
RAIRO-Theor. Inf. Appl. 42 (2007) 285–307 Available online at:

DOI: 10.1051/ita:2007035 www.rairo-ita.org

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION

Faissal Ouardi1 and Djelloul Ziadi1

Abstract. J. Hromkovic̃ et al. have given an elegant method to
convert a regular expression of size n into an ε-free nondeterminis-
tic finite automaton having O(n) states and O(n log2(n)) transitions.
This method has been implemented efficiently in O(n log2(n)) time by
C. Hagenah and A. Muscholl. In this paper we extend this method to
weighted regular expressions and we show that it can be achieved in
O(n log2(n)) time.

Mathematics Subject Classification. 03D15, 68Q45.

Introduction

Weighted automata are efficient data structures for manipulating regular series.
They are used in a lot of practical and theoretical applications such as computer
algebra, image encoding, speech recognition or text processing. Regular series
are also encoded by regular weighted expressions. The equivalence between these
two representations, weighted regular expressions and finite automata has been
proved in 1961 by Schützenberger [16]. For the conversion of weighted regular
expressions into weighted automata there are principally three algorithms. The
first one is due to Caron and Flouret [4]. Their algorithm works recursively on
a subset of weighted regular expressions and produces the position automaton.
Champarnaud et al. [7] have given an efficient algorithm that converts a weighted
regular expression into its position automaton in quadratic time w.r.t. the size of
the expression. Their algorithm is mainly based on the use of the KZPC-structure
for weighted expressions. The position automaton is a particular one (see [5]) that
can have a quadratic number of transitions and (n + 1) states where n is the
alphabetic width of the expression. The algorithm of Lombardy and Sakarovitch
[14] constructs a weighted automaton that turns out to be the generalization of
Antimirov automaton for the Boolean case. The Antimirov automaton [1] has

Keywords and phrases. Formal languages and automata, complexity of computation.

1 L.I.T.I.S., University of Rouen, France; Faissal.Ouardi, Djelloul.Ziadi @univ-rouen.fr

Article published by EDP Sciences c© EDP Sciences 2007

http://dx.doi.org/10.1051/ita:2007035
http://www.rairo-ita.org
http://www.edpsciences.org

286 F. OUARDI AND D. ZIADI

less states than the position automaton. As the position automaton, Antimirov
automaton can have a quadratic number of transitions.

In the Boolean case many algorithms have been developed for the problem
of conversion [2,8,12,15,19]. The best one in term of complexity is that pro-
posed by Hromkovic̃ et al. [11] and implemented by Hagenah and Muscholl [9].
This automaton called the common follow sets automaton has O(n) states and
O(n log2(n)) transitions. Hagenah and Muscholl proved that this automaton can
be constructed from a regular expression of size n in time O(n log2(n)) which
constitutes the best known algorithm for the conversion problem.

In this paper, we extend the algorithm of Hromkovic̃ et al. to weighted regular
expressions and we present an efficient algorithm to convert a weighted regular
expression of size n into an automaton having O(n) states and O(n log2(n)) in
O(n log2(n)) time.

In Section 1 we recall the notion of a K-expression and of a formal series. In Sec-
tion 2 we present the position automaton construction. In Section 3 we introduce
the notion of common follow polynomials automaton which is the generalization of
the notion of common follow sets automaton presented in [11]. In Section 4 we re-
call the KZPC-structure in order to implement efficiently the algorithm introduced
in Section 5. Finally in Section 6 and 7 we describe our algorithm.

1. Preliminaries

Let A be a finite alphabet, and (K,⊕,⊗, 0, 1) be a semiring (commutative or
not). The operator star � can be partially defined, the scalar y = x� ∈ K being
a solution (if there exists) of the equations y ⊗ x ⊕ 1 = y and x ⊗ y ⊕ 1 = y
with 0� = 1 [10,13]. In this paper, we will give examples using the semiring
(Q,⊕,⊗) with the classical definitions for ⊕ (addition) and ⊗ (multiplication). In
the following definition, we introduce the notion of K-expression.

Definition 1.1. K-expressions over an alphabet A are inductively defined as
follows:

• a ∈ A and k ∈ K are K-expressions;
• if F and G are K-expressions, then (F + G), (F ·G), and (F∗) are K-

expressions.

When there is no ambiguity, the K-expression (F ·G) will be denoted (F G). Let
E be a K-expression. We will denote AE the alphabet of E. The linearized version
E of E is the K-expression deduced from E by ranking every letter occurrence with
its position in E. Subscripted letters are called positions. The size of E, denoted
|E | is the size of the syntax tree of E. For example, if E = (1

2 · a∗ + 1
3 · b∗)∗ · a∗,

we get AE = {a, b}, E = (1
2 · a∗

1 + 1
3 · b∗2)∗ · a∗

3, AE = {a1, b2, a3} and |E| = 13.

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 287

We define inductively the null term of a K-expression E, denoted c(E), by:

c(k) = k for all k ∈ K,

c(a) = 0 for all a ∈ A,

c(F + G) = c(F) ⊕ c(G),
c(F G) = c(F) ⊗ c(G),
c(F∗) = c(F)�.

The null term of E = (1
2a∗ + 1

3b∗)∗a∗ is c(E) = 6.
In the following, we present a brief description of formal series and we define a

subset of the set of K-expressions, usually called regular K-expressions, which are
associated to regular series [3].

Definition 1.2. A (non-commutative) formal series with coefficients in K and
variables in A is a map from the free monoid A∗ to K that associates with the
word w ∈ A∗ a coefficient 〈S, w〉 ∈ K.

A formal series is usually written as an infinite sum: S =
∑

u∈A∗〈S, u〉u.
The support of the formal series S is the language supp(S) = {u ∈ A∗ | 〈S, u〉 �= 0}.
The set of formal series over A with coefficients in K is denoted by K〈〈A〉〉.
A structure of semiring is defined on K〈〈A〉〉 as follows [3,13]:

– 〈S + T, u〉 = 〈S, u〉 ⊕ 〈T, u〉;
– 〈ST, u〉 =

⊕
u1u2=u

〈S, u1〉 ⊗ 〈T, u2〉, with S, T ∈ K〈〈A〉〉.

A polynomial is a formal series with finite support. The set of polynomials is
denoted by K〈A〉. It is a subsemiring of K〈〈A〉〉. The star of series is defined by:
S∗ =

∑
n≥0 Sn with S0 = ε, Sn = Sn−1S if n > 0. Notice that the star of a

formal series does not always exist.

Proposition 1.3 (cf. [13]). The star of a formal series S ∈ K〈〈A〉〉 is defined if
and only if 〈S, ε〉� is defined in K. In this case:

S∗ = 〈S, ε〉�(Sp〈S, ε〉�)∗ (1)

where the formal series Sp is defined by 〈Sp, ε〉 = 0 and 〈Sp, u〉 = 〈S, u〉 for any
word u.

In the following, we will consider the previous construction of the star of formal
series.

Definition 1.4. The semiring of regular series KRat(A∗) ⊂ K〈〈A〉〉 is the smallest
set of K〈〈A〉〉 that contains the polynomials semiring K〈A〉, and that is stable by
the operations of addition, product and star when this latter is defined.

The following definition introduces the notion of regular K-expression.

288 F. OUARDI AND D. ZIADI

Definition 1.5. A regular K-expression is defined inductively by:

– a ∈ A, k ∈ K are regular K-expressions that respectively denote the regular
series Sa = a and Sk = k;

– if F, G and H (such that c(H)� exists) are regular K-expressions that
respectively denote the regular series SF, SG and SH, then (F + G), (F G),
and (H∗) are regular K-expressions that respectively denote the regular
series SF + SG, SFSG and SH

∗.

The set of regular K-expressions over an alphabet A is denoted by K Exp(A).

Definition 1.6. Let A be a finite alphabet, and K be a semiring (commutative or
not). We define an automaton with multiplicities A = 〈Q, A, q0, δ, γ, µ〉 as follows:

• Q is a finite set of states;
• q0 is the initial state;
• δ ⊆ Q × A × Q is the set of transitions;
• γ : δ → K is the transition weight function;
• µ : Q → K is the output weight function.

The definition of an automaton with multiplicities is more general but this one
is sufficient for our construction.

A path p from a state q to a state q′ is a sequence of transitions (q, a1, q1),
(q1, a2, q2), · · · , (qn−1, an, qn = q′) in A. It is written p = (p1, p2, · · · , pn) with
pi = (qi−1, ai, qi) for 1 ≤ i ≤ n. Its label is the word w(p) = a1a2 · · · an. We
denote by coef(p) the cost of the path p in A. Formally, coef(p) = γ(p1)⊗ γ(p2)⊗
· · · ⊗ γ(pn) ⊗ µ(qn).

Let CA the set of all paths in A starting at q0. The series SA associated with
the automaton A is

SA =
∑

u∈A∗
〈SA, u〉u

where:

〈SA, u〉 =
⊕
p∈CA

w(p)=u

coef(p).

We say that the automaton A realizes the series SA.

Definition 1.7. A formal series S ∈ K〈〈A〉〉 is called recognizable if there exists
an automaton that realizes it.

The following result due to Schützenberger [16] is classical.

Theorem 1.8. (Schützenberger, 1961). A formal series is recognizable if and only
if it is regular.

Let S be a series in K〈〈A〉〉. If h : A −→ B is a surjective morphism, then h(S)
denotes the series

∑
u∈A∗

〈S, u〉h(u) in K〈〈A〉〉.

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 289

Proposition 1.9. Let A = 〈Q, X, q0, δ, γ, µ〉 and B = 〈Q, Y, q0, δ
′, γ′, µ〉 be two

automata. Let h: X → Y be a surjective morphism where

(1) (p, a, q) ∈ δ′ ⇔ There exists (p, ai, q) ∈ δ such that h(ai) = a,
(2) γ′(p, a, q) =

⊕
h(ai)=a

(p,ai,q)∈δ

γ(p, ai, q).

We have, SB = h(SA).

Proof. Let ΩA be the set of sequences in A,

ΩA = {(q0, q1), (q1, q2), · · · , (qn−1, qn)|∃aki ∈ X,

s.t. (qi−1, aki , qi) ∈ δ, ∀1 ≤ i ≤ n}. (2)

We define the transitions polynomial between two states q and q′ as

∆A(q, q′) =
∑

(q,a,q′)∈δ

γ(q, a, q′)a.

For a sequence ρ = ((q0, q1), (q1, q2), · · · , (qn−1, qn)) in ΩA, we set

∆A(ρ) =
n⊗

i=1

∆A(qi−1, qi)µ(qn).

Thus, the series SA associated with the automaton A can be written as

SA =
∑

ρ∈ΩA

∆A(ρ).

Now let us prove that h(SA) = SB. We have

h(SA) = h

⎛
⎝∑

ρ∈ΩA

∆A(ρ)

⎞
⎠

= h

⎛
⎝ ∑

ρ=((q0,q1),(q1,q2),··· ,(qn−1,qn))∈ΩA

(
n⊗

i=1

∆A(qi−1, qi)

)⎞
⎠µ(qn)

=
∑

ρ∈ΩA

n⊗
i=1

⎡
⎣ ∑

(qi−1,ai,qi)∈δ

γ(qi−1, ai, qi)h(ai)µ(qn)

⎤
⎦

290 F. OUARDI AND D. ZIADI

Condition (1)
=

∑
ρ∈ΩA

n⊗
i=1

∑
(qi−1,a,qi)∈δ′

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

⊕
(qi−1,aki

,qi)∈δ

h(aki
)=a

γ(qi−1, aki , qi)

⎞
⎟⎟⎟⎠aµ(qn)

⎤
⎥⎥⎥⎦

Condition (2)
=

∑
ρ∈ΩA

n⊗
i=1

∑
(qi−1,a,qi)∈δ′

[γ′(qi−1, a, qi)aµ(qn)]

=
∑

ρ∈ΩA

∆B(ρ)

Condition (1),Relation 2
=

∑
ρ∈ΩB

∆B(ρ)

= SB. �

2. Position automaton

In this section, we recall some basic notions related to the construction of po-
sition automata from regular K-expressions. Let E be a regular K-expression over
an alphabet A. The position automaton associated with E is computed from three
functions First(E), Last(E) and Follow(·, E) in K Exp(A) −→ K〈A〉. They can be
computed inductively according to the following rules [7]:

First(k) = 0 for all k ∈ K, (3)
First(a) = 1ai (ai is the position associated to a in AE) , (4)

First(F + G) = First(F) + First(G), (5)
First(F G) = First(F) + c(F)First(G), (6)
First(F∗) = c(F)� First(F). (7)

We obtain the same rule for Last by substituting Last for First and replacing the
formula (6) by:

Last(F G) = Last(G) + c(G)Last(F). (8)

Given a position x ∈ AE, the function Follow(x, E) is inductively computed as
follows:

Follow(x, k) = 0 for all k ∈ K,

Follow(x, a) = 0 for all a ∈ A,

Follow(x, F + G) = Follow(x, F) + Follow(x, G),
Follow(x, F G) = Follow(x, F) + 〈Last(F), x〉First(G) + Follow(x, G),
Follow(x, F∗) = Follow(x, F) + 〈Last(F∗), x〉First(F).

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 291

Let h be the mapping from AE to AE induced by the linearization of E over AE.
It maps every position to its value in AE. For example, if E = 2a1 + 3b2 + a3

then h(a1) = h(a3) = a and h(b2) = b. The First, Last and Follow polynomials of
a regular K-expression E can be used to define an automaton with multiplicities
realizing SE. We define the position automaton for E, denoted AE, as the 6-tuple
〈Q, AE, q0, δ, γ, µ〉 where, for some q0 /∈ AE:

• Q = {q0} ∪ AE.
• (q, a, p) ∈ δ ⇔ h(p) = a and if q = q0 then 〈First(E), p〉 �= 0, else
〈Follow(q, E), p〉 �= 0.

• For all (p, a, q) ∈ δ, one has:

γ(q, a, p) =
{ 〈First(E), p〉 if q = q0,

〈Follow(q, E), p〉 otherwise.

• µ(q) =
{

c(E) if q = q0,
〈Last(E), q〉 otherwise.

Proposition 2.1. [7] Let E be a regular K-expression and AE its position au-
tomaton. Then AE realizes the regular series SE.

Lemma 2.2. Let E be a regular K-expression and E its linearized version. Then
one has SE = h(SE).

Proof. Let AE be the position automaton associated with E and AE be the position
automaton associated with E. The surjective morphism h from AE into AE satisfies
the conditions (1) and (2) of Proposition 1.9. Then, one has:

SAE = h(SAE
).

From Proposition 2.1, we have SAE = SE and SAE
= SE. Thus SE = h(SE). �

3. Common follow polynomials automaton

In this section, we introduce the notion of common follow polynomials system
which is the generalization of the notion of the common follow sets introduced by
Hromkovic̃ et al. [11] in order to compute an automaton having less transitions
than the position automaton.

Next, we prove that the CFP automaton induced by the common follow poly-
nomials system realizes the same series as the position automaton.

Finally, we recall the KZPC-structure in order to implement an efficient algo-
rithm to convert a regular K-expression into its CFP automaton.

From now, we will consider the expression E′ = (E · �) with � /∈ AE.

Definition 3.1. Let E be a regular K-expression and let x be a position in AE.
The set dec(x) = {(k1, P1), · · · , (km, Pm)} where {P1, · · ·Pm} is a set of polynomi-
als with pairwise disjoints supports and {k1, · · · , km} m elements of K, is called
follow decomposition of x if and only if one has:

Follow(x, E) = k1P1 + k2P2 + · · · + kmPm.

292 F. OUARDI AND D. ZIADI

Proposition 3.2. Let x be a position in AE, and let dec(x) = {(k1, P1), · · · ,
(km, Pm)} and dec′(x) = {(k′

1, P1), · · · , (k′
m, Pm)} be two follow decompositions

of x. Then, one has ki = k′
i, for all 1 ≤ i ≤ m.

Proof. It comes from the fact that supp(Pi) ∩ supp(Pj) = ∅, for all 1 ≤ i, j ≤ m
and i �= j. �

We will write kPi
x the coefficient of Pi in the follow decomposition of x and

Pr(dec(x)) the set {P1, · · · , Pm}.
Definition 3.3 (common follow polynomials system). Let E be a regular K-
expression and E′ = E�. A common follow polynomials system S(E) =
(dec(x))x∈AE

of E is a family of follow decompositions of positions in AE. FS(E) =
{First(E′)}∪ ⋃

x∈AE

Pr(dec(x)) is called the set of common follow polynomials asso-

ciated with the system S(E).

Notice that the common follow polynomial system S(E) is not unique as we can
see in the following example.

Example 3.4. Let E = (1
3a + 1

6b)(1
2a∗b). One has:

E′ = (
1
3
a1 +

1
6
b2)(

1
2
a∗
3b4)�,

First(E′) =
1
3
a1 +

1
6
b2,

Follow(a1, E′) =
1
2
a3 +

1
2
b4,

Follow(b2, E′) =
1
2
a3 +

1
2
b4,

Follow(a3, E′) = a3 + b4,

Follow(b4, E′) = �.

S(E) = { S′(E) = {
dec(a1) = {(1

2 , (a3 + b4))}, dec(a1) = {(1
2 , a3), (1

2 , b4)},
dec(b2) = {(1

2 , (a3 + b4))}, dec(b2) = {(1
2 , a3), (1

2 , b4)},
dec(a3) = {(1, (a3 + b4))}, dec(a3) = {(1, (a3 + b4))},
dec(b4) = {(1, �)} dec(b4) = {(1, �)}
} }
FS(E) = { 1

3a1 + 1
6b2, a3 + b4, �} FS′(E) = { 1

3a1 + 1
6b2, a3, b4, a3 + b4, �}

Definition 3.5 (CFP automaton). Let E a regular K-expression. Let S(E) be
a common follow polynomials system of E. The common follow polynomials au-
tomaton AS(E) = 〈Q, AE, q0, δ1, γ1, µ〉 associated with S(E) is defined by:

• Q = FS(E),
• q0 = {First(E′)},
• (P, a, P ′) ∈ δ1 ⇔ There exists ai ∈ AE such that the following holds:

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 293

– h(ai) = a,
– 〈P, ai〉 �= 0,
– P ′ ∈ Pr(dec(ai)).

• For all (P, a, P ′) ∈ δ1, one has: γ1(P, a, P ′) =
⊕

ai∈AE
h(ai)=a

〈P, ai〉 ⊗ kP ′
ai

.

• µ(P) = 〈P, �〉.

Theorem 3.6. Let E be a regular K-expression and AS(E) the common follow
polynomials automaton associated with a CFP system S(E). Then AS(E) realizes
the regular series SE.

To prove this theorem, we introduce the automatonAS(E) = 〈Q, AE, q0, δ2, γ2, µ〉
defined as follows:

• Q = FS(E).
• q0 = {First(E′)}.
• (P, ai, P

′) ∈ δ2 ⇔ The following holds:
– 〈P, ai〉 �= 0,
– P ′ ∈ Pr(dec(ai)).

• For all (P, ai, P
′) ∈ δ2, one has: γ2(P, ai, P

′) = 〈P, ai〉 ⊗ kP ′
ai

.
• µ(P) = 〈P, �〉.

Lemma 3.7. Let E be a regular K-expression. The automaton AS(E) realizes the
series SE.

Proof. Let E be a regular K-expression and AE the position automaton associated
to its linearized version E and let S(E) = (dec(x))x∈AE

a CFP system associated
with E. Let w = a1a2 · · · an ∈ A∗

E
, From Proposition 2.1, AE realizes the series SE,

so to prove this lemma it suffices to show that for each path p ∈ CAE
, such that

m(p) = w, there exists a unique equivalent path p′ ∈ CAS(E)
such that m(p′) = w

and coef(p) = coef(p′), and conversely.
Let p = (q0, a1, q1), · · · , (qn−1, an, qn) be a path in CAE

. According to the
definition of the automaton AE, one has:

〈First(E), a1〉 �= 0, (9)
〈Follow(ai, E), ai+1〉 �= 0, ∀1 ≤ i ≤ n − 1. (10)

Let Pi the unique polynomial in Pr(dec(ai)) such that 〈Pi, ai+1〉 �= 0 i.e. ai+1 ∈
supp(Pi) and Pi∩Pj = ∅ ∀1 ≤ i �= j ≤ n. Pi exists since 〈Follow(ai, E), ai+1〉 �= 0.
So the path

p′ = (First(E), a1, P1), (P1, a2, P2), · · · , (Pn−1, an, Pn) (11)

exists in AS(E) and is unique.

294 F. OUARDI AND D. ZIADI

Let us prove that coef(p) = coef(p′). One has:

coef(p) = γ(q0, a1, q1) ⊗ γ(p1, a2, q2) · · · γ(qn−1, an, qn) ⊗ µ(qn),
Def. of AE= 〈First(E), a1〉 ⊗ 〈Follow(a1, E), a2〉 · · · 〈Follow(an−1, E), an〉

⊗〈Last(E), an〉;

and

coef(p′) = γ2(First(E), a1, P1) ⊗ γ2(P1, a2, P2) ⊗ · · ·⊗
γ2(Pn−1, an, Pn) ⊗ µ(Pn),

Def. of AS(E)= 〈First(E), a1〉 ⊗ kP1
a1

⊗ 〈P1, a2〉 ⊗ kP2
a2

· · · 〈Pn−1, an〉
⊗k

Pn−1
an ⊗ µ(pn).

From Definition 3.1, We have Follow(ai, E) = k
Pi1
ai Pi1 + · · ·+kPi

ai
Pi + · · ·+k

Pin
ai Pin .

Then, one has
kPi

ai
⊗ 〈Pi, ai+1〉 = 〈Follow(ai, E), ai+1〉, for all 1 ≤ i ≤ n − 1 and 〈Last(E), an〉 =

µ(Pn). �

Proof of Theorem 3.6. Let E be a regular K-expression. Let h be the surjective
morphism from AE into AE. We consider the automata AS(E) and AS(E), the
application h satisfies the conditions (1) and (2) of Proposition 1.9, then one has:

SAS(E) = h(SAS(E)
),

Lemma 3.7= h(SE),
Lemma 2.2= SE. �

Example 3.8. Consider the regular K-expression E = (1
3a+ 1

6b+ 1
2a)(1

2a∗b). The
linearized version of E is E = (1

3a1 + 1
6b2 + 1

2a3)(1
2a∗

4b5). Consider the following
set of common follow polynomials FS(E) = { 1

3a1 + 1
6b2 + 1

2a3} ∪ {a4 + b5, �}.
Note that for the previous example, the position automaton associated with E

has 6 states and 11 transitions (see Fig. 1). However there exists a CFP automaton
realizing the series SE with only 3 states and 4 transitions (see Fig. 2).

The number of transitions and the number of states in a common follow poly-
nomials automaton obviously depends on the choice of the common follow poly-
nomials system. The next section deals with the problem of finding appropriate
common follow polynomials system.
A good choice can be found by resolving the following system:{

Minimize(f(E) =
∑

x∈AE

nxmx)

where mx denotes the number of polynomials C ∈ FS(E) such that 〈C, x〉 �= 0 and
nx denotes the size of dec(x).

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 295

q0
1

a1

a3

b2

a4

b5
1

1
3 a1

1
6 b2

1
2 a3

1
2 a4

1
2 b5

1
2 a4

1
2 b5

1
2 a4

1
2 b5

b4

Figure 1. The position automaton for E = (1
3a1 + 1

6b2 + 1
2a3)(1

2a∗
4b5).

1
3 a1 + 1

6 b2 + 1
2 a3

1
a4 + b5

1
1
6 a1 , 1

12 b2 , 1
4 a3 b5

a4

Figure 2. A CFP automaton for E = (1
3a1 + 1

6b2 + 1
2a3)(1

2a∗
4b5).

1
3 a1 + 1

6 b2 + 1
2 a3

1
a4 + b5

1
5

12 a, 1
12 b b

a

Figure 3. A CFP automaton for E = (1
3a + 1

6b + 1
2a)(1

2a∗b).

From the definition of the automaton AS(E), the function f represents the
number of its transitions.

Unfortunately, in the practice this method is not efficient. In the Boolean case
J. Hromkovic̃ et al. [11], presented an elegant method that computes a particu-
lar common follow sets system which yields to a common follow sets automaton
having O(n) states and O(n log2(n)) transitions where n denote the size of the
regular expression. In [9] C. Hagenah and A. Muscholl have shown that this par-
ticular automaton can be computed in time O(n log2(n)) which is the best known
algorithm for the problem of conversion in the boolean case.

In the next sections, we prove that for a regular K-expression of size n there
exists a common follow polynomials automaton with O(n log2(n)) transitions and
O(n) states. This constitutes the generalization of the result proved by
J. Hromkovic̃ et al. [11]. Next we give an efficient algorithm that computes
this automaton in time O(n log2(n)).

Our algorithm is based on the KZPC-structure . This structure has been in-
troduced in [7], in order to compute the position automaton. Its boolean version
is described in [17,19]. The following section gives a brief description of this struc-
ture.

296 F. OUARDI AND D. ZIADI

4. KZPC-structure

Let E be a regular K-expression. The KZPC-structure of E is based on two
labeled trees (TL(E) and TF(E)) deduced from its syntax tree T(E). These trees
encode respectively the Last and the First polynomials associated to the subex-
pressions of E. The edges of these trees are labeled by elements of the semiring
K.

A node in T(E) will be noted ν. If the arity of ν is two, we write respectively
νl and νr its left son and its right son. If its arity is 1, its son will be noted νs.
The relation of descendance over the syntax tree is denoted �. Let (ν1, ν2) an
edge in TL(E) (or in TF(E)), we denote by α(ν1, ν2) its label. For a tree whose
edges are labeled by elements of the semiring K, we define the cost of the path
(ν = ν1, ν2, · · · , νk = ν′), written π(ν, ν′), as

k−1⊗
i=1

α(νi, νi+1).

By convention we set π(ν, ν) = 1.
A subtree t of T(E) is a tree associated to a subexpression of E, or a tree

obtained from T(E) by deleting a set of trees which represent some subexpressions
of E. This definition is also applied to t. Let t1 be a subtree of t, we denote by t \ t1
the subtree of t resulting from t by deleting the subtree t1. We denote by Pos(t)
the set of positions of AE in t. As a measure of t we use the cardinality of the
nodes set of t. It denoted by | t |. For a node ν in T(E), the regular K-expression
Eν denotes the subexpression resulting from the node ν and c(ν) its null term.
The Last tree TL(E) is a labeled copy of T(E), where an edge going from a node λ
labeled “·” to its left son λl is marked by α(λl, λ) = c(λl) and for each edge going
from a node λ labeled “∗” to its son λs is marked by α(λs, λ) = c(λs)�. For all
other edges (λ, λ′), we set α(λ, λ′) = 1. The node λ represents the polynomial

e(λ) =
∑

x∈AE

π(x, λ)x. (12)

Thus we have

e(λ) = Last(Eλ).

The First tree TF(E) is computed in a similar way, by marking an edge going from
a node ϕ labeled “·” to its right son ϕr by α(ϕ, ϕr) = c(ϕl) and a edge going from
a node ϕ to its son ϕs is marked by α(ϕs, ϕ) = c(ϕs)�. For all other edges (ϕ, ϕ′),
we set α(ϕ, ϕ′) = 1. The node ϕ represents the polynomial

e(ϕ) =
∑

x∈AE

π(ϕ, x)x. (13)

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 297

TL(E)

∗

+

• •

• • 1
2 ∗

1
3

a1
1
4 ∗

b2

b3

2

1
4

1

1

TF(E)

∗

+

• •

• • 1
2 ∗

1
3

a1
1
4 ∗

b2

b3

2

0

1
3

1
2

1
4

1

1

Figure 4. The KZPC-structure associated to the expression
E = (1

3a 1
4b∗ + 1

2b∗)∗.

Thus we have

e(ϕ) = First(Eϕ).

The two trees are connected as follows: if a node λ of TL(E) is labeled by “·”, its
left son λl is linked to the right son ϕr of the corresponding node ϕ in TF(E). If
a node in TL(E) labeled “∗” its son node is linked to its corresponding node in
TF(E). Such links are called follow links. The set of follow links is denoted by
∆. We denote by ∆x the set of follow links associated to the position x. That is:
∆x = {(λ, ϕ) ∈ ∆ | x � λ}.
Proposition 4.1. Let E be a regular K-expression and x ∈ AE. Then

Follow(x, E) =
∑

(λ,ϕ)∈∆x

π(x, λ)e(ϕ). (14)

5. A CFP system computation

Now we describe a procedure which allows us to produce a CFP system that
yields to a CFP automaton with O(n log2(n)) transitions and O(n) states. This
procedure is a generalization of J. Hromkovic̃ et al. one.

298 F. OUARDI AND D. ZIADI

We introduce the function f : TL(E′) → TF(E′) ∪ {⊥} defined by:

f(λ) =
{

ϕ if (λ, ϕ) ∈ ∆x,
⊥ otherwise,

where ⊥ denotes an artificial node such that π(x,⊥) = 0.
We extend the polynomial Follow to the nodes of the tree TL(E′) and TF(E′) as
follows:
if λ1 and λ2 are two nodes in TL(E′) such that λ1 � λ2, then

Follow(λ1, λ2) =
∑

λ1�λ≺λ2
f(λ)=ϕ

π(λ1, λ)e(ϕ), (15)

and if ϕ1 and ϕ2 are two nodes in TF(E′) such that ϕ1 � ϕ2, then

Follow(ϕ1, ϕ2) =
∑

ϕ1�ϕ≺ϕ2
f(λ)=ϕ

π(ϕ1, ϕ)e(λ). (16)

Let P be a polynomial and let t be a subtree of T(E′). The restriction of P to t,
denoted by Pt is the polynomial

Pt =
∑

x∈Pos(t)

〈P, x〉x.

Let t be a subtree of T(E′) and x a position in Pos(t) \ {�}. We denote by tf
(respectively tl) the labeled copy of t in TF(E′) (respectively in TL(E′)). The
procedure recursively computes a particular CFP system. It is defined as follows.

If |Pos(t)| > 1
Decompose t into two subtrees t1 and t2 according to the following rules:
|Pos(t)|

3 ≤ |Pos(t1)| ≤ 2|Pos(t)|
3 and let t2 = t \ t1 with λ1 be the root of the subtree

tl1 and ϕ1 its corresponding node in tf1. Let

P1 = Followt2(λ1, E′),
P2 = e(ϕ1),
P3 = e(λ1),
P4 = Follow(ϕ1, E′).

We have for all x ∈ Pos(t):

Followt(x, E′) = Followt1(x, E′) + Followt2(x, E′).

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 299

Case x ∈ Pos(t1):
One has

Followt2(x, E′)
Relation (15)

=
∑

x�λ≺E′
f(λ)=ϕ

π(x, λ)et2 (ϕ)

=
∑

x�λ≺E′
f(λ)=ϕ

π(x, λ1) ⊗ π(λ1, λ)et2(ϕ)

= π(x, λ1)
∑

λ1�λ≺E′
f(λ)=ϕ

π(λ1, λ)et2(ϕ)

Relations (12) and (15)
= 〈e(λ1), x〉P1

= kP1
x P1.

Thus

Followt(x, E′) = Followt1(x, E′) + kP1
x P1.

It is easy to see that supp(Followt1(x, E′)) ∩ supp(P1) = ∅. If kP1
x �= 0, (kP1

x , P1)
constitues the first element of our follow decomposition dec(x, t) of x in t. We
recursively apply the same decomposition process to Followt1(x, E′). Thus we get

dec(x, t) =
{

dec(x, t1) if kP1
x = 0,

dec(x, t1) ∪ {(kP1
x , P1)} otherwise.

Case x ∈ Pos(t2):

Lemma 5.1. Let x be a position in Pos(t2) and let (λ, ϕ) be a follow link in ∆x.
If supp(e(ϕ)) ∩ Pos(t1) �= 0, then ϕ1 � ϕ.

Proof. We have (λ, ϕ) ∈ ∆x, Then x � λ.
If supp(e(ϕ))∩Pos(t1) �= 0, thus ϕ � ϕ1 or ϕ1 � ϕ. Suppose that ϕ � ϕ1 , so one
has x � λ � λ1. Contradiction with x ∈ Pos(t2). �

300 F. OUARDI AND D. ZIADI

One has

Followt1(x, E′)
Relation (16)

=
∑

x�λ≺E′
f(λ)=ϕ

π(x, λ)et1 (ϕ)

Lemma 5.1=
∑

ϕ1�ϕ≺E′
f(λ)=ϕ

π(x, λ)e(ϕ)

Relation (12)
= [

∑
ϕ1�ϕ≺E′
f(λ)=ϕ

〈e(λ), x〉 ⊗ π(ϕ, ϕ1)]e(ϕ1)

= 〈
∑

ϕ1�ϕ≺E′
f(λ)=ϕ

e(λ)π(ϕ, ϕ1), x〉e(ϕ1)

= 〈P4, x〉P2

= kP2
x P2.

Thus
Followt(x, E′) = Followt2(x, E′) + kP2

x P2.

It is easy to see that supp(Followt2(x, E′))∩ supp(P2) = ∅. In this case if kP2
x �= 0,

(kP2
x , P2) constitues the first element of our follow decomposition dec(x, t) of x

in t. We recursively apply the same decomposition process to Followt2(x, E′).
Thus we get

dec(x, t) =
{

dec(x, t2) if kP2
x = 0,

dec(x, t2) ∪ {(kP2
x , P2)} otherwise.

If |Pos(t)| = 1
Using the same idea of the previous cases, we get

dec(x, t) = {(〈P0, x〉, x)},

with P0 =
∑

x�λ≺E′
(π(x, λ) ⊗ π(f(λ), x))x.

The following example illustrates the different stages of the recursive procedure.

Example 5.2. Consider the regular K-expression E = (((a+ 1
3)+(b+ 1

6))(b+1))∗.
One has
Step 1.
|Pos(T(E′))| = 4. We decompose the tree t = T(E′) into two subtrees t1 and t2
such that t1 be the subtree representing the subexpression (a1 + 1

3)+ (b2 + 1
6) and

t2 = t \ t1. In this case one has

dec(a1, t) = dec(a1, t1) ∪ {(1, (2b3 + 2�))},
dec(b2, t) = dec(b2, t1) ∪ {(1, (2b3 + 2�))},
dec(b3, t) = dec(b3, t2) ∪ {(1, (2a1 + 2b2))}.

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 301

Step 2.
Recursively, we decompose the subtree t1 into two subtrees t11 (the subtree rep-
resenting the subexpression a1 + 1

3 and t12 = t1 \ t11). Similarly, we divide the
subtree t2 into two subtrees t21 (the subtree representing the subexpression b3 + 1
and t22 = t2 \ t21). Thus we get

dec(a1, t) = dec(a1, t11) ∪ {(2, (b2))} ∪ {(1, (2b3 + 2�))},
dec(b2, t) = dec(b2, t12) ∪ {(2, (a1))} ∪ {(1, (2b3 + 2�))},
dec(b3, t) = dec(b3, t21) ∪ {(2, (�))} ∪ {(1, (2a1 + 2b2))}.

Step 3.
One has |Pos(t11)| = |Pos(t12)| = |Pos(t21)| = 1, thus:

dec(a1, t) = {(2, (a1))} ∪ {(2, (b2))} ∪ {(1, (2b3 + 2�))},
dec(b2, t) = {(2, (b2))} ∪ {(2, (a1))} ∪ {(1, (2b3 + 2�))},
dec(b3, t) = {(2, (b3))} ∪ {(2, (�))} ∪ {(1, (2a1 + 2b2))}.

Thus the resulting set of common follow polynomials FS(E) associated with S(E) is

FS(E) = {2a1 + 2b2 + b3 + 2�} ∪ {(a1), (b2), (b3), (�), (2a1 + 2b2), (2b3 + 2�)}.

Using this procedure, we can prove in similar way as the Boolean case the
following Lemma.

Lemma 5.3 (cf. [11]). For FS(E) the following holds:

(1) |FS(E)| = O(|E |),
(2)

∑
P∈FS(E)

| supp(P)| = O(|E | log |E |),
(3) | dec(x)| = O(log |E |).

6. Efficient CFP system computation

In this section, we first give a naive cubic implementation (Algorithm 6.1) of
the CFP system procedure described in the previous section. This constitues
our starting point for the efficient implementation of the CFP system procedure.
Next, we show that Algorithm 6.1 runs in quadratic time. After, we show that
Algorithm 6.1 contains some redundants computations, that can be eliminated.
Finally, we prove that the CFP system procedure can be efficiently implemented
in O(|E | log(|E |)) time.

302 F. OUARDI AND D. ZIADI

Algorithm 6.1.
CFPS(t)
Begin

∗/ Input: a subtree t of T(E′) ∗/
∗/ Output: return the set of all follow decompositions of positions in t ∗/

1. Let λ be the root of tl
2. if (|Pos(t)|=1)
3. then
4. Let x ∈ Pos(t)
5. P0:=Restriction(Follow(x, E′), t)
6. dec(x):={(〈P0, x〉, x)}
7. else

8. Divide t into t1 and t2 = t \ t1 such that
|Pos(t)|

3
≤ |Pos(t1)| ≤ 2|Pos(t)|

3
9. Let λ1 be the root of tl1
10. Let ϕ1 be the root of tf1
14. P1:=Restriction(Follow(λ1, E

′), t2)
15. P2:=e(ϕ1)
16. P3:=e(λ1)
17. P4:=Follow(ϕ1, E

′)
13. dec := CFPS(t1) ∪ CFPS(t2)
18. for x ∈ Pos(t1) do
19 kP1

x :=〈P3, x〉
dec(x):=dec(x) ∪ {(kP1

x , P1)}
20. for x ∈ Pos(t2) do
21 kP2

x :=〈P4, x〉
dec(x):=dec(x) ∪ {(kP2

x , P2)}
22. endif
23. return(dec)
End

Let T (| t |) be the time complexity of the procedure CFPS(t) where t is a
subtree of T(E′). We have

T (| t |) =
{

T (2| t |
3) + T (| t |3) + g(| t |) if |Pos(t)| > 1,

g(| t |) otherwise,
(17)

where g(| t |) is the time complexity of computation of the polynomials Pi for
0 ≤ i ≤ 4. A naive implementation (i.e. g(|t|) = O(|E |2)) yields to a cubic com-
plexity on the size of E. We can therefore reduce this complexity by improving
the complexity of Pi computation.

In the following section, we first show how these polynomials can be computed
in linear time on the size of E (i.e. g(| t |) = O(|E |)), next we present a refinement
of Algorithm 6.1 in order to compute these polynomials in linear time on the size
of the subtree t (i.e. g(| t |) = O(| t |)).

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 303

6.1. Efficient follow computation

Let t be a subtree deduced from a decomposition of T(E′). Let λ1 be the root
of tl, and let λ2 a node in tl such that λ1 � λ2 and

Follow(λ1, λ2) =
∑

λ1�λ≺λ2

π(λ1, λ)e(f(λ)).

The supports of polynomials (e(f(λ)))λ1�λ≺λ2 are not disjoints. So the computa-
tion of Followt(λ1, λ2) according to equation (15) requires a quadratic time on the
size of t.

Let λ′ and λ′′ be to nodes such that λ1 � λ′ ≺ λ′′ � λ2 and supp(e(f(λ′)) ∩
supp(e(f(λ)) �= ∅.

In this case we have

e(f(λ′′)) = π(f(λ′′), f(λ′))e(f(λ′)) + e(f(λ′′) − f(λ′))

where e(f(λ′′) − f(λ′)) denotes the polynomial induced by the subtree tλ′′ \ tλ′ .
So the polynomial

π(λ1, λ
′)e(f(λ′)) + π(λ1, λ

′′)e(f(λ′′))

can be written

[π(λ1, λ
′) ⊕ π(λ1, λ

′′) ⊗ π(f(λ′′), f(λ′)]e(f(λ′)) + π(λ1, λ
′′)e(f(λ′′) − f(λ′)).

Algorithm 6.2.
Follow(λ1,coef,λ2) : polynomial
// λ1 and λ2 are two nodes s.t. λ1 � λ2

Begin
1. coef:=π(λ1, λ2) ⊕ coef ⊗π(father(f(λ2)), f(λ2))
2. case (arity(f(λ2)) of
3. 0 :
4. If ((coef
= 0) and (f(λ2) is a position))
5. then
6. return(coef f(λ2))
7. else
8. return(0)
9. endif
10. 1 :
11. return(Follow(λ1,coef,son(f(λ2))))
12. 2 :
13. return(Follow(λ1,coef,leftson(f(λ2)))+Follow(λ1,coef,rightson(f(λ2))))
14. endcase
End

Here, supports of polynomials e(f(λ′)) and e(f(λ′′) − f(λ′)) are disjoints. Al-
gorithm 6.2 is based on this formula. The call Follow(λ2,1,λ2), computes the

304 F. OUARDI AND D. ZIADI

polynomial Follow(λ1, λ2) in linear time on the size of t. Indeed, each node in tl2
is treated only once.

As polynomials Follow are ordered on positions, the restriction of Follow(λ1, λ2),
Restriction(Follow(λ1, λ2), t′), to some subtree t′ of t needs a linear time on the
size of t.

In a similar way, the polynomial Follow(ϕ1, ϕ) is computed in linear time w.r.t.
the size of t where ϕ is the root of tf and ϕ1 is a node in tf.

Lemma 6.3. Let E be a regular �-expression. Let t,t′ be subtrees of T(E′). Let
λ1 be the root of tl, and let λ2 a node in tl such that λ1 � λ2. Then the polynomial
Followt′(λ1, λ2) can be computed in O(max(| t |, | t′ |).

Now polynomials Pi, for 0 ≤ i ≤ 4, are computed in linear time on the size of
E (i.e. (g(| t |) = O(|E |)). So Algorithm 6.1 runs in quadratic time on the size
of E.

In the following section we show that Algorithm 6.1 contains some redundant
computations that can be avoided. This improvement yields to an O(| t | log (| t |))
time complexity.

6.2. Redundant computations

At each call of CFPS procedure we compute the following polynomials Follow
(λ1, E′), Follow(ϕ1, E′). We have

Follow(λ1, E′) = Follow(λ1, λ) + π(λ1, λ) Follow(λ, E′)
Follow(ϕ1, E′) = Follow(ϕ1, ϕ) + π(ϕ1, ϕ) Follow(ϕ1, E′)

where λ and ϕ are respectively the root of tl and tf and λ1 and ϕ1 are respectively
the root of tl1 and tf1. Denote by R(t) the polynomial Follow(λ, E′). Then, we
get

R(t1) = Follow(λ1, λ) + π(λ1, λ)R(t),

and as the root of t is the same as t2 we get

R(t2) = R(t).

In a similar way Follow(ϕ1, E′) is computed. Denote by S(t) the polynomial
Follow(ϕ, E′). So we get

S(t1) = Follow(ϕ1, ϕ) + π(ϕ1, ϕ)S(t)

and

S(t2) = S(t).

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 305

It is obvious that if R(t) and S(t) are computed then Followt2(λ2, E′) and
Followt2(ϕ1, E

′) can be computed in O(| t |) time. Finlay Algorithm 6.1 runs in
O(| t | log (| t |)) time.

Algorithm 6.4.
CFPS(t, R, S)
Begin

∗/ Input: a subtree t of T(E′) ∗/
∗/ Output: return the set of all follow decompositions of positions in t ∗/

1. Let λ be the root of tl
2. if (|Pos(t)|=1)
3. then
4. Let x ∈ Pos(t)
5. P0:=Restriction(Follow(x, λ) + π(x, λ)R, t)
6. dec(x):={〈P0, x〉, x}
7. else

8. Divide t into t1 and t2 = t \ t1 such that
|Pos(t)|

3
≤ |Pos(t1)| ≤ 2|Pos(t)|

3
9. Let λ1 be the root of tl1
10. Let ϕ1 be the root of tf1
14. P1:=Restriction(Follow(λ1, λ) + π(λ1, λ)R, t2)
15. P2:=e(ϕ1)
16. P3:=e(λ1)
17. P4:=Follow(ϕ1, ϕ) + π(ϕ1, ϕ)S
13. dec := CFPS(t1, Follow(λ1, λ) + π(λ1, λ)R, Follow(ϕ1, ϕ)+

π(ϕ1, ϕ)S) ∪ CFPS(t2, R, S)
18. for x ∈ Pos(t1) do
19 kP1

x :=〈P3, x〉
dec(x):=dec(x) ∪ {(kP1

x , P1)}
20. for x ∈ Pos(t2) do
21 kP2

x :=〈P4, x〉
dec(x):=dec(x) ∪ {(kP2

x , P2)}
22. endif
23. return(dec)
End

Lemma 6.5. Let E be a regular �-expression. The CFP system associated to E
can be computed in O(|E | log (|E |)) time.

7. CFP automaton computation

In the previous section, we have given an algorithm that compute the CFP
system. So the set of states of the CFP automaton is computed. It remains to
construct the set of transitions.

Algorithm 7.2 computes in a first stage the set of transitions over AE, and in
the second stage deduces the set of transitions over the alphabet AE.

Let us now describe this algorithm. Let P = β1x1 + β2x2 + . . . + βlxl be a
state in FS(E). Let βixi be a monomial in P . From the definition of AS(E),

306 F. OUARDI AND D. ZIADI

if dec(xi, E′) = {(k1, P1), (k2, P2), · · · , (km, Pm)}, we create a transition from the
state P to each state Pj , 1 � j � m, labeled βikjxi.

Now transitions are labeled by letters in AE. So in the second stage of the
algorithm, we replace each symbol xi ∈ AE by h(xi). Next for all transitions
going from a state P to a state P ′ labeled by xi such that h(xi) = x, we merge
these transitions into a unique one (P, x, P ′) with γ(P, x, P ′) =

⊕
h(xi)=x

xi∈AE

γ(P, xi, P
′).

Finally, as
∑

P∈FS(E)
| supp(P)| = O(|E | log (|E |)) and | dec(x, E′)| =

O(log (|E |)), lines 1 − 7 and lines 9 − 16 of procedure Transitions() are achieved
in O(|E | log2(|E |)) times.

Theorem 7.1. Let E be a regular �-expression. The CFP automaton AS(E) can
be computed in O(|E | log2(|E |)) time.

Algorithm 7.2.
Transitions()
Begin
1. // Transitions over AE

1. for P ∈ FS(E) do

2. // P = β1x1 + . . . + βlxl

3. for x ∈ supp(P) do
4. // supp(P) = {x1, x2, . . . , xl}
5. for (k, P ′) ∈ dec(x,E′) do
6. // dec(x, E′) = {(k1, P1), (k2, P2), . . . , (km, Pm)}
7. Create a transition labeled (P, x, P ′)

and set γ(P, x, P ′) = 〈P, x〉 ⊗ k
8. // Transitions over AE

9. for P ∈ FS(E) do
10. Let q+(P) = {(x1, P1) | (P, xi, Pi) ∈ δA

S(E)
}

12. for a ∈ AE do
13. for (x,P ′) ∈ q+(P) do
14. γ(P, a, P ′)=0
15. for α(x,P ′) ∈ q+(P) do
16. γ(P, h(x), P ′)=γ(P, h(x), P ′) ⊕ γ(P, x, P ′)
End

8. Conclusion

We have shown that Hromkovic̃ et al. construction can be generalized to
weighted regular expressions and presented an efficient computation of CFP au-
tomaton.

EFFICIENT WEIGHTED EXPRESSIONS CONVERSION 307

References

[1] V. Antimirov, Partial derivatives of regular expressions and finite automaton constructions.
Theoret. Comput. Sci. 155 (1996) 291–319.

[2] A. Brüggemann-Klein, Regular expressions into finite automata. Theoret. Comput. Sci. 120
(1993) 197–213.

[3] J. Berstel and C. Reutenauer. Rational series and their languages. Springer-Verlag, Berlin

(1988).
[4] P. Caron and M. Flouret, Glushkov construction for series: the non commutative case. Int.

J. Comput. Math. 80 (2003) 457–472.
[5] P. Caron and D. Ziadi, Characterization of Glushkov automata. Theoret. Comput. Sci. 231

(2000) 75–90.
[6] J.-M. Champarnaud and D. Ziadi, Computing the equation automaton of regular expression

in O(s2) space and time, in CPM 2001, Combinatorial Pattern Matching, edited by A. Amir
and G.M. Landau. Lect. Notes Comput. Sci. 2089 (2001) 157–168.

[7] J.-M. Champarnaud, E. Laugerotte, F. Ouardi and D. Ziadi, From regular weighted expres-
sions to finite automata. Int. J. Fond. Comput. Sci. 15 (2004) 687–700.

[8] V.-M. Glushkov, The abstract theory of automata. Russian Math. Surveys 16 (1961) 1–53.
[9] C. Hagenah and A. Muscholl, Computing ε-free NFA from regular expression in O(n log2(n))

time. RAIRO-Theor. Inf. Appl. 34 (2000) 257–277.
[10] U. Hebisch and H.J. Weinert, Semirings: algebraic theory and applications in computer

science. World Scientific, Singapore (1993).
[11] U. Hromkovic̃, J. Seibert and T. Wilke, Translating regular expressions into small ε-free

nondeterministic finite automata. J. Comput. System Sci. 62 (2001) 565–588.
[12] L. Ilie and S. Yu, Algorithms for computing small NFAs, in Proc 27th MFCS, Warszawa,

2002, edited by K. Diks and W. Rytter. Lect. Notes Comput. Sci. (2002) 328–340.
[13] W. Kuich and J. Salomaa, Semirings, automata, languages. Springer-Verlag, Berlin (1986).
[14] S. Lombardy and J. Sakarovitch, Derivatives of regular expression with multiplicity, Proc.

of MFCS 2002. Lect. Notes Comput. Sci. 2420 (2002) 471–48.
[15] R.F. McNaughton and H. Yamada, Regular expressions and state graphs for automata.

IEEE T. Electron. Comput. 9 (1960) 39–47.
[16] M.P. Schützenberger, On the definition of a family of automata. Inform. Control 6 (1961)

245–270.
[17] D. Ziadi, Algorithmique parallèle et séquentielle des automates. Thesis, LIR report, Univer-

sité de Rouen (1996).
[18] D. Ziadi, Quelques aspects théoriques et algorithmiques des automates. Thesis, Université

de Rouen (2002).
[19] D. Ziadi, J.-L. Ponty and J.-M. Champarnaud, Passage d’une expression rationnelle à un

automate fini non-déterministe. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 177–203.

Communicated by C. Choffrut.
Received March 23, 2005. Accepted June 22, 2007.

	Introduction
	Preliminaries
	Position automaton
	Common follow polynomials automaton
	KZPC-structure
	A CFP system computation
	Efficient CFP system computation
	Efficient follow computation
	Redundant computations

	CFP automaton computation
	Conclusion
	References

