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POLYNOMIALS OVER THE REALS IN PROOFS
OF TERMINATION: FROM THEORY TO PRACTICE ∗

Salvador Lucas
1

Abstract. This paper provides a framework to address termination
problems in term rewriting by using orderings induced by algebras over
the reals. The generation of such orderings is parameterized by concrete
monotonicity requirements which are connected with different classes of
termination problems: termination of rewriting, termination of rewrit-
ing by using dependency pairs, termination of innermost rewriting,
top-termination of infinitary rewriting, termination of context-sensitive
rewriting, etc. We show how to define term orderings based on alge-
braic interpretations over the real numbers which can be used for these
purposes. From a practical point of view, we show how to automatically
generate polynomial algebras over the reals by using constraint-solving
systems to obtain the coefficients of a polynomial in the domain of the
real or rational numbers. Moreover, as a consequence of our work, we
argue that software systems which are able to generate constraints for
obtaining polynomial interpretations over the naturals which prove ter-
mination of rewriting (e.g., AProVE, CiME, and TTT), are potentially
able to obtain suitable interpretations over the reals by just solving the
constraints in the domain of the real or rational numbers.

Mathematics Subject Classification. 12Y05.

1. Introduction

Monotonicity in term rewriting has to do with the ability of the rewrite rela-
tion to “reproduce” any rewriting step within arbitrary syntactic contexts, i.e.,
if a term t rewrites to a term s, then for all k-ary symbols f , all arguments
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i ∈ {1, . . . , k}, and terms t1, . . . , tk, the term f(t1, . . . , ti−1, t, . . . , tk) rewrites
into f(t1, . . . , ti−1, s, . . . , tk). Accordingly, orderings > for proving termination
of rewriting (i.e., the absence of infinite rewrite sequences) are also required to
be monotonic. Recently, however, non-monotonic term orderings have received
an increasing attention as suitable formal tools for proving termination of both
rewriting and some restricted forms of rewriting. For instance, the dependency
pairs method for proving termination of rewriting, and proofs of termination of
innermost rewriting can benefit from them (see [1, 15]).

In this setting, a possible way to specify monotonicity requirements is the use
of a replacement map µ which associates, for each k-ary symbol f of the signa-
ture, the argument positions µ(f) ⊆ {1, . . . , k} of f which we will eventually call
monotonic arguments. In fact, there is a form of rewriting, called context-sensitive
rewriting (CSR [32, 33]), where, given a replacement map µ, rewritings in a term
f(t1, . . . , tk) are allowed only on the arguments ti with i ∈ µ(f). The following
example motivates the use of CSR in term rewriting and programming:

Example 1. The following TRS R:
take(s(n),cons(x,xs)) -> cons(x,take(n,xs))

take(0,xs) -> nil

incr(cons(x,xs)) -> cons(s(x),incr(xs))

pairNs -> cons(0,incr(oddNs))

oddNs -> incr(pairNs)

zip(nil,xs) -> nil

zip(x,nil) -> nil

zip(cons(x,xs),cons(y,ys)) -> cons(pair(x,y),zip(xs,ys))

tail(cons(x,xs)) -> xs

repItems(cons(x,xs)) -> cons(x,cons(x,repItems(xs)))

repItems(nil) -> nil

can be used to approximate the value of π/2 by means of the so-called Wallis’
product: π

2 = limn→∞ 2
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2n+1 . The expression

zip(repItems(tail(pairNs)),tail(repItems(oddNs)))

produces the previous fractions and the function take can be used to obtain ap-
propriate approximations.

Let µ(cons) = {1} and µ(f) = {1, . . . , k} for all other k-ary symbols f . The
µ-termination of R (i.e., termination of CSR under the replacement map µ) can
also be proved by using a polynomial interpretation (see Ex. 15 below). This
knowledge can be used to obtain the desired normal forms whenever they exist,
or to approximate infinite normal forms (see [32, 33]).

Termination of CSR is fully captured by the so-called µ-reduction
orderings [43], i.e., well-founded and stable orderings > which fulfill the mono-
tonicity requirements expressed by the replacement map µ. We refer the reader
to [20, 32, 33, 36] for further details, applications, and references about CSR and
termination of CSR.
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Recently, a number of connections between replacement maps µ (specifying
monotonicity requirements) and termination problems / proofs which can be ad-
dressed by using µ-reduction orderings have been discovered and investigated:

Replacement map Termination problem

µ� Termination of rewriting
µ � µ� Termination of CSR (proper cases)
µcan
R � µ Top-termination
µinn
R Termination of innermost rewriting
µ⊥ Termination of rewriting using dependency pairs.

Here, µ� is the replacement map specifying full monotonicity in all arguments of
all function symbols. In this case, CSR and ordinary rewriting coincide. Then, the
µ�-reduction orderings are exactly the standard reduction orderings which can be
used to prove termination of rewriting [13,44]. If µ does not contain all argument
indices for some symbol f (written µ � µ�), then we are in the proper case for
termination of CSR. The canonical replacement map µcan

R for a TRS R is the most
restrictive replacement map which ensures that the (positions of) non-variable
subterms of the left-hand sides of the rules of R are replacing [32,33]. If, for each
symbol f , µ(f) contains at least all indices in µcan

R (f) (written µcan
R � µ), then a

proof of µ-termination of CSR is a proof of top-termination1 [34]. The replacement
map µinn

R is obtained for a given TRS R as explained in [15], Definition 3; then, the
µinn
R -termination of R implies that R is innermost terminating [15], Corollary 11.

Finally, µ⊥ is the replacement map introducing no monotonicity constraint. Then,
the µ⊥-reduction orderings can be used (together with suitable quasi-orderings2)
as part of a reduction pair in proofs of termination of rewriting by using Arts and
Giesl’s dependency pairs technique (see below).

In this paper, we investigate the use of algebras over the reals as a suitable way
to generate µ-reduction orderings satisfying the monotonicity constraints specified
by a replacement map µ when addressing termination problems.

Contributions of the paper

Orderings induced by algebras over the reals

Term orderings can be obtained by giving appropriate algebraic interpretations
to the function symbols of a signature. In this approach, given an interpretation
domain A ordered by >A, each k-ary symbol f of the signature is given a mapping
[f ] : Ak → A. Then, the interpretation of symbols is homomorphically extended
to terms t where variable symbols are interpreted as variables ranging in A, and a
strict ordering > on terms (i.e., a transitive and irreflexive relation) is defined by
t > s if the interpretation of t is bigger (according to >A) than the interpretation

1 A TRS is top-terminating if no infinitary reduction sequence performs infinitely many
rewrites at topmost position Λ [14].

2 A quasi-ordering is a reflexive and transitive relation.
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of s for all possible valuations in A of the variables in t and s. In Section 3,
we show how to define term (quasi-) orderings based on algebraic interpretations
over the real numbers. Given interpretations of the symbols f as real functions
[f ] : Ak → A for some subset A of the real numbers, and a positive real number δ,
a well-founded and stable (strict) ordering >δ on terms is defined as follows: for
all terms t, s, t >δ s if, for all possible valuations in A, the difference between the
interpretation of t and that of s is at least δ. Monotonicity requirements expressed
by a replacement map µ can be ensured by requiring that, for all symbols f and
i ∈ µ(f), the partial derivative of [f ] w.r.t. the i-th argument xi is not below 1.

Termination of rewriting using dependency pairs

The introduction of the dependency pairs approach [1] into the field of termi-
nation of rewriting has brought new applications of non-monotonic orderings. In
this approach, the left-hand sides l and the right-hand sides r of the rules l → r
of the TRS are compared by using a weakly monotonic and stable quasi-ordering
�. The price to pay is that we have to further consider the so-called dependency
pairs associated to the TRS. The components of each dependency pair have to be
compared by means of a stable and well-founded (but no necessarily monotonic
or weakly monotonic!) ordering �. If � and � satisfy a given compatibility prop-
erty, then (�, �) is called a reduction pair. In Section 4, we show how to use our
techniques to generate reduction pairs which are suitable to be used together with
the dependency pairs approach for proving termination of rewriting.

Polynomial interpretations over the reals

Termination of rewriting is undecidable (even for TRSs containing only
one rule [10]) and lot of research has been devoted to develop methods and
heuristics to achieve proofs of termination in restricted (and mechanizable)
cases [1, 12, 28, 30, 40]. Polynomial interpretations and the corresponding reduc-
tion orderings [30] are well-suited to achieve automatic or semiautomatic proofs
of termination of rewriting [6, 9, 18, 30, 39]. Although polynomial interpretations
have several limitations regarding their ability for proving termination of rewrite
systems (see, e.g., [7, 23]) the introduction of the dependency pairs approach has
brought new applications of basic techniques (like polynomial orderings).

In the usual approach, each k-ary symbol f is given a polynomial [f ] on k
variables with non-negative integer coefficients [5, 6, 9, 30, 37, 44]. Real coeffi-
cients are allowed in other approaches [11, 12, 18, 39] but additionally requiring
a subterm property (i.e., [f ](x1, . . . , xi, . . . , xk) > xi for all k-ary symbols f and
i ∈ {1, . . . , k}) to guarantee well-foundedness of the induced ordering, which can-
not be guaranteed by the ordering >R over the reals, which is not well-founded.
The use of such polynomials, however, is quite restrictive regarding their ability to
introduce non-monotonicity in the corresponding orderings: in the first case, the
possibilities for introducing non-monotonicity in a given argument of a function
symbol are basically restricted to drop (i.e., fix a zero coefficient for) some mono-
mials that refer to this argument. In the second case (closer to ours), requiring
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the subterm property implies monotonicity of the induced ordering in the current
practical frameworks (see below).

In Section 5, we apply the framework in Section 3 to the systematic and prac-
tic use of real coefficients in polynomial intepretations: by using the generic ap-
proach above, we can associate a well-founded and stable ordering >δ to an ar-
bitrary polynomial interpretation over the reals, i.e., a collection of polynomials
[f ] ∈ R[x1, . . . , xk], for each k-ary symbol f , whose coefficients are real numbers.
The monotonicity constraints can be selectively ensured as explained above. No
subterm property is required. We show how to obtain a suitable δ when attempt-
ing a proof of compatibility of >δ with a set of pairs of terms (e.g., rewrite rules
or dependency pairs); this will be essential for the automatic generation of such
polynomial interpretations. We also discuss how to deal with polynomials with
negative coefficients in our framework. Finally, we prove that polynomial interpre-
tations over the reals provide a strictly more powerful framework for introducing
non-monotonicity in the computed orderings.

Automatic generation of polynomials over the reals

Polynomial interpretations play a prominent role in the implementation of sev-
eral existing tools for automatically proving termination of rewriting like AProVE
[21], CiME [8], and TTT [26]. In Section 6, we discuss how to automatically ob-
tain polynomial interpretations over the reals satisfying a concrete monotonicity
specification µ whose induced ordering >δ is compatible with, e.g., a set of rewrite
rules or a set of dependency pairs. The procedure is quite simple, in fact, and
there is no need to consider any explicit value for δ. As usual, we consider para-
metric polynomial interpretations whose indeterminate coefficients are intended
to be real instead of natural numbers. Then, we impose a number of constraints
which, according to our results, ensure the appropriate properties of the computed
polynomial interpretation. We obtain a set of arithmetic constraints which can be
sent to a constraint-solving system to obtain the coefficients by solving the con-
straints in the domain of the real or rational numbers. For instance, we illustrate
our development by using the constraint-solving system CON’FLEX [38] to obtain
polynomial interpretations over the reals.

Implementation

In Section 7, we explain the implementation of our techniques as part of the
tool mu-term [35]. The tool automatically generates the constraints on the inde-
terminate coefficients of the polynomial interpretations as described in Section 6
and solves them to obtain the corresponding polynomial interpretation.

Related work

Section 8 discusses some related work. Polynomials over the real numbers were
proposed by Dershowitz [11, 12] as an alternative to Lankford’s polynomials over
the naturals [30]. Giesl and Steinbach have investigated how to implement the
use of such polynomials in proofs of termination of rewriting [18,39]. In Section 8
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we show that if their methods solve a termination problem then it can also be
solved by using our method. The usual frameworks for proving termination by
using polynomials with natural coefficients are also subsumed by our technique.

Moreover, we show that, although relying in different formal grounds, the con-
straints generated by the methods which focus on polynomials with non-negative
integer coefficients (following the original Lankford’s approach, see, e.g., [9] for a
recent discussion), are actually so close to ours that it is possible to use the set of
constraints generated in this way to obtain a polynomial interpretation over the
reals by just interpreting the indeterminate coefficients as real coefficients instead
of natural ones. Thus, software systems (like, e.g., AProVE, CiME, or TTT) which
are able to generate constraints for obtaining polynomial interpretations over the
naturals which prove termination of rewriting, are potentially able to obtain suit-
able interpretations over the reals by just solving the constraints in the domain of
the real or rational numbers!

Section 9 concludes and points to some future work.

2. Preliminaries

Let N, Z, Q, and R be the sets of natural, integer, rational and real numbers,
respectively; given one of such sets N and z ∈ N , we let Nz = {x ∈ N | x ≥ z}
and N>z = {x ∈ N | x > z}.

Orderings

A binary relation R on A is terminating (or well-founded) if there is no infi-
nite sequence a1 R a2 R a3 · · · . A transitive and reflexive relation � on A is a
quasi-ordering. A transitive and irreflexive relation > on A is an ordering. Given
f : Ak → A and i ∈ {1, . . . , k}, we say that > (respectively �) is (weakly)
monotonic on the i-th argument of f if, whenever x > y (respectively x �
y), we have f(x1, . . . , xi−1, x, . . . , xk) > f(x1, . . . , xi−1, y, . . . , xk) (respectively
f(x1, . . . , xi−1, x, . . . , xk) � f(x1, . . . , xi−1, y, . . . , xk)) for all x, y, x1, . . . , xk ∈ A.

Signatures and terms

Throughout the paper, X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity given
by a mapping ar : F → N. The set of terms built from F and X is T (F ,X ). Terms
are viewed as labelled trees in the usual way. Positions p, q, . . . are represented by
chains of positive natural numbers used to address subterms of t. We denote the
empty chain by Λ. Given positions p, q, we denote its concatenation as p.q. If p is
a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}. The set of positions
of a term t is Pos(t). The subterm at position p of t is denoted as t|p and t[s]p is
the term t with the subterm at position p replaced by s. The symbol labelling the
root of t is denoted as root(t).
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Algebraic interpretations

Term orderings can be obtained by giving appropriate interpretations to the
function symbols of a signature. Given a signature F , an F -algebra is a pair A =
(A,FA), where A is a set and FA is a set of mappings fA : Ak → A for each f ∈ F
where k = ar(f). We say that A is an F -algebra over the reals (resp. rationals,
integers, naturals) if A ⊆ R (resp. Q, Z, N). For a given valuation mapping
α : X → A, the evaluation mapping [α] : T (F ,X ) → A is inductively defined by
[α](x) = α(x) if x ∈ X and [α](f(t1, . . . , tk)) = fA([α](t1), . . . , [α](tk)) for x ∈ X ,
f ∈ F , t1, . . . , tk ∈ T (F ,X ). Given a term t with Var(t) = {x1, . . . , xn}, we write
[t] to denote the function Ft : An → A given by Ft(a1, . . . , an) = [α(a1,...,an)](t) for
each tuple (a1, . . . , an) ∈ An, where α(a1,...,an)(xi) = ai for 1 ≤ i ≤ n.

An ordered F -algebra, is a triple (A,FA, >A), where (A,FA) is a F -algebra and
>A is a (strict) ordering on A. Then, we can define an ordering > on terms given
by t > s if and only [α](t) >A [α](s), for all α : X → A. If >A is well-founded,
then > also is and the algebra is said to be well-founded [44], Section 6.2.1.

Rewrite systems

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X ),
l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is the
right-hand side (rhs). A TRS is a pair R = (F , R) where R is a set of rewrite
rules. A term t ∈ T (F ,X ) rewrites to s (at position p), written t

p→R s (or just
t → s), if t|p = σ(l) and s = t[σ(r)]p, for some rule ρ : l → r ∈ R, p ∈ Pos(t) and
substitution σ.

Given R = (F , R), we take F as the disjoint union F = C 	 D of symbols
c ∈ C, called constructors and symbols f ∈ D, called defined functions, where
D = {root(l) | l → r ∈ R} and C = F −D.

Termination of rewriting

A TRS is terminating if → is terminating. The problem of proving termination
of a TRS is equivalent to finding a well-founded, stable, and monotonic (strict)
ordering > on terms (i.e., a reduction ordering) which is compatible with the rules
of the TRS, i.e., such that l > r for all rules l → r of the TRS. Here, monotonic
means that, for all k-ary symbol f and i ∈ {1, . . . , k}, > is monotonic on the
i-th argument of f , when f is viewed as a mapping f : T (F ,X )k → T (F ,X ).
Stable means that, whenever t > s, we have σ(t) > σ(s) for all terms t, s and
substitutions σ.

Given a TRS R = (F , R) = (C 	 D, R) the set DP(R) of dependency pairs
of R consists of the pairs 〈t, s〉 as follows: if f(t1, . . . , tm) → r ∈ R and r =
C[g(s1, . . . , sn)] for some defined symbol g ∈ D and s1, . . . , sn ∈ T (F ,X ), then
〈F (t1, . . . , tm), G(s1, . . . , sn)〉 ∈ DP(R), where F and G are new fresh symbols
(called tuple symbols) associated to defined symbols f and g respectively [1]. Let
F̂ be the set of tuple symbols associated to symbols in F (actually in D).
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A reduction pair (�, �) consists of a stable and weakly monotonic
quasi-ordering �, and a stable and well-founded ordering � satisfying either �
◦ � ⊆ � or � ◦ � ⊆ � [16, 29]. Note that monotonicity is not required for �. A
TRS R is terminating if and only if there is a reduction pair (�, �) such that l � r
for all l → r ∈ R and t � s for all 〈t, s〉 ∈ DP(R).

Replacement maps and context-sensitive rewriting

A mapping µ : F → P(N) is a replacement map (or F -map) if ∀f ∈ F , µ(f) ⊆
{1, . . . , ar(f)} [32]. We let µ⊥ (resp. µ�) be µ⊥(f) = ∅ (resp. µ�(f) =
{1, . . . , ar(f)}) for all f ∈ F .

The set of µ-replacing positions Posµ(t) of t ∈ T (F ,X ) is: Posµ(t) = {Λ},
if t ∈ X and Posµ(t) = {Λ} ∪

⋃

i∈µ(root(t)) i.Posµ(t|i), if t �∈ X . In context-
sensitive rewriting (CSR [32]), we (only) contract replacing redexes: t µ-rewrites
to s, written t ↪→µ s, if t

p→R s and p ∈ Posµ(t).

Example 2. Consider R and µ as in Example 1. Then, we have:
pairsNs ↪→µ cons(0,incr(oddNs)) �↪→µ cons(0,incr(incr(pairsNs)))

Since 2.1 �∈ Posµ(cons(0,incr(oddNs))), redex oddNs cannot be µ-rewritten.

A TRS R is µ-terminating if ↪→µ is terminating. Termination of CSR is fully
captured by the so-called µ-reduction orderings [43], i.e., well-founded, stable or-
derings > which are µ-monotonic, i.e., for all f ∈ F and i ∈ µ(f), > is monotonic
in the i-th argument of f . Then, a TRS R = (F , R) is µ-terminating if and only
if there is a µ-reduction ordering > which is compatible with the rules of R, i.e.,
for all l → r ∈ R, l > r [43], Proposition 1.

3. Algebras over the reals and reduction orderings

In this paper we are interested in using real functions over real numbers to
define term (quasi-) orderings which are useful in proofs of termination. Given a
signature F , A ⊆ R0, and an F -algebra over the reals A = (A,FA), consider �
given by

t � s ⇔ ∀α : X → A, [α](t) − [α](s) ≥R 0

for all t, s ∈ T (F ,X ). We have that � is an stable quasi-ordering on terms:

Proposition 1. Let F be a signature, A ⊆ R and A = (A,FA) be an F-algebra.
Then, � is a stable quasi-ordering on T (F ,X ).

Proof. Reflexivity and transitivity follow by that of partial order ≥R. Stability
of � is also easy: let t, s ∈ T (F ,X ) and Xt = Var(t), Xs = Var(s). Consider a
substitution σ : Xt ∪ Xs → T (F ,X ) and an arbitrary mapping α : X → A. Let
α0 : X → A be as follows: α0(x) = [α](σ(x)) if x ∈ Xt ∪ Xs and α0(x) = α(x)
otherwise. Thus, [α](σ(t)) = [α0](t) and [α](σ(s)) = [α0](s). Since t � s, we have
[α0](t) − [α0](s) ≥ 0. Therefore, [α](σ(t)) − [α](σ(s)) ≥ 0, i.e., σ(t) � σ(s). �
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The ordering (R, >R) is not well-founded, even if we consider bounded subsets
A ⊆ Rm for some m ∈ R. However, as in [17, 27], given δ ∈ R>0, we use the
following (strict) ordering on the set of real numbers: ∀x, y ∈ R,

x >R,δ y if x − y ≥R δ.

Let F be a signature, A ⊆ R, and A = (A,FA) be an F -algebra. Now, given
δ ∈ R>0 we define the relation >δ on terms by

t >δ s ⇔ ∀α : X → A, [α](t) − [α](s) ≥R δ.

Given m ∈ R and A ⊆ R, we say that fA : Ak → A is m-bounded if fA(x1, . . . , xk) ≥
m for all x1, . . . , xk ∈ A. If there exists m ∈ R such that fA is m-bounded for all
f ∈ F , then we say that A = (A,FA) is m-bounded. Thus, we have the following.

Theorem 1. Let F be a signature, A ⊆ R, m ∈ R, A = (A,FA) be an m-bounded
F-algebra, and δ ∈ R>0. Then, >δ is a well-founded and stable (strict) ordering
on T (F ,X ).

Proof. Checking transitivity is easy; irreflexivity is a consequence of well-founded-
ness, which we prove as follows: assume that there is an infinite sequence

t1 >δ t2 >δ · · · >δ tn >δ · · ·

Since [α](ti) − [α](ti+1) ≥ δ > 0 for all α : X → A, we have that, for an arbitrary
valuation α0, we can write: [α0](ti+1) ≤ [α0](ti)−δ for i ≥ 1. Let M = [α0](t1) and
n = 2+ �M−m

δ �. Then, [α0](tn) ≤ [α0](t1)− (n−1)× δ = M − (1+ �M−m
δ �)× δ ≤

M − M−m
δ × δ − δ = m − δ < m thus contradicting the m-boundedness of A.

Stability of >δ is proved as in Proposition 1. �

Requiring m-boundedness in Theorem 1 is necessary: the algebra (R, {aR, cR})
given by aR = 2 and cR(x) = −x2 is not m-bounded for any m ∈ R and the
following infinite decreasing sequence of terms is possible:

a >1 c(a) >1 c(c(a)) >1 · · · >δ cn(a) >1 · · ·

With δ = 0, well-foundedness of >δ is not guaranteed: Consider now A = R0,
aA = 1 and cA(x) = 1

2x; the algebra (A, {aA, cA}) is 0-bounded but the previous
infinite decreasing sequence is also possible with >0. Also, requiring a positive but
“local” δ to compare two given terms does not work: consider >′ given by

t >′ s ⇔ ∃δ ∈ R>0, ∀α : X → A, [α](t) − [α](s) ≥ δ.

Since [cn(a)] = 1
2n for all n ≥ 0, the previous infinite sequence is also possible with

>′. Finally, for similar reasons, using δ = 0 and > instead of ≥ to compare [α](t)
and [α](s) in Theorem 1 does not work either.
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Remark 1. For an m-bounded F -algebra (A,FA) over the reals, we can consider
(A′,FA′) where A′ = [m, +∞[∩A and the mappings in FA′ are the restrictions to
A′ of the mappings in FA. This generates the same ordering >δ on terms which,
in fact, is the ordering on terms induced by the (well-founded) ordered algebra
(A′,FA′ , >R,δ). On the other hand, if A = (A,FA) is an F -algebra with A ⊆ Rm

for some m ∈ R, then (A,FA) is m-bounded.

In order to use an ordering >δ (induced by an m-bounded algebra) for proving
termination of rewriting, we have to further ensure that >δ is monotonic. The
following example shows the use of Theorem 1 to prove termination of TRSs.

Example 3. Consider the TRS R = (F , R) [44], Example 6.2.22:
f(f(x)) → f(g(f(x)))

and the 0-bounded algebra (A,FA), where A = R0,

fA(x) = �x� +
1
2

and gA(x) = �x�

(here, �x� is the least integer above –or equal to– x and �x� is the integer part of
x). Note that >1 is monotonic: if t >1 s, then [α](t) ≥ [α](s)+1 for all valuations
α : X → A; hence, since �x + 1� = �x� + 1 and �x + 1� = �x� + 1, we have
[α](f(t))− [α](f(s)) = �[α](t)� − �[α](s)� ≥ �[α](s) + 1�− �[α](s)� = 1. Similarly,
[α](g(t)) − [α](g(s)) = �[α](t)� − �[α](s)� ≥ �[α](s) + 1� − �[α](s)� = 1. Thus, by
Theorem 1, >1 is a reduction ordering. On the other hand, we have:

[α](f(f(x))) = ��α(x)� + 1
2� + 1

2 = �α(x)� + 3
2 , and

[α](f(g(f(x)))) = ��(�α(x)� + 1
2 )�� + 1

2 = �α(x)� + 1
2 .

Therefore:

[α](f(f(x))) − [α](f(g(f(x)))) = �α(x)� +
3
2
−

(

�α(x)� +
1
2

)

= 1.

Then, f(f(x)) >1 f(g(f(x))) and R is terminating.

3.1. Monotonicity

The interpretation in Example 3 can also be used to show that monotonicity
does not need to be preserved when the value of δ is changed to either some δ′ < δ
or some δ′ > δ.

Example 4. Consider again the interpretation in Example 3. We have that
(1) >δ is not monotonic if δ = 1

2 + n for some n ∈ N: given a valuation α,
[α](fn+1(x)) = �α(x)� + n + 1

2 = �α(x)� + δ ≥ α(x) + δ ≥ [α](x), i.e.,
t = fn+1(x) >δ x = s, but [α](g(t)) = ��[α](x)� + δ� = �[α](x)� + n and
[α](g(s)) = �[α](x)�. Since the valuation α which assigns the value 0 to x
verifies [α](g(t)) = n and [α](g(s)) = 0, it follows that g(t) �>δ g(s), i.e.,
>δ is not monotonic in the argument of g.
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Figure 1. Detail of the function 3
4 + x − 1

1+(x
8
3 −2)2

in Example 5.

(2) >δ is monotonic if δ = n for any n ∈ N1: the proof is similar to that given
in Example 3 for >1.

The interpretation in Example 3 is based on non-continuous functions. The follow-
ing example shows that even with continuous and differentiable functions, mono-
tonicity of >δ can highly depend on the selected value for δ.

Example 5. Let F = {a, f, g}, where a is a constant and f and g are unary
symbols. Let A = R1 and consider the 1-bounded algebra A = (A,FA), where

aA = 16
√

23 = 16
√

8 � 1.1388
fA(x) = x2

gA(x) =
3
4

+ x − 1
1 + (x

8
3 − 2)2

·

It is possible to see that > 5
9

is monotonic. Let δ = 8
√

8 − 16
√

8 ≈ 0.1581. Now,
>δ is not monotonic. Figure 1 is helpful to understand why monotonicity of >δ

in the first argument of gA depends on the value of δ: the graph of gA is almost
a straight line except a “hole” roughly between 1 and 1.6. If the value of δ is big
enough, then this hole is ‘skipped’ when comparing terms with >δ and no lack of
monotonicity is observed.

The following theorem provides a sufficient condition to ensure monotonicity of
>δ for an arbitrary δ (in a wide class of interpretations).
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Theorem 2. Let F be a signature and A ⊆ R. Let A = (A,FA) be an F-algebra,
f ∈ F , and 1 ≤ i ≤ k = ar(f) be such that fA is continuous and differentiable in
its i-th argument. If ∂fA(x1,...,xi,...,xk)

∂xi
≥ 1, then for all δ ∈ R>0, >δ is monotonic

in the i-th argument of f .

Proof. Let t, s ∈ T (F ,X ) be such that t >δ s for an arbitrary δ ∈ R>0. We have
to prove that

f(t1, . . . , ti−1, t, . . . , tk) >δ f(t1, . . . , ti−1, s, . . . , tk),

i.e., that, for all α : X → A,

[α]f(t1, . . . , ti−1, t, . . . , tk) − [α]f(t1, . . . , ti−1, s, . . . , tk) ≥ δ

equivalently, that, for all α : X → A,

fA(a1, . . . , ai−1, [α](t), . . . , ak) − fA(a1, . . . , ai−1, [α](s), . . . , ak) ≥ δ

where ai = [α](ti) for 1 ≤ i ≤ k. Given an arbitrary valuation α, we have
[α](t) − [α](s) ≥ δ, i.e., [α](t) > [α](s). By the Mean Value Theorem, there is
z ∈ R satisfying [α](s) < z < [α](t) such that

∂fA

∂xi
(a1, . . . , ai−1, z, . . . , ak) =

fA(a1, . . . , ai−1, [α](t), . . . , ak) − fA(a1, . . . , ai−1, [α](s), . . . , ak)
[α](t) − [α](s)

·

By hypothesis,
∂fA

∂xi
(a1, . . . , ai−1, z, . . . , ak) ≥ 1.

Thus, fA(a1, . . . , ai−1, [α](t), . . . , ak) − fA(a1, . . . , ai−1, [α](s), . . . , ak) ≥ [α](t) −
[α](s) ≥ δ. Thus, f(t1, . . . , ti−1, t, . . . , tk) >δ f(t1, . . . , ti−1, s, . . . , tk). �

The following example shows that, in general, the “only if” direction of Theorem 2
does not hold.

Example 6. Consider the signature F = {a, f} consisting of a constant symbol a
and a unary symbol f . Let A = (R0,FR0) be an F -algebra where fA(x) = 0 and
aA = 0. Then, for all valuation mapping α and t ∈ T (F ,X ), we have [α](t) = 0.
Therefore, for all t, s ∈ T (F ,X ) and δ > 0, we have t �>δ s and >δ is vacuously
monotonic in the argument of f . However, ∂fA

∂x = 0.

Example 5 shows that monotonicity of >δ for the corresponding interpretation

depends on the concrete value of δ. Note that ∂gA

∂x = 1 +
16
3 x

5
3 (x

8
3 −2)

(1+(x
8
3 −2)2)2

�≥ 1 for

some values x < 8
√

8 � 1.2968. Thus, requiring partial derivatives greather than
or equal to 1 in Theorem 2 is necessary to ensure that monotonicity of >δ for the
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interpretation does not depend on the selected δ. However, even with Theorem 2,
the appropriate choice of δ for proving termination of TRSs is tricky.

Example 7. Consider the following TRS:
f(f(a)) → f(g(f(a)))

and the 1-bounded F -algebra of Example 5. Note that > 5
9

is a reduction ordering
on terms. Now,

fA(fA(aA)) = 4
√

8

and

fA(gA(fA(aA))) =
(

3
4

+ 8
√

8 − 1
)2

=
(

8
√

8 − 1
4

)2

= 4
√

8 − 1
2

8
√

8 +
1
16

·

Since

fA(fA(aA)) − fA(gA(fA(aA))) = 4
√

8 −
(

4
√

8 − 1
2

8
√

8 + 1
16

)

= 0.58592 ≥ 5
9

we conclude that f(f(a)) > 5
9
f(g(f(a))) thus proving termination of R.

However, if we take A′ = R 3
2

instead of A = R1 in the interpretation of Ex-

ample 5, then ∂gA′
∂x ≥ 1 (because this holds for all x ≥ 8

√
8), i.e., monotonicity of

>δ is ensured for all δ > 0. Now, however, we give [a] some real number above 3
2 ;

then there is no δ > 0 such that [f(f(a))] >δ [f(g(f(a)))].

The following result provides a sufficient condition ensuring weak monotonicity
of � in the argument of a function symbol.

Proposition 2. Let F be a signature and A ⊆ R. Let A = (A,FA) be an F-
algebra, f ∈ F , and 1 ≤ i ≤ k = ar(f) be such that fA is continuous and
differentiable in its i-th argument. If ∂fA(x1,...,xi,...,xk)

∂xi
≥ 0, then � is weakly

monotonic in the i-th argument of f .

Proof. Similar to the proof of Theorem 2. �

The previous examples show that the use of arbitrary real functions for inducing
reduction orderings can be quite involved regarding the selection of an appropriate
value for δ. Now we investigate how to work without making δ explicit.

3.2. Avoiding the choice of δ

When using an algebra over the reals A to induce a well-founded and stable
ordering >δ which can be used in proofs of termination, we would like to disregard
from choosing any value for δ. Theorem 2 provides quite a simple way to do it
regarding the necessary checking of total or partial monotonicity of >δ: if the par-
tial derivatives of each function w.r.t. the monotonic arguments are greather than
or equal to 1, then we can use any (positive) value for δ. The next proposition
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provides a basis to avoid the explicit specification of δ when checking compatibil-
ity of the ordering with a set of pairs of terms (e.g., the rules of a TRS or its
dependency pairs).

In the following, when considering an algebra over the reals A = (A,FA) and
terms t, s ∈ T (F ,X ), with Var(t) ∪ Var(s) = {x1, . . . , xn}, we write [t] − [s] to
denote the function Ft,s : An → R given by Ft,s(a1, . . . , an) = [α(a1,...,an)](t) −
[α(a1,...,an)](s) for each tuple (a1, . . . , an) ∈ An, where α(a1,...,an)(xi) = ai for
1 ≤ i ≤ n.

Proposition 3. Let T ⊆ T (F ,X )×T (F ,X ) be a finite set of pairs of terms and
A = (A,FA) be an algebra over the reals. If for each (t, s) ∈ T , there is δt,s ∈ R>0

such that Ft,s = [t] − [s] is δt,s-bounded in A, then δ = min({δt,s | (t, s) ∈ T }) is
positive and t >δ s for all (t, s) ∈ T .

Proof. Since δt,s > 0 for all (t, s) ∈ T and T is finite, δ is well-defined and,
moreover, δ > 0. Whenever δ1 ≥ δ2, we have that [t] − [s] ≥ δ1 (i.e., t >δ1 s)
implies that [t] − [s] ≥ δ2, i.e., t >δ2 s. Hence, the conclusion follows. �

Let’s illustrate the use of Proposition 3 in proofs of termination of CSR.

Example 8. Consider the following TRS R borrowing the well-known Toyama’s
example:

c -> a f(a,b,x) -> f(x,x,x)
c -> b

together with µ(f) = {1, 3}. Let A = (R1,FR1), where FR1 is:

[f](x, y, z) = x + xy−1 + zy−1 + z = (xy+z)+(x+yz)
y [a] = 2

[c] = 3 [b] = 1.

We have:
∂[f]
x = 1 + y−1 ≥ 1 ∂[f]

z = 1 + y−1 ≥ 1.

Thus, by Theorem 2, >δ is µ-monotonic for each δ ∈ R>0. Regarding the rules of
R, we have:

[f(a,b,x)] − [f(x,x,x)] = 2x + 4 − (2x + 2) = 2 > 0
[c] − [a] = 3 − 2 = 1 > 0
[c] − [b] = 3 − 1 = 2 > 0.

As in the proof of Proposition 3, we let δ = min({2, 1}) = 1. Then, >1 is com-
patible with the rules of R. Since A is 1-bounded, by Theorem 1 this proves the
µ-termination of R. Note that no given δ is needed in the proof!

The results in this section provide a general framework to prove termination
by using (quasi-) orderings induced by algebras over the reals. Of course, in order
to achieve automatic proofs we need to generate such algebraic interpretations
rather than relying on a given one. As we will see in the following sections, when
considering polynomial interpretations, we can automatically generate them to
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fulfill the conditions in Proposition 1, Theorem 2, Proposition 2, and Proposition 3,
thus avoiding any explicit choice of δ in the implementation of automatic proofs
of termination.

4. Termination of TRSs using dependency pairs

As explained in Section 2, when using the dependency pairs method [1], we can
prove termination of a TRS R by showing that there is a reduction pair (�, �)
such that the lhs and rhs of each rule of R are comparable by using � whereas
the components of each dependency pair are comparable by using �.

Example 9. Consider the TRS R which is part of the TPDB3:
f(f(x)) -> f(g(f(g(f(x)))))

f(g(f(x))) -> f(g(x)).

Termination of R can be proved by finding a reduction pair (�, �) such that:
f(f(x)) � f(g(f(g(f(x))))) F(f(x)) � F(g(f(g(f(x)))))

f(g(f(x))) � f(g(x)) F(f(x)) � F(g(f(x)))

F(f(x)) � F(x)

F(g(f(x))) � F(g(x))

where F is the tuple symbol that corresponds to f.

Now we show that algebras over the reals are useful to generate reduction pairs.

Proposition 4. Let F be a signature, m ∈ R, δ ∈ R>0, A ⊆ R, and A = (A,FA)
be an m-bounded F-algebra such that � is weakly monotonic. Then, (�, >δ) is a
reduction pair.

Proof. By Proposition 1 and by hypothesis, � is a stable, weakly monotonic quasi-
ordering. By Theorem 1, >δ is a well-founded and stable ordering. We also have
� ◦ >δ ⊆>δ: if there is u such that [α](t) − [α](u) ≥ 0 and [α](u) − [α](s) ≥ δ for
all α : X → A, then [α](t) − [α](u) + [α](u) − [α](s) = [α](t) − [α](s) ≥ 0 + δ = δ,
i.e., t >δ s. Thus, (�, >δ) is a reduction pair. �
The absence of monotonicity requirements in reduction pairs (apart from weak
monotonicity) corresponds to the use of the least replacement map µ⊥(f) = ∅

for all f ∈ F which expresses no monotonicity requirements for >δ. Now, we can
define an algebra over the reals which makes � and >δ compatible with the rules
and the dependency pairs of Example 9.

Example 10. The polynomial interpretation (R0,FR0) with:

[f](x) = x + 4 [F](x) = x

[g](x) = 1
2x

defines a reduction pair (�, >1) which proves termination of R in Example 9.

3 Termination Problems Data Base, see http://www.lsi.upc.es/∼albert/tpdb.html and
also http://www.lri.fr/∼marche/wst2004-competition/tpdb/Rubio/aoto.trs .
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In fact, Arts and Giesl already noticed that the polynomials used with depen-
dency pairs do not necessarily depend on all their arguments [1], page 142, i.e.,
they can induce non-monotonic orderings. We will see that the use of positive real
coefficients below the unit (i.e., between 0 and 1) to introduce non-monotonicity
in the corresponding term orderings makes a difference which cannot be simulated
by using polynomials over the naturals (see Prop. 8 below). In the proof of ter-
mination of Example 10, the difference is noticeable in that the proof which uses
polynomials over the rationals is pretty simple and automatic4, but it becomes
more involved (in the sense that more elaborated techniques are required) or im-
possible when more traditional base orderings are used in combination with the
dependency pairs approach. Other interesting examples can also be given.

Example 11. Consider the following TRS [2] Example 3.42, (originally due to
Alfons Geser):

half(0) -> 0
half(s(0)) -> 0
half(s(s(x))) -> s(half(x))
lastbit(0) -> 0
lastbit(s(0)) -> s(0)
lastbit(s(s(x))) -> lastbit(x)
conv(0) -> cons(nil,0)
conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x)))

The set of dependency pairs for R is:

〈 HALF(s(s(x))) , HALF(x) 〉
〈 LASTBIT(s(s(x))) , LASTBIT(x) 〉
〈 CONV(s(x)) , CONV(half(s(x))) 〉
〈 CONV(s(x)) , HALF(s(x)) 〉
〈 CONV(s(x)) , LASTBIT(s(x)) 〉

The following polynomial interpretation:

[half](x) = 1
2x [cons](x, y) = 0

[0] = 0 [nil](x) = 0
[s](x) = x + 1 [HALF](x) = x

[lastbit](x) = 1 [LASTBIT](x) = x
[conv](x) = 0 [CONV](x) = 2x

defines a reduction pair (�, >1) which proves termination of R. Termination of R
is proved in [2] by transforming the dependency pairs using narrowing [1, 2].

Many refinements in the use of dependency pairs are possible (see,
e.g., [1, 16, 24, 42]). They are intended to remove or simplify as many rules and
dependency pairs as possible before trying to use a reduction pair to compare the

4 For instance, mu-term can be used to obtain this proof.
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corresponding components. The use of non-monotonic interpretations over the re-
als for generating such reduction pairs complements these improvements, although
more research should be done to fix the best conditions for using all together.

5. Polynomial interpretations

Let A be a subring of a commutative ring B. Let x1, . . . , xn ∈ B. For each
n-tuple (r1, . . . , rn) = (r) ∈ N

n (called a multi-index), we use vector notation,
letting (x) = (x1, . . . , xn), and πr(x) = xr1

1 · · ·xrn
n [31]. Such products πr (for

each multi-index r ∈ N
n) are called (primitive) monomials in n variables over B.

∑n
i=1 ri is the degree of the monomial; if r1 = r2 = · · · = rn = 0, then πr is the

constant monomial 1.
A polynomial P in n variables over B with coefficients in A is the sum P =

∑

r∈Nn ar · πr(x), where ar ∈ A, of finitely many monomials in n variables over
B. The set of such polynomials is denoted by A[x1, . . . , xn], where x1, . . . , xn are
distinct variables. When variables x1, . . . , xn range on B, P induces a (polynomial)
function P (x1, . . . , xn) : B

n → B. In the following, we will write πr ∈ P (or just
π ∈ P ) to express that πr is a monomial of a polynomial P such that ar �= 0.
Moreover, for a given monomial πr ∈ P we let coef(πr) = ar, degi(πr) = ri for
1 ≤ i ≤ n, and I+

π = {i ∈ {1, . . . , n} | ri �= 0}.
The interpretation of a term t ∈ T (F ,X ) by a polynomial interpretation (A,FA)

yields a polynomial [t] in n variables x1, . . . , xn where Var(t) = {x1, . . . , xn}.

Remark 2. Note that, when using polynomial functions to build a polynomial
algebraic interpretation A = (A,FA) for a signature F , we have to guarantee
that A is actually an algebra by ensuring that, for all k-ary symbols f ∈ F , and
x1, . . . , xk ∈ A, [f ](x1, . . . , xk) ∈ A.

5.1. Implicit δ in polynomial interpretations

Continuing the discussion in Section 3.2, when polynomial interpretations are
considered, we have a simple way to ensure the conditions in Proposition 3.

Proposition 5. Let α ∈ R0 be such that α ∈ A ⊆ Rα, and P ∈ R0[x1, . . . , xn] be
a polynomial without negative coefficients. Then β = P (α, . . . , α) is the minimum
of P in An, i.e., for all x1, . . . , xn ∈ A, P (x1, . . . , xn) ≥ β.

Proof. The product of non-negative real numbers is monotone, i.e., ∀x, x′, y, y′ ∈
R0, whenever x ≤ x′ and y ≤ y′, we have x · y ≤ x′ · y′. Let π ∈ P . Since α ≥ 0
and coef(π) > 0, we have that coef(π) ·π(α, . . . , α) ≤ coef(π) ·π(x1, . . . , xn) for all
x1, . . . , xn ∈ A. Since the addition of real numbers is monotone, we further have
β = P (α, . . . , α) =

∑

π∈P coef(π) · π(α, . . . , α) ≤
∑

π∈P coef(π) · π(x1, . . . , xn) =
P (x1, . . . , xn) for all x1, . . . , xn ∈ A. �

Proposition 5 does not hold for arbitrary (even positive) polynomials.
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Example 12. The following polynomial [3], Section 6.5.4:

P (x, y) = (xy − 1)2 + x2 = x2y2 − 2xy + x2 + 1

is positive for all x, y ∈ R. Let’s show that there is no β > 0 such that P (x, y) ≥ β
for all x, y ≥ 0: Since P (1

2 , 1) = 1
2 , we can assume that 0 < β ≤ 1

2 . Then,
P (β, 1

β ) = β2 < β.

Proposition 5 is interesting when we require that the polynomial Pt,s(x1, . . . , xn) =
[t] − [s] (with indeterminate coefficients!) which is obtained from the rules or
dependency pairs of a TRS has positive coefficients as a suitable way to ensure
positiveness of Pt,s (see Sect. 6 below). The following corollary of Propositions 3
and 5 formalizes this point.

Corollary 1. Let T ⊆ T (F ,X ) × T (F ,X ) be a finite set of pairs of terms. Let
α ∈ R0 be such that α ∈ A ⊆ Rα, and A = (A,FA) be a polynomial algebra. Given
(t, s) ∈ T , let Pt,s(x1, . . . , xn) = [t] − [s]. If for all (t, s) ∈ T , Pt,s contains no
negative coefficient and δt,s = Pt,s(α, . . . , α) > 0, then δ = min({δt,s | (t, s) ∈ T }
satisfies t >δ s for all (t, s) ∈ T .

5.2. Polynomial interpretations with negative coefficients

Due to their potential for introducing non-monotonicity in the generated or-
derings, we are going to consider polynomials P possibly containing real negative
coefficients, i.e., P ∈ R[x1, . . . , xn].

Example 13. Consider the TRS R:
g(x) -> h(x) h(d) -> g(c)
c -> d

together with µ(g) = µ(h) = ∅ [43], Example 1. The µ-termination of R is proved
with the following polynomial interpretation:

[g](x) = x2 − 3x + 4 [c] = 1
[h](x) = x2 − 3x + 3 [d] = 0.

The use of negative coefficients in the interpretation is crucial in this example.

The following result imposes some general restrictions on the structure of (m-
bounded) polynomials containing such negative coefficients: if an m-bounded poly-
nomial P contains a negative monomial π containing a variable x raised to r, then
either P contains a positive monomial with x raised to r′ > r, or π is “contained”
in a 0-bounded part of P .

Proposition 6. Let m ∈ R, A ⊆ R0 be unbounded, P ∈ R[x1, . . . , xn] be m-
bounded in A, and π ∈ P be such that I+

π �= ∅. If coef(π) < 0, then, for all
i ∈ I+

π , either
(1) there is a monomial π′ ∈ P satisfying coef(π′) > 0 and degi(π

′) > ri; or
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(2) there is P ′ ∈ R[x1, . . . , xi−1, xi+1, . . . , xn] such that P ′ is 0-bounded in A,
π

x
ri
i

∈ P ′, and P ′ · xri

i ⊆ P ,

where ri = degi(π).

Proof. We proceed by contradiction. Let i ∈ I+
π and assume that, for all mono-

mial π′ ∈ P , we have coef(π′) ≤ 0 whenever degi(π
′) > ri. Moreover, let

P ′ · xri

i be the polynomial obtained by taking all monomials π′ ∈ P such that
degi(π′) = ri (in particular, π belongs to such a polynomial). Then, P ′ ∈
R[x1, . . . , xi−1, xi+1, . . . , xn], π

x
ri
i

∈ P ′, and we can assume that P ′ is not 0-
bounded in A. Thus, there are z1, . . . , zi−1, zi+1, . . . , zn ∈ A such that

P ′(z1, . . . , zi−1, zi+1, . . . , zn) < 0.

We obtain that P (z1, . . . , zi−1, xi, zi+1, . . . , zn) can be written as follows:

anxn
i + · · · + ari+1x

ri+1
i + arix

ri

i + ari−1x
ri−1
i + · · · + a1xi + a0

where an, . . . , ari+1 ≤ 0 (because all monomials π′ ∈ P with degi(π′) > ri satisfy
coef(π′) ≤ 0 and we take z1, . . . , zi−1, zi+1, . . . , zn ≥ 0) and

ari = P ′(z1, . . . , zi−1, zi+1, . . . , zn) < 0.

Let Q(xi) = arix
ri

i + ari−1x
ri−1
i + · · · + a1xi + a0 ∈ R[xi]; then, for all xi ≥ 0,

P (z1, . . . , zi−1, xi, zi+1, . . . , zn) ≤ Q(xi).

Since ari < 0, we have that limx→+∞Q(x) = −∞, i.e., for all M ∈ R, there is
x ∈ R≥0 such that, for all y ≥ x, Q(y) < M . In particular, since A is not bounded,
there is x ∈ A such that Q(x) < m. Then,

P (z1, . . . , zi−1, x, zi+1, . . . , zn) ≤ Q(x) < m.

This contradicts m-boundedness of P in A. �
The following example shows the need of the two cases in Proposition 6:

Example 14. The polynomial P (x, y) = x2 − 2xy + y2 = (x − y)2 is 0-bounded
in R0 (actually in R). Note that the negative monomial −2xy does not satisfy 2
in Proposition 6. On the other hand, P (x, y) = xy − y is 0-bounded in [1, +∞[
and it does not satisfy 1 in Proposition 6.

5.3. Polynomial interpretations and non-monotonic orderings

The µ-reduction orderings can also be defined by means of m-bounded F -
algebras over the reals. Well-foundedness and stability of >δ is already ensured by
Theorem 1. The µ-monotonicity requirements can be guaranteed by using The-
orem 2; Proposition 3 can be eventually used to avoid an explicit δ (see Ex. 8).
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We show that the computation of non-monotonic orderings can greatly benefit
both from the use of polynomial interpretations over N (instead of N1) and Q0

(instead of N).

Proposition 7. There is a TRS which can be proved µ-terminating by using a
polynomial interpretation over N whereas it cannot be proved by using a polynomial
interpretation over N1.

Proof. Consider the TRS R:
if(true,x,y) -> x f(x) -> if(x,c,f(true))
if(false,x,y) -> y

together with µ(f) = {1} and µ(if) = {1, 2} [43], Example 5. The µ-termination
of R can be proved by using the ordering >1 induced by the following polynomial
interpretation over N:

[f](x) = 3x + 2 [true] = 0
[if](x, y, z) = xz + x + y + 1 [false] = 1.

[c] = 0.

Assume that there is a polynomial interpretation (N1,FN1) and some δ > 0 such
that >δ is a µ-reduction ordering which is compatible with the rules of R. Such an
interpretation includes a polynomial [if](x, y, z) which must contain a monomial
π containing z; otherwise, compatibility of >δ with the second rule for if would
be impossible. Since coef(π) is a positive natural number, we have coef(π) ≥ 1 and
hence, since all coefficients in polynomials are natural numbers and x, y, z ≥ 1,
∂[f ]
∂z ≥ ∂π

∂z ≥ 1. Thus, by Theorem 2, >δ is monotonic in the third argument
of [if]. Hence, >δ is a reduction ordering compatible with R. But this is not
possible, since R is not terminating. �

Proposition 8. There is a TRS R which can be proved µ-terminating by using
a polynomial interpretation over Q0 whereas it cannot be proved terminating by
using a polynomial interpretation over N.

Proof. Consider the TRS R:
zeros -> 0:zeros
tl(x:y) -> y

together with µ(:) = {1}. The µ-termination of R can be proved by using the
ordering >1 induced by the following polynomial interpretation:

[zeros] = 2 x [:] y = x + 1
2y

[0] = 0 [tl](x) = 2x + 1.

Note that >1 is µ-monotonic: since ∂[:]
∂x = 1 ≥ 1 and ∂[tl]

∂x = 2 ≥ 1, by Theorem 2,
µ-monotonicity follows.

In order to see that there is no polynomial interpretation over the naturals
which prove µ-termination of R, note that the polynomial [:] for “:” should,
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then, contain a monomial a xmyn with m ∈ N, a, n ∈ N1; otherwise, the rule
tl(x:y) -> y cannot be oriented (because [tl] would not receive any information
about the contents of variable y). Consider two cases for m:

(1) m = 0. In this case, for the rule zeros -> 0:zeros we would have

[zeros] = c > [0:zeros] ≥ a cn

which is not possible if a, c, n ≥ 1, because a cn ≥ c.
(2) m > 0. We consider two cases:

(a) Constant 0 is interpreted as 0. This means that variables can also
take value 0. In this case, when considering valuations α such that
α(x) = 0, for the rule tl(x:y) -> y we would have [α](tl(x:y)) =
[tl](0[:]α(y)) = [tl](P:(α(y))), where P: is the polynomial in a single
variable y obtained from [:] by removing all monomials of positive
degree in x. Since

[α](tl(x:y)) = [tl](P:(α(y))) > α(y) = [α](y)

P: must contain a monomial of positive degree (in y). This means that
x[:]y contains at least a monomial of positive degree in y and degree 0
in x. By reasoning as in 1 above, we conclude that such a polynomial
interpretation cannot deal with the rule zeros -> 0:zeros.

(b) Constant 0 is interpreted as d > 0. Then, for zeros -> 0:zeros we
would need to have: [zeros] = c > [0:zeros] ≥ a dmcn, which is not
possible if a, c, d, m, n ≥ 1, because a dmcn ≥ c.

�
The proof of Proposition 8 shows why coefficients ranging between 0 and 1 are
useful: by giving “:” a polynomial interpretation [:] whose second (non-replacing)
argument contributes as half of its value we can deal with recursive calls in right-
hand sides (as in the rule zeros -> 0:zeros) whilst sufficient information is still
kept to be used in left-hand sides (as in the rule tl(x:y) -> y). A similar rea-
soning shows that the TRS in Example 1, whose polynomial termination is proved
below by means of a polynomial interpretation over the rationals, cannot be proved
µ-terminating by using polynomials over the natural numbers.

Example 15. The µ-termination of R in Example 1 can be proved by using the
following polynomial interpretation:

[nil] = 1 [zip](x, y) = 2x + 2y
[pairNs](x) = 3 [take](x, y) = x + y + 2
[cons](x, y) = x + 1

4y + 1 [tail](x) = 4x
[pair](x, y) = x + y [repItems](x) = 2x

[0] = 0 [oddNs](x) = 5
[s](x) = x [incr](x) = x + 1

which can be computed automatically by using mu-term.



568 S. LUCAS

6. Automatic generation of polynomial interpretations

with real coefficients

Polynomial interpretations are well-suited to mechanize the proofs of termina-
tion [30]. In [9], Contejean, Marché, Tomás, and Urbain explain how to proceed
for searching a polynomial interpretation over the naturals (if any) which proves
termination of a TRS R.

Regarding the domain A of the computed polynomial algebra, Contejean et al.
fix A = N and prove that every proof of termination obtained by using a polynomial
algebra (Nn,FNn) for a given n > 0 can be also obtained by a polynomial algebra
(N,FN) by a simple translation [9], Proposition 3.12.

In their approach, polynomials [f ] only contain non-negative integer coefficients,
i.e., [f ] ∈ N[x1, . . . , xk] for each f ∈ F . In order to generate them, they associate
a parametric polynomial to each f ∈ F . A parametric polynomial is a polynomial
whose coefficients are variables whose values have to be found in some way. In
order to fix values for the indeterminate coefficients (thus obtaining a polynomial
reduction ordering � which proves termination of R), the following constraints
are imposed [9], Section 4.1:

(1) For each f ∈ F , all coefficients in [f ] are non-negative integers. Since
the domain of the interpretation is N, this guarantees that the polynomial
functions actually define a proper (well-founded) algebra (see Rem. 2).

(2) For each k-ary symbol f ∈ F and i ∈ {1, . . . , k}, [f ] contains a monomial
xi with coef(xi) ≥ 1. This guarantees monotonicity of �.

(3) For each l → r ∈ R, [l]− [r] ≥ 1, which actually means that all coefficients
in each polynomial Pl,r = [l]− [r]− 1 are non-negative, i.e., the constraint
[l]− [r] ≥ 1 actually generates a constraint coef(π) ≥ 0 for each monomial
π ∈ Pl,r. This guarantees compatibility of � with the rules of R.

The obtained Diophantine constraints can be solved by using existing algorithms.

As discussed above, non-monotonic polynomial interpretations can be useful in
many termination problems. In our setting, we discuss two main termination prob-
lems: the µ-termination of TRSs and termination of TRSs by using dependency
pairs. In the following, we discuss how to automatically compute non-monotonic
polynomial interpretations over the reals which are useful for this purposes.

6.1. Proof of polynomial µ-termination of CSR

In order to obtain a polynomial proof of µ-termination of a TRS R = (F , R),
we will use parametric polynomial interpretations whose indeterminate coefficients
are intended to be real instead of natural numbers, i.e., [f ] ∈ R[x1, . . . , xk] for each
k-ary symbol f ∈ F .

Our interpretation domain is R0. As in Contejean et al.’s work, this choice is
actually justified by [9], Proposition 3.12, because it is easy to check that the proof
remains valid when we use polynomial interpretations with real coefficients and the
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ordering >δ between terms (for any δ > 0). On the other hand, Corollary 1 also
suggests to use R0, where we are able to easily avoid fixing an explicit value for δ.
Proposition 7 also motivates the inclusion of 0 in the interpretation. As mentioned
in Remark 1, this choice makes our polynomial interpretation 0-bounded. For this,
however, we have to ensure that all polynomials receiving values in R0 also return
values in R0 (Rem. 2).

Our parametric polynomials are intended to have real (possibly negative) coef-
ficients. Then, we impose restrictions on the indeterminate coefficients to (try to)
compute a polynomial interpretation inducing a µ-reduction ordering >δ which
proves the µ-termination of R. As discussed in Section 5.1, however, when using
polynomial interpretations we can easily avoid fixing a concrete δ. According to
this, the set of constraints is obtained by requiring the polynomial interpretations
to satisfy the following conditions which ensure that we are using a µ-reduction
ordering (items 1 and 2) which is compatible with R (item 3):

(1) Properly defined polynomial interpretation over R0: [f ](x1, . . . , xk) ≥ 0
for all k-ary symbols f ∈ F and x1, . . . , xk ≥ 0. This also guarantees
0-boundedness (Rem. 2). By Theorem 1, >δ is well-founded and stable
for any δ > 0, in particular, for the implicit δ which can be obtained from
the computed interpretation (see item 3 below).

(2) µ-monotonicity: ∂[f ](x1,...,xi,...,xk)
∂xi

≥ 1 for all f ∈ F , i ∈ µ(f), and
x1, . . . , xk ≥ 0. By Theorem 2, this guarantees the µ-monotonicity of
>δ for all δ > 0.

(3) Compatibility with the rules of R: For each l → r ∈ R, we require [l]−[r] >
0 for all x1, . . . , xn ≥ 0, where x1, . . . , xn are the variables in Var(l) ∪
Var(r). More precisely: we impose that the constant coefficient π0···0 of
Pl,r = [l]−[r] is positive, and all other coefficients in Pl,r are non-negative.
Thus, the constraint [l]− [r] > 0 is actually implied by the conjunction of
a constraint coef(π0···0) > 0 and constraints coef(π) ≥ 0 for each π ∈ Pl,r

such that π �= π0···0. By Corollary 1, this guarantees the compatibility of
>δ for the implicit δ = min({coef(π0···0) | π0···0 ∈ Pl,r, l → r ∈ R}).

This set of constraints is intended to be solved in the domain of the real numbers.
In contrast to [9], we do not deal with Diophantine constraints. Although such
polynomial constraints over the reals are decidable [41], the difficulty of the proce-
dure depends on the degree and composition of the parametric polynomials that we
use for this. As in [9], we consider three classes of polynomials which are well-suited
for automatization of termination proofs: linear [30], simple, and simple-mixed [39]
polynomial interpretations. Under the conditions described above, these polyno-
mial interpretations do not admit negative coefficients (this is justified below). We
describe a new class of interpretations, called 2-simple-mixed, which are well-suited
for this purpose.

In the following, we investigate how to proceed with these polynomial inter-
pretations. Note, however, that only the treatment of items 1 and 2 above will
actually vary depending on the concrete shape of the polynomials used in the
interpretation. The treatment of item 3 is the same in all cases.
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6.1.1. Linear polynomial interpretations

A polynomial P ∈ R[x1, . . . , xn] is linear, if P = anxn + an−1xn−1 + · · · +
a1x1 + a0. Note that, since we have to guarantee that [f ](x1, . . . , xk) ≥ 0 for
all f ∈ F and x1, . . . , xk ≥ 0, the independent coefficient a0 of [f ] cannot be
negative; otherwise, [f ](0, . . . , 0) = a0 < 0. Moreover, according to Proposition 6,
negative coefficients cannot be used in any other monomial in a linear polynomial
interpretation. Therefore, we must impose [f ] ∈ R0[x1, . . . , xn]. Regarding µ-
monotonicity, following Theorem 2 we fix ∂[f ]

∂xi
= ai ≥ 1 for each i ∈ µ(f).

Following the generic method in Section 6.1, each k-ary symbol f ∈ F is inter-
preted as a linear polynomial [f ] = akxk + · · · + a1x1 + a0 where

(1) a0 ∈ R0 and ai ∈ R0 if i �∈ µ(f);
(2) ai ∈ R1 if i ∈ µ(f).

The following example shows how these ideas work in practice.

Example 16. Consider the TRS R:
nats -> adx(zeros) adx(x:y) -> incr(x:adx(y))

zeros -> 0:zeros incr(x:y) -> s(x):incr(y)

hd(x:y) -> x tl(x:y) -> y

together with µ(:) = µ(s) = ∅ and µ(incr) = µ(adx) = µ(hd) = µ(tl) = {1} [20],
Section 1. We are going to prove the µ-termination of R. The symbols of the
signature are given parametric linear polynomials:

[nats] = a0 [incr](x) = f1x + f0

[adx](x) = b1x + b0 [s](x) = g1x + g0

[zeros] = c0 [hd](x) = h1x + h0

x [:] y = d10x + d01y + d00 [tl](x) = i1x + i0
[0] = e0

where, according to the procedure described above, we have the following:

(1) Constraints due to the proper definition of the interpretation.

a0 ≥ 0 d00 ≥ 0 e0 ≥ 0 g1 ≥ 0

b0 ≥ 0 d01 ≥ 0 f0 ≥ 0 h0 ≥ 0

c0 ≥ 0 d10 ≥ 0 g0 ≥ 0 i0 ≥ 0

(2) Constraints due to µ-monotonicity.

b1 ≥ 1 f1 ≥ 1 h1 ≥ 1 i1 ≥ 1

(3) Constraints due to compatibility with rules:
(a) Compatibility with the rule nats -> adx(zeros):

a0 − b1c0 − b0 > 0
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(b) Compatibility with the rule zeros -> 0:zeros:

c0 − d10e0 − d01c0 − d00 > 0

(c) Compatibility with the rule incr(x:y) -> s(x):incr(y):

f1(d10x + d01y + d00) + f0 − (d10(g1x + g0) + d01(f1y + f0) + d00) > 0.

Now we collect the coefficients accompanying each variable x1, . . . , xk

to obtain a constraint Akxk + · · · + A1x1 + A0 > 0. In this case:

(f1d10 − d10g1)x + (f1d01 − d01f1)y + (f1d00 + f0 − d10g0 − d01f0 − d00) > 0.

Then, according to item 3 in Section 6.1, we have now Ak ≥ 0∧ · · · ∧
A1 ≥ 0 ∧ A0 > 0. For the constraint above, we obtain

f1d10 − d10g1 ≥ 0 ∧ f1d01 − d01f1 ≥ 0 ∧ f1d00 + f0 − d10g0 − d01f0 − d00 > 0

(d) Compatibility with adx(x:y) -> incr(x:adx(y)), hd(x:y) -> x,
and tl(x:y) -> y similarly yield the remainder of constraints.

Now, the set of computed constraints can be solved as a set of constraints over the
reals by an appropriate system. With CON’FLEX, we obtain a solution leading to
the following polynomial interpretation over the reals:

[nats] = 1.740 [incr](x) = 1.000x + 0.251
[adx](x) = 1.100x + 0.658 [s](x) = 0.300x + 0.224
[zeros] = 0.932 [hd](x) = 2.322x + 0.300
x [:] y = 0.431x + 0.431y + 0.288 [tl](x) = 2.322x + 0.300

[0] = 0.300

which proves the µ-termination of R.

Now, we can obtain the “hidden” δ which is implicitly used for ensuring that the
polynomial interpretation computed in Example 16 actually proves termination of
R in the example. According to Corollary 1 (with α = 0):

δnats,adx(zeros) = 0, 0568
δzeros,0:zeros = 0, 113008

δincr(x:y),s(x):incr(y) = 0, 046275
δadx(x:y),incr(x:adx(y)) = 0, 152202

δhd(x:y),x = 0, 968736
δtl(x:y),y = 0, 968736.

Therefore,

δ = min({0, 0568, 0, 113008, 0, 046275, 0, 152202, 0, 968736, 0, 968736}) = 0, 046275.
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6.1.2. Simple and simple-mixed polynomial interpretations

A polynomial P ∈ R[x1, . . . , xn] is simple if no exponent is greater than 1, i.e.,
for each monomial π ∈ P and i ∈ I+

π , we have degi(π) = 1. The polynomial P is
simple-mixed if no exponent is greater than 1 or n = 1 and P = a2x

2
1 + a0 [39].

Note that, since we have to guarantee that [f ](x1, . . . , xk) ≥ 0 for all f ∈ F and
x1, . . . , xk ≥ 0 again the independent coefficient cannot be negative. Moreover,
by using Proposition 6, it is not difficult to see that we cannot use negative coef-
ficients in any other monomial in simple polynomial interpretations: since item 1
in Proposition 6 does not apply, the only possibility would be to have (by item 2)
each negative monomial π contained in a 0-bounded polynomial P ′ which contains
a negative coefficient coef(π) = coef(π′) for a monomial π′ = π

xi
∈ P ′ for some

i ∈ I+
π . Note that π′ contains exactly the same variables as π but xi. Now, we

can repeatedly apply Proposition 6 to P ′ and π′ to finally conclude that there is a
polynomial P

′′
which is 0-bounded in R0 and contains a negative constant coef(π).

Since P
′′
(0, . . . , 0) = coef(π), this contradicts 0-boundedness of P

′′
in R0. A sim-

ilar reasoning applies to simple-mixed interpretations, because polynomials with
quadratic monomials have no linear monomial.

Regarding µ-monotonicity: since [f ] has no negative coefficients, we just need
to fix coef(πi) ≥ 1 if πi ∈ [f ] is the monomial xi for each i ∈ µ(f). This is
justified as follows: by Theorem 2 we can impose ∂[f ](x1,...,xi,...,xk)

∂xi
≥ 1 for each

i ∈ µ(f). Since ∂[f ]
∂xi

(0, . . . , 0) = coef(πi), it must be coef(πi) ≥ 1. On the other

hand, since ∂[f ](x1,...,xi,...,xk)
∂xi

has no negative coefficient, by Proposition 5, for all

x1, . . . , xk ∈ R0,
∂[f ]
∂xi

(x1, . . . , xi, . . . , xk) ≥ coef(πi) ≥ 1.
Hence, following the generic method in Section 6.1, we assume that each k-ary

symbol f ∈ F is interpreted as a simple or simple-mixed polynomial [f ] where
(1) coef(π) ≥ 0 for all π ∈ [f ], and
(2) coef(πi) ≥ 1 if πi ∈ [f ] is the monomial xi and i ∈ µ(f).

6.1.3. Use of polynomials with negative coefficients

The polynomials in the previous sections do not admit negative coefficients in
any monomial. According to Proposition 6, if we want to use negative coefficients
in some monomials (as, e.g., in Ex. 13), we have to consider, at least, the following
class of polynomials.

Definition 1 (2-simple-mixed polynomial). A polynomial P ∈ R[x1, . . . , xn] is
2-simple-mixed if each monomial π ∈ P satisfies either:

(1) degi(π) ≤ 1 for all i ∈ {1, . . . , k}; or
(2) degi(π) = 2 for some i ∈ {1, . . . , k} and degj(π) = 0 for all j ∈ {1, . . . , k}−

{i}.
Note that simple-mixed polynomials are also 2-simple mixed. The polynomials

in Example 13 are 2-simple mixed.
Regarding the automatic generation of such polynomials, we note that, since we

still have to guarantee that [f ](x1, . . . , xk) ≥ 0 for all f ∈ F and x1, . . . , xk ≥ 0,
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again the constant coefficient cannot be negative. On the other hand, by Proposi-
tion 6, coef(π) ≥ 0 if π ∈ [f ] contains a variable xi raised to 2 (i.e., degi(π) = 2);
moreover, coef(π) > 0 if some other π′ ∈ [f ] contains xi (i.e., i ∈ I+

π ∩ I+
π′ and

degi(π′) = 1) and satisfies coef(π′) < 0 (otherwise, we could reason as done in
Section 6.1.2 for simple polynomial interpretations).

The following well-known fact can be used to guarantee 0-boundedness of a
quadratic polynomial:

Observation 1. Let P (x) = Ax2 + Bx + C. Then, P (x) ≥ 0 for all x ≥ 0 if and
only if either

(1) A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0; or
(2) A > 0 ∧ B < 0 ∧ 4AC − B2 ≥ 0.

The idea, now, is to use Observation 1 to determine the value (and sign) of co-
efficients. We do not need to fix any coefficient to be negative. This arises as a
consequence of the second item in Observation 1.

Regarding µ-monotonicity, note that, for every k-ary symbol f ∈ F and i ∈
{1, . . . , k}, ∂[f ]

∂xi
is a simple polynomial. Thus, as discussed in Section 6.1.2, in

order to guarantee that ∂[f ]
∂xi

≥ 1 (equivalently ∂[f ]
∂xi

− 1 ≥ 0) for all i ∈ µ(f),

we require that polynomial ∂[f ]
∂xi

− 1 contains no negative coefficient, i.e., for all
π ∈ [f ], i ∈ µ(f) ∩ I+

π , and π′ ∈ [f ] such that i ∈ I+
π′ , we let coef(π′) ≥ 1 if

π′ = xi, or coef(π′) ≥ 0 otherwise. Note that µ-monotonicity restrictions can
force some coefficients to be non-negative in the interpretation. Thus, in order
to reduce the size of the (disjunctive) constraint, it makes sense to first consider
µ-monotonicity restrictions and then eventually discard other possibilities which
are actually forbidden.

Example 17. Consider the TRS R and µ as in Example 13. We look for a
2-simple mixed polynomial interpretation:

[g](x) = a2x
2 + a1x + a0 [c] = c0

[h](x) = b2x
2 + b1x + b0 [d] = d0

which proves the µ-termination of R. Again, we use Theorems 1 and 2 to generate
a set of constraints on the unknown coefficients. Observation 1 is also used to
guarantee 0-boundedness of the interpretation.

(1) Constraints due to the monotonicity: no constraint (µ(f) = ∅ for all
symbols f).

(2) Constraints due to the proper definition of the interpretation (use Obser-
vation 1):
(a) [g](x) ≥ 0: a2x

2 + a1x + a0 ≥ 0 becomes

a2 ≥ 0 ∧ a1 ≥ 0 ∧ a0 ≥ 0 ∨ a2 > 0 ∧ a1 < 0 ∧ 4a2a0 − a2
1 ≥ 0

Note that we obtain a disjunction of a conjunction of constraints.
Each such disjunctive component generates an independent set of re-
strictions. Note that we do not need to conjecture any coefficient to
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be negative. This arises as a consequence of the use of Observation 1
(e.g., for a1 in the second member of the previous disjunction).

(b) [h](x) ≥ 0 for all x ≥ 0: b2x
2 + b1x + b0 ≥ 0 becomes:

b2 ≥ 0 ∧ b1 ≥ 0 ∧ b0 ≥ 0 ∨ b2 > 0 ∧ b1 < 0 ∧ 4b2b0 − b2
1 ≥ 0

(c) [c] ≥ 0: c0 ≥ 0

(d) [d] ≥ 0: d0 ≥ 0
(3) Constraints due to compatibility with rules: proceed as in Example 16.

Among the four sets of restrictions which we obtain from the previous disjuntions,
the following one:

a2 > 0 d0 ≥ 0
a1 < 0 a2 − b2 ≥ 0
4a2a0 − a2

1 ≥ 0 a1 − b1 ≥ 0
b2 > 0 a0 − b0 > 0
b1 < 0 c0 − d0 > 0
4b2b0 − b2

1 ≥ 0 b2d
2
0 + b1d0 + b0 − a2c

2
0 − a1c0 − a0 > 0

c0 ≥ 0

leads to a solution which can be directly obtained by using CON’FLEX. The ob-
tained solution yields the following 2-simple mixed polynomial interpretation:

[g](x) = 0.090x2 − 0.800x + 2.000 [c] = 1.850
[h](x) = 0.090x2 − 0.800x + 1.990 [d] = 0.550

which proves the µ-termination of R for the (implicit) δ = 0.010.

6.2. Proof of termination using dependency pairs

When proving termination of a TRS R = (F , R) by using the dependency pairs
method, we have to obtain a polynomial F ∪ F̂-algebra inducing a reduction pair
(�, >δ) where � is compatible with the rules of R and >δ is compatible with the
dependency pairs in DP(R).

Following the discussion in Section 6.1 and taking into account Section 4, the
set of constraints is obtained by requiring the polynomial interpretations to satisfy
the following constraints:

(1) Properly defined polynomial interpretation over R0: [f ](x1, . . . , xk) ≥ 0
for all f ∈ F ∪ F̂ and x1, . . . , xk ≥ 0. This guarantees 0-boundedness,
and well-foundedness of >δ for any δ > 0, in particular, for the implicit δ
which can be computed as shown in item 4 below.
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(2) Weak monotonicity of �: ∂[f ](x1,...,xi,...,xk)
∂xi

≥ 0 for all k-ary symbol f ∈
F∪F̂ , i ∈ {1, . . . , k} and x1, . . . , xk ≥ 0. By Proposition 2, this guarantees
weak monotonicity of �.

(3) Compatibility of � with the rules of R: For each l → r ∈ R, we impose
Pl,r = [l]− [r] ≥ 0 for all x1, . . . , xn ≥ 0, where x1, . . . , xn are the variables
in Var(l)∪Var(r). In particular, we can impose that all coefficients in Pl,r

are non-negative: coef(π) ≥ 0 for each π ∈ Pl,r. By Proposition 5, this
guarantees the compatibility of � with the rules of the TRS.

(4) Compatibility with the dependency pairs in R: For each 〈t, s〉 ∈ DP(R),
we impose Pt,s = [t] − [s] > 0 for all x1, . . . , xn ≥ 0, where x1, . . . , xn

are the variables in Var(t) ∪ Var(s). More precisely: coef(π0···0) > 0 and
coef(π) ≥ 0 for each π ∈ Pt,s such that π �= π0···0. By Corollary 1, this
guarantees the compatibility of >δ for the implicit δ given by

δ = min({coef(π0···0) | π0···0 ∈ Pt,s, 〈t, s〉 ∈ DP(R)}).

Example 18. Consider the TRS R and dependency pairs DP(R) of Example 9.
We are going to prove termination of R by computing an appropriate reduction
pair (�, >δ) for the rules in R and the dependency pairs in DP(R). Both signature
and tuple symbols are interpreted as linear polynomials:

[f](x) = a1x + a0 [F](x) = c1x + c0.
[g](x) = b1x + b0.

(1) Constraints due to the proper definition of the interpretation. All being
linear polynomials, we require non-negative coefficients everywhere:

a0 ≥ 0 b0 ≥ 0 c0 ≥ 0

a1 ≥ 0 b1 ≥ 0 c1 ≥ 0

(2) Constraints due to weak monotonicity of �. In this case, they are sub-
sumed by the previous ones.

(3) Constraints due to compatibility of � with the rules of R. Compatibility
with the rule f(f(x)) -> f(g(f(g(f(x))))) yields

a1(a1x + a0) + a0 − (a1(b1(a1(b1(a1x + a0) + b0) + a0) + b0) + a0) ≥ 0

which becomes:

a2
1 − b2

1a
3
1 ≥ 0 ∧ a1a0 − b2

1a
2
1a0 − b1a

2
1b0 − b1a1a0 − a1b0 ≥ 0

and similarly for the rule f(g(f(x))) -> f(g(x)).
(4) Constraints due to compatibility of >δ with the dependency pairs of R:

Compatibility with the dependency pair 〈F(f(x)), F(g(f(x)))〉 yields:

c1(a1x + a0) + c0 − (c1(b1(a1x + a0) + b0) + c0) > 0



576 S. LUCAS

which becomes: c1a1 − c1b1a1 ≥ 0 ∧ c1a0 − c1b1a0 − c1b0 > 0

and similarly with the dependency pairs 〈F(f(x)), F(g(f(g(f(x)))))〉,
〈F(f(x)), F(x)〉, and 〈F(g(f(x))), F(g(x))〉.

Now, we solve the constraints by using CON’FLEX. The computed solution corre-
sponds to the following polynomial interpretation:

[f](x) = x + 0.001 [F](x) = 0.001x

[g](x) = 0.001x

which proves termination of R. We can compute the implicit δ which is used here:
we only need to consider the dependency pairs (no δ is necessary for �):

δF(f(x)),F(g(f(g(f(x))))) = 9, 98999× 10−7 δF(f(x)),F(x) = 10−6

δF(f(x)),F(g(f(x))) = 9, 99 × 10−7 δF(g(f(x))),F(g(x)) = 10−9

Therefore, δ = min({9, 98999× 10−7, 9, 99 × 10−7, 10−6, 10−9}) = 10−9.

7. Implementation

We have implemented most of the techniques described in the previous section
as part of the tool mu-term. The tool automatically generates the constraints
on the indeterminate coefficients of the polynomial interpretations as described in
Sections 6.1.1, 6.1.2, and 6.2 (negative coefficients are not supported yet).

In order to solve such constraints, the tool can provide a textual version of
them. The tool can also use CiME as an auxiliary tool to solve the constraints.
Our choice of CiME is motivated by the availability of a language for expressing
constraints, and commands for solving them. This is present in CiME but currently
missing (or unavailable) in other termination tools which (internally) may use
similar constraint solvers for dealing with polynomial orderings (e.g., AProVE). In
contrast with, e.g., CON’FLEX, CiME is available on several platforms, including
Linux, Windows, and Mac OS X. Another weak point of CON’FLEX is that, due to
the techniques used in its implementation, it often provides approximated solutions
which have to been checked before taking them as definitive. This is avoided in our
implementation by solving the constraints in the domain of the rational numbers,
which permit exact arithmetic manipulation.

Although CiME solves Diophantine inequations yielding non-negative integers
as solutions, the use of rational numbers is easily made compatible with this lim-
itation: rational coefficients are processed by splitting them into a pair of nat-
ural numbers (a non-negative numerator and a positive denominator) and then
transforming the constraints to “remove” quotients as explained below. Negative
coefficients have not been implemented yet (although we sketch below how to deal
with them in CiME). For these reasons, mu-term only computes polynomials with
rational (non-negative) coefficients. Thus, we take [f ] ∈ Q0[x1, . . . , xk] for each
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k-ary symbol f ∈ F . We also take into account some efficiency issues: in CiME,
natural coefficients are managed as a whole, whereas rational coefficients are not
allowed. Thus, the more rational coefficients, the more processing will be needed
and more unknown variables will be obtained (two per rational coefficient). Thus,
we furnish mu-term with three main generation modes:

(1) No rationals: corresponding to the constraints generated as explained in
Section 6 and can be (externally) solved as restrictions over the reals (in
R0) or directly solved by CiME as restrictions over the naturals.

(2) Rationals and integers: here, since rational coefficients are intended to
introduce non-monotonicity, we only use them with arguments i �∈ µ(f).

(3) All rationals: where all coefficients of polynomials are intended to be ra-
tional numbers.

Since we use CiME to finally obtain our polynomial interpretations, and the second
mode represents the most efficient option still enabling the generation of rational
coefficients for non-monotonic arguments of symbols, the default generation mode
of mu-term is this one; the following example shows how does it work.

Example 19. Consider R and µ as in Example 16. In order to solve the set of
constraints obtained in the example, since µ(:) = ∅, we further assume d10 = p10

q10

and d01 = p01
q01

for p10, p01 ∈ N and q10, q01 ∈ N1. Analogously, since µ(s) = ∅, for
[s] we let g1 = p1

q1
for p1 ∈ N and q1 ∈ N1. We take all other coefficients to be

natural numbers. Then, our parametric polynomial is:

[nats] = a0 [incr](x) = f1x + f0

[adx](x) = b1x + b0 [s](x) = p1
q1

x + g0

[zeros] = c0 [hd](x) = h1x + h0

x [:] y = p10
q10

x + p01
q01

y + d00 [tl](x) = i1x + i0
[0] = e0.

According to this, we just need to transform the constraints in Example 16 as
follows:

(1) Constraints due to the proper definition of the interpretation. Since CiME
solves the constraints in N, no negative coefficient is possible. Thus, we
can remove all constraints here, since they are implicitly satisfied.

(2) Constraints due to µ-monotonicity. Since we choose to use rational coef-
ficients these constraints remain unchanged.

(3) Constraints due to compatibility with rules:
(a) Compatibility with the rule nats -> adx(zeros): It only involves

monotonic coefficients, so it does not change: a0 − b1c0 − b0 > 0
(b) Compatibility with the rule zeros -> 0:zeros: The constraint c0 −

d10e0 − d01c0 − d00 > 0 becomes

q10q01c0 − q01p10e0 − q10p01c0 − q10q01d00 > 0
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after replacing d10 by p10
q10

and d01 by p01
q01

, and multiplying both mem-
bers of the constraint by the denominators q10 and q01.

(c) Constraints for compatibility with rules incr(x:y) -> s(x):incr(y),
adx(x:y) -> incr(x:adx(y)), hd(x:y) -> x, and tl(x:y) -> y are
obtained in a similar way.

(4) Constraints ensuring positive denominators in rational coeficients

q10 > 0 q01 > 0 q1 > 0

Now, this set of constraints can be solved as a set of Diophantine inequations using
the CiME system. The obtained solution yields the polynomial interpretation:

[nats] = 5 [incr](x) = x + 1 x [:] y = x + 1
2y

[adx](x) = x + 3 [s](x) = 0 [tl](x) = 2x + 1
[zeros] = 1 [hd](x) = x + 1 [0] = 0

which proves the µ-termination of R.

Regarding the use of CiME for solving constraints involving negative coefficients,
we can process the constraints over the reals as follows: consider a constraint c < 0
specifying a negative coefficient c. We let c = −zc to obtain a restriction zc > 0; we
also replace occurrences of c by −zc in all arithmetic restrictions (and eventually
change the sign of the arithmetic component, if necessary). Then, we obtain a
new set of inequations having no constraint c < 0 which CiME could now solve.

Example 20. Consider the set of constraints obtained in Example 17 where we
let a1 = −y1 and b1 = −z1 to transform the constraints a1 < 0 and b1 < 0 into
y1 > 0 and z1 > 0. We also transform all other constraints containing occurrences
of a1 or b1 accordingly. We obtain the following transformed constraint:

a2 > 0 d0 ≥ 0
y1 > 0 a2 − b2 ≥ 0
4a2a0 − y2

1 ≥ 0 z1 − y1 ≥ 0
b2 > 0 a0 − b0 > 0
z1 > 0 c0 − d0 > 0
4b2b0 − z2

1 ≥ 0 b2d
2
0 − z1d0 + b0 − a2c

2
0 + y1c0 − a0 > 0

c0 ≥ 0

which can now be solved by CiME. The obtained solution yields the following
2-simple mixed polynomial interpretation:

[g](x) = x2 − 3x + 4 [c] = 1
[h](x) = x2 − 3x + 3 [d] = 0

which proves the µ-termination of R.
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8. Related work

The use of polynomials in proofs of termination of rewriting has been investi-
gated in two main settings:

(1) polynomials with non-negative integer coefficients (see, [5,6,9,30,44]) and
(2) polynomials with real coefficients where a subterm property is required to

guarantee well-foundedness of the induced term ordering (see,
e.g., [11, 12, 18, 39]).

Recent variants to this general setting include the use of polynomials with negative
integer coefficients [19,25]. Let’s consider these kinds of polynomial interpretations
in connection with our framework.

8.1. Polynomials with non-negative integer coefficients

When considering polynomials P having no negative integer coefficients, well-
foundedness of the induced polynomial ordering > comes for free due to the use of
a well-founded domain (N, >N). Since polynomial interpretations over the natural
numbers can also be seen as 0-bounded algebras over the real numbers whose
domain is just A = N ⊆ R, the ordering >1 induced by such a 0-bounded algebra
obviously coincides with the usual polynomial ordering.

In most cases, the carrier set of the algebra is restricted to be N1 (or even N2 as
suggested in [44]) in such a way that the corresponding polynomial functions are
actually mappings [f ] : N

k
1 → N1 for each k-ary function f [5], Definition 5.3.4.

Note that, for the purpose of defining non-monotonic polynomial interpretations,
the use of N as the carrier is an important way to achieve non-monotonic polyno-
mial interpretations (see Prop. 7).

Remark 3. Surprisingly, the constraints generated by the methods which focus
on polynomials with non-negative integer coefficients (see, e.g., [9]), are actually
so close to ours that it is possible to use the set of constraints generated in this
way to obtain a polynomial interpretation over the reals by just interpreting the
indeterminate coefficients as real numbers instead of naturals.

For instance, item 1 in the beginning of Section 6 specifies that all coefficients in
such polynomials must be non-negative integers; any solution over the reals to this
kind of constraints would immediately satisfy the constraint specified in item 1 in
Section 6.1 regarding non-negativeness of our polynomials with real coefficients.

Item 2 in the beginning of Section 6 specifies that each polynomial [f ] for
a k-ary symbol f must contain a monomial xi satisfying coef(xi) ≥ 1. If the
indeterminate coefficients of the parametric polynomial [f ] are intended now to
be real numbers, then the satisfaction of this constraint (again, over the reals)
implies that ∂[f ](x1,...,xi,...,xk)

∂xi
≥ 1: indeed, since ∂[f ](x1,...,xi,...,xk)

∂xi
has no negative

coefficient, for all x1, . . . , xk, ∂[f ](x1,...,xi,...,xk)
∂xi

≥ ai ≥ 1 as required in item 2 of
Section 6.1.

Finally, item 3 in the beginning of Section 6 becomes item 3 in Section 6.1
without further considerations.
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Interestingly, this means that software systems (like, e.g., AProVE, CiME,
or TTT) which are able to generate constraints for obtaining polynomial inter-
pretations over the naturals, are potentially able to obtain interpretations over
the reals by just solving the same constraints in the domain of the real or rational
numbers!

8.2. Polynomials with real coefficients

Polynomials over the real were proposed by Dershowitz [11,12] as an alternative
to Lankford’s polynomials over the naturals [30]. In contrast to Lankford’s, how-
ever, the subterm property (i.e., [f ](x1, . . . , xi, . . . , xk) >R xi for all k-ary symbols
f , 1 ≤ i ≤ k, and x1, . . . , xk ∈ R) is explicitly required to ensure well-foundedness.
This property, in fact, implies monotonicity when only simple polynomials with
non-negative coefficients are allowed. In the following proposition, > is the term
ordering induced by a polynomial algebra whose domain is ordered by >R.

Proposition 9. Let F be a signature, 0 ∈ A ⊆ R0, and (A,FA) be a polynomial
F-algebra where [f ] ∈ R0[x1, . . . , xk] is a simple polynomial for each k-ary symbol
f ∈ F . If, for all k-ary symbols f ∈ F , i ∈ {1, . . . , k}, and x1, . . . , xk ≥ 0,
[f ](x1, . . . , xi, . . . , xk) >R xi then, > is monotonic and, for all δ ∈ R>0, >δ is
monotonic.

Proof. Consider an arbitrary k-ary symbol f ∈ F with k positive and an arbitrary
i ∈ {1, . . . , k}. By the subterm property, we have that [f ](0, . . . , 0) = coef(π0···0) >
0, where π0···0 is the constant coefficient of [f ] which we label c0 in the remainder
of the proof. By the subterm property and since [f ] is a simple polynomial, we
also have, for all c ∈ R>0, [f ](0, . . . , c, . . . , 0) = ci · c + c0 >R c, where ci is the
coefficient of the monomial xi ∈ [f ]. Therefore, ci · c + c0 >R c ⇔ ci >R 1 − c0

c
which is only possible (for all positive c) if ci ≥R 1. Then, since all coefficients in
[f ] are non-negative, for each monomial π ∈ [f ], we have that, whenever x >R y,
for all x1, . . . , xk ∈ R0, π(x1, . . . , x, . . . , xk) ≥R π(x1, . . . , y, . . . , xk) and, since
ci ≥R 1, [f ](x1, . . . , x, . . . , xk) >R [f ](x1, . . . , y, . . . , xk). Now consider terms t, s
such that t > s; then [α](t) >R [α](s) for all valuations α : X → A. Therefore,
f(t1, . . . , t, . . . , tk) > f(t1, . . . , s, . . . , tk) for all terms t1, . . . , tk, i.e., > is mono-
tonic.

Since [f ] only has non-negative coefficients, this is also the case for all partial
derivatives of [f ]. Therefore ∂[f ](x1,...,xi,...,xk)

∂xi
≥ ci ≥ 1 and, by Theorem 2, for all

δ ∈ R>0, >δ is monotonic. �

Proposition 9 does not hold for simple-mixed polynomial interpretations: consider
F = {a, f} where [a] = 0 and [f ](x) = 1

4x2 +2. Then, > has the subterm property
but, e.g., >2 is not monotonic: [f(a)] = 2, hence [f(a)] − [a] = 2, i.e., f(a) >2 a;
however, [f(f(a))] = 3, and [f(f(a))] − [f(a)] = 1, i.e., f(f(a)) �>2 f(a).

Remark 4. As a consequence of Proposition 9, imposing the subterm property to
achieve well-foundedness is not compatible with defining non-monotonic orderings
by means of simple polynomial interpretations where negative coefficients are not
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allowed and R0 is taken as the interpretation domain. On the other hand, as
shown in [19], Example 3, requiring a µ-subterm property (i.e., restricted to the
arguments i ∈ µ(f) for each [f ]) does not guarantee well-foundedness anymore.

Giesl has shown how to implement the use of polynomials over the reals à la
Dershowitz in proofs of termination of rewriting [18]. In [18], Theorem 1, Giesl
gives the following criterion for proving termination with polynomials with real
coefficients: for all rules l → r in the TRS, constant symbols c, k-ary symbols f
in the signature, and i ∈ {1, . . . , k}, he obtains a set of constraints as follows5:

(1) [l] − [r] > 0 (3) ∂[f ](x1,...,xi,...,xk)
∂xi

≥ 0
(2) [f ](x1, . . . , xi, . . . , xk) − xi ≥ 0 (4) [c] ≥ 0.

Then, he applies two differentiation rules to transform this set of constraints un-
til all rule variables are removed. If there is a solution for the resulting set of
constraints, then the TRS is terminating.

Hong and Jakuš have investigated the power of this technique regarding tests of
positiveness of polynomials [22]. By using their results, in particular Theorems 1
and 2, we conclude that all polynomials involved in the constraints (1)–(4) above
must have non-negative coefficients. We can then see that if Giesl’s method solves
a termination problem, then it can also be solved by using our method: regarding
the constraint [l] − [r] > 0, according to item 3 in Section 6.1, we would have
exactly the same constraint and, moreover, our assumption of non-negativeness
of the coefficients in [l] − [r] and the presence of a constant positive coefficient,
which is not explicit in Giesl’s method, is actually implicit according to Hong
and Jakuš’ results. Consider now the constraint [f ](x1, . . . , xi, . . . , xk) − xi ≥ 0,
where Pf (x1, . . . , xk) = [f ](x1, . . . , xi, . . . , xk) − xi is a polynomial with non-
negative coefficients. Note that ∂Pf (x1,...,xi,...,xk)

∂xi
has only non-negative coeffi-

cients. Therefore, ∂Pf

∂xi
(x1, . . . , xi, . . . , xk) ≥ 0 for all x1, . . . , xk ≥ 0. Since

∂Pf (x1,...,xi,...,xk)
∂xi

= ∂[f ](x1,...,xi,...,xk)
∂xi

− 1, we have that ∂[f ]
∂xi

(x1, . . . , xi, . . . , xk) ≥ 1
holds for all x1, . . . , xk ≥ 0, as required by item 2 in Section 6.1. Note that, again
according to Hong and Jakuš’, our first explicit assumption (item 1 in Section 6.1)
is implicit in Giesl’s method; in fact, it is a consequence of constraints (3) and (4).

Steinbach’s approach to the generation of polynomial algebras over the reals [39]
is also a particular case of ours: Steinbach uses polynomial interpretations with
coefficients either zero or not below 1, and where for each variable xi there is a
nonzero coefficient in the polynomial; the interpretation domain is R1 [39], Defini-
tion 1. Therefore, all constraints generated according to item 1 in Section 6.1 (in
this case [f ](x1, . . . , xk) ≥ 1 for all x1, . . . , xk ≥ 1) immediately hold. Under the
previous conditions it is also obvious that, for all k-ary function symbols f and
i ∈ {1, . . . , k}, ∂[f ](x1,...,xi,...,xk)

∂xi
≥ 1 for all x1, . . . , xk ∈ R1. Thus, monotonicity of

5 Giesl’s formulation considers a real number µ which is a lower bound of the interpretation
of all ground terms. This corresponds to using Rµ as the interpretation domain (see Sect. 6).

Here, following the discussion in Section 6, we take µ = 0 to simplify the comparison.
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>δ is also guaranteed. Finally, regarding 3 in Section 6.1, Steinbach also imposes
that all coefficients in polynomial Pl,r = [l] − [r] are non-negative and that, at
least one of them (no necessarily the constant monomial) is positive. Since the
interpretation domain is R1, this corresponds to take, as required by Corollary 1,
α = 1 and δl,r = Pl,r(1, . . . , 1) =

∑

π∈Pl,r
coef(π) ≥ coef(π+) > 0, where π+ is the

monomial of Pl,r whose coefficient must be positive.

8.3. Polynomials with negative integer coefficients

The use of polynomial interpretations to generate µ-reduction orderings has
been first investigated in [19]. In [19], only polynomials with integer coefficients are
considered. Although taking explicit benefit from the use of negative coefficients
(see Ex. 13), the restrictions imposed in [19] for coefficients of the considered
polynomial interpretations are the usual ones (i.e., [f ] ∈ Z[x1, . . . , xk], but the
induced polynomials are actually used as functions [f ](x1, . . . , xk) ∈ N

k → N).
Again, it is not difficult to see that the orderings induced by the polynomial
interpretations in [19] correspond to the ordering >1 induced by the polynomial
interpretation viewed as a 0-bounded algebra over N ⊆ R. Thus, the framework
in [19] is strictly included in the new framework presented in this paper. For
instance, it does not apply to polynomial interpretations like that of Example 15
where rational coefficients occur in the polynomials.

Recently also, Hirokawa and Middeldorp have proposed the use of linear poly-
nomials with negative integer coefficient to define algebraic interpretations [25].
As remarked in Section 6.1.1, this would lead to a ill-defined polynomial alge-
bra. The authors, then, use such polynomials to define ‘almost’ polynomial func-
tions [f ] which always take the value 0 in the problematic cases; therefore, again
[f ](x1, . . . , xk) ∈ N

k → N. The obtained interpretation is a 0-bounded algebra
over the naturals which is a particular case of algebra over the reals. In [25] the
authors explain how to use these kind of interpretations for implementing proofs
of termination of rewriting. Their techniques have been implemented as part of
the tool TTT. Hirokawa and Middeldorp only allow for integer coefficients in poly-
nomials. Thus, their technique could also benefit from our results.

9. Conclusions

We have shown how to obtain a stable quasi-ordering � and a stable and well-
founded ordering >δ on terms by using a given interpretation of function symbols
as real functions (Prop. 1 and Th. 1). Given a monotonicity specification expressed
by a replacement map µ, we have shown how to guarantee that the ordering >δ

fulfills these monotonicity constraints (Th. 2). We have also given a sufficient
condition for weak monotonicity of � (Prop. 2). As remarked in the introduction,
this permits to cover different termination problems. We have shown that the
general framework applies to different kinds of real functions in algebras, including
non-continuous functions (Ex. 3), irrational functions (Ex. 5), polynomial fractions
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(Ex. 8), etc. Regarding proofs of termination of (unrestricted) rewriting, the
methods presented here are also helfpul when the lack of monotonicity plays a
crucial role for the use of term orderings. This is the case of the dependency
pairs method, where non-monotonic (but well-founded and stable) orderings can
be used in proofs of termination as part of a reduction pair. We have proven that
our techniques are well-suited for defining such reduction pairs (Prop. 4). We have
shown that, in fact, termination proofs based on the dependency pairs approach
can greatly benefit from the systematic use of reduction pairs defined in this way
(Exs. 10 and 11).

We have described how to automatically obtain polynomial interpretations over
the reals according to our general framework. We deal with very general polyno-
mial interpretations which can be characterized by the use of R0 as carrier set,
and the use of polynomials with real, possibly negative, coefficients. We have
proved that these mechanisms are actually useful when trying to avoid monotonic-
ity if, according to the underlying replacement map, it is not required (Props. 7
and 8). We have given conditions to avoid the specification of any concrete value
for δ (Cor. 1). We have also introduced a new class of polynomial interpretations
(which we call 2-simple mixed polynomial interpretations) which are well-suited
for including negative coefficients which can help to set up the desired monotonic-
ity requirements. We have shown how to automatically generate such polynomial
interpretations using negative coefficients. Our extended class of polynomial in-
terpretations provides quite a powerful tool for proving termination of CSR. For
instance, all examples of termination of CSR in [20] (the most recent paper on the
topic) have been proved terminating now by using polynomial interpretations, see:

http://www.dsic.upv.es/~slucas/csr/termination/examples

The techniques described in Section 6 have been implemented in mu-term.
We have also shown that the usual practical frameworks for proving termi-

nation by using polynomials with natural coefficients and polynomials with real
coefficients are subsumed by our techniques (Sect. 8). Moreover, we have proven
that our framework is strictly more powerful that of [19] (Prop. 8). Finally, ac-
cording to the comparison drawn with related work, we can say that our results
provide a formal basis allowing existing tools (like, e.g., AProVE, CiME, or TTT)
which are able to generate constraints for obtaining polynomial interpretations
over the naturals in proofs of termination of TRSs, to smoothly move towards the
use of interpretations over the reals by just solving the obtained constraints in the
domain of the real or rational numbers (Rem. 3).

9.1. Future work

From a theoretical point of view, an interesting question is: what are the limi-
tations of the approach? Examples 3 and 7 show that algebras over the reals apply
to prove termination of non-simply terminating TRSs (see [44], Prop. 6.3.26(iv));
thus, what would be the position of these orderings in a termination hierarchy
possibly extending that of [44], Section 6.3?
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Another exciting one is the following: is there a TRS which can be proved
terminating by using a reduction ordering based on a polynomial interpretation
over the reals (or rationals) but which cannot be proved terminating by using a
polynomial interpretation over the naturals? Regarding proofs of µ-termination
for “proper” replacement maps µ � µ�, the answer is “yes” (Prop. 8); regarding
proofs of termination of rewriting, this is an open problem.

Our work shows that µ-reduction orderings based on algebras over the reals
can be uniformly used for different termination problems depending on the mono-
tonicity restrictions that we are considering. Other µ-reduction orderings (e.g.,
the context-sensitive recursive path ordering, CSRPO [4]) could also be suitable
for implementing the necessary comparisons. Investigating the use of CSRPO in
proofs of termination when using the dependency pairs approach is also interesting.

Regarding the practical use of the generic framework presented in this paper,
we plan to investigate new families of real functions which could be well-suited
for automatization purposes. We will focus on those functions which provide
mechanisms for loosing monotonicity in some arguments. For instance, polynomial
fractions could give a first starting point.

Acknowledgements. I thank the anonymous referees for many useful suggestions to im-
prove the paper. I specially thank Miguel A. Salido for his kind help in obtaining the
solutions to the real constraints in this paper by using CON’FLEX.
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