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INTEGERS WITH A MAXIMAL NUMBER
OF FIBONACCI REPRESENTATIONS

Petra Kocábová1, Zuzana Masáková1 and
Edita Pelantová1

Abstract. We study the properties of the function R(n) which deter-
mines the number of representations of an integer n as a sum of distinct
Fibonacci numbers Fk. We determine the maximum and mean values
of R(n) for Fk ≤ n < Fk+1.
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1. Introduction

Let (Fk)k≥0 be the Fibonacci sequence defined by

F0 = F1 = 1 , Fk+1 = Fk + Fk−1 for k ≥ 1.

Every positive integer n can be written as a sum of distinct Fibonacci numbers,
i.e. in the form

n = Fmr + Fmr−1 + · · · + Fm1 , where mr > mr−1 > · · · > m1 ≥ 1. (1)

The expression (1) is called a representation of the number n in the Fibonacci
number system. The index of the maximal Fibonacci number that appears in the
representation of n is called the length of the representation. Every Fibonacci
representation can be written in the form of a finite word w = wmrwmr−1 . . . w1

in the alphabet {0, 1}, where wi = 1 for i = m1, . . . , mr, and wi = 0 otherwise.
For example the number n = 32 can be represented as

32 = 21 + 5 + 3 + 2 + 1 = F7 + F4 + F3 + F2 + F1
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and this representation corresponds to the word 1001111. Due to the recurrence
relation for Fibonacci numbers, different representations of the number n can be
obtained by substituting the string 011 by 100 and vice versa. All representations
of 32 correspond to words

1010100, 1010011, 1001111, 111111.

The number of different Fibonacci representations of n will be denoted by R(n).
Let us enumerate the first twenty values of the sequence

(
R(n)

)
n≥1

,

(
R(n)

)
n≥1

= 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, . . . (2)

For a given positive integer n we can find k such that

Fk ≤ n < Fk+1.

It is obvious that every representation of n has length ≤k. On the other hand,
since

F1 + F2 + · · · + Fk−2 < Fk ≤ n,

the lengths of every representation of n is at least k − 1. Thus representations of
the number n can be divided into long (having length k) and short (of length k−1).
Let us denote by R1(n) the number of long representations of n, and by R0(n) the
number of short representations of n. Clearly

R(n) = R1(n) + R0(n).

If we prefix the short Fibonacci representations of n with the prefix 0, they have the
same length as the long representations of n. The lexicographically greatest among
all such representations of the number n is called the Zeckendorf representation
of n and the corresponding word in the alphabet {0, 1} is denoted by 〈n〉. The
distinguishing characteristic of this representation is that there are no adjacent 1’s.
For example, we have 〈32〉 = 1010100.

The Zeckendorf representation of a number n is a word of the form

〈n〉 = 10r110r2 . . . 10rl , where r1, . . . , rl−1 ≥ 1 , and rl ≥ 0. (3)

The sum r1+r2+· · ·+rl+l determines the length of the Zeckendorf representation
of n. Since the relation between the number n and the word (3) is one-to-one, we
define for the simplicity of notation

�(r1, . . . , rl) := R(n)

�1(r1, . . . , rl) := R1(n)

�0(r1, . . . , rl) := R0(n) (4)

where 〈n〉 = 10r110r2 . . . 10rl .
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It can be seen easily that R(n) = 1 if and only if n = Fk − 1 for some k ≥ 2.
The values of R(n) for n = Fk ± j, j ≤ 8 are given in [3]. The segment of the
sequence R(n) between two consecutive occurrences of 1 is a palindrome [3,4], i.e.

R(Fk − 1 + i) = R(Fk+1 − 1 − i), for i = 1, 2, . . . , Fk−1 − 1.

The aim of this paper is to find the maximal and the mean values of the func-
tion R(n) for Fk − 1 < n < Fk+1 − 1, which corresponds to the numbers n whose
Zeckendorf representation has a fixed length k. We determine the numbers

Max(k) := max
{
R(n) | n ∈ N , Fk ≤ n < Fk+1

}

= max

{

�(r1, . . . , rl)
∣
∣
∣ l ∈ N, r1, . . . , rl−1 ≥ 1, rl ≥ 0, l +

l∑

i=1

ri = k

}

.

In addition, we classify the arguments of the maxima.
Let us determine several initial values of the sequence Max(k). It suffices to

divide the sequence (R(n))n≥1 to blocks of length F0, F1, F2, . . . along the occur-
rence of consecutive 1’s and to find maximal values in these blocks, see (2). We
have

Max(1) = max{R(n) | 1 ≤ n < 2} = R(1) = 1,

Max(2) = max{R(n) | 2 ≤ n < 3} = R(2) = 1,

Max(3) = max{R(n) | 3 ≤ n < 5} = R(3) = 2,

Max(4) = max{R(n) | 5 ≤ n < 8} = R(5) = R(6) = 2,

Max(5) = max{R(n) | 8 ≤ n < 13} = R(8) = R(11) = 3,

Max(6) = max{R(n) | 13 ≤ n < 21} = R(16) = 4. (5)

2. Properties of the functions �, �0, �1

Berstel [1] gives an explicit formula for computing the values of functions �, �1,
�0 defined in (4). Denote the matrix

M(r) :=

( ⌈
r
2

⌉ ⌊
r
2

⌋

1 1

)

.

Theorem 2.1 (Berstel). Let r1, . . . , rl ∈ Z, r1, . . . , rl−1 ≥ 1, rl ≥ 0. Then

(
�0(r1, . . . , rl)
�1(r1, . . . , rl)

)
= M(r1)M(r2) . . . M(rl)

(
0
1

)
.
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Since �(r1, . . . , rl) = �0(r1, . . . , rl) + �1(r1, . . . , rl), we have explicit formulas for
the functions �, �0, �1 in the following form

�(r1, . . . , rl) =
(
1 1

)
M(r1)M(r2) . . . M(rl)

(
0
1

)
,

�0(r1, . . . , rl) =
(
1 0

)
M(r1)M(r2) . . . M(rl)

(
0
1

)
,

�1(r1, . . . , rl) =
(
0 1

)
M(r1)M(r2) . . . M(rl)

(
0
1

)
. (6)

Let us now derive some recurrence relations for �(r1, . . . , rl) that will be needed
for determining the maximal values. If l = 1 we get directly from (6) that

�(r) =
⌊r

2

⌋
+ 1. (7)

Lemma 2.2. Let l ∈ N, and let r1, r2, . . . , rl ∈ Z , r1, r2, . . . , rl−1 ≥ 1, rl ≥ 0.
If rl is odd, then �(r1, . . . , rl) = �(r1, . . . , rl − 1).

Proof. It follows from (6) since for rl odd we have M(rl)
(
0
1

)
= M(rl − 1)

(
0
1

)
. �

Lemma 2.3. Let l ∈ N, l ≥ 2 and let r1, r2, . . . , rl ∈ Z , r1, r2, . . . , rl−1 ≥ 1,
rl ≥ 0. If ri is even for some 1 ≤ i ≤ l − 1, then

�(r1, . . . , rl) = �(r1, . . . , ri)�(ri+1, . . . , rl).

Proof. For ri even we have M(ri) = M(ri)
(
0
1

)
(1 1). Substituting into (6) we obtain

the lemma. �
Lemma 2.4. Let l ∈ N, l ≥ 2, and let r1, r2, . . . , rl ∈ Z , r1, r2, . . . , rl−1 ≥ 1,
rl ≥ 0. We have

�(r1, r2, . . . , rl) =
r1 + 1

2
�(r2, . . . , rl) + �0(r2, . . . , rl), if r1 is odd,

�(r1, r2, . . . , rl) =
(r1

2
+ 1

)
�(r2, . . . , rl), if r1 is even.

Proof. First suppose r1 is odd. Since

(
1 1

)
M(r1) =

r1 + 1
2

(
1 1

)
+

(
1 0

)
,

substituting into (6) gives the desired result. The statement for r1 even is a
consequence of Lemma 2.3 and the relation (7). �
Lemma 2.5. Let l ∈ N, l ≥ 3, and let r1, r2, . . . , rl ∈ Z , r1, r2, . . . , rl−1 ≥ 1,
rl ≥ 0. If for some i, 2 ≤ i ≤ l − 1, the coefficient ri is odd, then

�(r1, . . . , rl) = �(r1, . . . , ri − 1)�(ri+1, . . . , rl) + �(r1, . . . , ri−1 + 1)�0(ri+1, . . . , rl).
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Proof. Again, it suffices to verify the matrix equality

M(ri−1)M(ri) = M(ri−1)M(ri − 1)
(

0
1

)(
1 1

)
+ M(ri−1 + 1)

(
0
1

)(
1 0

)

for ri odd and to use (6). �

The following lemma is a direct consequence of the definition of functions �, �0

and can be found in [4] as Lemma 1.

Lemma 2.6 (Edson, Zamboni). Let l ∈ N, l ≥ 2, and let r1, r2, . . . , rl ∈ Z,
r1, r2, . . . , rl−1 ≥ 1, rl ≥ 0. Then

(i) �0(r1, r2, . . . , rl) = �(r1 − 2, r2, . . . , rl), for r1 ≥ 3;
(ii) �0(2, r2, . . . , rl) = �(r2, . . . , rl);
(iii) �0(1, r2, . . . , rl) = �0(r2, . . . , rl);
(iv) �(r1, . . . , rl−1, 1, 1, . . . , 1) = �(r1, . . . , rl−1).

Clearly, �(r1, . . . , rl) ≥ 1. However, the number of short Fibonacci representations
�0(r1, . . . , rl) can be equal to 0. Using the rules given in Lemma 2.6 we easily
deduce that

�0(r1, . . . , rl) = 0 ⇐⇒ r1 = r2 = · · · = rl−1 = 1 and rl ∈ {0, 1}. (8)

3. Lower bound on Max(k)

In order to find the lower estimates of Max(k), let us determine the values
�(r1, . . . , rl) on some chosen l-tuples (r1, . . . , rl).

Lemma 3.1.

1) �(3, 3, . . . , 3
︸ ︷︷ ︸
k−1 times

, 4) = �(1, 3, . . . , 3
︸ ︷︷ ︸
k−1 times

, 2) = F2k+1 for k ≥ 1.

2) �(3, 3, . . . , 3
︸ ︷︷ ︸

k times

, 2) = �(1, 3, . . . , 3
︸ ︷︷ ︸
k−1 times

, 4) = F2k+2 for k ≥ 1.

Proof. Let us first show by induction that for the s-th power of the matrix
M(3) =

(
2 1
1 1

)
we have

(
M(3)

)s =
(

F2s F2s−1

F2s−1 F2s−2

)
, for s ∈ N. (9)

For s = 1 the statement is trivial. For s ≥ 2 we use the induction hypothesis

(
M(3)

)s =
(
M(3)

)s−1
(

2 1
1 1

)
=

(
F2s−2 F2s−3

F2s−3 F2s−4

) (
2 1
1 1

)
=

(
F2s F2s−1

F2s−1 F2s−2

)
.
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Note that (9) is valid also for s = 0 if we define F−1, F−2 in such a way that the
recurrence relation is still valid, (F−1 = 0, F−2 = 1). It is now easy to use (6) to
find

�(3, 3, . . . , 3
︸ ︷︷ ︸
k−1 times

, 4) =
(
1 1

)
(

F2k−2 F2k−3

F2k−3 F2k−4

) (
2 2
1 1

)(
0
1

)

=
(

F2k−1 F2k−2

)
(

2
1

)
= F2k+1

and

�(1, 3, . . . , 3
︸ ︷︷ ︸
k−1 times

, 2) =
(
1 1

)
(

1 0
1 1

) (
F2k−2 F2k−3

F2k−3 F2k−4

) (
1 1
1 1

)(
0
1

)

=
(
F2k F2k−1

)
(

1
1

)
= F2k+1.

The relations (2) can be proved similarly. �
As a corollary, we have a lower estimate on the maxima for numbers with

Zeckendorf representation of odd length.

Corollary 3.2. Max(2k + 1) ≥ Fk+1 for k ≥ 1.

From the definition of the function � it follows that

�(2, r1, . . . , rl) ≥ 2�(r1, . . . , rl)

and for rl > 0 also
�(r1, . . . , rl, 2) ≥ 2�(r1, . . . , rl).

Therefore we have the following lower estimate on the maxima for numbers with
Zeckendorf representation of even length.

Corollary 3.3. Max(2k + 2) ≥ 2Max(2k − 1) ≥ 2Fk for k ≥ 2.

Our aim is to show that the inequalities in Corollaries 3.2 and 3.3 are in fact
equalities.

4. Maxima of the function R(n)

Let us now determine the maximum of the function R(n) = �(r1, r2, . . . , rl),
where Fk ≤ n < Fk+1 and 〈n〉 = 10r110r2 · · · 10rl . The l-tuple r1, . . . , rl ∈ Z must
satisfy r1, r2, . . . , rl−1 ≥ 1, rl ≥ 0 and

∑l
i=1 ri + l = k. We shall not repeat these

assumptions.
Let us show that Max(k) is not reached on integers n whose Zeckendorf repre-

sentation has only one 1. More precisely, we have the following proposition.

Proposition 4.1. Let Max(k) = �(r1, r2, . . . , rl). Then l ≥ 2 or k ≤ 5.
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Proof. Suppose by contradiction that k ≥ 6 and l = 1. Then using (7), we have
Max(k) = �(k − 1) = �k−1

2 	 + 1. For k even we have by Corollary 3.3

2F k−2
2

≤ Max(k) =
⌊

k − 1
2

⌋
+ 1 =

k

2
,

which is in contradiction with 2Fi−1 > i for all i ≥ 3. For k odd we have by
Corollary 3.2

F k+1
2

≤ Max(k) =
⌊

k − 1
2

⌋
+ 1 =

k + 1
2

,

which contradicts the fact that Fi > i for all i ≥ 4. �

In the following several propositions we show that the maximum is reached on
l-tuples of a certain specific form. The proofs are done by contradiction. Assuming
that the maximal l-tuple does not satisfy the desired properties, we find another
l-tuple on which the function � has strictly greater value.

Proposition 4.2. Let Max(k) = �(r1, r2, . . . , rl) for k ≥ 6. Then rl is even.

Proof. Since the above Proposition 4.1 implies that l ≥ 2, it suffices to prove that
for rl odd we have

�(r1, r2, . . . , rl−1, rl) < �(r1 + 1, r2, . . . , rl−1, rl − 1). (10)

We divide the demonstration of (10) into two cases.

a) Let r1 be even. Using Lemmas 2.2 and 2.4 we have

�(r1, r2, . . . , rl−1, rl) = �(r1, r2, . . . , rl−1, rl − 1)

=
(r1

2
+ 1

)
�(r2, . . . , rl−1, rl − 1),

�(r1 + 1, r2, . . . , rl−1, rl − 1)

=
r1 + 2

2
�(r2, . . . , rl−1, rl − 1) + �0(r2, . . . , rl−1, rl − 1).

In order to obtain (10) we need to show that �0(r2, . . . , rl−1, rl − 1) > 0.
Using (8), �0(r2, . . . , rl−1, rl − 1) = 0 with rl odd implies r2 = r3 =
· · · = rl = 1. However, in this case the property (iv) of Lemma 2.6 and
Proposition 4.1 give

�(r1, r2, . . . , rl−1, rl) = �(r1, 1, 1, . . . , 1) = �(r1) < �(k − 1) < Max(k),

which contradicts the assumption of the proposition. Thus we necessarily
have �0(r2, . . . , rl−1, rl − 1) > 0 and (10) is valid.
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b) Let r1 be odd. Again we use Lemmas 2.2 and 2.4 to obtain

�(r1, r2, . . . , rl−1, rl) =
r1 + 1

2
�(r2, . . . , rl−1, rl) + �0(r2, . . . , rl−1, rl),

�(r1 + 1, r2, . . . , rl−1, rl − 1) = �(r1 + 1, . . . , rl) =
(r1 + 1

2
+ 1

)
�(r2, . . . , rl).

The validity of (10) is obvious, since �(r2, . . . , rl) > �0(r2, . . . , rl). �

In order to find the arguments of the maxima of the function �, we use the
matrix formula (6). First we introduce a partial ordering on non-negative matrices.
Lemma 4.4 then shows that replacing a matrix in (6) by a “bigger” one increases
the value of the function �.

Definition 4.3. Let X =
(
a b
c d

)
and X̃ =

(
ã b̃
c̃ d̃

)
be integer matrices with non-

negative components. We say that X majores X̃ (written X 
 X̃) if

a ≥ ã, b ≥ b̃, a + c ≥ ã + c̃ and b + d > b̃ + d̃. (11)

Lemma 4.4. Let α = (1 1 )AXB
(
0
1

)
and α̃ = (1 1 )AX̃B

(
0
1

)
, where

A = I2 or A = M(r1) . . . M(rs).
B = I2 or B = M(p1) . . . M(pt),

and X, X̃ are non-negative integer matrices. If X 
 X̃, then α > α̃.

Proof. Denote (x y ) = (1 1 )A and
(

z
u

)
= B

(
0
1

)
. It is easy to see that x ≥ y ≥ 1

and that z ≥ 0, u ≥ 1. Let X =
(
a b
c d

)
and X̃ =

(
ã b̃
c̃ d̃

)
satisfy (11). Then

α − α̃ = (x y )
(

a b

c d

)(
z

u

)
− (x y )

(
ã b̃

c̃ d̃

)(
z

u

)

=
(

(a − ã)x + (c − c̃)y , (b − b̃)x + (d − d̃)y
)(

z

u

)

≥
(

(a + c − ã − c̃)y , (b + d − b̃ − d̃)y
)(

z

u

)
≥ ( 0 1 )

(
0
1

)
= 1. �

Proposition 4.5. Let �(r1, r2, . . . , rl) = Max(k). Then ri ≤ 5 for all i =
1, 2, . . . , l.

Proof. Let 〈n〉 = 10r110r2 · · · 10rl , and assume that there exists an index i such
that ri ≥ 6. Denote by m the number with Zeckendorf representation 〈m〉 =
10r1 · · · 10ri−110ri−310210ri+1 · · · 10rl . Zeckendorf representations 〈n〉 and 〈m〉



INTEGERS WITH A MAXIMAL NUMBER OF FIBONACCI REPRESENTATIONS 351

have the same length. Since

M(ri) =
( ⌈

ri

2

⌉ ⌊
ri

2

⌋

1 1

)
≺

( ⌈
ri−3

2

⌉ ⌊
ri−3

2

⌋

1 1

) (
1 1
1 1

)

=
(

ri − 3 ri − 3
2 2

)
= M(ri − 3)M(2),

we have according to Lemma 4.4

R(n) = �(r1, r2, . . . , rl) < �(r1, . . . , ri−1, ri − 3, 2, ri+1, . . . , rl) = R(m),

which contradicts the assumption of the proposition. �

Proposition 4.6. Let �(r1, r2, . . . , rl−1, rl) = Max(k), where k ≥ 6 and the ri are
odd for i = 1, 2, . . . , l − 1. Then r1 ∈ {1, 3}, r2, . . . , rl−1 = 3, and rl ∈ {2, 4}.
Proof. As a consequence of Proposition 4.2, the final coefficient rl is even, and
due to Proposition 4.5 it can take only values {0, 2, 4}. Assumption of the present
proposition with Proposition 4.5 implies that r1, r2, . . . , rl−1 ∈ {1, 3, 5}. First let
us show by contradiction that 5 does not occur. Suppose the opposite, i.e. that
there exists an index 1 ≤ i ≤ l − 1 such that ri = 5. Let i be the maximal index
with this property. Let s be the minimal non-negative integer, such that ri+s �= 3.
Then ri+s = 1 or i + s = l and ri+s ∈ {0, 2, 4}.

1) Let ri+s = 1. We verify that

X̃ = M(5)
(
M(3)

)s−1
M(1) ≺ (

M(3)
)s+1 = X.

According to (9), we obtain

X̃ =
(

3 2
1 1

)(
F2s−2 F2s−3

F2s−3 F2s−4

)(
1 0
1 1

)
=

(
F2s+2 F2s

F2s F2s−2

)
, X =

(
F2s+2 F2s+1

F2s+1 F2s

)
.

Obviously X̃ ≺ X and using Lemma 4.4 we obtain

Max(k) = �(r1, . . . , ri−1, 5, 3, . . . , 3
︸ ︷︷ ︸
s−1 times

, 1, ri+s+1, . . . , rl)

< �(r1, . . . , ri−1, 3, . . . , 3
︸ ︷︷ ︸
s+1 times

, ri+s+1, . . . , rl),

which is a contradiction.
2) Let ri+s = 2. Similarly as in (1) we use matrices and Lemma 4.4 to obtain

the contradiction

Max(k) = �(r1, . . . , ri−1, 5, 3, . . . , 3
︸ ︷︷ ︸
s−1 times

, 2) < �(r1, . . . , ri−1, 3, . . . , 3
︸ ︷︷ ︸
s times

, 4).
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3) Let ri+s = 4. Similarly as in (1) we use matrices and Lemma 4.4 to obtain
the contradiction

Max(k) = �(r1, . . . , ri−1, 5, 3, . . . , 3
︸ ︷︷ ︸
s−1 times

, 4) < �(r1, . . . , ri−1, 3, . . . , 3
︸ ︷︷ ︸
s+1 times

, 2).

4) Let ri+s = 0. Similarly as in (1) we use matrices and Lemma 4.4 to obtain
the contradiction

Max(k) = �(r1, . . . , ri−1, 5, 3, . . . , 3
︸ ︷︷ ︸
s−1 times

, 0) < �(r1, . . . , ri−1, 3, . . . , 3
︸ ︷︷ ︸
s times

, 2).

Thus we have shown that r1, . . . , rl−1 ≤ 3, i.e. all take values in {1, 3}.
Let us now prove by contradiction that at most one of the coefficients r1, . . . , rl−1

is equal to 1. Assume that there exist indices i, i + s, 1 ≤ i < i + s ≤ l − 1 such
that ri = ri+s = 1 and ri+1 = ri+2 = · · · = ri+s−1 = 3. Denote

X̃ = M(1)
(
M(3)

)s−1
M(1) =

(
F2s−1 F2s−3

F2s F2s−2

)
,

X =
(
M(3)

)s =
(

F2s F2s−1

F2s−1 F2s−2

)
.

Since X̃ ≺ X, we derive that

Max(k) = �(r1, . . . , ri−1, 1, 3, . . . , 3
︸ ︷︷ ︸
s−1 times

, 1, ri+s+1,...,rl
)

< �(r1, . . . , ri−1, 3, . . . , 3
︸ ︷︷ ︸
s times

, ri+s+1, . . . , rl),

which contradicts the maximality of �(r1, . . . , rl). Thus at most one of the coeffi-
cients r1, . . . , rl−1 is equal to 1 and the others are equal to 3.

If l = 2, the proposition is proved. For l ≥ 3 we show by contradiction that
r2 = · · · = rl−1 = 3. Suppose that ri = 1 for some 2 ≤ i ≤ l − 1. Since

(
1 1

)(
M(3)

)i−1
M(1) =

(
F2i F2i−2

)
,

(
1 1

)
M(1)

(
M(3)

)i−1 =
(
F2i F2i−1

)
,

it follows that

Max(k) = �(3, . . . , 3
︸ ︷︷ ︸
i−1 times

, 1, ri+1, . . . , rl) < �(1, 3, . . . , 3
︸ ︷︷ ︸
i−1 times

, ri+1, . . . , rl),

which is a contradiction.
It remains to show that rl �= 0. But if rl = 0, then rl−1 = 3. Relation

M(3)M(0) ≺ M(4) implies a contradiction. �
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We are now in position to state the theorem about the maximal values of R(n).

Theorem 4.7.

max{R(n) | F2k+1 ≤ n < F2k+2} = Max(2k + 1) = Fk+1 for k ≥ 0,

max{R(n) | F2k+2 ≤ n < F2k+3} = Max(2k + 2) = 2Fk for k ≥ 1.

Proof. In the proof we shall make use of the following inequalities for Fibonacci
numbers, which are not difficult to demonstrate.

Fx+1Fy+1 ≤ 2Fx+y for x, y ≥ 0, (12)

where the equality holds only if x = 1 or y = 1.

2FxFy ≤ Fx+y+1 for x, y ≥ 1, (13)

where the equality holds only if x = y = 2.
Since the lower bounds on the maxima of the function R(n) are known from

Corollaries 3.2 and 3.3, it suffices to prove inequalities

Max(2k + 1) ≤ Fk+1 and Max(2k + 2) ≤ 2Fk. (14)

Let us show it by induction on k. For initial values of k the validity of the theorem
follows from (5). Now assume that

Max(2j + 1) ≤ Fj+1 and Max(2j + 2) ≤ 2Fj, for j < k.

With this induction hypothesis we want to show (14).

• Let us first show that Max(2k + 2) ≤ 2Fk.
Let r1, r2, . . . , rl be an l-tuple such that �(r1, r2, . . . , rl) = Max(2k + 2) where
k ≥ 2. Proposition 4.2 implies that rl is even. Since r1 + r2 + · · ·+ rl + l = 2k + 2,
there must exist an i < l such that ri is even. Let i be the maximal i < l with
this property. The number ri+1 + · · · + rl + (l − i) is odd, say 2m + 1. Then
r1 + · · · + ri + i = 2k + 2 − (2m + 1). Lemma 2.3, the induction hypothesis and
inequality (12) implies

Max(2k + 2) = �(r1, . . . , rl) = �(r1, . . . , ri) �(ri+1, . . . , rl)

≤ Max(2k − 2m + 1) Max(2m + 1) = Fk−m+1Fm+1 ≤ 2Fk.
(15)

• Now let us show the inequality Max(2k + 1) ≤ Fk+1.
Let r1, r2, . . . , rl be an l-tuple such that �(r1, r2, . . . , rl) = Max(2k+1) where k ≥ 2.
Suppose that besides rl there exist another i < l such that ri is even and let i be
the maximal index i < l with this property. Let us denote ri+1 + · · ·+rl +(l− i) =
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2m + 1. Then r1 + · · · + r2 + i = 2k + 1 − (2m + 1) = 2k − 2m. Lemma 2.3, the
induction hypothesis and inequality (13) implies

Max(2k + 1) = �(r1, . . . , rl) = �(r1, . . . , ri) �(ri+1, . . . , rl)

≤ Max(2k − 2m) Max(2m + 1) = 2Fk−m−1Fm+1 ≤ Fk+1. (16)

It remains to consider the case that the l-tuple r1, r2, . . . , rl which satisfies
�(r1, r2, . . . , rl) = Max(2k + 1) contains all ri odd for 1 ≤ i ≤ l − 1. According
to Proposition 4.6 the maximal l-tuple is of the form (1, 3, . . . , 3, 4), (3, . . . , 3, 4),
(1, 3, . . . , 3, 2), or (3, . . . , 3, 2). Note that for fixed length of the Zeckendorf rep-
resentation only two of these are possible, namely (1, 3, . . . , 3, 2), or (3, . . . , 3, 4)
for length 1 mod 4, and (1, 3, . . . , 3, 4), (3, . . . , 3, 2) for length 3 mod 4. The values
of the function � for these l-tuples was determined in Lemma 3.1. Therefore the
statement of the theorem is proved. �

5. Argument of Max(k)

In this section we determine the integers on which the maximum of the function
R(n) is reached for a fixed length

∑l
i=1 ri + l of the Zeckendorf representation

〈n〉 = 10r1 · · · 10rl . The proof of Theorem 4.7 allows us to determine the l-tuples
r1, . . . , rl representing such integers n.

Suppose first that the Zeckendorf representation of n has odd length. In this
case the proof of Theorem 4.7 indicates that unless equality holds in (16), all the
coefficients r1, . . . , rl−1 are odd and therefore the l-tuples r1, . . . , rl−1, rl are of
very specific form (as a consequence of Prop. 4.6).

Equality in (16) provides an exceptional l-tuple. In order to make (16) true,
the relation (13) necessitates that k = 4 (hence m = 1) and

�(r1, . . . , ri) = Max(6) and �(ri+1, . . . , rl) = Max(3).

Since according to the table (5) we have Max(6) = R(16) = �(2, 2) and Max(3) =
R(3) = �(2) necessarily l = 3 and r1 = r2 = r3 = 2.

Corollary 5.1.

(i) Max(4k + 3) is reached precisely on two arguments for k ≥ 1 and on one
argument for k = 0. We have Max(3) = �(2), and for k ≥ 1

Max(4k + 3) = �(1, 3, . . . , 3
︸ ︷︷ ︸
k−1 times

, 4) = �(3, . . . , 3
︸ ︷︷ ︸
k times

, 2).

(ii) Max(4k + 1) is reached precisely on two arguments for k ≥ 3 or k = 1,
on three arguments for k = 2, and on one argument for k = 0. We have
Max(1) = �(0), Max(9) = �(1, 3, 2) = �(3, 4) = �(2, 2, 2), and for k = 1
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and k ≥ 3

Max(4k + 1) = �(1, 3, . . . , 3
︸ ︷︷ ︸
k−1 times

, 2) = �( 3, . . . , 3
︸ ︷︷ ︸

k−1 times

, 4).

As for integers with even length of their Zeckendorf representation, proof of The-
orem 4.7 requires that an l-tuple r1, . . . , rl on which the maximum of � is reached
must satisfy equality in (15). Relation (12) for Fibonacci numbers implies that
m−k = 1 or m = 1. This can be true only if i = 1 or i = l−1 respectively. Equal-
ity in (15) further requires that either r1 = 2, r2, . . . , rl are odd and �(r2, . . . , rl)
is maximal, or rl = 2 and �(r2, . . . , rl) is maximal, respectively.

Corollary 5.2. Let k ≥ 3 and let r1, . . . , rl satisfy
∑l

i=1 ri + l = 2k. Then
�(r1, . . . , rl) = Max(2k) if and only if

r1 = 2 and �(r2, . . . , rl) = Max(2k − 3)
or

rl = 2 and �(r1, . . . , rl−1) = Max(2k − 3).

Recall that the elements of the sequence
(
R(n)

)
n∈N

can be grouped into palin-
dromes R(Fk), . . . , R(Fk+1 − 2) separated by values R(Fk+1 − 1) = 1. Corollar-
ies 5.1 and 5.2 show that up to the exceptional initial cases, the maximal value
in each palindrome occurs twice (for k odd) and four times (for k even). The
description of arguments of the maxima of R(n) in the palindrome, i.e. for n with
fixed length of Zeckendorf representation, is given in Theorem 5.3. We need to
introduce the following notation,

i2k+1 =

{
Fk+1Fk−3 + 1

FkFk−2 + 1

for k even,

for k odd,

i2k =

{
Fk+2Fk−5 + F3 + 1

Fk+1Fk−4 + F3 + 1

for k even,

for k odd,

j2k =

{
Fk+1Fk−3 + 1

FkFk−2 + 1

for k even,

for k odd.

Theorem 5.3.
(i) Max(2k + 1) for k ≥ 1, k �= 4 is reached precisely on the integers

F2k+1 − 1 + i2k+1, F2k+2 − 1 − i2k+1.

For k = 4, Max(2k + 1) = Max(9) is reached precisely on three integers,
namely

F9 − 1 + i9 = 63, F10 − 1 − i9 = 79, and their average 71.
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(ii) Max(2k) for k ≥ 3, k �= 6, is reached precisely on the integers

F2k − 1 + i2k, F2k+1 − 1 − i2k,

F2k − 1 + j2k, F2k+1 − 1 − j2k.

For k = 6, Max(2k) = Max(12) is reached precisely on five integers,
namely

F12 − 1 + i12 = 270, F13 − 1 − i12 = 338,

F12 − 1 + j12 = 296, F13 − 1 − j12 = 312,

and their avarage 304.

Proof. Corollaries 5.1 and 5.2 show that up to the exceptional initial cases, the
maximal value in the palindrome R(Fk), . . . , R(Fk+1 − 2) occurs twice for k odd
and four times for k even. From the symmetry of the palindrome, for k odd there
is an integer ik ∈ {1, 2, . . . , Fk−1 − 1} such that

R(Fk − 1 + ik) = R(Fk+1 − 1 − ik) = Max(k).

Without loss of generality ik is in our considerations the smaller of the two integers
satisfying it. Similarly, for k even we have ik, jk ∈ {1, 2, . . . , Fk−1 − 1} such that

R(Fk −1+ ik) = R(Fk+1 −1− ik) = R(Fk −1+ jk) = R(Fk+1 −1− jk) = Max(k).

We consider ik < jk to be the two smallest of the four integers satisfying it.
We derive the compact form of ik and jk from arguments of maxima given in

Corollaries 5.1 and 5.2. For that we use the relation

Fi + Fi+4 + Fi+8 + · · · + Fi+4(k−1) = F2k+i−2F2k−1 , for i, k ≥ 1,

which can be shown using Fk = 1√
5
(τk+1 − τ ′k+1), where τ = 1

2 (1 +
√

5) is the

golden ratio and τ ′ = 1
2 (1 −√

5) its algebraic conjugate. �

It is interesting to study the position of the maximal values in the palindrome
R(Fk − 1), R(Fk), . . . , R(Fk+1 − 1), i.e. the position of integers ik, (ik and jk)
in the set 1, 2, . . . , Fk−1. This is described by Proposition 5.4 and illustrated in
Figure 1.

Proposition 5.4. Let k ≥ 1. Then

lim
k→∞

i2k+1

F2k
= lim

k→∞
i2k

F2k−1
=

1
τ + 2

,

∣
∣
∣
∣ i2k+1 − F2k

τ + 2

∣
∣
∣
∣ <

1
2
,

lim
k→∞

j2k

F2k−1
=

τ

τ + 2
,

∣
∣
∣∣ j2k − τF2k−1

τ + 2

∣
∣
∣∣ <

1
2
·
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�R(n)

n
�

�

�

� �

�

�

� �

�

�

� �

�

�1

2

3

4

5

F7−1 F7 F8−1
︸ ︷︷ ︸

i7

︸ ︷︷ ︸
F6

τ + 2

︸ ︷︷ ︸
i7

︸ ︷︷ ︸
F6

τ + 2

Figure 1. Illustration of the function R(n) for n ∈ [20, 33]. The
values R(Fk − 1), R(Fk), . . . , R(Fk+1 − 1) for k = 7 form a palin-
drome. Since k ≡ 3 mod4, the maximal value Max(7) appears
twice and these local maxima are at the integers nearest to the
asymptotical position, which is marked by the vertical lines.

The proposition shows that the numbers i2k+1 and j2k are the closest integers to
the asymptotic position of the maximal value. Let us mention that it is slightly
more complicated in case of i2k.

Remark. Bicknell-Johnson defines in [2] a sequence (A(q))q∈N which determines
the smallest positive integer with q Fibonacci representations and shows that

A(Fk) = F 2
k − 1 and A(2Fk) = Fk+3Fk − 1 + (−1)K .

Since F2k+1 − 1 + i2k+1 = F 2
k+1 − 1 and F2k − 1 + i2k = Fk+2Fk−1 − 1 + (−1)k−1,

the result of [2] is a consequence of Theorems 4.7 and 5.3.

6. Mean value of R(n)

Berstel in his article [1] states an open question about the mean value of the
function R(n). In this section we answer his question. In particular, we deter-
mine the mean value of R(n) for integers with fixed length k of their Zeckendorf
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representation, i.e. the value

1
Fk−1

Fk+1−1∑

n=Fk

R(n).

Proposition 6.1. Let k ≥ 1. Then

Fk+1−1∑

n=Fk

R(n) =
1
3

(
2k − (−1)k

)
.

Proof. Consider the word w = wlwl−1 . . . w1 in the alphabet {0, 1} where wl = 1.
The word w is a representation of the number n =

∑l
i=1 wiFi. Also w is a long

representation of n, if
∑l

i=1 wiFi < Fl+1, and w is a short representation of n, if
∑l

i=1 wiFi ≥ Fl+1. It can be easily shown that the latter occurs if and only if the
word w has the prefix 1010 · · ·1011. More precisely,

l∑

i=1

wiFi ≥ Fl+1

if and only if

wlwl−1 · · ·w1 = (10)i11 wl−2i−2 · · ·w1, for some i ≥ 0, i ≤
⌊

l − 2
2

⌋
·

Therefore the number of words wl · · ·w1 with wl = 1 that represent an integer
n ≥ Fl+1 is equal to the number of distinct suffixes wl−2i−2 · · ·w1, i.e.

� l−2
2 	∑

i=0

2l−2i−2 =
⌊

2l − 1
3

⌋
· (17)

Consequently, the number of words wl · · ·w1 with wl = 1 which represent an
integer n < Fl+1 is equal to

2l−1 −
⌊

2l − 1
3

⌋
· (18)
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Since the sets of Fibonacci representations of distinct integers n are disjoint, we
obtain

Fk+1−1∑

n=Fk

R0(n) = #

{

wk−1 · · ·w1 ∈ {0, 1}∗
∣
∣
∣
∣ wk−1 = 1,

k−1∑

i=1

wiFi ≥ Fk

}

=
⌊

2k−1 − 1
3

⌋
,

Fk+1−1∑

n=Fk

R1(n) = #

{

wk · · ·w1 ∈ {0, 1}∗
∣∣
∣
∣ wk = 1,

k∑

i=1

wiFi < Fk+1

}

= 2k−1 −
⌊

2k − 1
3

⌋
·

Together we obtain

Fk+1−1∑

n=Fk

R(n) = 2k−1 −
⌊

2k − 1
3

⌋
+

⌊
2k−1 − 1

3

⌋
=

1
3

(
2k − (−1)k

)
. �

Since Fk = 1√
5

(
τk+1 − τ ′k+1

)
, the mean value of the function R(n) for Fk ≤ n <

Fk+1 is equal to
1
3

(
2k − (−1)k

)

1√
5

(
τk − τ ′k

) ∼
√

5
3

(
2
τ

)k

.
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