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SOME DECOMPOSITIONS OF BERNOULLI SETS
AND CODES ∗

Aldo de Luca
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Abstract. A decomposition of a set X of words over a d-letter alpha-
bet A = {a1, . . . , ad} is any sequence X1, . . . , Xd, Y1, . . . , Yd of subsets
of A∗ such that the sets Xi, i = 1, . . . , d, are pairwise disjoint, their
union is X, and for all i, 1 ≤ i ≤ d, Xi ∼ aiYi, where ∼ denotes the
commutative equivalence relation. We introduce some suitable decom-
positions that we call good, admissible, and normal. A normal decom-
position is admissible and an admissible decomposition is good. We
prove that a set is commutatively prefix if and only if it has a normal
decomposition. In particular, we consider decompositions of Bernoulli
sets and codes. We prove that there exist Bernoulli sets which have no
good decomposition. Moreover, we show that the classical conjecture
of commutative equivalence of finite maximal codes to prefix ones is
equivalent to the statement that any finite and maximal code has an
admissible decomposition.
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Introduction

Prefix sets are sets X of words over a given finite alphabet such that no word
of X is a proper initial part (or prefix) of another word of X . As is well known prefix
sets play an essential role in Information Theory and in Computer Science. This
is mainly due to the existence of a one-to-one correspondence between prefix sets
and the sets of leaves of rooted trees. A prefix set is maximal if the corresponding
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via Cintia, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy and Istituto di
Cibernetica “E. R. Caianiello” del CNR, 80078 Pozzuoli, Italy;

aldo.deluca@dma.unina.it
c© EDP Sciences 2005



162 A. DE LUCA

tree is complete, i.e., the degree of all internal nodes of the tree is equal to the
number of letters of the alphabet.

An important property satisfied by a finite maximal prefix set X is that for any
positive Bernoulli distribution π on the alphabet A one has π(X) = 1. Any set X
over A satisfying the preceding relation for all positive Bernoulli distributions is
called a Bernoulli set (cf. [4]). For instance, any finite maximal code is a Bernoulli
set.

In general a Bernoulli set X is not commutatively equivalent to a prefix set,
i.e., one cannot produce by permuting the letters in the words of X , a prefix
set Y having the same cardinality of X . Some characterizations of sets which are
commutatively equivalent to prefix sets are in [1,2,4]. We recall that the statement
that a finite maximal code is commutatively equivalent to a prefix set is a classical
still open conjecture of theory of codes formulated by Schützenberger at the end
of ’50s [6, 7].

In this paper we start by the fact that if X is a maximal prefix code, then for
any letter a ∈ A, the set Ya = a−1X is a maximal prefix set. Thus any maximal
prefix code can be analyzed in terms of ‘simpler’ maximal prefix sets. Let us
observe that if X is finite, then any set Ya, a ∈ A, is a Bernoulli set. It is likely
that a finite set is commutatively prefix only if it preserves in a suitable way this
kind of property. For this reason we consider in Section 3 some decompositions of
sets of words. More precisely, a decomposition of a set X of words over a d-letter
alphabet A = {a1, . . . , ad} is any sequence X1, . . . , Xd, Y1, . . . , Yd of subsets of A∗

such that the sets Xi, i = 1, . . . , d, are pairwise disjoint, their union is X , and for
all i, 1 ≤ i ≤ d, Xi is commutatively equivalent to aiYi.

A decomposition is called good if for all positive Bernoulli distributions π over
A one has π(Yi) ≤ 1, 1 ≤ i ≤ d. Good decompositions are considered in Section 4.
In particular, it is shown that the property of being a Bernoulli set is preserved
under good decompositions. Moreover, it is shown the existence of non-trivial
Bernoulli sets which do not admit good decompositions; this implies that they
are not commutatively prefix. However, there exist Bernoulli sets which are not
commutatively prefix and have a good decomposition.

In Section 5 we consider admissible and normal decompositions. A decomposi-
tion is admissible when for all i, 1 ≤ i ≤ d, the sets Yi are codes or Yi = {ε}. A
decomposition is normal if for all i, 1 ≤ i ≤ d, the sets Yi are prefix. A normal
decomposition is admissible and an admissible decomposition is good. We prove
that a set is commutatively prefix if and only if it has a normal decomposition.
Finally, in Section 6 we show that the conjecture of Schützenberger is equivalent to
the statement that any finite and maximal code has an admissible decomposition.

1. Preliminaries

Let A be a finite nonempty set, or alphabet, of cardinality d > 0 and A∗ the free
monoid generated by A. The elements of A are usually called letters and those
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of A∗ words. The identity element of A∗ is called empty word and denoted by ε.
We set A+ = A∗ \ {ε}.

A word w ∈ A+ can be written uniquely as a sequence of letters as w =
w1w2 · · ·wn, with wi ∈ A, 1 ≤ i ≤ n, n > 0. The integer n is called the length of
w and denoted |w|. The length of ε is 0. For any w ∈ A∗ and a ∈ A, |w|a denotes
the number of occurrences of the letter a in w.

Let w ∈ A∗. The word u ∈ A∗ is a prefix of w if there exists a word λ such that
w = uλ. A prefix u of w is called proper if u �= w. In the following a subset X
of A∗ will be simply called set over (the alphabet) A.

A Bernoulli distribution π over the alphabet A (cf.[1]) is any map

π : A → R+,

where R+ is the set of non-negative real numbers, such that

∑

a∈A

π(a) = 1.

A Bernoulli distribution is positive if for all a ∈ A one has π(a) > 0. We denote
by PBD(A), or simply PBD, the set of all positive Bernoulli distributions on A.
A particular positive Bernoulli distribution is the uniform distribution πu defined
for any a ∈ A as πu(a) = d−1.

If π is a Bernoulli distribution over A, then one can extend π to a morphism
of A∗ in the multiplicative monoid R+. Hence, π(ε) = 1 and for all u, v ∈ A∗ one
has:

π(uv) = π(u)π(v).

One can extend also π to sets X over A by setting: π(∅) = 0 and for X �= ∅

π(X) =
∑

w∈X

π(w).

Let us observe that for some sets X the value π(X) may be infinite. A set X over
A is called Bernoulli set if for all π ∈ PBD:

π(X) = 1. (1)

If X is a set over A, we denote by X the characteristic series of X in commutative
variables. If X is a finite set, the series X becomes a polynomial. For instance, in
the case of the sets X = {aa, ab, ba, bb}, {ε}, and ∅, one has X = a2 + 2ab + b2,
{ε} = 1, and ∅ = 0.
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The following characterization of finite Bernoulli sets holds (cf.[1, 4]):

Proposition 1.1. A finite set X over the alphabet A is a Bernoulli set if and
only if A − 1 divides the polynomial X − 1, i.e.,

X − 1 = P (A − 1), (2)

where P is a polynomial of Z[A].

We recall the following property which is satisfied by finite Bernoulli sets [4]:

Proposition 1.2. Let X be a finite Bernoulli set. For any a ∈ A there exists a
unique non-negative integer p such that ap ∈ X.

We consider in A∗ the relation of commutative equivalence ∼ defined as follows:
two words u, v ∈ A∗ are commutatively equivalent, and we write u ∼ v, if

|u|a = |v|a, for any a ∈ A.

Two sets X and Y over A are commutatively equivalent, and we write X ∼ Y ,
if there exists a bijection δ : X → Y , called commutation map, such that for any
x ∈ X one has x ∼ δ(x). In terms of the commutative characteristic series one
has that X ∼ Y if and only if

X = Y .

If X is a finite set over A, we denote by ‖X‖ the quantity ‖X‖ =
∑

x∈X |x|. We
call ‖X‖ the size of X .

Let X be a set over A. For any letter a, we denote by a−1X the set

a−1X = {w ∈ A∗ | aw ∈ X}.

2. Codes and prefix sets

A set X over a d-letter alphabet A = {a1, . . . , ad} is called code over A if X is
the base of a free submonoid of A∗, i.e., any nonempty word of X∗ can be uniquely
factorized in terms of the elements of X . We note that according to the definition
the empty subset of A∗ is a code.

As is well known [1] if X is a code over A, then for any Bernoulli distribution π
over A one has π(X) ≤ 1 (generalized Kraft-McMillan inequality). In the case of
the uniform distribution one has the classic Kraft-McMillan inequality

∑

x∈X

d−|x| ≤ 1.
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A code X over A is maximal if it is not properly included in a larger code over the
same alphabet A. The following proposition holds (cf. [1]):

Proposition 2.1. Let X be a finite code. X is maximal if and only if it is a
Bernoulli set.

A set X over A is commutatively equivalent to a code if there exists a code Y
such that X ∼ Y . We observe (cf.[4]) that there exist finite Bernoulli sets which
are not commutatively equivalent to any code.

A set X over A is called prefix if

X ∩ XA+ = ∅,

i.e., no word of X is a proper prefix of another word. For instance, the sets
X1 = ∅, X2 = {ε}, and X3 = {a, ba, bb} are prefix sets. We observe that all prefix
sets X ⊆ A+ are codes.

A prefix set is maximal if it is not properly included in a larger prefix set over
the same alphabet. This is trivially equivalent to say (cf.[1]) that for any w ∈ A∗

wA∗ ∩ XA∗ �= ∅. (3)

We remark that the set {ε} is a maximal prefix set. As is well known [1] a finite
prefix code is maximal (as a prefix) if and only if it is maximal as code.

Let X be a subset of A+. Trivially X can be uniquely written as

X =
d⋃

i=1

aiYi, (4)

where the union is disjoint and Yi = a−1
i X , 1 ≤ i ≤ d. The (maximal) prefix

property is preserved passing from the set X to the sets Yi, 1 ≤ i ≤ d, and
vice versa, as shown by the following lemma whose simple proof we report for the
sake of completeness.

Lemma 2.2. Let X be a set over the alphabet A. The set X is prefix if and only
if the sets Yi = a−1

i X, 1 ≤ i ≤ d, are prefix. Moreover, X is a maximal prefix code
if and only if the sets Yi, 1 ≤ i ≤ d, are maximal prefix sets.

Proof. If X = ∅ or X = {ε} the result is trivial. Thus we suppose that X is a
non-empty prefix code. In such a case for any letter a, the set Y = a−1X is a
prefix set. Indeed, if Y = ∅ or Y = {ε} we are done. Therefore, we suppose that
∅ �= Y ⊆ A+. Let y1, y2 ∈ Y and ξ ∈ A∗ be such that y1 = y2ξ, so that ay1 = ay2ξ.
As ay1, ay2 ∈ X it follows that ξ = ε and y1 = y2. Conversely, suppose that the
sets Yi, 1 ≤ i ≤ d, are prefix sets and suppose that x1 = x2ξ with x1, x2 ∈ X and
ξ ∈ A∗. This implies that there exists a letter a such that x1 = ay1, x2 = ay2 with
y1, y2 ∈ Y = a−1X . Therefore, y1 = y2ξ. This implies ξ = ε. Hence, y1 = y2 and
x1 = x2.

Let a ∈ A, w ∈ A∗, and Y = a−1X . If X is a maximal prefix code, then from
equation (3) one has awA∗ ∩ XA∗ �= ∅, so that wA∗ ∩ Y A∗ �= ∅. Hence, Y is
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maximal prefix set. Conversely, let w be any word of A+ and write w = au with
a ∈ A and u ∈ A∗. Since by hypothesis the set Y = a−1X is a maximal prefix set
by equation (3) one has uA∗ ∩ Y A∗ �= ∅ and auA∗ ∩ aY A∗ �= ∅. Hence, for any
w ∈ A∗ one has wA∗ ∩ XA∗ �= ∅. Since X �= {ε} the result follows. �

Example 2.3. Let X = {a2, aba, ab2, ba, b2}. The set X is a maximal prefix
code. In this case a−1X = {a, ba, b2} and b−1X = {a, b} are also maximal prefix
codes. Let X = {a2, aba, ab2, b}. One has that X is a maximal prefix code and
a−1X = {a, ba, b2} and b−1X = {ε} are maximal prefix sets.

Let us observe that the code property is not, in general, preserved passing
from the set X to the sets Yi = a−1

i X , 1 ≤ i ≤ d, or vice versa. For instance,
in the case of the code X = {a, ab, bb} one has that a−1X = {ε, b} which is
not a code. Conversely, the set X = {aa, ba, bb, aab, abb} is not a code whereas
a−1X = {a, ab, bb} and b−1X = {a, b} are codes.

A set X is commutatively prefix if there exists a prefix set Y such that X ∼ Y .
The following holds (cf. [1]):

Proposition 2.4. A set X over the alphabet A is commutatively prefix if and only
if the series

X − 1
A − 1

has non-negative coefficients.

Let X be a finite Bernoulli set and set, by Proposition 1.1, X − 1 = P (A − 1).
From Proposition 2.4 one has that X is commutatively prefix if and only if the
polynomial P has non-negative coefficients (in such a case we write P ≥ 0).

In [4] some examples of finite Bernoulli sets which are not commutatively prefix
are given. For instance, the set X = {a4, ba2, a2b, aba, ba, b3a, b2} is a Bernoulli set
which is not commutatively prefix. In fact, in this case one has X−1 = P (a+b−1)
with

P = ab2 + ab − a2b + b + a3 + a2 + a + 1.

3. Decompositions

Let X be a set over a d-letter alphabet A = {a1, . . . , ad}. A decomposition of X
is any sequence X1, . . . , Xd, Y1, . . . , Yd of 2d subsets of A∗ such that

X =
⋃

i=1,...,d

Xi, Xi ∩ Xj = ∅, for i �= j,

and for all i, 1 ≤ i ≤ d, one has

Xi ∼ aiYi.

In the following we shall denote a decomposition of X by (X1, . . . , Xd; Y1, . . . , Yd).
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It is clear that if (X1, . . . , Xd; Y1, . . . , Yd) is a decomposition of X , then also
(X1, . . . , Xd; Z1, . . . , Zd) with Zi ∼ Yi, 1 ≤ i ≤ d, is a decomposition of X .

With each set X ⊆ A+ one can associate the natural decomposition, already
introduced by equation (4),

(X1, . . . , Xd; Y1, . . . , Yd)

where for any ai ∈ A, 1 ≤ i ≤ d, Xi = X ∩ aiA
∗ and Yi = a−1

i X .

Example 3.1. Let X be the set over A = {a, b}

X = {a3, ab, ba, b2a, a3b}.

A first decomposition of X is (X1, X2; Y1, Y2) where X1 =
{a3, ab}, X2 = {ba, b2a, a3b}, and Y1 = {a2, b}, Y2 = {a, ba, a3}. A second de-
composition is (X ′

1, X
′
2; Y

′
1 , Y ′

2) where X ′
1 = {a3, ab, a3b}, X ′

2 = {b2a, ba}, and
Y ′

1 = {a2, b, aba}, Y ′
2 = {a, ba}.

Lemma 3.2. If the set X over A has a decomposition (X1, . . . , Xd; Y1, . . . , Yd),
then

X =
d∑

i=1

ai Yi,

and for any positive Bernoulli distribution π one has

π(X) =
d∑

i=1

π(ai)π(Yi).

Proof. We can write

X =
d⋃

i=1

Xi.

Since the union is disjoint, one has

X =
d∑

i=1

Xi

and

π(X) =
d∑

i=1

π(Xi).

Since for any i, 1 ≤ i ≤ d, one has

Xi = aiYi and π(Xi) = π(ai)π(Yi),

the result follows. �
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Proposition 3.3. Let X be a set over A having the decomposition (X1, . . . , Xd;
Y1, . . . , Yd). If Z is a set commutatively equivalent to X and δ : Z → X is the
commutation map, then Z admits a decomposition (Z1, . . . , Zd; Y1, . . . , Yd) where
Zi = δ−1(Xi) for all 1 ≤ i ≤ d.

Proof. If δ : Z → X is the commutation map, one has Z = δ−1(X). For any
1 ≤ i ≤ d let us set Zi = δ−1(Xi). One has

Z =
d⋃

i=1

Zi

where the sets Zi, 1 ≤ i ≤ d, are pairwise disjoint. Moreover, Zi ∼ Xi ∼ aiYi

(i = 1, . . . , d), so that (Z1, . . . , Zd; Y1, . . . , Yd) is a decomposition of Z. �

4. Good decompositions

Let X be a set over the alphabet A. A decomposition (X1, . . . , Xd; Y1, . . . , Yd)
is good if for all π ∈ PBD one has

π(Yi) ≤ 1, 1 ≤ i ≤ d.

Let us observe that the natural decomposition of a prefix code X over A is a good
decomposition of X . Indeed, by Lemma 2.2 the sets Yi = a−1

i X , 1 ≤ i ≤ d, are
prefix sets so that for any π ∈ PBD, one has π(Yi) ≤ 1.

Example 4.1. The first decomposition of X in Example 3.1 is not a good de-
composition. Indeed, let π(a) = p and π(b) = 1 − p with 0 < p < 1. One has
π(Y2) = p3+2p−p2 and this quantity is greater than 1 for p near to 1. The second
decomposition is good. Indeed, one has π(Y ′

1 ) = 1+2p2−p−p3 = 1−p(p−1)2 and
π(Y ′

2 ) = 2p− p2 = 1− (p− 1)2. These quantities are always < 1 for all 0 < p < 1,
so that this decomposition is good.

Lemma 4.2. Let X be a set over the alphabet A having a good decomposition
(X1, . . . , Xd; Y1, . . . , Yd). The set X is a Bernoulli set if and only if for all i,
1 ≤ i ≤ d, Yi is a Bernoulli set.

Proof. By Lemma 3.2 for any π ∈ PBD one has:

π(X) =
d∑

i=1

π(ai)π(Yi). (5)

Since X is a Bernoulli set one has π(X) = 1. Moreover, the decomposition is good
so that for all i, 1 ≤ i ≤ d, π(Yi) ≤ 1. From equation (5) it follows that for all i,
1 ≤ i ≤ d, π(Yi) = 1, i.e., Yi is a Bernoulli set. Conversely, if one supposes that
for all i, 1 ≤ i ≤ d, Yi is a Bernoulli set, then from equation (5) for any π ∈ PBD
one has π(X) = π(A) = 1, i.e., X is a Bernoulli set. �
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Proposition 4.3. Let X be a finite Bernoulli set over the alphabet A having a
good decomposition (X1, . . . , Xd; Y1, . . . , Yd). One has for all i, 1 ≤ i ≤ d,

Yi − 1 = Pi(A − 1), Pi ∈ Z[A]

and
X − 1 = P (A − 1),

with

P = 1 +
d∑

i=1

aiPi.

Proof. Since X has the decomposition (X1, . . . , Xd; Y1, . . . , Yd), by Lemma 3.2 one
has

X =
d∑

i=1

ai Yi. (6)

Moreover, as the decomposition is good and X is a Bernoulli set, by Lemma 4.2
for any i, 1 ≤ i ≤ d, Yi is a Bernoulli set. By Proposition 1.1 one can write

Yi = 1 + Pi(A − 1) with Pi ∈ Z[A], 1 ≤ i ≤ d.

By replacing this expression for Yi, 1 ≤ i ≤ d, in equation (6) one obtains

X − 1 = (1 +
d∑

i=1

aiPi)(A − 1),

which proves our assertion. �

Corollary 4.4. There exist finite Bernoulli sets �= {ε} on the alphabet A = {a, b}
which have no good decomposition.

Proof. Suppose by contradiction that any finite Bernoulli set �= {ε} over {a, b} has
a good decomposition. This would imply that any finite Bernoulli set over {a, b}
is commutatively prefix. In fact, let X be a Bernoulli set over {a, b} of minimal
size which is not commutatively prefix, so X �= {ε}. By Proposition 4.3 we can
write, setting a1 = a and a2 = b,

X = a1Y1 + a2Y2 .

Moreover,
Yi − 1 = Pi(a1 + a2 − 1), i = 1, 2,

and
P = 1 + a1P1 + a2P2 .

Since Yi, i = 1, 2, are Bernoulli sets of size less than the size ‖X‖ one has that they
are commutatively prefix. By Proposition 2.4 one has P1, P2 ≥ 0. This implies
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that P ≥ 0, so that by Proposition 2.4 one has that X is commutatively prefix
which is a contradiction. Since there exist finite Bernoulli sets �= {ε} over {a, b}
which are not commutatively prefix [4], the result follows. �
Example 4.5. Consider the Bernoulli set X = {a4, ba2, a2b, aba, ba, b3a, b2}. We
prove that X has no good decomposition. Indeed, suppose that X has a good
decomposition (X1, X2; Y1, Y2), where X1 ∼ aY1 and X2 ∼ bY2. By definition of
decomposition one has that a4 ∈ X1 and b2 ∈ X2. If ba ∈ X2, then a, b ∈ Y2.
By Lemma 4.2, Y2 is a Bernoulli set so that it cannot contain other words. This
implies that

Y1 = {a3, ba, ab, b3},
which is not a Bernoulli set. This is a contradiction so that ba ∈ X1 and b ∈ Y1. If
b3a ∈ X1, then b3 ∈ Y1 which is a contradiction since Y1 is a Bernoulli set so that
it cannot contain two different powers of the same letter (cf. Prop. 1.2). Hence,
b3a ∈ X2 and Y2 has to contain one word in the commutation class of b2a. The
words of X which remain are ba2, a2b, aba. Since the set Y2 has to contain a power
of a, one, and only one, of the preceding three words has to belong to X2. This
implies that a2 ∈ Y2. Therefore,

Y2 ∼ {b, b2a, a2}
which is not a Bernoulli set. Thus we have a contradiction and the assertion is
proved.

Proposition 4.6. Any set X ⊆ A+ which is commutatively prefix has a good
decomposition.

Proof. By hypothesis there exists a prefix code Z such that X ∼ Z. Now any
prefix code has a decomposition (Z1, . . . , Zd; Y1, . . . , Yd), where for all i, 1 ≤ i ≤ d,
the sets Yi are prefix sets. By Proposition 3.3, the set X has a decomposition
(X1, . . . , Xd; Y1, . . . , Yd). Since for all i, 1 ≤ i ≤ d, and all π ∈ PBD, π(Yi) ≤ 1,
the result follows. �

From the preceding proposition one has in particular that any Bernoulli set �={ε}
which is commutatively prefix has a good decomposition. However, the converse
is not generally true as shown by the following:

Example 4.7. Let X be the set X = {a4, ba2, a2b, aba, ba, b3a, b2} and consider
the Bernoulli set Y = aX∪{b}. Since X is a Bernoulli set, one has, trivially, that Y
is a Bernoulli set having the good decomposition (aX, {b}; X, {ε}). However, Y is
not commutatively prefix. In fact, Y − 1 = P (a + b − 1) with

P = a2b2 + ab + a2b − a3b + a4 + a3 + a2 + a + 1.

5. Admissible and normal decompositions

Let X be a set over A. A decomposition (X1, . . . , Xd; Y1, . . . , Yd) of X is called
admissible if for any i, 1 ≤ i ≤ d, the set Yi is a code or Yi = {ε}.
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Let us observe that the natural decomposition of a prefix code is trivially an
admissible decomposition.

Lemma 5.1. An admissible decomposition of a set is a good decomposition.

Proof. Since for any i, 1 ≤ i ≤ d, the set Yi is a code or Yi = {ε} by the generalized
Kraft-McMillan inequality and the fact that π(ε) = 1, one has for any π ∈ PBD,
π(Yi) ≤ 1, i = 1, . . . , d, that proves the assertion. �

The converse of the preceding lemma is not generally true. For instance, the
second decomposition (X ′

1, X
′
2; Y

′
1 , Y ′

2) of the set X of Example 3.1 is admissible
since Y ′

1 and Y ′
2 are codes. However, if we replace Y ′

1 with the set Y ′′
1 ∼ Y ′

1 given
by Y ′′

1 = {a2, b, ba2} one has that (X ′
1, X

′
2; Y

′′
1 , Y ′

2) is a good decomposition of the
set X which is not admissible.

Proposition 5.2. Let X be a finite set over A having an admissible decomposition
(X1, . . . , Xd; Y1, . . . , Yd). The set X is a Bernoulli set if and only if for all i,
1 ≤ i ≤ d, the sets Yi �= {ε} are maximal codes.

Proof. By Lemma 5.1 an admissible decomposition is a good decomposition. Hence,
if X is a Bernoulli set, by Lemma 4.2 for all i, 1 ≤ i ≤ d, the sets Yi are Bernoulli
sets. From Proposition 2.1, one derives that for all i, 1 ≤ i ≤ d, if Yi �= {ε}, then it
is a maximal code. Conversely, if for all i, 1 ≤ i ≤ d, Yi = {ε} or Yi is a maximal
code, then from Proposition 2.1 for all π ∈ PBD one has π(Yi) = 1, which implies
π(X) = 1, i.e., X is a Bernoulli set. �

Remark 5.3. We observe that the necessary part of the preceding proposition
holds true even if the set X is not finite. Indeed, if for all i, 1 ≤ i ≤ d, the sets Yi

are Bernoulli sets, then for any π ∈ PBD one has π(Yi) = 1. In view of the
generalized Kraft-McMillan inequality, this trivially implies that the sets Yi �= {ε}
are maximal codes.

An admissible decomposition (X1, . . . , Xd; Y1, . . . , Yd) of a set X over the alpha-
bet A is called normal if for all i, 1 ≤ i ≤ d, the sets Yi are prefix sets. Obviously,
the natural decomposition of a prefix code is a normal decomposition.

Proposition 5.4. A set X ⊆ A+ has a normal decomposition if and only if it is
commutatively prefix.

Proof. Let X be a set over A having a normal decomposition

(X1, . . . , Xd; Y1, . . . , Yd)

where for all i, 1 ≤ i ≤ d, the sets Yi are prefix. One can write by Lemma 3.2

X =
d∑

i=1

ai Yi.
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Since for all i, 1 ≤ i ≤ d, the sets aiYi are prefix, the set

Z =
d⋃

i=1

aiYi

is a prefix code such that Z = X. This implies that X is commutatively prefix.
Conversely, suppose that X ∼ Z where Z is a prefix code and denote by δ

the commutation map δ : X → Z. The prefix code Z admits the decomposition
(Z1, . . . , Zd; Y1, . . . , Yd) where for any i, 1 ≤ i ≤ d, Zi = Z∩aiA

∗=aiYi. By Propo-
sition 3.3, X has the decomposition (X1, . . . , Xd; Y1, . . . , Yd) with Xi = δ−1(Zi)
(i = 1, . . . , d). Since the sets Yi (i = 1, . . . , d) are prefix sets, this decomposition
is normal which proves the assertion. �

6. The Schützenberger conjecture

P. Shor has shown [9] the existence of a finite code S in a two-letter alphabet
{a, b} which is not commutatively prefix. The code S is the subset of a∗ba∗ formed
by the following 16 words:

b a3b a8b a11b
ba a3ba2 a8ba2 a11ba
ba7 a3ba4 a8ba4 a11ba2

ba13 a3ba6 a8ba6

ba14

Shor’s result gave a negative answer to a conjecture (triangle conjecture) formu-
lated by Perrin and Schützenberger in [6, 7] (see also [3, 5, 8]). Since S is not
commutatively prefix, by Proposition 5.4 one has that Shor’s code has no normal
decomposition.

Proposition 6.1. The Shor code admits a good decomposition.

Proof. We consider the decomposition (S1, S2; Y1, Y2) of S where S2 = {b} and
S1 = S \ {b}. Since S1 ∼ aY1 and S2 ∼ bY2 one has that Y2 = {ε} and Y1 is any
set commutatively equivalent to the set Z given by the following 15 words

b a2b a7b a10b
ba6 a2ba2 a7ba2 a10ba
ba12 a2ba4 a7ba4 a10ba2

ba13 a2ba6 a7ba6

Let us now show that the preceding decomposition is good. Indeed, for any π ∈
PBD , setting π(a) = p, one has:

π(S) = π(S1) + π(S2) = π(S1) + 1 − p = pπ(Z) + 1 − p.
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Since S is a code π(S) ≤ 1, so that π(Z) ≤ 1 which proves that the decomposition
is good. �

Let us observe that any good decomposition (S′
1, S

′
2; Y

′
1 , Y ′

2) of S has to be such
that S′

2 = S2 = {b} and Y ′
2 = Y2 = {ε}. Indeed, if Y2 ⊂ Y ′

2 , then π(Y ′
2) > 1 which

is a contradiction. This implies S′
1 = S1 and Y ′

1 ∼ Y1 ∼ Z.

Proposition 6.2. There exists a code in a two letter alphabet which has no ad-
missible decomposition.

Proof. Let T ⊆ a∗ba∗ be a code of minimal size such that T is not commutatively
prefix. Such a code exists since Shor’s code S ⊆ a∗ba∗ is not commutatively prefix.
Suppose that T has an admissible decomposition (T1, T2; Y1, Y2). One would have

T1 ∼ aY1 and T2 ∼ bY2 ,

where Y1 and Y2 are codes or Y1 = {ε} or Y2 = {ε}. At least one of the two
sets Y1 and Y2 is �= {ε}, otherwise T = {a, b}. Let us suppose that Y1 �= {ε}. Since
Y1 ⊆ a∗ba∗ and ‖Y1‖ < ‖T ‖, one has that Y1 is commutatively prefix. If Y2 �= {ε},
then Y2 ⊆ a∗, so that Y2 = {ai}, with i > 0 since Y2 is a code. Thus, Y2 is a
prefix code. Hence, T has a normal decomposition that implies by Proposition 5.4
that T is commutatively prefix which is a contradiction. �

It would be interesting to prove that Shor’s code is the code of minimal size
included in a∗ba∗ which is not commutatively prefix. Shor’s code is not maximal
and it is unknown if it is included in a finite maximal code on the alphabet {a, b}.
However, Shor’s code, as well as any finite code in a two-letter alphabet, is always
included in a finite Bernoulli set [2].

It is still open the following problem which was formulated as a conjecture by
Schützenberger at the end of ’50s [1, 6]:

Conjecture 6.3. Any finite and maximal code is commutatively prefix.

The following proposition relates Schützenberger’s conjecture with decomposi-
tions of finite maximal codes:

Proposition 6.4. The following statements are equivalent:
1. The Schützenberger conjecture is true.
2. Any finite and maximal code has a normal decomposition.
3. Any finite and maximal code has an admissible decomposition.

Proof. 1.⇒ 2. By Proposition 5.4.
2.⇒ 3. Trivial, since any normal decomposition is an admissible decomposition.
3.⇒ 1. Suppose that the conjecture of Schützenberger is false. There would

exist a finite maximal code on a suitable d-letter alphabet A which is not commu-
tatively prefix. Let X be a finite and maximal code over A of minimal size which is
not commutatively prefix. By Proposition 2.1, X is a Bernoulli set. Moreover, by
hypothesis X has an admissible decomposition (X1, . . . , Xd; Y1, . . . , Yd) where for
all i, 1 ≤ i ≤ d, the sets Yi �= {ε} are maximal codes by Proposition 5.2. Since for
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all i, 1 ≤ i ≤ d, ‖Yi‖ < ‖X‖ these sets are commutatively prefix. Therefore, the
admissible decomposition of X is normal. By Proposition 5.4, X is commutatively
prefix which is a contradiction. �
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