scj and T ′
i = Sci \

⋃

j �=i

Scj .

Remark 2.2. It follows from Condition (i) that if x and x′ are similar mini-
mal elements, then Sx = Sx′ . Moreover it follows from Proposition 2.1(2) that
∪x∈MSx = Σ≤l.

Proposition 2.3.
1) The set C is a maximal dissimilarity set.
2) Any minimal similarity partition has k elements and {T1, . . . , Tk} is such

a minimal similarity partition.

Proof.
1) Being a cross-section of M , the set C is a dissimilarity set. Let D be

any dissimilarity set. Suppose that |D| > |C|. Hence it follows from
Proposition 2.1(2) that there exist two elements y and z in D similar
to a same element c of C. Since c is a minimal element, |y| ≥ |c| and
|z| ≥ |c| and therefore, by Condition (ii), we get that y and z are similar,
a contradiction.
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2) Let π be a similarity partition of Σ≤l. Different elements of C belong to
different elements of π. Hence π has at least k elements. It remains only
to observe that {T1, . . . , Tk} is a similarity partition (cf. Rem. 2.2).

�

The following proposition gives a complete characterization of maximal dissimi-
larity sets.

Proposition 2.4. Let D be a subset of Σ≤l. The following conditions are equiv-
alent:

1) D is a maximal dissimilarity set.
2) |D| = k and, for all i = 1, . . . , k, there exists one and only one element

di ∈ D such that di ∈ T ′
i .

Proof. 1) ⇒ 2) Since D is a maximal dissimilarity set, it follows from Proposi-
tion 2.3(1) that |D| = |C| = k. By Proposition 2.1(2), we can chose for all d ∈ D
a minimal element f(d) ∈ C such that f(d) ∼ d. Let d, d′ be two elements of D
and suppose that f(d) = f(d′). It follows from Condition (ii) that d ∼ d′ and,
since D is a dissimilarity set, we get that d = d′. Hence the mapping d→ f(d) is
one-to-one onto. Let di = f−1(ci), i = 1, . . . , k. Then di ∼ ci and di �∼ cj for j �= i
(otherwise we would get di ∼ dj). Hence di ∈ T ′

i , i = 1, . . . , k, and 2) is satisfied.
2) ⇒ 1) It suffices to observe that according to the definition of the sets T ′

i ,
i = 1, . . . , k, we get that D = {d1, . . . , dk} is a dissimilarity set. �

Corollary 2.5. Let D be a dissimilarity set. The following conditions are equiv-
alent:

1) D is a maximal dissimilarity set.
2) D is a cross-section of a similarity partition of Σ≤l.

Proof. 1) ⇒ 2) According to Proposition 2.4, D = {d1, . . . , dk}, with di ∈ T ′
i for

all i = 1, . . . , k. Hence D is a cross-section of the similarity partition {T1, . . . , Tk}.
2) ⇒ 1) Let π = {U1, . . . , Up} be a similarity partition of Σ≤l whose D is a
cross-section. Since π is a similarity partition, we have p ≥ k and since D is a
dissimilarity set, we have p ≤ k. Hence |D| = p = k. We can assume that ci ∈ Ui

for all i = 1, . . . , k and denote by di the unique element of D ∩ Ui. Since D is a
dissimilarity set, we get that di ∼ cj if and only if i = j. Hence di ∈ T ′

i for all
i = 1, . . . , k and D is a maximal dissimilarity set (cf. Prop. 2.4). �

Lemma 2.6. Let S and T be two similarity sets. Let s (resp. t) be one of the
smallest elements of S (resp. T ). The following conditions are equivalent:

1) S and T are mergeable;
2) s and t are similar.

Proof. 1)⇒ 2) is obvious. Let us prove that 2)⇒ 1). Suppose that |s| ≤ |t|. Let y
be an element of S and z be an element of T . Since |s| ≤ |t| ≤ |z|, by Condition (i)
we get that s ∼ z. Consequently, since |s| ≤ |y| and |s| ≤ |z|, by Condition (ii)
we get that y ∼ z. Hence S and T are mergeable. �
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Theorem 2.7. Let π be a similarity partition of Σ≤l. The following conditions
are equivalent:

1) π is a minimal similarity partition.
2) π admits a maximal dissimilarity cross-section.
3) π admits a dissimilarity cross-section.
4) π cannot be reduced by merging elements.

Proof. 1) ⇒ 2) Since π is minimal, it has k elements (cf. Prop. 2.3) and conse-
quently the set C is a maximal dissimilarity cross-section of π.
2)⇒ 3) is obvious.
3) ⇒ 1) Let D be a dissimilarity cross-section of π. It follows from Corollary 2.5
that D is a maximal dissimilarity set. Hence D has k elements and π is minimal.
Thus we have already shown that 1) ⇔ 2) ⇔ 3). The implication 1) ⇒ 4) is
obvious and it follows from Lemma 2.6 that 4)⇒ 3). The proof is complete. �

3. Right invariant similarity relations

A similarity relation ∼ over Σ≤l is right invariant if x ∼ y ⇒ xz ∼ yz, for all
z ∈ Σ∗ such that |xz|, |yz| ≤ l. A similarity partition (Ui) is right invariant with
respect to ∼ if the conditions x, y ∈ Ui, |xz| ≤ l, |yz| ≤ l, and xz ∈ Uj imply
yz ∈ Uj.

Proposition 3.1. Let ∼ be a right invariant similarity relation over Σ≤l. Then
there exists a minimal right invariant similarity partition.

Proof. First we define a mapping (c, a)→ c ·a from C×Σ to C by defining c ·a as
any element c′ ∈ C that is similar to the word ca. This mapping is then inductively
extended to a mapping (c, x)→ c · x from C × Σ∗ to C by setting

c · x =

{
c if x = ε

(c · y) · a if x = ya.

Now we construct a partition of Σ≤l denoted {U1, . . . , Uk}, with k = |C|, by fixing,
for all x ∈ Σ≤l, to which set Ui it belongs. Remark that the empty word ε belongs
to C and we can suppose that ε = c1. Then we set

x ∈ Ui ⇔ ε · x = ci.

Let us first inductively check that x ∈ Ui ⇒ x ∼ ci and hence that (Ui) is a
similarity partition. By definition ε ∈ U1 and trivially ε = c1 ∼ c1. Suppose that
x = ya with y ∈ Uj and x ∈ Ui. By the induction hypothesis, y ∼ cj . Since the
relation ∼ is right invariant we get that x ∼ cja. On the other hand

ε · x = (ε · y) · a = cj · a = ci.

By definition of cj · a, we have cja ∼ cj · a. Thus we have x ∼ cja and cja ∼ cj · a.
But |x| ≥ |cja| and |cja| ≥ |cj · a|. Hence x ∼ cj · a, i.e. x ∼ ci.
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Let us now check that the partition (Ui) is right invariant. Let x ∈ Ui and let
a ∈ Σ. Suppose that ci · a = cj . Then

ε · xa = (ε · x) · a = ci · a = cj.

Hence Uia ⊂ Uj and the partition (Ui) is right invariant.
Finally, since the partition (Ui) has |C| elements, it is minimal. �

4. Similarity relations and semiautomata

We assume that the reader is familiar with regular languages and automata
theory [4, 8].

Let A = (Σ, Q, q , ·) be a deterministic semiautomaton on the alphabet Σ (that
is a deterministic automaton without defined final states). We assume that A is
complete, i.e. its transition function is a total function.

The left language of a state q ∈ Q is defined by
←−
L (q) = {x ∈ Σ∗ | q · x = q}.

The set family (
←−
L (q))q∈Q is a partition of Σ≤l.

A deterministic semiautomaton is a similarity semiautomaton for the relation ∼
if for all q ∈ Q,

←−
L (q) is a similarity set. Such an semiautomaton is said to recognize

the relation ∼. By definition, a similarity semiautomaton defines a similarity set
partition of Σ≤l and consequently it has at least |πM | states. Remark that the
partition (

←−
L (q)) cannot be an arbitrary similarity partition. Indeed, since for all

q ∈ Q and all a ∈ Σ, we have that (
←−
L (q) ∩ Σ≤l−1)a ⊂ ←−L (q · a), we get that the

partition (
←−
L (q)) is right invariant. We now will show that, conversely, to each

right invariant similarity partition of Σ≤l, one can associate in a canonical way a
similarity semiautomaton whose number of states is the index of the partition.

Let (Tq)q∈Q be a right invariant similarity partition. For all x ∈ Σ≤l, let us
denote by qx the element of Q such that x ∈ Tqx and for all q ∈ Q, let m(q)
be a word of minimal length in Tq. We define the mapping (q, a) → q · a from
Q× Σ→ Q by

q · a =

{
qm(q)a if m(q) ∈ Σ≤l−1

qε if |m(q)| = l.

To complete the definition of the semiautomaton (Σ, Q, q , ·), we set q = qε.

Proposition 4.1. Let (Tq)q∈Q be a right invariant similarity partition of Σ≤l.
The semiautomaton (Σ, Q, q , ·) recognizes the relation ∼.

Proof.

a) Let us inductively prove that q · x = qx for all x ∈ Σ≤l. If x is a letter
a ∈ Σ, since m(q ) = ε, one has

q · a = qm(q )a = qεa = qa.
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Then we recursively get

q · xa = (q · x) · a = qx · a = qm(qx)a.

Since x and m(qx) belong to the same element Tqx of the partition (Tq),
using the invariance property of this partition, we get that m(qx)a and xa
belong to the same element Tqxa . Hence we have

q · xa = qm(qx)a = qxa.

b) Let x and y be two words belonging to the same left language
←−
L (p), that is

q ·x = q · y = p. Then, using a), we get that qx = qy = p. Hence x and y
belong to the same element Tp of the partition (Tq) and thus are similar.
Consequently, the semiautomaton (Σ, Q, q , ·) recognizes the relation ∼.

�
Theorem 4.2. Let ∼ be a right invariant similarity relation over Σ≤l. Any sim-
ilarity semiautomaton recognizing ∼ has at least |πM | states and there exists a
semiautomaton with |πM | states that recognizes ∼.

Proof. By Proposition 3.1, there exists a minimal right invariant similarity parti-
tion (Tq)q∈Q with |Q| = |πM | and by Proposition 4.1, the associated semiautoma-
ton (Σ, Q, q , ·) recognizes the relation ∼. �

5. Cover automaton for a finite language

A finite language L is said to be of order l if l is the length of the longest
word(s) in L. The notion of a cover automaton for a finite language L has been
defined in [1] with the purpose of designing a compact representation of finite
languages [7].

Definition 5.1. A cover automaton for a language L of order l is a deterministic
finite automaton C = (Σ, Q, q , Q+, ·) such that

L(C) ∩ Σ≤l = L.

Definition 5.2. A cover automaton for a finite language L is minimal if it has a
minimal number of states among the cover automata for L.

We now show that the underlying semiautomaton of a cover automaton for a lan-
guage L recognizes the L-similarity relation introduced by Kaneps and Freivalds [5]
and Dwork and Stockmeyer [3].

Definition 5.3. Let L be a language of order l. Let x and y be two words of Σ≤l

and h = max{|x|, |y|}. The relation ∼L over Σ≤l, called L-similarity, is defined by:

x ∼L y ⇔ (∀t ∈ Σ≤l−h, xt ∈ L⇔ yt ∈ L).
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Lemma 5.4. The relation ∼L is a right invariant similarity relation over Σ≤l.

Proof. The relation ∼L is obviously reflexive and symmetrical. Let us show that
it is semi-transitive. Let x, y, z be words of Σ≤l such that |x| ≤ |y| ≤ |z|. We
first check that x ∼L y and y ∼L z ⇒ x ∼L z. Let t ∈ Σ≤l such that |t| ≤ l − |z|.
Since y ∼L z, we have yt ∈ L ⇔ zt ∈ L. Since |y| ≤ |z| and x ∼L y, it holds
xt ∈ L⇔ yt ∈ L. Consequently, xt ∈ L⇔ zt ∈ L and thus x ∼L z. The proof of
the second relation (y ∼L x and x ∼L z) ⇒ y ∼L z is similar.

We now check that ∼L is a right invariant relation. Let x and y be two words
of Σ≤l such that max{|x|, |y|} < l. We have to prove that x ∼L y ⇒ xa ∼L ya
for all a ∈ Σ. Since x ∼L y, we have xt ∈ L ⇔ yt ∈ L for all t ∈ Σ≤l such that
|t| ≤ l−max{|x|, |y|}. Let us set t = au. It comes: (xa)u ∈ L⇔ (ya)u ∈ L for all
u ∈ Σ≤l such that |u| ≤ l−max{|xa|, |ya|}. Hence xa ∼L ya. �

Proposition 5.5. Let L be a language of order l.

1) Let C be a cover automaton for L. Then the underlying semiautomaton of
C recognizes the relation ∼L.

2) Conversely, a semiautomaton recognizing the relation ∼L, when equipped
with a convenient set of final states, is a cover automaton for L.

Proof.

1) Let x, y ∈ ←−L (q), h = max{|x|, |y|}, and let us show that x ∼L y. Since
q · x = q · y, we get that for all z ∈ Σ≤l−h, q · xz = q · yz. Hence
q · xz ∈ Q+ ⇔ q · yz ∈ Q+. Consequently xz ∈ L⇔ yz ∈ L and x ∼L y.

2) Conversely, let A be a semiautomaton recognizing the relation ∼L. Since
x ∼L y ⇒ (x ∈ L ⇔ y ∈ L), we get that, for all q ∈ Q, either

←−
L (q) ⊂ L

or
←−
L (q) ∩ L = ∅. Hence by setting Q+ = {q ∈ Q | ←−L (q) ⊂ L}, the

semiautomaton A equipped with Q+ is a cover automaton for L.

�

Theorem 5.6. Let L be a language of order l and ∼L be the associated right
invariant L-similarity relation over Σ≤l. Any cover automaton for the language L
has at least |πM | states and there exists a cover automaton with |πM | states for L.

Proof. By Proposition 5.5(1) and Theorem 4.2, any cover automaton for L has at
least |πM | states, and by Theorem 4.2 and Proposition 5.5(2), there exists a cover
automaton with |πM | states. �
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