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Abstract. Let TsH be the graph obtained from a given graph H
by subdividing each edge s times. Motivated by a problem raised
by Igor Pak [Mixing time and long paths in graphs, in Proc. of the
13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2002) 321–328], we prove that, for any graph H , there exist graphs G
with O(s) edges that are Ramsey with respect to TsH .
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1. Introduction

In this paper we are concerned with a numerical problem in Graph Ramsey
Theory. All graphs in this note are finite and simple. The order of a graph G,
denoted |G|, is the number of vertices in G and the size of G, denoted e(G), is
the number of edges in G. Given an integer q > 0 and graphs G and H we
write G → (H)q if G contains a monochromatic copy of H in any q-colouring of
the edges of G. That is, for any ϕ : E(G) → {1, 2, . . . , q}, there is a copy H ′ ⊂ G
of the graph H in G such that ϕ is constant on E(H ′).
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The size-Ramsey number r̂q(H) of a graph H is the smallest number of edges
in a graph G such that G → (H)q, that is,

r̂q(H) = min {e(G) : G → (H)q} .

Denote by rq(H) the (ordinary) Ramsey number of the graph H , that is, rq(H) =
min {n ∈ N : Kn → (H)q} , where Kn denotes the complete graph on n vertices.
As usual, let ∆(H) be the maximal degree in H and let τ(H) be the minimal
number of vertices of H representing all its edges. The second inequality in

1
2
∆(H)τ(H) � r̂q(H) �

(
rq(H)

2

)
(1.1)

is immediate from the definitions of r̂q(H) and rq(H); the first inequality in (1.1),
due to Beck [4], follows from the following argument. Fix a graph G such that G →
(H)q. Colour an edge of G blue if at least one of its endpoints has degree at
least ∆(H), otherwise colour the edge with any colour different from blue. As G →
(H)q we conclude that there must exist a blue copy of H in G, and this implies
that the number of edges in G has to be at least (1/2)∆(H)τ(H).

The investigation of size-Ramsey numbers was proposed by Erdős, Faudree,
Rousseau and Schelp [8] in 1978 when, for example, they studied the size-Ramsey
number of star forests and raised some questions concerning r̂2(Pn), where Pn

is the path on n vertices. Beck [4], using the probabilistic method, proved the
surprising fact that r̂q(Pn) � cn, where c = c(q) is a positive constant, settling a
one-hundred-dollar question of Erdős.

Explicit examples of linear sized graphs that are Ramsey for Pn were given by
Alon and Chung [1], that is, they showed how to construct explicitly graphs G
with O(n) edges such that G → (Pn)q.

Erdős and Graham [9] proved that the Ramsey number rq(T ) of a tree T satisfies
⌊

1
2
(q + 1)

⌋
(τ(T ) − 1) < rq(T ) � 2qe(T ) + 1. (1.2)

It follows from the upper bound in (1.2) that the size-Ramsey number r̂q(T ) of
a tree T is O(q2|T |2). In view of Beck’s lower bound given in (1.1), we see that
there exist trees T that have size-Ramsey number Ω(|T |2). However, as proved
by Friedman and Pippenger [11] (see also [13, 18]), the size-Ramsey number of
trees of bounded degree is linear in the size of the tree. (See [15–17] for more on
tree embeddings.) It was proved in [14] that cycles also have linear size-Ramsey
numbers.

Beck [5] asked whether r̂2(H) is always linear in the size of H for graphs H of
bounded degree, and this was settled in the negative by Rödl and Szemerédi [30],
who proved that there are graphs of order n, maximum degree 3, and size-Ramsey
number Ω(n(log n)1/60). The authors in [30] conjecture that, for some ε = ε(∆) >
0, we have

n1+ε � r̂(n, ∆) � n2−ε, (1.3)
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where r̂(n, ∆) is the maximum of r̂2(H) over all graphs H on n vertices and
of maximum degree at most ∆. The upper bound in (1.3) has been proved by
Kohayakawa, Rödl and Szemerédi (see [20]). For further recent results on size-
Ramsey numbers, see [10, 26, 27, 29].

1.1. Statement of the main result

Given a graph H and a function s : E(H) → N, let the s-subdivision TsH of H
be the graph obtained from H by replacing each edge e in H with an independent
path of length s(e) + 1 joining the endpoints of e. Clearly, this is equivalent to
subdividing s(e) times every edge e of H . Thus, if s is constantly 0, then TsH = H .
If s is bounded from below and from above by � and u, then we write � � s � u.

Pak [25] conjectures that the size-Ramsey number of subdivided graphs is linear
if the edges are subdivided enough times. His conjecture can be read as follows.

Conjecture 1.1. There is an absolute constant c for which the following holds.
For all integers q � 2 and d, there is a constant Cq,d such that if H is a graph
with ∆(H) = d and s is the constant function s(e) = k for all e ∈ E(H), where k >
c log m and

m = |TsH | = |H | + k|E(H)|,
then r̂q(TsH) � Cq,d|TsH |.

Pak came close to proving Conjecture 1.1: his best bound for r̂q(TsH) is off
only by a factor polylogarithmic in m = |TsH | (see [24, 25]). Pak’s approach is
based on mixing times of random walks on graphs.

In this note we shall prove that, if a graph H is fixed and n is sufficiently large,
then there exist pseudo-random graphs G on n vertices and with O(n) edges that
are Ramsey for TsH as long as c log n � s � Cn for certain constants c and C > 0
(see Th. 1.2 below). Before stating our result precisely, let us introduce some
notation and a definition.

Given a graph G = (V, E), for any pair of disjoint sets U , W ⊂ V , we denote
the set of edges and the number of edges in the bipartite subgraph induced by U
and W in G by EG(U, W ) and

eG(U, W ) = |EG(U, W )| =
∣∣{{a, b} ∈ E : a ∈ U and b ∈ W

}∣∣.
For any given reals 0 < p � 1 and A > 0, we put d = pn and say that a graph G
on n vertices is (p, A)-uniform if

∣∣eG(U, W )| − p|U ||W |∣∣ � A
√

d|U ||W | (1.4)

holds for all disjoint sets U , W ⊂ V (G) such that 1 � |U | � |W | � d|U |. In this
note we shall be concerned with (p, A)-uniform graphs G with constant average
degree, and therefore with linearly many edges, that is, with O(|G|) edges.

The main result of this note is the following.



194 J. DONADELLI, P.E. HAXELL AND Y. KOHAYAKAWA

Theorem 1.2. For every integer q � 2, positive real A, and graph H, there exist
positive constants n0, C0, C1, and C2 for which the following holds. If a graph G
on n � n0 vertices is (p, A)-uniform with d = pn � C0, then G → (TsH)q for any
function s such that C1 log n � s � C2n.

The proof of Theorem 1.2 is based on a variant of Szemerédi’s well known
regularity lemma [31]. An immediate consequence of the result above and the fact
that sparse (p, A)-uniform graphs are abundant (see Lem. 2.4) is the following.

Corollary 1.3. For any graph H and integer q � 2, there are constants C =
C(H, q) and s0 = s0(H, q) such that if s is the constant function s(e) = k for
all e ∈ E(H), where k � s0, then r̂q(TsH) � C|TsH |.

This note is organised as follows. In Section 2, we introduce the main techni-
cal lemmas that we shall need. In Section 3, we give an informal description of
the proof of Theorem 1.2. Our proof strategy will be based on a version of Sze-
merédi’s regularity lemma for edge-coloured sparse graphs. Theorem 1.2 is proved
in Section 4. In what follows, we often tacitly assume that n is large enough for
our inequalities to hold; log stands for the natural logarithm and lg denotes the
logarithm to the base 2.

2. Auxiliary results

2.1. Paths in expanding bipartite graphs

For the next two results, let us fix a bipartite graph B = (U, W ; E), with
vertex classes U and W and edge set E, and let positive reals b and f be given.
We say that B is (b, f)-expanding when, for every set X of vertices of B with
X ⊂ U or X ⊂ W , if |X | � b then |Γ(X)| � f |X |, where, as usual, Γ(X) is the
neighbourhood of X , that is, the set of all vertices adjacent to some x ∈ X .

In this note, we shall use the following result, which is a variant of a well known
lemma due to Pósa [28] (for a proof, see [12]).

Lemma 2.1. Let b ≥ 1 be an integer. If the bipartite graph B is (b, 2)-expanding,
then B contains a path P 4b on 4b vertices.

We define the �-fold neighbourhood Γ(�)(x) of the vertex x ∈ V (B) = U ∪W by

Γ(�)(x) = {y ∈ V (B) : there exists an x–y path of length � in B} .

Lemma 2.2. If the bipartite graph B is (b, 4)-expanding for some real b ≥ 1, then
|Γ(�)(x)| � 2��/2� for all x ∈ V (B) and all 1 � � � 2 lg b + 1.

Proof. Fix x and � as in the statement of our lemma; say x ∈ U . We define a
sequence of disjoint sets S0, S1, . . . , S� inductively, where the St (0 ≤ t ≤ �) are
such that (i) St ⊂ U if t is even and St ⊂ W if t is odd, (ii) |St| = 2�t/2�,
and (iii) every z ∈ St is joined to x by a length t path Pz such that |Pz ∩ Ss| = 1
for 0 ≤ s ≤ t.
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First let S0 = {x}. Suppose that 1 ≤ s ≤ � and that St (0 ≤ t < s) have
already been defined satisfying (i), (ii), and (iii) above. Note that since s ≤ � we
have |Ss−1| ≤ 2�(�−1)/2� ≤ b, and so |Γ(Ss−1)| ≥ 4|Ss−1| ≥ 2s/2+1. To define Ss,
we proceed as follows. If s is even we note that Ts =

⋃{S2i : 0 ≤ 2i < s} has
cardinality 2s/2 − 1, and choose Ss ⊂ Γ(Ss−1) \ Ts of cardinality 2s/2. If s is odd
we choose Ss ⊂ Γ(Ss−1)\Ts of size 2(s−1)/2, where Ts =

⋃{S2i+1 : 1 ≤ 2i+1 < s}.
This completes the definition of the St (0 ≤ t ≤ �). Now note that S� ⊂ Γ(�)(x),
and hence the result follows. �

2.2. Szemerédi’s regularity lemma

We now describe a version of Szemerédi’s regularity lemma for sparse graphs.
Let a graph G = (V, E) and a real number 0 < p � 1 be given. We define
the p-density of a pair of non-empty, disjoint sets U , W ⊂ V in G by

dG,p(U, W ) =
eG(U, W )
p|U ||W | ·

For any 0 < ε � 1, the pair (U, W ) is said to be (ε, G; p)-regular, or (ε; p)-regular
or even just ε-regular for short, if, for all U ′ ⊂ U with |U ′| � ε|U | and all W ′ ⊂ W
with |W ′| � ε|W |, we have

∣∣dG,p(U, W ) − dG,p(U ′, W ′)
∣∣ � ε.

We say that a partition Π = (V0, V1, . . . , Vk) of V is (ε, k, G; p)-regular if |V0| � ε|V |
and |Vi| = |Vj | for all i, j ∈ {1, 2, . . . , k}, and, furthermore, at least (1 − ε)

(
k
2

)
pairs (Vi, Vj) with 1 � i < j � k are (ε, G; p)-regular.

For technical reasons we introduce the following definition: we say that a
graph G on n vertices is (p, A)-upper-uniform if, for d = pn, we have

eG(U, W ) � p|U ||W | + A
√

d|U ||W | (2.1)

for all disjoint sets U , W ⊂ V (G) such that 1 � |U | � |W | � d|U |. In this note, we
shall use the following result, which is a variant of Szemerédi’s regularity lemma
(see, e.g., [19, 21]).

Lemma 2.3. For all real numbers ε > 0 and A � 1 and all integers k0,
q � 1, there exist constants n0 = n0(ε, A, k0, q) > 0, d0 = d0(ε, A, k0, q) > 0,
and K0 = K0(ε, A, k0, q) � k0 such that the following holds. For every choice of
(p, A)-upper-uniform graphs G1, G2, . . . , Gq on the same set V of n � n0 vertices,
where d = pn � d0, there exists a partition Π = (V0, . . . , Vk) of V with k0 � k � K0

that is (ε, k, Ga; p)-regular for every a = 1, 2, . . . , q.

Let us remark that Lemma 2.3 holds under weaker hypotheses on the graphs Ga,
but for the purpose of this note the above will do.

Let us now observe that, in a (p, A)-uniform graph G, the number of edges
induced by a set U of vertices is under tight control. Fix U ⊂ V (G), let u = |U |,
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and set s = �u/2	 and t = 
u/2�. Considering all the partitions (S, T ) of U
with |S| = s and |T | = t, we have

2e(G[U ])
(

u − 2
s − 1

)
=

∑
(S,T )

e(S, T ), (2.2)

where the sum runs over all partitions (S, T ) as described above. We now ap-
ply (1.4) to (2.2), to conclude that

e(G[U ]) =
1
2

(
u − 2
s − 1

)−1(
u

s

){
pst + O1

(
A
√

dst
)}

= p

(
u

2

)
+ O1

(
u(u − 1)

2st
A
√

d

)

= p

(
u

2

)
+ O1

(
A
√

d u
)

,

where, above, we write O1(x) for a term y such that |y| � x. Therefore, for
any U ⊂ V (G), we have

∣∣∣∣e(G[U ]) − p

(|U |
2

)∣∣∣∣ � A
√

d |U |. (2.3)

We now observe that (p, A)-uniform graphs are abundant, as long as A is a large
enough constant. The following is proved in [14].

Lemma 2.4. For every 0 < p = p(n) � 1 the standard binomial random graph Gn,p

is (p, e2
√

6)-uniform with probability 1 − o(1).

2.3. Long paths in regular 6-partite graphs

Let us suppose ρ0, α, and A are given positive real numbers. Fix a positive ε
such that

ε < min
{

1
6
,

ρ0

2(5 + 6ρ0)

}
. (2.4)

Let
δ =

ε

ρ0
+ 6ε (2.5)

and choose d satisfying

d

(
αρ0δ

A

)2

� 4.

Let G be a (p, A)-upper-uniform graph on n vertices where p = d/n. Let

P(m) = (V1, V2, . . . , V6) (2.6)
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be a 6-tuple of pairwise disjoint sets Vi ⊂ V (G) (1 � i � 6) such that
(i) |Vi| = m � αn for all 1 � i � 6;
(ii) for all distinct 1 � i, j � 6, the pair (Vi, Vj) is (ε, G; p)-regular of p-density

dG,p(Vi, Vj) = di,j � ρ0.

From now on, for the results in this section, we suppose that P(m) as above is
fixed. Our next lemma is very similar to Lemma 3.2 in [14]; we include the proof
for completeness.

Proposition 2.5. There exist Ui ⊂ Vi (1 � i � 6) with |Ui| � (1 − 5ε)m for all i
such that

|Γ(x) ∩ Uj| � (1 − δ) di,jpm (2.7)
for any x ∈ Ui and any j = i with 1 � j � 6.

Proof. Let us define a sequence

P(m)(t) =
(
V1(t), . . . , V6(t)

)
(t = 0, 1, 2, . . . )

in the following way. Start with P(m)(0) = (V1, . . . , V6). Suppose now that t � 0
and that we have defined P(m)(t). If (2.7) is satisfied for Uj = Vj(t) (1 � j � 6),
then we are home. Otherwise, take

Vi(t + 1) = Vi(t) \ {x}

for some fixed x ∈ Vi(t) and i such that |Γ(x) ∩ Vj(t)| < (1 − δ) di,jpm for some
j = i with 1 � j � 6; moreover, take Vk(t + 1) = Vk(t) for every k = i.

Let us suppose for a contradiction that, at some moment T , we have, without
loss of generality, |V1(T )| < (1 − 5ε)m and |Vj(T )| � (1 − 5ε)m for every j = 1.

As |V1 \ V1(T )| > 5εm there exists X ⊂ V1 \ V1(T ) with cardinality > εm
such that, for some fixed 1 < j � 6, we have |Γ(x) ∩ Vj(T )| < (1 − δ) d1,jpm for
all x ∈ X . We conclude that

e(X, Vj(T )) < (1 − δ)d1,jpm|X |,

which implies that the p-density of the pair (X, Vj(T )) is

dG,p(X, Vj(T )) <

(
1 − ε

ρ0(1 − 5ε)

)
d1,j < d1,j − ε,

contradicting the regularity of the pair (V1, Vj). �

The next result says that the Ui’s in Proposition 2.5 induce expanding bipartite
graphs.

Proposition 2.6. For every i = j (1 � i, j � 6), the bipartite graph induced
by Ui and Uj given in Proposition 2.5 is ((1 − 2δ)di,jm/f, f)-expanding for any
0 < f � (δρ0α/A)2d.
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Proof. The proof will be by contradiction. Let X ⊂ Ui be such that |X | �
(1 − 2δ)di,jm/f . Let Y = Γ(X) ∩ Uj ⊂ Uj , with j = i, and suppose |Y | < f |X |.

By the upper-uniformity condition on G, we have

e(X, Y ) � p|X ||Y | + A
√

d|X ||Y | < p|X |(1 − 2δ)di,jm + A
√

d|X ||Y |, (2.8)

and, from (2.7), we deduce that

e(X, Y ) = e(X, Uj) � (1 − δ)di,jpm|X |. (2.9)

Combining (2.8) and (2.9), we have that (δdi,jpm|X |)2 < A2d|X ||Y |. Therefore

|Y | >
(δdi,jαpm|X |)2

A2d|X | �
(

δdi,jα

A

)2

d|X | � f |X |.

As we supposed that |Y | < f |X |, we have a contradiction. �

Recall that P(m) = (V1, . . . , V6) as in (2.6) is fixed. We shall now prove that
there exist long paths connecting a positive fraction of the vertices in V1 to a
positive fraction of the vertices in V6. Let

� =
⌊
2 lg

(
(1 − 2δ)ρ0m

4

)⌋
+ 1 and b = �2(1 − 2δ)ρ0m	 − 5. (2.10)

Lemma 2.7. Let s ∈ N be such that 2� + 2 � s � 2� + b + 2. Then there exist
X ⊂ V1 and Y ⊂ V6 with |X |, |Y | � εm such that any x ∈ X and any y ∈ Y are
endpoints of a path of length s whose vertices belong to

⋃6
i=1 Vi.

Proof. Let s be an integer with 2�+2 � s � 2�+ b+2. Let Ui ⊂ Vi (1 � i � 6) be
the sets given by Proposition 2.5 and observe that Proposition 2.6 tells us that,
pairwise, these sets induce ((1 − 2δ)ρ0m/f, f)-expanding bipartite graphs for any
0 < f � 4.

We now apply Lemma 2.1 to the bipartite graph induced by (U3, U4) to get a
path P = x0, x1, . . . , xb, where b is as in (2.10) above. Without loss of generality,
we may assume that x0 ∈ U3. Put i = s − 2� − 2, observe that 0 � i � b, and
consider xi ∈ V (P ). As xi ∈ Uj for some j ∈ {3, 4} and x0 ∈ U3, the condition
in (2.7) applied to (Uj , U5) and (U2, U3) tells us that we may choose a neighbour v
of xi in U5 and a neighbour u of x0 in U2.

At this point we have a path of length i + 2 connecting u ∈ U2 to v ∈ U5.
Let X = Γ(�)

(U1,U2)(u) ∩ U1 and Y = Γ(�)
(U5,U6)(v) ∩ U6, where the �-fold neighbour-

hoods are taken in the bipartite graphs induced by (Ui, Ui+1) (i ∈ {1, 5}). By the
expansion properties of (Ui, Ui+1) (i ∈ {1, 5}) and Lemma 2.2 with � as defined
in (2.10) above, we have

|X |, |Y | � 2��/2� >
1
8
(1 − 2δ)ρ0m.
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Finally, by the choice of ε (see (2.4)), we obtain that more than (1 − 2δ)ρ0m/8 �
εm vertices in V1 are joined to more than εm vertices in V6 by a path of length
s = 2� + i + 2, where 0 � i � b, as required. �

2.4. Extremal graph theory – Turán’s theorem

Below, in the proof of the main result, we shall use the following weaker form
of the celebrated Turán Theorem (see, e.g., [7], Chap. 7, Ex. 8).

Theorem 2.8. For all integers t and k, every graph G on k vertices and more
than

(
1 − (t − 1)−1

)
k2/2 edges contains a Kt as a subgraph.

3. Outline of the proof of Theorem 1.2

Roughly speaking, the proof of Theorem 1.2 goes as follows. Let H be a fixed
graph and let G be a (p, A)-uniform graph of order n, with d = pn constant but
large. Also, fix s : E(H) → N in the range described in Theorem 1.2 and let TsH
be an s-subdivision of H .

Suppose the edges of G are partitioned into q colour classes. We then have
spanning subgraphs G1, . . . , Gq of G, one for each colour, with G =

⋃
1≤i≤q Gi

and with each Gi (p, A)-upper-uniform. We apply to the Gi (1 ≤ i ≤ q) the
coloured version of Szemerédi’s regularity lemma, Lemma 2.3 above, in order to
obtain t = 6e(H)+ |H | subsets Vi of V (G) that are pairwise disjoint, of cardinality
m = Ω(n) each, and with all the

(
t
2

)
pairs (Vi, Vj) ε-regular with p-density bounded

away from 0 in some fixed colour c ∈ {1, 2, . . . , q}. (This may be accomplished
applying the regularity lemma, Turán’s theorem, and Ramsey’s theorem in an
appropriate fashion.)

Now, to each x ∈ V (H), we associate one of the above sets Vi, which we
denote by V (x), with all the V (x) (x ∈ V (H)) distinct. We wish to find an
embedding ι : V (TsH) → V (Gc) of TsH into Gc, the subgraph of G spanned by
the edges of colour c (in what follows, the edges of the other colours are ignored).
The vertices in V (x) are the candidates for ι(x). The remaining 6e(H) sets Vi

are divided into e(H) 6-tuples as in (2.6), with one such 6-tuple (V (e)
1 , . . . , V

(e)
6 )

for each edge e ∈ E(H). For each e, the system (V (e)
1 , . . . , V

(e)
6 ) will “contain”

a monochromatic path of colour c of length s(e) − 1 corresponding to e in TsH .
Naturally, we shall have to connect this path of length s(e) − 1 to ι(x) ∈ V (x)
and ι(y) ∈ V (y), where x and y ∈ V (H) are the endpoints of e ∈ E(H), to obtain
the full (s(e) + 1)-long path of TsH that corresponds to the edge e of H .

To get the long paths in (V (e)
1 , . . . , V

(e)
6 ), we simply apply Lemma 2.7. Let us

write Pe for an (s(e) − 1)-long path in (V (e)
1 , . . . , V

(e)
6 ) as given by that lemma.

To conclude the construction of the embedding of TsH into Gc, it suffices
choose ι(x) for each x ∈ V (H) in such a way that ι(x) is adjacent (in colour c)
to the appropriate endpoints of the paths Pe for all e ∈ E(H) incident to x. As
it turns out, if we fix the paths Pe (e ∈ E(H)) as described above, then it is not
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Figure 1. Schematic view of an embedding of a subdivision of
the triangle with vertex set {a, b, c}.

clear whether this last task may be achieved. Therefore, our proof will follow a
different route, although the outline above illustrates the approach quite closely.

Figure 1 illustrates the (very simple) case in which we wish to embed a subdi-
vision of the complete graph on the vertex set {a, b, c}; that is, we wish to embed
a cycle, which is seen as a subdivision of the triangle with vertices a, b, and c.
The sets V (a), V (b), and V (c) are the sets of candidates for ι(a), ι(b), and ι(c).
The paths drawn with endpoints in the pairs (V (e)

3 , V
(e)
4 ) (e ∈ {ab, ac, bc}) corre-

spond to the paths given by Lemma 2.1 and the dashed lines between (V (e)
i , V

(e)
i+1)

(e ∈ {ab, ac, bc} and i ∈ {1, 5}) represent the iterated neighbourhood given by
Lemma 2.2. The sets of endpoints of long paths given by Lemma 2.7 are repre-
sented by the filled regions in V

(e)
i (e ∈ {ab, ac, bc} and i ∈ {1, 6}).

4. Proof of Theorem 1.2

The core of the proof of Theorem 1.2 has two steps, and this section is organised
accordingly (see Sects. 4.1 and 4.2 below). Before we come to the main part of
the argument, we give the definitions of the constants that will be required.
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Let the constants A � 1 and q � 2 as in the statement of Theorem 1.2 be given.
Also, fix a graph H and write ∆ for its maximum degree ∆(H). Let

t = rq

(
K |H|+6e(H)

)
(4.1)

be the ordinary Ramsey number for K |H|+6e(H) with respect to q colours. More-
over, put

	 =
1

2(t − 1)
and ρ0 =

	

q
·

Also, set

ε = min
{

1
20q(t − 1)

,
ρ0

2(5 + 6ρ0)
,

1
∆ + 1

}
and k0 = ε−1.

Let d0 = d0(ε, A, k0, q) > 0 and K0 = K0(ε, A, k0, q) be the constants given by
Lemma 2.3. Let δ = ε/ρ0 + 6ε be as in (2.5) and put

α =
1

2K0

and

d̄0 = max

{
d0,

1
(ρ0 − ε)εα

, 4
(

αρ0δ

A

)−2
}

.

We claim that we may choose

C0 = d̄0, C1 = 6, and C2 = 2(1 − 2δ)αρ0

in our theorem. This claim is verified in the remainder of the proof.
Let 0 < p = p(n) � 1 be such that d = pn � C0 = d̄0 and let us fix a

(p, A)-uniform graph G on n vertices. Let s : E(H) → N be an integer function
satisfying C1 log n � s � C2n. We need to show that, as long as n is large enough,

G → (TsH)q. (4.2)

To prove (4.2), fix an arbitrary q-colouring of the edges of G. This colouring
gives us a partition E(G) = E1 ∪ · · · ∪ Eq in a natural way. Our aim is to show
that Gc = G[Ec] contains TsH for some colour 1 � c � q.

4.1. The preliminary argument

The argument in this section is standard, and is based on a combination of the
regularity lemma, Turán’s theorem, and Ramsey’s theorem. We start by applying
Lemma 2.3 with the constants ε, A, k0, and q as above to the family of (p, A)-
upper-uniform graphs Ga = G[Ea] (a ∈ {1, 2, . . . , q}). Let Π = (V0, V1, . . . , Vk) be
an (ε, k, Ga; p)-regular partition for all colours a, whose existence is guaranteed by
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that lemma. We call a pair (Vi, Vj) (1 � i < j � k) regular and G-dense if it is
(ε, Ga; p)-regular for all a ∈ {1, 2, . . . , q} and

dG,p(Vi, Vj) � 	. (4.3)

Let m = |V1| = |V2| = · · · = |Vk| � αn.
We now estimate the number of edges in G that do not belong to pairs (Vi, Vj)

that are regular and G-dense using (2.1) and (2.3). We need to take into account
four classes of edges.

(i) The number of edges in G that are incident to the vertices in V0 is

� p

(
εn

2

)
+ A

√
dεn + pε(1 − ε)n2 + A

√
dεn

� εpn2 + 2A
√

dεn = 2ε

(
1 +

2A√
dε

)
n2p

2
· (4.4)

(ii) The number of edges that belong to irregular pairs in some colour is

� qε

(
k

2

)
(pm2 + A

√
dm) � qε

(
1 +

Ak√
d

)
n2p

2
· (4.5)

(iii) The number of edges that belong to regular pairs that fail (4.3) is

<

(
k

2

)
	pm2 � 	

n2p

2
· (4.6)

(iv) The number of edges whose endpoints belong to the same Vi (1 � i � k) is

� k

(
p

(
m

2

)
+ A

√
dm

)
�

(
1
k

+
2A√

d

)
n2p

2
· (4.7)

Adding up the estimates in (4.4)–(4.7), we get that the number of edges in G that
do not belong to pairs (Vi, Vj) that are regular and G-dense is

�
(

3ε + qε +
Ak

20
√

d
+ 	 +

1
k

+
2A√

d

)
n2p

2
�

(
(q + 4)ε + 	 +

(k + 40)A
20

√
d

)
n2p

2
·

Now, if at most (1 − (t − 1)−1)(k2/2) out of the
(
k
2

)
pairs (Vi, Vj) (1 � i < j � k)

are regular and G-dense, then

<

(
1 − 1

t − 1
+

Ak√
d

)
n2p

2

edges of E(G) are in regular and G-dense pairs, and G has at most
(

1 − 1
t − 1

+ (q + 4)ε + 	 +
(21K0 + 40)A

20
√

d

)
n2p

2
�

(
1 − 4A√

d

)
n2p

2
(4.8)
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edges. Inequality (2.3) tells us that e(G) � p
(
n
2

) − A
√

dn, which, combined
with (4.8), yields a contradiction. Therefore, if we define a graph R on the ver-
tex set {V1, V2, . . . , Vk} whose edges are given by the pairs that are regular and
G-dense, then

e(R) >

(
1 − 1

t − 1

)
k2

2
·

By Theorem 2.8 (Turán’s Theorem), it follows that Kt ⊂ R, that is, there exists
a copy of the complete graph on t vertices in R.

Clearly, for any {Vi, Vj} ∈ E(R), there exists a colour a ∈ {1, 2, . . . , q} such
that dGa,p(Vi, Vj) � ρ0. Colour the edges of this Kt ⊂ R putting

colour(Vi, Vj) = min
{
a ∈ {1, 2, . . . , q} : dGa,p(Vi, Vj) � ρ0

}
.

By Ramsey’s theorem and the choice of t (see (4.1)), there must exist a monochro-
matic copy of K |H|+6e(H) in our q-coloured Kt ⊂ R. This corresponds to |H | +
6e(H) classes from {V1, V2, . . . , Vk} such that the edges of some colour, say c ∈
{1, 2, . . . , q}, induce

(|H|+6e(H)
2

)
ε-regular pairs of density at least ρ0.

This finishes the first part of the proof. In what follows, we shall concen-
trate on the set Ec of the edges of colour c and on the |H | + 6e(H) classes from
{V1, V2, . . . , Vk} determined above.

4.2. The embedding of TsH in Gc = G[Ec]

We may suppose that

K = {V1, V2, . . . , V|H|+6e(H)}

is our family of |H | + 6e(H) vertex sets Vi with all the
(|H|+6e(H)

2

)
pairs (Vi, Vj)

(ε, Gc; p)-regular with density at least ρ0. Recall that we are now ignoring all the
edges that are not of colour c, that is, we restrict our attention to Gc = G[Ec].

To each x ∈ V (H), we associate a member Vi of K, which we denote by V (x),
with all the V (x) (x ∈ V (H)) distinct. The remaining 6|E(H)| members in K

are split into |E(H)| 6-tuples P(m)
e = (V (e)

1 , . . . , V
(e)
6 ) as in (2.6), one for each

e ∈ E(H).
Simple calculations show that 2�+3 � C1 log n � s � C2n � 2�+ b+3, where �

and b are as in (2.10). Therefore

2� + 2 � s(e) − 1 � 2� + b + 2 (4.9)

for all e ∈ E(H). In view of (4.9), we may apply Lemma 2.7 to get, for each
e = xy ∈ E(H),

sets Z(x, e) ⊂ V
(e)
1 and Z(y, e) ⊂ V

(e)
6 (4.10)
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satisfying |Z(x, e)|, |Z(y, e)| � εm and so that any vertex in Z(x, e) and any vertex
in Z(y, e) are the endpoints of a path of length s(e) − 1 in the graph

Gc

[
V

(e)
1 ∪ · · · ∪ V

(e)
6

]
.

Before we proceed, we make two parenthetical remarks. In Figure 1, for conve-
nience, we wrote X(e) and Y (e) for Z(x, e) and Z(y, e). In (4.10), we do not mind
whether we match x with V

(e)
1 and y with V

(e)
6 or we match x with V

(e)
6 and y

with V
(e)
1 (that is, we could also have Z(x, e) ⊂ V

(e)
6 and Z(y, e) ⊂ V

(e)
1 ).

To construct the embedding of TsH in Gc = G[Ec], we make the following
observations:

(*) If (U, W ) is an (ε; p)-regular pair of density � ρ0, then for any Z ⊂ W
with cardinality |Z| � ε|W | we have > (1− ε)|U | vertices u ∈ U such that
|Γ(u) ∩ Z| � (ρ0 − ε)p|Z|.

(**) If (U, Wj) (1 � j � ∆) are (ε; p)-regular pairs of density � ρ0 and Zj ⊂ Wj

(1 � j � ∆) are of cardinality at least ε|Wj | each, then there exist at least
(1−∆ε)|U | vertices u ∈ U such that Γ(u)∩Zj = ∅ for all j ∈ {1, 2, . . . , ∆}.

The embedding ι : V (TsH) → V (G) of TsH into Gc = G[Ec] that we seek is then
easy to find. Below, we write d(v) for the degree of v ∈ V (H) in H and write Γc(w)
for the neighbourhood of w ∈ V (Gc) = V (G) in the graph Gc.

Let us first define ι(x) independently for all x ∈ V (H) as follows: let e1 =
xy1, . . . , ed(x) = xyd(x) be the edges incident to x in H . Recall that we have the
sets Z(x, e1), . . . , Z(x, ed(x)) associated to the edges ei (1 � i � d(x)); see (4.10).
We now apply (**) and take for ι(x) any vertex x′ in V (x) that has the property
that Γc(x′)∩Z(x, ei) = ∅ for all 1 � i � d(x). Moreover, fix a vertex x′

i in Γc(x′)∩
Z(x, ei) for all 1 � i � d(x). We have thus defined ι on V (H) ∪ ΓTsH(V (H)) ⊂
V (TsH), that is, on the vertices of H and, for every x ∈ V (H), on the leaves of
the star of d(x) rays centred at x.

To complete the definition of ι, we need to ‘join up’ the leaves of the |H | stars
above by paths of the correct length, with one such path for each edge e ∈ E(H).
Fix e = xy ∈ E(H). Recall that we have the 6-tuple P(m)

e = (V (e)
1 , . . . , V

(e)
6 )

associated to e. Moreover, we have sets Z(x, e) ⊂ V
(e)
1 and Z(y, e) ⊂ V

(e)
6 such

that any vertex in Z(x, e) and any vertex in Z(y, e) are the endpoints of a path
of length s(e) − 1 in the graph Gc[V

(e)
1 ∪ · · · ∪ V

(e)
6 ]. This implies that there is an

appropriate (s(e)−1)-long path for each e ∈ E(H), as required, and the definition
of ι is complete.

5. Concluding remarks

Explicit examples of linear sized graphs that are Ramsey with respect to TsH
are given by the Ramanujan graphs of Lubotzky, Phillips and Sarnak [22] and
Margulis [23]. Let us briefly comment on the Lubotzky, Phillips, and Sarnak
Ramanujan graphs Xp,q. Let p and q be unequal primes, both congruent



THE SIZE-RAMSEY NUMBER OF LONG SUBDIVISIONS 205

to 1 mod 4, with p a square modulo q. The graph Xp,q is (p + 1)-regular of
order n = q(q2−1)/2. The adjacency matrix of Xp,q has second largest eigenvalue
at most 2

√
p. From the results in [3] (Cor. 9.2.5)

∣∣e(U, W )− ((p + 1)/n)|U ||W |∣∣ �
2
√

p|U ||W | for all disjoint subsets U , W ⊂ V (Xp,q). Thus the Xp,q are ((p +
1)/n, 2)-uniform.

We close by mentioning two results concerning the ordinary Ramsey number:
(i) a classical result of Chvátal, Rödl, Szemerédi, and Trotter [6] states that
bounded degree graphs have linear Ramsey numbers; (ii) Alon [2] proved that,
for any graph H , if s : E(H) → N is such that s(e) ≥ 1 for every e ∈ E(H) (that
is, every edge of H is subdivided at least once), then the Ramsey number of TsH
is O(|TsH |).
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[28] L. Pósa, Hamiltonian circuits in random graphs. Discrete Math. 14 (1976) 359–364.
[29] D. Reimer, The Ramsey size number of dipaths. Discrete Math. 257 (2002) 173–175.
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