
RAIRO-Inf. Theor. Appl. 39 (2005) 263-278

DOI: 10.1051/ita:2005015

PARITY CODES ∗

Paulo E. D. Pinto
1
, Fábio Protti

2
and

Jayme L. Szwarcfiter
3

Abstract. Motivated by a problem posed by Hamming in 1980, we
define even codes. They are Huffman type prefix codes with the addi-
tional property of being able to detect the occurrence of an odd number
of 1-bit errors in the message. We characterize optimal even codes and
describe a simple method for constructing the optimal codes. Further,
we compare optimal even codes with Huffman codes for equal frequen-
cies. We show that the maximum encoding in an optimal even code
is at most two bits larger than the maximum encoding in a Huffman
tree. Moreover, it is always possible to choose an optimal even code
such that this difference drops to 1 bit. We compare average sizes and
show that the average size of an encoding in a optimal even tree is at
least 1/3 and at most 1/2 of a bit larger than that of a Huffman tree.
These values represent the overhead in the encoding sizes for having
the ability to detect an odd number of errors in the message. Finally,
we discuss the case of arbitrary frequencies and describe some results
for this situation.

Mathematics Subject Classification. 94B35, 94B65.

1. Introduction

Huffman codes [4] are among the most traditional methods of encoding. One
of the important aspects of these codes is the possibility of handling encodings
of variable sizes. In the literature, we can find a great number of extensions and

∗ Partially supported by the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
– CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ,
Brasil.
1 Universidade Estadual do Rio de Janeiro, Instituto de Matemática e Estat́ıstica, RJ, Brasil;
pauloedp@ime.uerj.br
2 Universidade Federal do Rio de Janeiro, Instituto de Matemática and NCE, Caixa Postal
2324, 20001-970, Rio de Janeiro, RJ, Brasil; fabiop@nce.ufrj.br
3 Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and COPPE, Caixa
Postal 2324, 20001-970, Rio de Janeiro, RJ, Brasil; jayme@nce.ufrj.br

c© EDP Sciences 2005

264 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

e

a

dcb

Figure 1. A Hamming-Huffman tree.

variations of the classical Huffman code. For instance, Faller [1], Gallager [2],
Knuth [6] and Milidiú, Laber and Pessoa [9] addressed adaptive methods for the
construction of Huffman trees. Huffman trees with minimum height were described
by Schwartz [14]. The construction of Huffman type trees with length constraints
was considered by Turpin and Moffat [12], Larmore and Hirschberg [8] and Milidiú
and Laber [7, 10, 11]. On the other hand, Hamming formulated methods for the
construction of error detecting codes [3]. Further, Hamming [3] posed the problem
of describing a method that combines the advantages of Huffman codes with the
noise protection of Hamming codes. The idea is to define a prefix code in which
the encoding would contain redundancies that allow the detection of certain kinds
of errors. This is equivalent to forbid some encodings which, when present in
the reception, would signal an error. Such a code is called a Hamming-Huffman
code and its representing binary tree a Hamming-Huffman tree. In a Huffman
tree, all leaves correspond to encodings. In a Hamming-Huffman tree, there are
encoding leaves and error leaves. Hitting an error leaf in the decoding process
indicates the existence of an error. The problem posed by Hamming is to detect
the occurrence of an error of one bit, as illustrated in the following example in [3],
p. 76. Table 1 shows the symbols and their corresponding encodings. Figure 1
depicts the corresponding Hamming-Huffman tree. Error leaves are represented
by black nodes. An error of one bit in the above encodings would lead to an error
leaf.

Table 1. Example of a Hamming-Huffman Code.

Symbol Encoding
a 000
b 0110
c 1010
d 1100
e 1111

Hamming-Huffman codes have not received further developments to our knowl-
edge, and remained open. Motivated by the above problem, we propose a code,

PARITY CODES 265

called even code, that is able to detect the occurrence of an odd number of 1-bit
errors in the message. The detection may occur at the current symbol, or it may
be delayed.

The plan of the paper is as follows. Section 2 defines even codes. Section 3
presents a method for finding optimal even codes, while a characterization of
them is described in Section 4. Section 5 is dedicated to comparing classical
Huffman codes for equal frequencies with optimal even codes. We show that the
maximum size of an encoding in an optimal even code is at most two bits larger
than the corresponding encoding given by a Huffman code. Moreover, it is always
possible to choose an optimal even code in which this difference is reduced to one
bit. We compare average sizes and prove that the difference between the average
encoding size of an optimal even code and the corresponding average encoding size
in a Huffman code lies between 1/3 and 1/2 of a bit. These values represent the
overhead in terms of encoding sizes of providing some error detection capability to
a Huffman code. Finally, in Section 6, we discuss the case of arbitrary frequencies,
and present some results for this situation.

The following definitions are of interest.
Let S be a set of elements, called symbols. An encoding e for a symbol s ∈ S

is a finite sequence of 0’s and 1’s, associated to s. Each 0 and 1 is a bit of e. The
bits of the encoding e are labeled 1, 2, . . . , l, and l is the size of e. A segment e(i, j)
is the subsequence of e, starting at i and ending at j. A segment e(1, j) is a prefix
of e. The parity of e is the parity of the quantity of 1’s contained in e. The set
of encodings for all symbols of S is a code C for S . Two codes C , C ′ for S are
equivalent when there exists a bijection from C to C ′ such that corresponding enco-
dings have the same size. The cost of a code is the sum of the sizes of its encodings.
A code is optimal when its cost is minimum. A code in which every encoding does
not coincide with a prefix of any other encoding is a prefix code.

A message M is a sequence of symbols. The encoded message of M is the
corresponding sequence of encodings. The parity of an encoded message is the
number of 1’s contained in the message.

A binary tree is a rooted tree T in which every node z, other than the root, is
labeled left or right in such a way that any two siblings have different labels. A
path in T is a sequence of nodes z1, . . . , zt, such that zq is the parent of zq+1. The
value t−1 is the size of the path, whereas all the zi’s are descendants of z1. If z1 is
the root then z1, . . . , zt is a root path and, in addition, if zt is a leaf, then z1, . . . , zt

is a root-leaf path of T . The depth of a node is the size of the root path to it, while
the depth of the tree is the largest depth among the nodes. For a node z of T ,
T (z) denotes the subtree of T rooted at z, that is, the binary tree containing all
descendants of z in T , including itself. The left subtree of z is the subtree T (z′),
where z′ is the left child of z. Similarly, define the right subtree of z. The left
and right subtrees of the root of T are denoted by TL and TR, respectively. A
strictly binary tree is one in which every node is a leaf or has two children. The
edges of T leading to left children are labeled 0, whereas those leading to right
children are labeled 1. The parity of a node z is the parity of the quantity of 1’s
among the edges forming the root path to z. A node is even or odd according to

266 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

a b

a

a

b

c

Figure 2. Examples of even trees.

its parity. The path length PT (n) of a tree T with n leaves is the sum of the sizes
of all root-leaf paths of T . When there is no ambiguity we write simply P (n).

A (binary tree) representation of a code C is a binary tree T such that there
exists a one-to-one correspondence between encodings e ∈ C and root-leaf paths p
of T in such a way that e is precisely the sequence of labels, 0 or 1, of the edges
forming p. A code admits a binary tree representation if and only if it is a prefix
code. A full representation tree of C is a binary tree T ∗ obtained from the rep-
resentation tree T of C , by adding a new leaf as the second child of every node
having exactly one child. The original leaves of T are the encoding leaves, whereas
the new introduced leaves are the error leaves. Clearly, in case of Huffman trees,
there are no error leaves.

2. Even codes

In this section, we describe even codes and show how they can detect an odd
number of errors in a message.

A parity code is a prefix code in which all encodings of the same size have
identical parities. An even code is a code in which all encodings are even, and an
even tree is a tree representation of an even code. Similarly, a code in which all
encodings are odd is an odd code and its tree representation is an odd tree. For a
code C , the symmetric of C is the code obtained from C by changing the first bit
in every encoding. Clearly, a code is even if and only if its symmetric code is odd.

Figure 2 illustrates examples of even trees.
The next proposition relates parity codes and even codes.

Theorem 1. Let C be a parity code for a set of symbols S . Then there exists an
even code C ′ for S such that C ,C ′ are equivalent.

Proof. Let C be a parity code for S . Construct C ′ from C , as follows. Order
the encodings of C according to their sizes and perform the following procedure:
Let d1, d2 . . . , dk be the distinct encoding sizes appearing in C . For i = 1, . . . , k,
take the encodings with size di and, in case that those encodings have odd parity,

PARITY CODES 267

change the ith bit in all encodings with size equal to or greater than di. Let C ′

be the code obtained after the kth iteration of the procedure. It is clear that all
encodings of C ′ are even. In addition, since C is a prefix code, C ′ is also a prefix
code. In order to verify the latter assertion, let e′, e′′ be two encodings of C , |e′| ≤
|e′′|. Then whenever bit j of e′ changes in the above procedure, bit j of e′′ also
changes. Consequently, e′ �= e′′(1, |e′|), implying that the corresponding encodings
of C ′ are also distinct. That is, C ′ is indeed a prefix code, and consequently an
even code. �

The above proposition implies that, for our purposes, we can restrict attention
to even codes, while handling the larger class of parity codes.

It is easy to conclude that even codes detect the occurrence of an odd number
of 1-bit errors in a message. We know that all encodings are even, so the encoded
message is also even. By introducing an odd number of errors, the encoded message
becomes odd. Since the encodings are even, in the full tree representation of
the code, an error leaf would be hit during the decoding process, or otherwise
it terminates at some odd node of the tree. It is worth noting that odd codes
do not have this property. For example, consider the code C = {1, 01} and the
message 01; if the first bit is changed, resulting 11, that wrong message would be
decoded with no error detection.

The tree representation of an even code is an even tree. A code in which all
encodings are odd is an odd code and its tree representation an odd tree. For a
code C , the symmetric of C is the code obtained from C by changing the first bit
in every encoding. Clearly, a code is even if and only if its symmetric code is odd.

3. Optimal even codes

In this section, we describe a method for finding optimal even codes. The cost
of an optimal even code C for n symbols is the minimal path length P (n) among
the corresponding even trees. The following theorem determines P (n).

Theorem 2.

P (n) =

1, if n = 1
3, if n = 2
n + min{P (n − 1), min

1<i<n−1
{P (i) + P (n − i)}}, if n > 2.

268 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

a d

j

g

c

k

h

i

f

b

e

Figure 3. Equilibrated even tree for 11 symbols.

Proof. The results for n = 1 and n = 2 can be verified in Figure 2. If n > 2, the
external minimization in the expression is taken over two cases:

Case 1. The left subtree has only one encoding. Then in this case we have
P (n) = 1 + (n − 1) + P (n − 1) = n + P (n − 1), since at the left side there is only
one encoding, and at the right side there is also an optimal odd tree for n − 1
symbols. Observe now that all the encodings are one level deeper relatively to the
root.

Case 2. The left subtree has more than one encoding. Let i be the number of
encodings of the left subtree, which is an optimal even tree, 1 < i < n− 1. The
right subtree is an optimal odd tree with n − i encodings. All the encodings are
one level deeper relatively to the root. The least possible value for P (n) is then
given by the internal minimization: min1<i<n−1{i + P (i) + (n − i) + P (n − i)} =
n + min1<i<n−1{P (i) + P (n − i)}. �

Next, we define inductively a useful family of codes via its tree representation.
An equilibrated even(odd) tree T for n symbols is an even(odd) tree T such that:

• if n ≤ 3, the equilibrated even trees are those of Figure 2, while the odd
ones are the symmetric of these even trees;

• if n > 3, the left subtree of T is an equilibrated even tree for �n/2� symbols,
while the right subtree is an equilibrated odd tree for �n/2� symbols.

An example of an equilibrated even tree for 11 symbols is given in Figure 3.
We will prove that equilibrated even trees are optimal. First, we compute the

path length of an equilibrated tree.

PARITY CODES 269

Theorem 3. Let P (n) be the path length of an equilibrated even tree for n symbols.
Then:

P (n) =

1, if n = 1
3, if n = 2
n

(⌈
log

n

3

⌉
+ 3

)
− 3.2�log

n
3 �, if n > 2.

Proof. If n ≤ 5, we can verify by inspection that the theorem is correct. For
n > 5, use induction. Assume that the above expression is correct for 2 < j < n.
Applying the definition and the induction hypothesis, we have:

P (n) = n + P (�n/2�) + P (�n/2�)

where

P (�n/2�) = �n/2�
(⌈

log
�n/2�

3

⌉

+ 3
)

− 3.2�log
�n/2�

3 �

and

P (�n/2�) = �n/2�
(⌈

log
�n/2�

3

⌉

+ 3
)

− 3.2�log
�n/2�

3 �.

We then have two cases:

Case 1. n is of the form n = 3.2q−1 + 1. Then:

⌈
log

n

3

⌉
= q,

⌈

log
�n/2�

3

⌉

= q − 1,

⌈

log
�n/2�

3

⌉

= q − 2, �n/2� = 3.2q−2.

Hence:

P (n) = n + �n/2�(q − 2 + 3) − 3.2q−2 + �n/2�(q − 1 + 3) − 3.2q−1.

That is,

P (n) = n
(⌈

log
n

3

⌉
+ 3

)
− 3.2�log n

3 �.

Case 2. n is of the form n = 3.2q or n = 3.2q−1 + p, 1 < p < 3.2q−1. Then:

⌈
log

n

3

⌉
= q,

⌈

log
�n/2�

3

⌉

=
⌈

log
�n/2�

3

⌉

= q − 1.

Hence:

P (n) = n + �n/2�(q − 1 + 3) − 3.2q−1 + �n/2�(q − 1 + 3) − 3.2q−1.

270 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

That is,
P (n) = n

(⌈
log

n

3

⌉
+ 3

)
− 3.2�log n

3 �.

In both cases, the result is still valid for n. �
Finally, we have:

Theorem 4. Equilibrated even trees are optimal.

Proof. Let T be an equilibrated even tree for n symbols. For n ≤ 6, we can
verify by inspection that the theorem is correct. For n > 6 use induction. From
Theorem 3, P (n) = n(�log n

3 � + 3) − 3.2�log
n
3 �. The induction hypothesis assures

that equilibrated even trees for less than n symbols are optimal. For the induction
step, let T ′ be an optimal even tree for n > 6 symbols. As the subtrees are also
optimal, by the induction hypothesis we can replace the subtrees T ′

L and T ′
R of T

by equilibrated trees, while maintaining T ′ as optimal. Let i be the number of
symbols on the left subtree of T ′. Apply Theorem 2.

Let us prove that i > 2. Assume first that i = 1. Then:

PT ′(n) = n + (n − 1)
(⌈

log
n − 1

3

⌉

+ 3
)

− 3.2�
n−1

3 �.

Consider the following two cases:

Case 1. If �log n
3 � = �log n−1

3 � = q, then PT ′(n) = PT (n) + (n − q) − 3. Since in
this case (n − q) > 3, we have PT ′(n) > PT (n), a contradiction.

Case 2. If �log n
3 � = q and �log n−1

3 � = q − 1, then PT ′(n) = PT (n) + 3.2q−1 −
(q +2). Since in this case q > 1 implies 3.2q−1 > (q +2), we have PT ′(n) > PT (n),
a contradiction again. Consequently i �= 1.

Assume now that i = 2. Then:

PT ′(n) = n + 3 + (n − 2)
(⌈

log
n − 2

3

⌉

+ 3
)

− 3.2�
n−2

3 �.

We examine again the possible cases:

Case 1’. If �log n
3 � = �log n−2

3 � = q, then PT ′(n) = PT (n) + n − (2q + 3).
Clearly, this can only occur for n > 7. Thus n > (2q + 3) and PT ′(n) > PT (n), a
contradiction.

Case 2’. If �log n
3 � = q and �log n−2

3 � = q − 1, then PT ′(n) = PT (n) + 3.2q−1 −
(2q+1). Since in this case q > 1 implies 3.2q−1 > 2q+1, we have PT ′(n) > PT (n),
again a contradiction. Consequently, i �= 2.

From now on, we know that i > 2. Now we will write PT ′(n) in terms of a
function f defined in the interval [3, �n

2 �] and and prove that f(i) ≥ f(i + 1) for

PARITY CODES 271

i ∈ [3, �n
2 � − 1]. Consequently, f(i) attains the minimum at i = �n

2 �, and T ′ will
be an optimal even tree. This means that T ′ will be equilibrated and equivalent
to T . Hence T must also be optimal. We have:

f(i) = n + i

(⌈

log
i

3

⌉

+ 3
)

− 3.2�log
i
3 � + (n− i)

(⌈

log
n − i

3

⌉

+ 3
)

− 3.2�log
n−i
3 �.

By taking two consecutive values for i,

f(i) − f(i + 1) = n + i

(⌈

log
i

3

⌉

+ 3
)

− 3.2�log
i
3 �

+(n − i)
(⌈

log
n − i

3

⌉

+ 3
)

− 3.2�log
n−i
3 �

−
(

n + (i + 1)
(⌈

log
i + 1

3

⌉

+ 3
)

− 3.2�log
i+1
3 �

+(n − i − 1)
(⌈

log
n − i − 1

3

⌉

+ 3
)

− 3.2�log
n−i−1

3 �
)

.

Let �log i
3� = q1 and �log n−i

3 � = q2. There are now four cases, because it is
possible to have �log i+1

3 � = q1 or �log i+1
3 � = q1 + 1, and �log n−i−1

3 � = q2 or
�log n−i−1

3 � = q2 − 1. We should notice that the number of symbols in the left
subtree is always supposed to be not greater than that in the right subtree, that
is, q2 ≥ q1.

Case I. If �log i+1
3 � = q1 and �log n−i−1

3 � = q2, then f(i)− f(i+1) = q2 − q1 ≥ 0.

Case II. If �log i+1
3 � = q1 and �log n−i−1

3 � = q2 − 1, then f(i) − f(i + 1) =
(n−i−1)−3.2q2−1+q2−q1. The equalities �log n−i

3 � = q2 and �log n−i−1
3 � = q2−1

hold only when n − i = 3.2q2−1 + 1. Then f(i) − f(i + 1) = q2 − q1 ≥ 0.

Case III. If �log i+1
3 � = q1 + 1 and �log n−i−1

3 � = q2, then f(i) − f(i + 1) =
−i + 3.2q1 + q2 − q1 − 1. The equalities �log i

3� = q1 and �log i+1
3 � = q1 + 1 hold

only when i = 3.2q1 . Then f(i) − f(i + 1) = q2 − q1 − 1 ≥ 0, since in this case
q2 > q1.

Case IV. If �log i+1
3 � = q1+1 and �log n−i−1

3 � = q2−1, then f(i)−f(i+1) = −2i+
n+3.2q1 −3.2q2−1 + q2− q1−2. The equalities �log i

3� = q1 and �log i+1
3 � = q1 +1

hold only when i = 3.2q1 . Also, the equalities �log n−i
3 � = q2 and �log n−i−1

3 � =
q2 − 1 hold only when n− i = 3.2q2−1 + 1. Then f(i)− f(i + 1) = q2 − q1 − 1 ≥ 0,
since in this case q2 > q1 + 1.

In all the above cases, f(i) ≥ f(i + 1) for i ∈ [3, �n
2 � − 1]. Hence, the minimum

is attained at i = �n
2 �, and the even treewith �n

2 � symbols in the left subtree is
optimal and equilibrated. Consequently, the hypothesis is also valid for n symbols
and the induction is complete. �

272 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

4. Characterization of optimal even trees

In Section 3, we defined equilibrated even trees and showed that they are op-
timal. However, there are optimal even trees that are not equilibrated. In this
section, we characterize all the optimal even trees.

Let T be a binary tree. Denote by LT the number of leaves in T .

Theorem 5. An even tree with n > 5 symbols is optimal if and only if
(i) TL is an optimal even tree and TR is an optimal odd tree, and
(ii) LTL or LTR is an integer in the interval [imin, �n/2�], where

imin =
{

3.2�log
n
3 �−1 if n ≤ 9.2�log

n
3 �−1

n − 3.2�log
n
3 � otherwise.

Proof. Let T be an optimal even tree with n symbols. We will show that T
satisfies (i) and (ii). If (i) is not satisfied then replacing the left or right subtree
of T , respectively, by an optimal even or odd tree with the same number of symbols
would reduce the cost of the tree, a contradiction.

Now we will prove that (ii) must hold, using Theorem 4. Without loss of
generality, suppose LTL ≤ LTR . We can write n = 3.2q−1 + p, p and q integers,
1 ≤ p ≤ 3.2q−1. Let us call �log i

3� = q1, �log n−i
3 � = q2 and �log n

3 � = q.
The function f(i) = PT (n) is non-increasing in the interval [3, �n

2 �] and has a
minimum at i = �n

2 �. Consequently, there exists exactly one minimum value imin

for which f(i) remains constant in the interval [imin, �n
2 �]. For each value i in this

interval we have a distinct optimal even tree T such that TL has i leaves. Let us
determine imin. There are two possible starting points from where f(i) remains
constant, depending on certain conditions involving q1 and q2.

Case 1. q1 = q2. Then �log imin
3 � = q1 = �log �n

2 �
3 � = �log n−i

3 � = q2. Now we
have two subcases:

Case 1.1. n is of the form n = 3.2q−1 + 1. Hence q1 = q2 = q − 2. In this case
there is only one possible value for imin:

imin = �n/2� = 3.2q−2. (1)

Case 1.2. n is not of the form n = 3.2q−1 + 1. Hence q1 = q2 = q − 1, and imin

should satisfy two inequalities:

3.2q−2 + 1 ≤ imin ≤ �n/2� (2)

n − imin ≤ 3.2q−1. (3)
From (2) and (3), we have:

max{3.2q−2 + 1, n− 3.2q−1} ≤ imin ≤ �n/2�. (4)

PARITY CODES 273

Case 2. q2 = q1 + 1. In this case, imin is of the form imin = 3.2q1 . We have two
subcases:

Case 2.1. n is of the form n = 3.2q. Let us check the possible values for q1.
We know that q1 < q. We cannot have q1 = q − 1 because this would imply
n − imin = 3.2q−1 and �log n−imin

3 � = q2 = q − 1 = q1. Also, we cannot have
q1 < q − 1 because this would imply n − imin > 3.2q−1 and �log n−imin

3 � = q2 = q.
Hence q2 > q1 + 1. We do not have possible values for q1. Consequently, n cannot
be of the form n = 3.2q.

Case 2.2. n is of the form n = 3.2q−1 + p, 1 ≤ p < 3.2q−1. Let us check
the possible values for q1. We cannot have q1 = q because this would imply
n − 3.2q−1 = p and �log p

3� = q2 < q − 1 = q1. We cannot have q1 < q − 2
because this would imply that q2 ≥ q − 1 and hence q2 > q1 + 1. But we can have
q1 = q − 2, the only possible value for q1. In this case, n − imin = 3.2q−2 + p and
q2 = �log 3.2q−2+p

3 � = q − 1 = q1 + 1. Consequently, we can state the two relations
below:

3.2q−2 = imin < �n/2� (5)

n − imin ≤ 3.2q−1. (6)
From (5) and (6), we have:

n ≤ 9.2q−2. (7)

We have determined the conditions that imin should satisfy for the existence of an
optimal even tree having imin leaves in its left subtree. These conditions lead to
the determination of the exact values of imin as follows. Now, consider the possible
values for n:

Case I. n = 3.2q. Then n = 6.2q−1 < 9.2q−1 = 9.2�log
n
3 �−1. This situation

corresponds to case 1.2. By applying 4, imin = 3.2q−1 = �n/2�. Thus there is only
one element in the interval. We can write imin = 3.2�log

n
3 �−1, which corresponds

to the first situation of the theorem.

Case II. n = 3.2q−1 + 1. Then n = 6.2q−1 + 1 < 9.2q−1 = 9.2�log
n
3 �−1. This

situation corresponds to case 1.1. By applying 1, imin = 3.2q−2. Thus there is
also only one element in the interval. We can write imin = 3.2�log

n
3 �−1, which also

corresponds to the first situation of the theorem.

Case III. n ≤ 9.2�log
n
3 �−1 and cases I and II do not occur. This is equivalent

to say that n is of the form n = 3.2q−1 + p, 2 ≤ p ≤ 3.2q−2. The smallest value
for imin occurs by applying 5, because if we apply 4 we would have a worst value
imin ≥ 3.2q−2 + 1. We can rewrite this condition as imin = 3.2�log

n
3 �−1, because

here we have �log n
3 � = q − 1 = �log n

3 �− 1. This case concludes the first situation
of the theorem.

274 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

Case IV. n > 9.2�log
n
3 �−1 and cases I–III do not occur. In this situation we

must have n = 3.2q−1 + p, 3.2q−2 < p < 3.2q−1, since 9.2q−2 = 3.2q−1 + 3.2q−2

implies �log n
3 � = q−1 = �log n

3 �−1. Hence, this is equivalent to n > 9.2�log
n
3 �−1.

There is only one possible way to satisfy 4 in case 1: �n
2 � ≥ imin ≥ max{3.2q−2 +

1, n − 3.2q−1}. But we have n − 3.2q−1 > 9.2q−2 − 3.2q−1 = 3.2q−2. Then imin =
n − 3.2q−1, that is, imin = n− 3.2�log

n
3 �, corresponding to the second situation of

the theorem. This completes the proof of the necessary condition.

For the sufficiency, suppose that T is an even tree satisfying (i) and (ii). The
proof of the necessity and Theorem 4 imply that an optimal even tree satisfies (i)
and (ii). Moreover, there exists an optimal tree T ′ satisfying (i), (ii) and also
LT ′ = LT . Consequently, T ′ and T have the same cost, meaning that T is indeed
optimal. �

The above theorem provides a direct recognition of optimal even trees. It also
describes a method for generating all optimal trees for a given set of symbols.

5. Optimal even trees and Huffman trees

In this section, we compare optimal even trees with Huffman trees. Here, Huff-
man trees correspond to complete strictly binary trees. First, we compare the sizes
of the maximum encodings of these trees. Finally, we compare the average sizes
of an encoding in the trees.

Let us determine the minimum and maximum depths of optimal even trees with
n symbols. These parameters can be obtained from the following observations:

• Optimal even trees with minimum depth can be recursively constructed by
using left subtrees with maximum number of symbols, provided that this
number is not greater than the number of symbols in the right subtree.
Consequently, the left subtree contains �n

2 � symbols. As discussed before,
these are the equilibrated even trees.

• An optimal even tree T with maximum depth can also be recursively
constructed by using left subtrees with minimum number of symbols. That
is, the left subtree of T has imin leaves, where imin is given by Theorem 5.

Let Dmin(n) and Dmax(n) be respectively the minimum and maximum depth of
an optimal even tree for n symbols. Then:

Dmin =
{

1, if n = 1
1 + Dmin(�n/2�), if n > 1

Dmax =
{

1, if n = 1
1 + Dmax(n − imin), if n > 1.

PARITY CODES 275

Solving the above recurrences, we obtain:

Dmin =
{

1, if n = 1,
�log n� + 1, if n > 1

Dmax =
{

1, if n = 1
�log n

3 � + 3, if n > 1.

In Huffman trees, the minimum and the maximum depths coincide. Let H be a
Huffman tree for n symbols and DH its depth. Then DH = �log n�. By compar-
ing Dmin and DH , we conclude that we can always construct an optimal even tree
whose largest encoding is one bit larger than the corresponding one for a Huffman
tree. From the values of Dmax and DH , we can additionally conclude that the
maximum encoding in an arbitrary optimal even tree is at most two bits larger
than that in a Huffman tree.

In the following, we consider average encoding sizes.

Theorem 6. The difference between the average encoding sizes of an optimal even
tree and a Huffman tree, with n > 1 symbols, lies in the interval [1/3, 1/2]. It is
minimum when n = 3.2k, and maximum when n = 2k, for some k.

Proof. The average encoding size of an optimal even tree (Th. 4) is:

n(�log n
3 � + 3) − 3.2�log

n
3 �

n

while that of an optimal Huffman tree [5] is:

n(�log n� + 1) − 2�log n�

n
·

Then the difference is given by:

d =
n(�log n

3 � + 3) − 3.2�log
n
3 � − (n(�log n� + 1) − 2�log n�)

n
·

First, we will prove that d ≤ 1/2. Consider the following two cases:

Case 1. n = 2k, k ≥ 1. Then �log n� = k and �log n
3 � = �log ((2k−2)(4

3))� =
�(k − 2) + log 4

3� = k − 2 + 1 = k − 1. We conclude that:

d =
2k(k − 1 + 3) − 3.2k−1 − (2k(k + 1) − 2k)

2k
= 1/2.

276 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

Case 2. n = 2k + p, 1 < p < 2k. Then �log n� = k + 1 and �log n
3 � may be equal

to k − 1 or k. We have two subcases:

Case 2.1. If �log n
3 � = k − 1 then d = 2k−1

2k+p . By using the fact that p > 1, we
conclude that d < 1/2.

Case 2.2. If �log n
3 � = k then d = p

2k+p . By using the fact that p < 2k, we
conclude that d < 1/2.
Thus, the maximum difference between the encodings is 1/2. Now, we show that
d is at least 1/3. Consider two additional cases:

Case 3. n = 3.2k, k ≥ 0. Then �log n� = �k + log 3� = (k + 2) and �log n
3 � =

�log 2k� = k. Hence:

d =
−3.2k + 2k+2

3.2k
= 1/3.

Case 4. n = 3.2k + p, 1 < p < 3.2k. Then �log n� may be equal to (k + 2) or
(k + 3), and �log n

3 � = k + 1. Consider two additional subcases:

Case 4.1. If �log n� = k + 2 then d = 2k+p
3.2k+p . Since p > 1, we conclude that

d > 1/3.

Case 4.2. If �log n� = k + 3 then d = 2.2k

3.2k+p
. By using the fact that p < 3.2k, we

conclude that d > 1/3.

Thus, in the two subcases above, the minimum difference between the encodings
is 1/3. The proof is complete. �

The limits 1/3 and 1/2 can be explained in terms of the equilibrated even trees,
as discussed in the following.

When n is of the form n = 2k, the Huffman tree is a full tree, where all the
leaves have the same depth �log n�. On the other hand, the equilibrated even tree
is the composition of 2k−1 subtrees with two encodings. In this tree, half of the
leaves have depth �log n� and half have depth �log n� + 1. Then, the difference of
the average encoding lengths is 1/2.

When n is of the form n = 3.2k, the Huffman tree is a complete tree, where
there are 2k+1 leaves at depth �log n�, and 2k leaves at depth �log n� − 1. On the
other hand, the equilibrated even tree is the composition of 2k subtrees with three
encodings. In this case, we have 2k leaves at depth �log n�+ 1, 2k leaves at depth
�log n�, and 2k leaves at depth �log n� − 1. This situation leads to the difference
of 1/3 in the average encoding lengths.

In the remaining cases for n, the corresponding trees have intermediate config-
urations between these limits.

PARITY CODES 277

6. Even codes for arbitrary frequencies

Here we describe some results for the situation of arbitrary frequencies [13].
We describe an exact algorithm for finding an optimal even code and afterwards

an approximation.
Let S = {s1, . . . , sn} be a set of symbols, each si having a frequency fi sat-

isfying fi ≤ fi+1. For m ≤ n, denote Sm = {s1, . . . , sm}. The cost of a code C
for S is sumn

i=1fi|ei|, where ei is the encoding associated to si. Our aim is to
find an even code C for S with minimum cost. In fact, we propose a solution for
a slightly more general problem, employing dynamic programming.

A parity forest F for Sm is a set of p even trees and q odd trees such that
their leaves correspond to the symbols of Sm, for 0 ≤ p, q ≤ m (pq �= 0). Define
the cost of F as the sum of the costs of its trees. Say that F is (m, p, q)-optimal
when its cost is the least among all forests for Sm having p even trees and q odd
trees. Denote by c(m, p, q) the cost of an (m, p, q)-optimal forest. In terms of this
notation, the solution of our problem is c(n, 1, 0). First, define the funtion

Ai =
{ ∑i

j=1 fj , if i > 0
0, otherwise.

The following recurrence defines the computation of c(m, p, q).
Let m, p, q be integers such that 0 ≤ m ≤ n, m ≥ p ≥ 0 and m ≥ q ≥ 1. Let

dmax = �log m
p+q � + 1. Then:

(1) if m ≤ p + q then c(m, p, q) = Am−p;

(2) if m > p + q and p = 0 then c(m, p, q) = c(m, q, q) + Am;

(3) if m > p + q and p �= 0, then c(m, p, q) is equal to the minimum between
c(m−1, p−1, q) and min1≤d≤dmax

{c(m−1, (p+q)2d−1, (p+q).2d)+d.Am}.
The resulting dynamic programming algorithm has time complexity O(n3 log n)
and space complexity O(n3). Further, we describe the algorithm for finding nearly
optimal even codes. It consists of the following steps:

a) First, obtain a Huffman tree having a small number of odd leaves, if pos-
sible. It can be done by slightly modifying the process of construction of
Huffman trees, avoiding as much as possible to join two trivial subtrees
(with only one node). After the tree is constructed, exchange odd leaves
with even internal nodes at the same level, when possible.

b) Next, transform the resulting Huffman tree into an even tree, by forcing
odd leaves to become even ones. This is accomplished by moving them
one level deeper in the tree and creating a corresponding error sibling leaf.

c) Finally, exchange leaves in such a way that the higher frequencies become
closer to the root.

This heuristics is easy to implement and has the same complexity as the Huff-
man method. It can be proved that the cost of the resulting tree obtained by
this heuristics is at most 50% higher than the corresponding Huffman tree, but
experimental results suggest a much smaller bound.

278 P.E.D. PINTO, F. PROTTI AND J.L. SZWARCFITER

7. Conclusion

Even codes have been defined as those whose encodings are all even. A char-
acterization of optimal even codes has been described. It has been shown that an
optimal even code for n symbols can always be found, such that the largest en-
coding size is just one bit larger than that for corresponding Huffman code (when
considering equal frequencies). Furthermore, the difference is at most 2 bits, for
any optimal even tree. In addition, the average size of an encoding in the opti-
mal even code is at least 1/3 bit larger and at most 1/2 larger than that of an
Huffman code. Optimal even codes for n symbols and equal frequencies can be
constructed in O(n) time, applying the definition of equilibrated trees in Section 3.
On the other hand, optimal codes for arbitrary frequencies can be consctructed in
O(n3 log n) time by a dynamic programming algorithm, and nearly optimum even
codes can be constructed in O(n log n) time. It is worth mentioning that we are
currently working on a more efficient exact algorithm, as well as a tighter bound
for the approximation.

References

[1] N. Faller, An adaptive Method for Data Compression, in Record of the 7th Asilomar
Conference on Circuits, Systems and Computers, Naval Postgraduate School, Monterrey,
Ca. (1973) 593–597.

[2] R.G. Gallager, Variations on a Theme by Huffman. IEEE Trans. Inform. Theory 24 (1978)
668–674.

[3] R.W. Hamming, Coding And Information Theory. Prentice Hall (1980).
[4] D.A. Huffman, A Method for the Construction of Minimum Redundancy Codes, in Proc. of

the IRE 40 (1951) 1098–1101.
[5] D.E. Knuth, The Art of Computer Programming. Addison Wesley (1973).
[6] D.E. Knuth, Dynamic Huffman Coding. J. Algorithms 6 (1985) 163–180.
[7] E.S. Laber, Um algoritmo eficiente para construção de códigos de prefixo com restrição de

comprimento. Master Thesis, PUC-RJ, Rio de Janeiro (1997).
[8] L.L. Larmore and D.S. Hirshberg, A fast algorithm for optimal length-limited Huffman

codes. JACM 37 (1990) 464–473.
[9] R.L. Milidiu, E.S. Laber and A.A. Pessoa, Improved Analysis of the FGK Algorithm. J.

Algorithms 28 (1999) 195–211.
[10] R.L. Milidiu and E.S. Laber, The Warm-up Algorithm: A Lagrangean Construction of

Length Restricted Huffman Codes. SIAM J. Comput. 30 (2000) 1405–1426.
[11] R.L. Milidiu and E.S. Laber, Improved Bounds on the Inefficiency of Length Restricted

Codes. Algorithmica 31 (2001) 513–529.
[12] A. Turpin and A. Moffat, Practical length-limited coding for large alphabets. Comput. J.

38 (1995) 339–347.
[13] P.E.D Pinto, F. Protti and J.L. Szwarcfiter, A Huffman-Based Error Detection Code, in

Proc. of the Third International Workshop on Experimental and Efficient Algorithms (WEA
2004), Angra dos Reis, Brazil, 2004. Lect. Notes Comput. Sci. 3059 (2004) 446–457.

[14] E.S. Schwartz, An Optimum Encoding with Minimal Longest Code and Total Number of
Digits. Inform. Control 7 (1964) 37–44.

