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A CONVERGENCE RESULT FOR FINITE VOLUME SCHEMES
ON RIEMANNIAN MANIFOLDS

Jan Giesselmann
1

Abstract. This paper studies a family of finite volume schemes for the hyperbolic scalar conservation
law ut + ∇g · f(x, u) = 0 on a closed Riemannian manifold M. For an initial value in BV(M) we will

show that these schemes converge with a h
1
4 convergence rate towards the entropy solution. When M

is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to h
1
2 .
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1. introduction

Hyperbolic partial differential equations on curved manifolds occur in many applications. These include shal-
low water models for the atmosphere or ocean [4,12,17], the propagation of sound waves on curved surfaces [22]
and passive tracer advection in the atmosphere. Further examples are the propagation of magneto-gravity waves
in the solar tachocline [5,9,21] and relativistic matter flows near compact objects like black holes [8,15].

For the numerics of these problems finite difference [8], finite volume [15], discontinuous Galerkin [11] and
wave propagation methods [20] have been used. Except for the work of Amorim et al. in [1] there is, up to the
knowledge of the author, no convergence analysis in all of these cases. For convergence analysis of finite volume
schemes, we will consider the following scalar model problem for non-linear hyperbolic conservation laws:

ut + ∇g · f(x, u) = 0 in M × R+ (1.1)
u(x, 0) = u0(x) on M. (1.2)

Here (M, g) is a closed oriented Riemannian manifold and g is a fixed Riemannian metric on M. By ∇g· we
denote the divergence operator on M induced by g. The aim of this paper is to prove a convergence rate for
finite volume schemes for this model problem.

For this problem one has the notion of entropy solution, analogous to the Kruzkov definition in Euclidean
space.
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Definition 1.1. A function u ∈ L∞(M × R+) is called an entropy solution of (1.1), (1.2) if

∫
M×R+

[
|u− κ|ϕt + g(x)

(
f(x, u�κ) − f(x, u⊥κ),∇gϕ

)]
dvg dt

+
∫

M

|u0 − κ|ϕ(·, 0) dvg ≥ 0 ∀κ ∈ R, ∀ϕ ∈ C∞
0 (M × R+,R+), (1.3)

where u⊥κ and u�κ denotes the minimum and maximum of u and κ respectively.

The well-posedness of this problem was investigated by Ben-Artzi and LeFloch in [2]. They show that
given u0 ∈ L∞(M) ∩ L1(M) and a geometry compatible flux, i.e. ∇g · f(·, ū) = 0, for every ū ∈ R the
problem (1.1), (1.2) has a unique entropy solution u. Furthermore for u0 ∈ L∞(M)∩BV(M) the total variation
of the entropy solution is bounded for every time t ≥ 0 in the sense that there exists C1 ≥ 0 depending only on
‖u0‖L∞(M) and the geometry of M such that

TVM (u(·, t)) ≤ eC1t(1 + TVM (u0)) for all t ≥ 0.

In [1] it is shown that for a geometry compatible flux f and every vector-field X with [X, fu(·, ū)] = 0 for every
ū ∈ R, we have

TVX(u(·, t)) ≤ TVX(u0),

where

TVX(u) := sup
φ∈C∞(M):‖φ‖L∞

∫
M

u∇g · (φX) dvg(x).

This implies that for d = 1 the entropy solution is total variation diminishing, i.e. TVM (u(·, t)) ≤ TVM (u0).
Furthermore they prove convergence for a class of finite volume schemes for the Cauchy-problem (1.1), (1.2).
This relies on an entropy dissipation inequality for smooth entropies. We will prove a similar result for Kruzkov
entropies in Lemma 5.5. In this paper we will prove convergence rates for these schemes. The general convergence
framework by Eymard et al. in [7] for the proof of convergence rates for finite volume schemes in Euclidean space
works but requires substantial extensions to the differential geometric framework. Particularly new problems
arise in the construction and properties of cut-off functions and due to the fact that on a Riemannian manifold
we cannot – in general – parallel-transport one vector to the whole manifold and get a smooth vector-field
(cf. the proofs of Lems. 5.6 and 5.7). As in the Euclidean case we are able to prove convergence of order 1

2 in
one space dimension and convergence of order 1

4 in higher space dimensions.
We refer to [19,20] for a treatment of the wave propagation method on curved manifolds.
We use a quite generic finite volume method. For the convergence analysis we need grids with the property

that the curvature of the faces is uniformly bounded under mesh refinement and such that every point on the
manifold lies only in a certain number of convex hulls of elements. In [3] different approaches to construct grids
on spheres are treated and we refer to [10,18] for geodesic grids on a sphere, which are an important class of
examples where these results hold.

We make the following hypotheses on the data:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u0 ∈ L∞(M) ∩ BV(M), Um, UM ∈ R: Um ≤ u0 ≤ UM a.e.,
f ∈ C1(M × R, TM) such that f(x, ū) ∈ TxM for every x ∈M, ū ∈ R,

∇g · f(·, ū) = 0 for every ū ∈ R,
there is a constant C > 0 such that

‖∇f(x, ū) −∇f(x, ū′)‖g ≤ C|ū− ū′| for every ū, ū′ ∈ [Um, UM ] and x ∈M.

(1.4)

Here ‖·‖g denotes the operator-norm induced by g, cf. Section 2.1, ∇f(x, u) denotes the covariant derivative with
respect to the first variable and ∇g ·f(x, ū) denotes the divergence which is the trace of the covariant derivative.
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The hypothesis divgf(·, ū) = 0 is used to ensure the well-posedness of the problem and to avoid technical
problems. Like in the Euclidean case it should not be necessary for the convergence rate.

The outline of this paper is as follows: in Section 2 we will recall some helpful definitions and notations from
differential geometry and give some results, which are necessary for the proof of the main theorem, Theorem 5.8.
In Sections 3 and 4 we will present the notion of triangulation and the construction of finite volume schemes on
Riemannian manifolds respectively. In Section 5 we will state the main theorem and prove it.

2. Differential geometry

2.1. Notation and definitions

We will consider a connected, closed, oriented d-dimensional Riemannian manifold (M, g), i.e.M is a compact,
smooth, oriented manifold without boundary and g is a fixed Riemannian metric on M. This means g(x) is
an inner product, and hence defines a norm ‖ · ‖g, on the tangent space TxM of M at x. In local coordinates
(xj)1≤j≤d the partial derivatives ∂j = ∂

∂xj form a basis of the tangent space TxM and we have the metric tensor
gij(x) := g(x)(∂i, ∂j) with inverse gij . This enables us to define the divergence operator ∇g· by

∇g · f(x) :=
1√
|g(x)|

∂j

(√
|g(x)|f j(x)

)

where |g(x)| := | det(gij(x))|, for every smooth vector-field f on M with local representation f = f j∂j using
the Einstein summation convention. The covariant derivative of f is given by

∇f : Γ(TM) −→ Γ(TM)

∇Y j∂j
f := f iY jΓk

ji∂k + Y j∂j(fk)∂k,

where

Γk
ji :=

1
2

(∂jgil + ∂iglj − ∂lgji) glk

and Γ(TM) denotes the smooth vector-fields on M, i.e. the smooth sections of the tangent bundle TM. For
every x ∈M we have

∇f(x) : TxM −→ TxM

and by providing a norm on TxM the Riemannian metric defines an operator norm for such maps. The covariant
derivative is compatible with the Riemannian metric, i.e. for vector-fields X,Y, Z we have

X(g(Y, Z)) = g (∇XY, Z) + g (Y,∇XZ) . (2.1)

These definitions of divergence and covariant derivative are only well-defined in the local coordinate system,
but the definitions are independent of the choice of local coordinates and so divergence and covariant derivative
are well-defined all over M. Similarly for every smooth function u on M the gradient of u is defined by

(∇gu)i = gij ∂u

∂xj
·

The Riemannian metric also defines a volume form dvg on the manifold, a volume form dvN on every subman-
ifold N and a metric dg on M. Spaces of functions of bounded variation are defined similar to the definition in
Euclidean space.
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Definition 2.1.

TVM (u) := sup
X∈Γ(TM):‖X‖∞≤1

∫
M

u∇g ·X dvg,

BV(M) :=
{
u ∈ L1(M): TVM (u) <∞

}
·

Throughout this paper we will use the following lemma, whose proof can be found in [6] for example.

Lemma 2.2. Because M is compact there exists a constant R > 0 such that for every x ∈ M the map exp−1
x

is a chart on B4R(x).

Finally for manifolds M,N, a smooth map h : M −→ N and x ∈M we will use the tangential map

Thx : TxM −→ Th(x)N,

which is defined by
Thx(v)(u) := v(h ◦ u) for every v ∈ TxM and u ∈ C∞N,R

for more details confer [6] for example.

Definition 2.3. For a set U ⊂M the convex hull convU of U is the set of all points x ∈M such that there
are two points y, y′ ∈M and a length minimizing geodesic γyy′ : [0, 1] −→M with γyy′(0) = y, γyy′(1) = y′ and
γyy′(t) = x for some t in [0, 1].

This definition is needed to define one of the properties of the grid in Definition 3.1.

2.2. Parallel transport

In the proof of Lemma 5.7 we will have to use parallel transport to extend vectors to local vector-fields. For
x, y ∈ M with 0 < dg(x, y) < R there exists a unique minimizing geodesic γxy from x to y parametrized by
arc-length. So we get a well-defined mapping

Pxy : TxM −→ TyM

defined by parallel transport along this geodesic. By definition of geodesic we know that Pxy(γ′xy(0)) =
γ′xy(dg(x, y)). Obviously we have for 0 < dg(x, y) < R the identities

∇g,xdg(x, y) = −γ′xy(0) and ∇g,ydg(x, y) = γ′xy(dg(x, y)). (2.2)

Let v be a smooth vector-field on M then

d
dt
g(γxy(t))

(
Pxγxy(t)(v(x)), γ′xy(t)

)
= 0

and therefore
g(x) (v(x),∇g,xdg(x, y)) = −g(y) (Pxy(v(x)),∇g,ydg(x, y)) . (2.3)

2.3. Cut-off functions

These are necessary for a doubling of variables argument in the proof of Lemma 5.7. Let ψ : R −→ R+ be a
smooth function with suppψ ⊂ [−1, 0] such that∫

R

ψ(x) dx = 1.
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Let ψε(x) := 1
εψ
(

x
ε

)
. Let χ : R −→ R+ be a smooth function with support in [−1, 1], which is even, decreasing

on [0, 1] and fulfils ∫
Rd

χ(‖x‖) = 1. (2.4)

We define

χε : M ×M −→ R, (x, y) �→ 1
εd
χ

(
dg(x, y)

ε

)
· (2.5)

For ε sufficiently small we have for every x ∈M using the exponential map expx∫
M

χε(x, y) dvg(x) =
∫

Bε(0)

1
εd
χ

(
‖a‖g

ε

)
| det(T exp−1

x )a| da. (2.6)

The map
{(x, y) ∈M2: dg(x, y) < 2R} −→ R (x, y) �→ det(T exp−1

x )exp−1
x (y)

is smooth and equals 1 for x = y. Hence we have∣∣∣det(T exp−1
x )exp−1

x (y) − 1
∣∣∣ ≤ Cdg(x, y) (2.7)

for dg(x, y) ≤ R. Inserting this in (2.6) we get

∣∣∣∣
∫

M

χε(x, y) dvg(y) − 1
∣∣∣∣ (2.4)

≤
∫

Bε(0)

1
εd
χ

(
‖a‖g

ε

)
| det(T exp−1

x )a − 1| da ≤ Cε. (2.8)

Furthermore when γxy denotes the length minimizing geodesic from x to y parametrized by arc-length, we
have using (2.2)

∇g,yχε(x, y) =
1

εd+1
χ′
(
dg(x, y)

ε

)
γ′xy(dg(x, y)). (2.9)

The following technical lemma will be very helpful for the proof of Theorem 5.8. Its proof will be given in
the appendix.

Lemma 2.4. There is a constant C > 0 depending only on M and g such that for every x, y ∈ M with
dg(x, y) < R and v ∈ TxM ∣∣∣divg,y(T expx)exp−1

x (y)(v)
∣∣∣ ≤ C‖v‖gdg(x, y), (2.10)∥∥∥(T expx)exp−1

x (y)(v)
∥∥∥

g
≤ C‖v‖g. (2.11)

There is another C > 0 such that for every x, y ∈M, v ∈ TxM and ε < R

∣∣∣〈(T expx)exp−1
x (y)(v) − Pxy(v),∇g,yχε(x, y)

〉∣∣∣ ≤ C

εd−1
‖v‖g1{dg(x,y)<ε}. (2.12)

Here we have (T expx)exp−1
x (y)(v) ∈ TyM for every y ∈ BR(x) and hence

y �→ (T expx)exp−1
x (y)(v)

defines a vector-field on BR(x).
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Figure 1. Part of a triangulation of the sphere.

3. Triangulation

Definition 3.1. A curved polyhedron K is a closed subset of M, such that the boundary of K is the union
of finitely many hypersurfaces with boundary e of M, which are called the faces of K, satisfying e1∩e2 is empty
or a submanifold of M with dimension at most d− 2. Furthermore we impose K◦ = K to rule out some forms
of degeneracy of K. A triangulation on (M, g) is a set T of curved polyhedra K on M, such that M = ∪T K̄.
We impose K1 ∩K2 is a common face of K1,K2 or a submanifold of dimension ≤ d− 2.

The set of the faces e of a polyhedron K is denoted by ∂K and the unique polyhedron sharing the face e with
K is denoted by Ke. By nK,e(x) ∈ TxM we denote the unit outer normal to a polyhedron K in a point x ∈ e.
These definitions are illustrated in Figure 1. Finally |K|, |e| denote the d- and (d − 1)-dimensional Hausdorff
measures of K and e respectively.

We will need the following assumption on the triangulation: There exist C, R̄, β, h > 0 and k, Nc ∈ N such
that for every K ∈ T and e ∈ ∂K the following conditions are fulfilled

βhd ≤ |K|, (3.1)

|e| ≤ Chd−1, (3.2)
#∂K ≤ k, (3.3)
δ(K) ≤ h, (3.4)

sup
x,i,e

|λi(e)(x)| ≤ R̄, (3.5)

sup
x∈M

#{K: x ∈ convK} ≤ Nc, (3.6)

where δ(K) := sup{dg(x, y): x, y ∈ K} and # denotes the number of elements of a certain set. Furthermore
λi(e)(x) denotes the ith principal curvature of the face e in the point x ∈ e.

Note. The condition (3.6) should be fulfilled for all computational meshes and is needed for the approximation
of the initial data in Lemma 3.2 which will be stated below and whose proof can be found in the appendix. Under
mesh refinement condition (3.5) is satisfied for example by geodesic grids and the combined grid composed of a
latitude-longitude grid away from the poles and a stereographic grid at the two polar caps which can be found
in [14]. It is not satisfied by the latitude-longitude grid on the sphere which also has some other numerical
drawbacks. In particular strongly differing cell sizes impose hard CFL conditions on the timestep (cf. [3]). The
grids proposed in [3] also do not satisfy this condition.

Lemma 3.2. For h small enough and every u ∈ BV(M) there is a constant C > 0 depending on M and Nc

such that
‖u− ū‖L1(M) ≤ Ch,
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where
ū(x) :=

1
|K|

∫
K

u(x) dvg(x) for x ∈ K,

so ū is well-defined almost everywhere on the manifold.

4. The scheme

For every polyhedron K ∈ T and face e ∈ ∂K we consider a numerical flux function fK,e : R×R −→ R such
that the following properties are satisfied:

Conservation: fK,e(a, b) = −fKe,e(b, a), (4.1)

Consistency: fK,e(a, a) =
1
|e|

∫
e

f(x, a)nK,e(x) dve(x), (4.2)

Monotonicity: fK,e is nondecreasing in the first and (4.3)
nonincreasing in the second variable.

Furthermore we impose that the fK,e are uniformly locally Lipschitz continuous. We will consider the following
semi-discrete scheme:

(uh
K)t = − 1

|K|
∑

e∈∂K

|e|fK,e(uh
K , u

h
Ke

) (4.4)

uh
K(0) =

1
|K|

∫
K

u0(x) dvg(x) (4.5)

uh(x, t) = uh
K(t) for x ∈ K. (4.6)

5. Proof of convergence rates

We first show that a solution of (4.4)–(4.6) exists and that it is bounded.

Lemma 5.1. Assume the local existence of a solution of (4.4)–(4.6) and let u0(x) ∈ [Um, UM ] for almost every
x ∈M, then uh

K(t) ∈ [Um, UM ] for every t ≥ 0 and K ∈ T .
Proof. It is obvious that uh

K(0) ∈ [Um, UM ] for every K. First observe that for fixed K and uh
Ke

≤ uh
K for all

e ∈ ∂K we have

(uh
K)t = − 1

|K|
∑

e∈∂K

|e|fK,e(uh
K , u

h
Ke

)

monotonicity

≤ − 1
|K|

∑
e∈∂K

|e|fK,e(uh
K , u

h
K)

consistency

≤ − 1
|K|

∑
e∈∂K

∫
e

f(x, uh
K)nK,e dvg(x) = 0. �

As an immediate consequence of Lemma 5.1 and the local Lipschitz continuity of the numerical fluxes we
have:

Corollary 5.2. There exists a global solution of the system (4.4)–(4.6).

The next step is to prove a TVD estimate in the d = 1 case and a weak BV-estimate in the d ≥ 2 case. For
brevity we introduce the following notation: for real numbers a, b we define

C(a, b) := {(c, d) ∈ [a⊥b, a�b]2: (b − a)(d− c) ≥ 0},



936 J. GIESSELMANN

where a�b and a⊥b denote the maximum and minimum of a and b respectively. For every t ≥ 0 we define

E(t) := {(K, e): K ∈ T , e ∈ ∂K, uh
K(t) > uh

Ke
(t)}·

Lemma 5.3 (TVD property). Let M be 1-dimensional then the scheme (4.4)–(4.6) is TVD, i.e.

TVM (uh(·, t)) ≤ TVM (u0) for all t > 0.

This implies that for every T > 0 there exists a C > 0 depending only on f, u0, M, fK,e, T such that

∫ T

0

∑
K∈T

∑
e∈∂K

|e| max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)| dt ≤ C.

Proof. We will consider times t where d
dt |uh

K − uh
Ke

| exists for all K ∈ T and e ∈ ∂K. These derivatives exist
for almost every t ≥ 0 and we have

d
dt

TVM (uh(·, t)) =
1
2

∑
K∈T

∑
e∈∂K

d
dt

|uh
K(t) − uh

Ke
(t)|.

Now we fix one K ∈ T and observe that K has exactly two neighbours K1, K2.

• If uh
K1

(t) ≤ uh
K(t) ≤ uh

K2
(t) or uh

K2
(t) ≤ uh

K(t) ≤ uh
K1

(t) then (uh
K)t occurs exactly twice with different

signs in the sum and therefore vanishes.
• If uh

K(t) > uh
K1

(t), uh
K2

(t) the term

(uh
K)t(t) = −

∑
e∈∂K

|e|
|K|fK,e(uh

K(t), uh
Ke

(t)) ≤ −
∑

e∈∂K

|e|
|K|fK,e(uh

K(t), uh
K(t)) = 0

occurs twice in the sum.
• If uh

K(t) < uh
K1

(t), uh
K2

(t) the term

−(uh
K)t(t) =

∑
e∈∂K

|e|
|K|fK,e(uh

K(t), uh
Ke

(t)) ≤
∑

e∈∂K

|e|
|K|fK,e(uh

K(t), uh
K(t)) = 0

occurs twice in the sum.
So we know TVM (uh(·, t)) is nonincreasing in time. For every K ∈ T there exist xK , yK ∈ K such that

u0(xK) ≥ uh
K(0) ≥ u0(yK).

Let K1,K2 be the neighboring elements for some K ∈ T , then we define

ζK =
{
xK : uh

K > uh
K1
, uh

K2

yK : else.

We have

2 TVM (uh(·, 0)) =
∑
K∈T

∑
e∈∂K

|uh
K(0) − uh

Ke
(0)|

≤
∑
K∈T

∑
e∈∂K

|u0(ζK) − u0(ζKe)| ≤ 2 TVM (u0).
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This proves the TVD property. For (c, d) ∈ C(uh
K , u

h
Ke

) we have

|fK,e(c, d) − fK,e(c, c)| ≤ L|c− d| ≤ L|uh
K − uh

Ke
|,

where L is the uniform Lipschitz constant for all fK,e on [Um, UM ]. Using |e| = 2 we get

∫ T

0

∑
K∈T

∑
e∈∂K

|e| max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)| dt ≤

∫ T

0

2L
∑
K∈T

∑
e∈∂K

|uh
K − uh

Ke
| dt

≤ 4L
∫ T

0

TVM (uh(·, t)) dt ≤ 4LT TVM (u0). �

In the higher-dimensional case there is no TVD estimate, but we can prove a weak BV estimate which will
play a similar role in the convergence proof.

Lemma 5.4 (weak BV-estimate). Let d ≥ 2 be the dimension of M. For every T > 0 there exists C > 0
depending only on f, u0, M, β, {fK,e}, T, k such that

∫ T

0

∑
K∈T

∑
e∈∂K

|e| max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)| dt ≤ C√

h
·

Proof. We have

∫ T

0

∑
K∈T

|K|uh
K(uh

K)t dt =
1
2

∫ T

0

∑
K∈T

|K|
(
(uh

K)2
)
t

dt

=
1
2

∑
K∈T

|K|
(
(uh

K)2(T ) − (uh
K)2(0)

)
(5.1)

≥ −1
2

∑
K∈T

|K|(uh
K)2(0)

= −1
2
‖uh(0)‖2

L2(M) ≥ −1
2
‖u0‖2

L2(M).

Now we multiply (4.4) by |K|uh
K(t) and sum over all K ∈ T

∫ T

0

∑
K∈T

|K|uh
K(uh

K)t dt = −
∫ T

0

∑
K∈T

∑
e∈∂K

|e|fK,e(uh
K , u

h
Ke

)uh
K dt

(4.2)(1.4)
=

∫ T

0

∑
K∈T

∑
e∈∂K

|e|
(
fK,e(uh

K , u
h
K) − fK,e(uh

K , u
h
Ke

)
)
uh

K dt

=
∫ T

0

∑
(K,e)∈E(t)

|e|
[(
fK,e(uh

K , u
h
K) − fK,e(uh

K , u
h
Ke

)
)
uh

K (5.2)

+
(
fKe,e(uh

Ke
, uh

Ke
) − fKe,e(uh

Ke
, uh

K)
)
uh

Ke

]
dt

(4.1)
=

∫ T

0

∑
(K,e)∈E(t)

|e|
[(
fK,e(uh

K , u
h
K) − fK,e(uh

K , u
h
Ke

)
)
uh

K

−
(
fK,e(uh

Ke
, uh

Ke
) − fK,e(uh

K , u
h
Ke

)
)
uh

Ke

]
dt.
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Now we define FK,e(a) := fK,e(a, a) and let ΦK,e be a primitive of a �→ aF ′
K,e(a) satisfying ΦK,e(0) = 0. Let

a = uh
K , b = uh

Ke
then every single summand has the form

|e| [a(FK,e(a) − fK,e(a, b)) − b(FK,e(b) − fK,e(a, b))] .

Integration by parts yields

ΦK,e(b) − ΦK,e(a) =
∫ b

a

uF ′
K,e(u) du

= b(FK,e(b) − fK,e(a, b)) − a(FK,e(a) − fK,e(a, b)) −
∫ b

a

(FK,e(u) − fK,e(a, b)) du.

Due to the conservation property (4.1) of the numerical fluxes we have FK,e = −FKe,e and therefore ΦK,e =
−ΦKe,e. Because the flux is geometry compatible (1.4) we have∑

e∈∂K

|e|fK,e(a, a) = 0 =⇒
∑

e∈∂K

|e|F ′
K,e(a) = 0 =⇒

∑
e∈∂K

|e|ΦK,e(a) = 0

for every K ∈ T and a ∈ R. Thus we have∑
(K,e)∈E(t)

|e|
(
ΦK,e(uh

K) − ΦK,e(uh
Ke

)
)

=
∑

(K,e)∈E(t)

|e|
(
ΦK,e(uh

K) + ΦKe,e(uh
Ke

)
)

=
∑

(K,e)∈E(t)

|e|
(
ΦK,e(uh

K) + ΦKe,e(uh
Ke

)
)

+
∑

{(K,e):uh
K=uh

Ke
}

|e|
(
ΦK,e(uh

K)
)

︸ ︷︷ ︸
0

=
∑
K∈T

∑
e∈∂K

|e|ΦK,e(uh
K) = 0.

Using this in (5.2) implies∫ T

0

∑
K∈T

|K|uh
K(uh

K)t dt = −
∫ T

0

∑
K∈T

∑
e∈∂K

|e|fK,e(uh
K , u

h
Ke

)uh
K dt

= −
∫ T

0

∑
(K,e)∈E(t)

|e|
∫ uh

Ke

uh
K

(
fK,e(u, u) − fK,e(uh

K , u
h
Ke

)
)

du dt (5.3)

=
∫ T

0

∑
(K,e)∈E(t)

|e|
∫ uh

K

uh
Ke

(
fK,e(u, u) − fK,e(uh

K , u
h
Ke

)
)

du dt.

For uh
Ke

≤ c ≤ d ≤ uh
K we have due to (4.3)

∫ uh
K

uh
Ke

(
fK,e(uh

K , u
h
Ke

) − fK,e(u, u)
)︸ ︷︷ ︸

≥0

du ≥
∫ d

c

(
fK,e(uh

K , u
h
Ke

) − fK,e(u, u)
)

du

≥
∫ d

c

(fK,e(d, c) − fK,e(u, u)) du.
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For a monotonic Lipschitz continuous function g : R −→ R, with Lipschitz constant G > 0 we have∣∣∣∣∣
∫ d

c

(g(u) − g(c)) du

∣∣∣∣∣ ≥ 1
2G

(g(d) − g(c))2, ∀c, d ∈ R

which can be seen by the substitution v = g(u) − g(c). A similar estimate is used in [7].
Thus (4.3) and the Lipschitz continuity of the fK,e imply

∫ d

c

(fK,e(d, c) − fK,e(u, u)) du ≥
∫ d

c

(fK,e(d, c) − fK,e(d, u)) du

≥ 1
2L

(fK,e(d, c) − fK,e(d, d))
2

and∫ d

c

(fK,e(d, c) − fK,e(u, u)) du ≥
∫ d

c

(fK,e(d, c) − fK,e(u, c)) du

≥ 1
2L

(fK,e(d, c) − fK,e(c, c))
2
,

where L is the uniform Lipschitz constant of the fK,e on [Um, UM ]. Multiplying both inequalities with 1
2 and

adding them yields with (5.1) and (5.3)

1
2
‖u0‖2

L2(M) ≥
∫ T

0

∑
(K,e)∈E(t)

∫ uh
K

uh
Ke

|e|
(
fK,e(uh

K , u
h
Ke

) − fK,e(u, u)
)

du dt

≥
∫ T

0

∑
(K,e)∈E(t)

|e|
2L

(
max

uh
Ke

≤c≤d≤uh
K

(fK,e(d, c) − fK,e(d, d))
2

+ max
uh

Ke
≤c≤d≤uh

K

(fK,e(d, c) − fK,e(c, c))
2

)
dt (5.4)

≥
∫ T

0

∑
K∈T

∑
e∈∂K

|e|
2L

max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)|2 dt.

Now by Cauchy Schwartz inequality we get∫ T

0

∑
K∈T

∑
e∈∂K

|e| max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)| dt

≤
(∫ T

0

∑
K∈T

∑
e∈∂K

|e|2 max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)|2 dt

) 1
2

·
(∑

K∈T

∑
e∈∂K

1

) 1
2

≤ CL
1
2 ‖u0‖L2(M)h

d−1
2 h−

d
2

1
β

1
2
k

1
2 ,

the last line follows from (5.4) and the assumptions on the grid (3.1)–(3.3). �
Next we prove a weak discrete entropy inequality for the approximate solution, which is an auxiliary result

to prove a continuous entropy inequality for the approximate solution. This continuous entropy inequality is
important for the main convergence proof and has a similar importance for the proof like the entropy inequality
for the exact solution.
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Lemma 5.5 (weak discrete entropy inequality). For every κ ∈ [Um, UM ], every polyhedron K ∈ T and every
test function ϕ ∈ C∞

0 (R+,R+) the following inequality holds

∫
R+

|K||uh
K(t) − κ|ϕt dt+ |K||uh

K(0) − κ|ϕ(0)

−
∫

R+

∑
e∈∂K

|e|
(
fK,e(uh

K�κ, uh
Ke

�κ) − fK,e(uh
K⊥κ, uh

Ke
⊥κ)
)
ϕdt ≥ 0.

Proof. Let B = sup{t > 0: ϕ(t) �= 0}. Consider disjoint intervals {Ij = (aj , bj): j ∈ J }, where J is some
countable index set, such that

A :=
⋃
j∈J

Ij = {t ∈ (0, B): uh
K(t) > κ}·

For all bj we have uh
K(bj) = κ or ϕ(bj) = 0. For all but at most one aj we have uh

K(aj) = κ. If there is an
a∗ ∈ {aj : j ∈ J } with uh

K(a∗) �= κ we have a∗ = 0. To make the proof shorter we nevertheless denote one aj

by a∗ satisfying a∗ = 0 or uh
K(a∗) = κ. Using this notation we have

|K|
∫

R+

(uh
K(t)�κ)ϕt dt = |K|

∑
j

∫
Ij

uh
Kϕt dt+ |K|

∫
R+\A

κϕt dt

= |K|
∑

j

∫
Ij

(uh
K − κ)ϕt dt+ |K|

∫
R+

κϕt dt

= |K|

⎛
⎝∑

j

[
(uh

K − κ)(bj)ϕ(bj) − (uh
K − κ)(aj)ϕ(aj) −

∫
Ij

(uh
K)tϕdt

]
− κϕ(0)

⎞
⎠

= −|K|uh
K(a∗)ϕ(a∗) + κ|K|(ϕ(a∗) − ϕ(0)) −

∫
A

|K|(uh
K)tϕdt

≥ −(uh
K(0)�κ)ϕ(0)|K| −

∫
A

|K|(uh
K)tϕdt.

For t ∈ A we have by (4.3) and (4.4)

|K|(uh
K)tϕ = −

∑
e∈∂K

|e|fK,e(uh
K�κ, uh

Ke
)ϕ

≤ −
∑

e∈∂K

|e|fK,e(uh
K�κ, uh

Ke
�κ)ϕ

while for t ∈ R\A we have by (1.4), (4.2) and (4.3)

0 = ϕ
∑

e∈∂K

|e|fK,e(uh
K�κ, κ)

≤ −
∑

e∈∂K

|e|fK,e(uh
K�κ, uh

Ke
�κ)ϕ.

Thus we get

|K|
∫

R+

(uh
K�κ)ϕt dt+ (uh

K(0)�κ)ϕ(0)|K| −
∫

R+

∑
e∈∂K

|e|fK,e(uh
K�κ, uh

Ke
�κ)ϕdt ≥ 0.
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In a similar way we can prove

|K|
∫

R+

(uh
K⊥κ)ϕt dt+ (uh

K(0)⊥κ)ϕ(0)|K| −
∫

R+

∑
e∈∂K

|e|fK,e(uh
K⊥κ, uh

Ke
⊥κ)ϕdt ≤ 0.

The lemma follows from |uh
K(t) − κ| = (uh

K(t)�κ) − (uh
K(t)⊥κ). �

We observe that because M is compact (1.4) implies that the norms ‖f‖L∞(M) and ‖∇f‖g are bounded
by a constant C2. This means particularly for every unit vector t tangent to M the following estimate for the
covariant derivative in direction t holds: ‖∇tf‖g ≤ C2 on M × [Um, UM ].

Lemma 5.6 (continuous entropy inequality). Provided the assumptions (3.1)–(3.4) on the grid with h small
enough and (4.1)–(4.3) on the numerical fluxes, there is a constant C > 0 such that for every ϕ ∈ C∞

0 (M ×
R+,R+) and κ ∈ [Um, UM ] we have∫ T

0

∫
M

|uh(x, t) − κ|ϕt(x, t) dvg(x)dt+
∫

M

|u0(x) − κ|ϕ(x, 0) dvg(x)

+
∫ T

0

∫
M

(
f(x, uh(x, t)�κ) − f(x, uh(x, t)⊥κ)

)
· ∇gϕ(x, t) dvg(x)dt

≥ −
∫

M

|uh(x, 0) − u0(x)|ϕ(x, 0) dvg(x)

− 2
∫ T

0

∑
K∈T

∑
e∈∂K

|e|
[

max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)| + Cδ(K)

]
rK,e(t) dt

with

rK,e(t) :=
1

|K||e|

∫
e

∫
K

∫ dg(x,y)

0

‖∇gϕ(γxy(θ), t)‖g dθ dve(y) dvg(x). (5.5)

Proof. We start by using ψ(t) := 1
|K|
∫

K ϕ(x, t) dvg(x) as test function in the weak discrete entropy inequality
(Lem. 5.5) and summing over all K ∈ T . Using that f is geometry compatible (1.4) and the consistency property
of the numerical fluxes (4.2) we get T1 + T2 ≤ 0 with

T1 := −
∫ T

0

∑
K∈T

|uh
K(t) − κ|

(∫
K

ϕ(x, t) dvg(x)
)

t

dt−
∑
K∈T

|uh
K(0) − κ|

∫
K

ϕ(x, 0) dvg(x)

= −
∫ T

0

∫
M

|uh(x, t) − κ|ϕt(x, t) dvg(x)dt−
∫

M

|uh(x, 0) − κ|ϕ(x, 0) dvg(x)

T2 :=
∫ T

0

∑
K∈T

∑
e∈∂K

|e|
|K|
(
fK,e(uh

K(t)�κ, uh
Ke

(t)�κ)

− fK,e(uh
K(t)�κ, uh

K(t)�κ) − fK,e(uh
K(t)⊥κ, uh

Ke
(t)⊥κ)

+ fK,e(uh
K(t)⊥κ, uh

K(t)⊥κ)
) ∫

K

ϕ(x, t) dvg(x)dt.

Now let

T10 := −
∫ T

0

∫
M

|uh(x, t) − κ|ϕt(x, t) dvg(x)dt −
∫

M

|u0(x) − κ|ϕ(x, 0) dvg(x)

T20 := −
∫ T

0

∫
M

(
f(x, uh(x, t)�κ) − f(x, uh(x, t)⊥κ)

)
∇gϕ(x, t) dvg(x)dt.
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We are going to estimate |T1 − T10| and |T2 − T20|. Obviously we have

|T1 − T10| ≤
∫

M

∣∣|uh(x, 0) − κ| − |u0(x) − κ|
∣∣ϕ(x, 0) dvg(x)

≤
∫

M

|uh(x, 0) − u0(x)|ϕ(x, 0) dvg(x).

Due to the geometry compatibility of the numerical fluxes (1.4) we have

T20 = −
∫ T

0

∑
K∈T

∫
K

∇g ·
[(
f(x, uh

K(t)�κ) − f(x, uh
K(t)⊥κ)

)
ϕ(x, t)

]
dvg(x)

= −
∫ T

0

∑
K∈T

∑
e∈∂K

∫
e

(
f(x, uh

K(t)�κ) − f(x, uh
K(t)⊥κ)

)
nK,e(x)ϕ(x, t) dve(x)

+
∫ T

0

∑
K∈T

∑
e∈∂K

|e|
(
fK,e(uh

K(t)�κ, uh
Ke

(t)�κ)

− fK,e(uh
K(t)⊥κ, uh

Ke
(t)⊥κ)

) 1
|e|

∫
e

ϕ(x, t) dve(x)dt

because the last summand is zero due to the fact that each face e is a face of exactly two polyhedra and the
conservation property (4.1) of the numerical fluxes. Therefore we get

|T2 − T20| ≤
∫ T

0

∣∣∣ ∑
K∈T

∑
e∈∂K

∫
e

(
f(y, uh

K(t)�κ) − f(y, uh
K(t)⊥κ)

)
× nK,e(y)

(
ϕ(y, t) − 1

|K|

∫
K

ϕ(x, t) dvg(x)
)

dve(y)

+ |e|
(
fK,e(uh

K(t)�κ, uh
Ke

(t)�κ) − fK,e(uh
K(t)⊥κ, uh

Ke
(t)⊥κ)

)
×
(

1
|K|

∫
K

ϕ(x, t) dvg(x) −
1
|e|

∫
e

ϕ(y, t) dve(y)
) ∣∣∣ dt. (5.6)

To estimate this further we need an estimate for∣∣f(x, uh
K(t)�κ) · nK,e(x) − fK,e(uh

K�κ, uh
K�κ)

∣∣
for every x ∈ e. The fact that f · nK,e is continuous with respect to the space variable implies due to (4.2)

fK,e(uh
K�κ, uh

K�κ) =
1
|e|

∫
e

f(x, uh
K(t)�κ)nK,e(x) dve(x)

= f(ξ, uh
K(t)�κ)nK,e(ξ)

for some ξ ∈ e. Due to the bound R̄ for the principal curvatures of the faces we have

t〈f(x, (uh
K(t)�κ)), nK,e(x)〉g = 〈∇tf(x, (uh

K(t)�κ)), nK,e(x)〉g + 〈f(x, (uh
K(t)�κ)),∇tnK,e(x)〉g

≤ C2 + dR̄‖f‖∞.

Thus we have∣∣f(x, (uh
K(t)�κ))nK,e(x) − fK,e(uh

K�κ, uh
K�κ)

∣∣ =
∣∣f(x, (uh

K(t)�κ))nK,e(x) − f(ξ, (uh
K(t)�κ))nK,e(ξ)

∣∣
≤ δ(e)

(
C2 + dR̄‖f‖∞

)
≤ δ(K)

(
C2 + dR̄‖f‖∞

)
.
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Using a similar estimate for the ⊥ case we get from (5.6)

|T2 − T20| ≤
∫ T

0

∑
K∈T

∑
e∈∂K

[
|e|
∣∣−fK,e(uh

K(t)�κ, uh
K(t)�κ)

+ fK,e(uh
K(t)⊥κ, uh

K(t)⊥κ)

+ fK,e(uh
K(t)�κ, uh

Ke
(t)�κ) − fK,e(uh

K(t)⊥κ, uh
Ke

(t)⊥κ)
∣∣

× 1
|e||K|

∫
e

∫
K

|ϕ(x, t) − ϕ(y, t)| dve(y) dvg(x)

+ δ(K)C
∫

e

∣∣∣∣ϕ(y, t) − 1
|K|

∫
K

ϕ(x, t) dvg(x)
∣∣∣∣ dve(y)

]
.

For h small enough, x ∈ K and y ∈ e ∈ ∂K let γxy denote the unique minimizing geodesic from x to y
parametrized by arc length. Then we have

1
|K||e|

∫
e

∫
K

|ϕ(x, t) − ϕ(y, t)| dve(y) dvg(x) =
1

|K||e|

∫
e

∫
K

∣∣∣∣∣
∫ dg(x,y)

0

〈∇gϕ(γxy(s), t), γ′xy(s)〉g ds

∣∣∣∣∣ dvg(x) dve(y)

=
1

|K||e|

∫
e

∫
K

∫ dg(x,y)

0

‖∇gϕ(γxy(θ), t)‖g dθ dve(y) dvg(x).

This finally yields

|T2 − T20| ≤
∫ T

0

∑
K∈T

∑
e∈∂K

|e|
[ ∣∣−fK,e(uh

K(t)�κ, uh
K(t)�κ)

+ fK,e(uh
K(t)⊥κ, uh

K(t)⊥κ) + fK,e(uh
K(t)�κ, uh

Ke
(t)�κ)

− fK,e(uh
K(t)⊥κ, uh

Ke
(t)⊥κ)

∣∣+ Cδ(K)
]
rK,e (5.7)

with rK,e given in (5.5).
Now we want to estimate the right hand side of the above inequality (5.7). Due to the monotonicity (4.3) of

the numerical fluxes we observe for uh
K ≥ uh

Ke

0 ≤ −fK,e(uh
K�κ, uh

K�κ) + fK,e(uh
K�κ, uh

Ke
�κ)

≤ max
uh

Ke
≤c≤d≤uh

K

(−fK,e(d, d) + fK,e(d, c))

= max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)|

and for uh
K ≤ uh

Ke

0 ≤ fK,e(uh
K�κ, uh

K�κ) − fK,e(uh
K�κ, uh

Ke
�κ)

≤ max
uh

K≤c≤d≤uh
Ke

(+ fK,e(c, c) − fK,e(c, d))

= max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)|.
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There are similar estimates for ⊥ instead of � which show that

∑
K∈T

∑
e∈∂K

|e|
[∣∣fK,e(uh

K(t)�κ, uh
K(t)�κ) − fK,e(uh

K(t)�κ, uh
Ke

(t)�κ)

− fK,e(uh
K(t)⊥κ, uh

K(t)⊥κ) + fK,e(uh
K(t)⊥κ, uh

Ke
(t)⊥κ)

∣∣+ Cδ(K)
]

≤ 2
∑
K∈T

∑
e∈∂K

|e|
[

max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)| + Cδ(K)

]
.

This implies together with (5.7)

|T2 − T20| ≤
∫ T

0

2
∑
K∈T

∑
e∈∂K

|e|
[

max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)| + Cδ(K)

]
rK,e(t)

which implies the lemma. �

The next lemma is a very important step in the convergence proof. There will be different estimates for
d = 1 and d ≥ 2. This is due to the fact that while we have the TVD property (Lem. 5.3) in the d = 1 case, we
only have the weak BV estimate (Lem. 5.4) in the d ≥ 2 case. The proof will be done for d ≥ 2 only. The proof
for d = 1 follows from the same arguments using Lemma 5.3 instead of Lemma 5.4.

Lemma 5.7. Provided the assumptions from Lemma 5.6 there exists a constant C > 0 depending only on M,
g, u0, {fK,e}, f, β, k, R̄, Nc such that for small enough h and every test function α ∈ C∞

0 (M × R+,R+) the
following inequality holds

∫
M×R+

|uh(x, t) − u(x, t)|αt(x, t) dvg(x) dt

+
∫

M×R+

[
f(x, u(x, t)�uh(x, t)) − f(x, u(x, t)⊥uh(x, t))

]
· ∇gα(x, t) dvg(x) dt

≥
{
−Ch 1

2 : d = 1
−Ch 1

4 : d ≥ 2.

Proof. The proof is based on a doubling of variables argument. We recall the entropy inequality (1.3) fulfilled
by the entropy solution u of (1.1), (1.2)

∫
M×R+

|u(y, s) − κ|ϕs(y, s) + [f(y, u(y, s)�κ)− f(y, u(y, s)⊥κ)] · ∇gϕ(y, s) dvg(y)ds

+
∫

M

|u0(y) − κ|ϕ(y, 0) dvg(y) ≥ 0

for all κ ∈ R and ϕ ∈ C∞
0 (M×R+,R+). In (1.3) we set κ = uh(x, t) and ϕ(y, s) = α(x, t)χε(x, y)ψε(t−s), where

χε and ψε are cut-off functions as defined in Section 2.3. Now we integrate this equation with respect to x and t.
In the continuous entropy inequality from Lemma 5.6 we set κ = u(y, s) and ϕ(x, t) = α(x, t)χε(x, y)ψε(t − s)
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and integrate with respect to y and s. Adding both equations yields∫
M2×R

2
+

|uh(x, t) − u(y, s)|αt(x, t)χε(x, y)ψε(t− s) dvg(x) dvg(y)dt ds

+
∫

M2×R
2
+

[
f(y, u(y, s)�uh(x, t)) − f(y, u(y, s)⊥uh(x, t))

]
× α(x, t)∇g,yχε(x, y)ψε(t− s) dvg(x) dvg(y)dt ds

+
∫

M2×R
2
+

[
f(x, u(y, s)�uh(x, t)) − f(x, u(y, s)⊥uh(x, t))

]
× ∇gα(x, t)χε(x, y)ψε(t− s) dvg(x) dvg(y)dt ds

+
∫

M2×R
2
+

[
f(x, u(y, s)�uh(x, t)) − f(x, u(y, s)⊥uh(x, t))

]
× α(x, t)∇g,xχε(x, y)ψε(t− s) dvg(x) dvg(y)dt ds (5.8)

+
∫

M2×R+

|u0(x) − u(y, s)|α(x, 0)χε(x, y)ψε(−s) dvg(x) dvg(y)ds

≥ −
∫

M2×R+

|uh(x, 0) − u0(x)|α(x, 0)χε(x, y)ψε(−s) ds dvg(y) dvg(x)

− 2
∫

M×R+

∫ T

0

∑
K∈T

∑
e∈∂K

|e|
[

max
(c,d)∈C(uh

K,uh
Ke

)
|fK,e(c, d) − fK,e(c, c)|

+Cδ(K)

]
rK,e(t) dt ds dvg(y).

We will start with the most difficult summand. Let E2 be the sum of the second and fourth summand, i.e.

E2 :=
∫

M2×R
2
+

{[
f(y, u(y, s)�uh(x, t)) − f(y, u(y, s)⊥uh(x, t))

]
· ∇g,yχε(x, y)

+
[
f(x, u(y, s)�uh(x, t)) − f(x, u(y, s)⊥uh(x, t))

]
· ∇g,xχε(x, y)

}
× α(x, t)ψε(t− s) dvg(x) dvg(y)dt ds.

We also define

E2b :=
∫

M2×R
2
+

{[
f(y, u(x, t)�uh(x, t)) − f(y, u(x, t)⊥uh(x, t))

]
· ∇g,yχε(x, y)

+
[
f(x, u(x, t)�uh(x, t)) − f(x, u(x, t)⊥uh(x, t))

]
· ∇g,xχε(x, y)

}
α(x, t)ψε(t− s) dvg(x) dvg(y)dt ds.

For ease of notation we will from now on omit the ⊥-terms for the estimate for E2. Adding zero we get

E2b
(2.3),(2.9)

=
∫

M2×R
2
+

f(y, u(x, t)�uh(x, t))α(x, t)∇g,yχε(x, y)ψε(t− s)

− (T expx)exp−1
x (y)(f(x, u(x, t)�uh(x, t)))α(x, t)∇g,yχε(x, y)ψε(t− s)

+
(
(T expx)exp−1

x (y)(f(x, u(x, t)�uh(x, t))) − Pxy(f(x, u(x, t)�uh(x, t)))
)

× ∇g,yχε(x, y)α(x, t)ψε(t− s) dvg(x) dvg(y)dt ds.
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Now using integration by parts w.r.t. y the first summand vanishes because f(·, s) is divergence free for fixed
s ∈ R (1.4), the absolute value of the second summand is smaller or equal Cε which can be seen after integration
by parts w.r.t. y by (2.10). To get an estimate for the third summand, denoted I3, we observe that for every
x ∈M and ε < 2R∫

Bε(x)

dvg(y) =
∫

Bε(0)

|det(T expx)v| dv < C sup
x∈M,‖v‖g<ε

|det (T expx)v| εd. (5.9)

This yields due to (2.7) and (2.12)

|I3| ≤
∫

M2×R
2
+

CI{dg(x,y)<ε}
‖f‖∞
εd−1

α(x, t)ψε(t− s) dvg(x) dvg(y)dt ds

≤
∫

M×R+

C sup
x∈M,‖v‖g<ε

|det (T expx)v| εα(x, t) dvg(x)dt

≤ Cε.

So finally |E2b| < Cε, and it remains to show |E2 −E2b| < Cε. Introducing the following notation omitting the
dependence on t and s:

h(x, y, τ) := f(γxy(τ), u(y, s)�uh(x, t)) · γ′xy(τ),

h̃(x, y, τ) := f(γxy(τ), u(x, t)�uh(x, t)) · γ′xy(τ),

D(x, y) := h(x, y, dg(x, y)) − h(x, y, 0) − h̃(x, y, dg(x, y)) + h̃(x, y, 0),

we have due to (2.2) and the definition of χε in (2.5)

|E2 − E2b| ≤
∣∣∣∣∣
∫

M2×R
2
+

D(x, y)α(x, t)
1

εd+1
χ′
(
dg(x, y)

ε

)
ψε(t− s) dvg(x) dvg(y)dt ds

∣∣∣∣∣ (5.10)

|D| ≤
∣∣∣∣∣
∫ dg(x,y)

0

d
dτ

(
h(x, y, τ) − h̃(x, y, τ)

)
dτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ dg(x,y)

0

〈
∇γ′

xy

(
f(·, u(y, s)�uh(x, t)) − f(·, u(x, t)�uh(x, t))

)
, γ′xy

〉
dτ

∣∣∣∣∣
(1.4)
= ≤ C |u(y, s) − u(x, t)| dg(x, y).

Inserting this in (5.10) and using the boundedness of χ′ we have

|E2 − E2b| ≤ C

∫
M2×R

2
+

|u(y, s) − u(x, t)| |α(x, t)| 1
εd

I{dg(x,y)<ε}ψε(t− s) dvg(x) dvg(y)dt ds.

Now we cover M with finitely many geodesic balls Br(x1), . . . , Br(xN ), where r < R and R is the constant
from Lemma 2.2. We furthermore restrict to the ε < r case. Because the derivative of exp−1

xi
is bounded there

exists a constant Ci > 0 such that

dg(expxi
(a), expxi

(b)) > Ci‖a− b‖g, ∀a ∈ Br(0), b ∈ B2r(0) (5.11)

which implies
I{dg(expxi

(a),expxi
(b))<ε} ≤ I{‖b−a‖g< ε

Ci
}.
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Hence we have by

|E2 − E2b| ≤ C
∑

i

∫
R

2
+

∫
Br(0)

∫
B2r(0)

|u(expxi
(a), t) − u(expxi

(b), s)|

× ε−d
I{‖b−a‖g< ε

Ci
}Isupp αψε(t− s) da db dt ds

≤ Cε,

because each u ◦ expxi
has bounded variation. Finally we have

|E2| ≤ Cε.

Let

E1 :=
∫

M2×R
2
+

|uh(x, t) − u(y, s)|αt(x, t)χε(x, y)ψε(t− s) dvg(x) dvg(y)dt ds,

E1b :=
∫

M×R+

|uh(x, t) − u(x, t)|αt(x, t) dvg(x) dt.

Due to (2.8) we have

|E1 − E1b| ≤
∫

M2×R
2
+

|u(x, t) − u(y, s)||αt(x, t)|χε(x, y)ψε(t− s) dvg(x) dvg(y) dt ds+ Cε.

To estimate the first part of the right hand side we again cover M with balls Br(xi) like in the estimate for E2.
From the definition of χε in (2.5) we know that χ is nonincreasing for positive x, this yields the following
inequality

|E1 − E1b| ≤
∑

i

∫
R

2
+

∫
Bri

(0)

∫
Bri

(0)

|u(expxi
(a), t) − u(expxi

(b), s)|

× |αt(expxi
(a), t)| 1

εd
χ

(
Ci‖b− a‖g

ε

)
ψε(t− s) da db dt ds+ Cε

≤ Cε,

because the L1-norms of the 1
εdχ
(

Ci‖b−a‖g

ε

)
are uniformly bounded with respect to ε. The constants Ci were

chosen like in (5.11).
Let

E3 :=
∫

M2×R
2
+

[
f(x, u(y, s)�uh(x, t)) − f(x, u(y, s)⊥uh(x, t))

]
× ∇gα(x, t)χε(x, y)ψε(t− s) dvg(x) dvg(y) dt ds

E3b :=
∫

M×R+

[
f(x, u(x, t)�uh(x, t)) − f(x, u(x, t)⊥uh(x, t))

]
· ∇gα(x, t) dvg(x) dt.

Then we have

|E3 − E3b| ≤ C

∫
M2×R

2
+

|u(y, s) − u(x, t)| ‖∇gα(x, t)‖g χε(x, y)ψε(t− s) dvg(x) dvg(y) dt ds+ Cε

≤ Cε,
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like in the estimate for E1. To estimate the fifth summand on the left hand side of (5.8), denoted E4, we consider
the entropy inequality (1.3) fulfilled by u. For fixed x ∈M we define

ϕ(x, y, s) := α(x, 0)χε(x, y)
∫ ∞

s

ψε(−τ) dτ

and κ = u0(x). Then integration with respect to x yields

−
∫

M2×R+

|u(y, s) − u0(x)|α(x, 0)χε(x, y)ψε(−s) dvg(x) dvg(y) ds

+
∫

M2×R+

(f(y, u(y, s)�u0(x)) − f(y, u(y, s)⊥u0(x))) · ∇g,yχε(x, y)α(x, 0)
(∫ ∞

s

ψε(−τ)dτ
)

dvg(x) dvg(y) ds

+
∫

M2
|u0(y) − u0(x)|α(x, 0)χε(x, y)

(∫ ∞

0

ψε(−τ)dτ
)

dvg(x) dvg(y) ≥ 0.

We note that the first summand here is exactly −E4, thus we denote the summands by −E4, E5, E6 respectively.
To estimate E5 we define E5b by

E5b :=
∫

M2×R+

∫ ∞

s

(f(y, u(y, s)�u0(y)) − f(y, u(y, s)⊥u0(y))) · ∇g,yχε(x, y)α(x, 0)ψε(−τ) dτ ds dvg(x) dvg(y).

From now on we will omit the ⊥-terms for convenience again, they are estimated in exactly the same way as
the �-terms. Using integration by parts we have by (2.3)

E5b = −
∫

M2×R+

∫ ∞

s

Pyx (f(y, u(y, s)�u0(y))) · ∇g,xχε(x, y)α(x, 0)ψε(−τ) dτ ds dvg(x) dvg(y)

=
∫

M2×R+

∫ ∞

s

(
(T expy)exp−1

y (x)(f(y, u(y, s)�u0(y))) − Pyx (f(y, u(y, s)�u0(y)))
)

× ∇g,xχε(x, y)α(x, 0)ψε(−τ) dτ ds dvg(x) dvg(y)

−
∫

M2×R+

∫ ∞

s

(T expy)exp−1
y (x)(f(y, u(y, s)�u0(y))) · ∇g,xχε(x, y)α(x, 0)ψε(−τ) dτ ds dvg(x) dvg(y).

Now we get using (2.12) for the first and integration by parts for the second summand

|E5b| ≤
∣∣∣∣
∫

M2×R+

∫ ∞

s

CI{dg(x,y)<ε}
1

εd−1
‖f‖∞α(x, 0)ψε(−τ) dτ ds dvg(x) dvg(y)

∣∣∣∣
+
∣∣∣∣
∫

M2×R+

∫ ∞

s

divg,x(T expy)exp−1
y (x)(f(y, u(y, s)�u0(y)))

× χε(x, y)α(x, 0)ψε(−τ) dτ ds dvg(x) dvg(y)
∣∣∣∣

+
∣∣∣∣
∫

M2×R+

∫ ∞

s

(T expy)exp−1
y (x)(f(y, u(y, s)�u0(y)))

× ∇gα(x, 0)χε(x, y)ψε(−τ) dτ ds dvg(x) dvg(y)
∣∣∣∣.

The first summand is smaller than Cε because of (5.9). The second summand is smaller than Cε due to (2.10)
and the third summand has this property because, due to (2.11), the integrand is bounded and the support
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with respect to s lies in [0, ε]. Finally we have |E5b| ≤ Cε. Furthermore

|E5 − E5b| ≤ C

∫
M2×R+

∫ ∞

s

|u0(x) − u0(y)| ‖∇g,yχε(x, y)‖g ψε(−τ)dτ ds dvg(y) dvg(x).

Integrating with respect to τ and s yields

|E5 − E5b| ≤ C

∫
M2

|u0(x) − u0(y)| ‖∇g,yχε(x, y)‖g ε dvg(y) dvg(x)

because the integral over τ is bounded by 1 and the support with respect to s lies in [0, ε]. Then we use the fact

ε ‖∇g,yχε(x, y)‖g ≤ Cε−d
I{dg(x,y)<ε}.

We cover M with balls like in the estimate for E2 again and a similar argument yields

|E5 − E5b| ≤ Cε.

Another version of this argument implies
|E6| ≤ Cε.

So we finally have
|E4| ≤ Cε.

Now we have to find an estimate for the right hand side of (5.8): Keeping in mind the weak BV-estimate (5.4),
the essential part of this estimate is an estimate for∣∣∣∣∣

∫
M×R+

rK,e(t) ds dvg(y)

∣∣∣∣∣ ,
where rK,e was defined in (5.5). Because the test function ϕ in the definition of rK,e now has the form

ϕ(x, t) = α(x, t)χε(x, y)ψε(t− s)

we have ∣∣∣∣∣
∫

M×R+

rK,e(t) dvg(x)ds

∣∣∣∣∣ =
C

|K||e|

∫
M

∫
R+

∫
K

∫
e

∫ dg(x,z)

0

‖∇gα(γxz(θ), t)‖g

× χε(γxz(θ), y)ψε(t− s)dθ dve(z) dvg(x) ds dvg(y)

+
C

|K||e|

∫
M

∫
R+

∫
K

∫
e

∫ dg(x,z)

0

‖∇1χε(γxz(θ), y)‖g

× α(γxz(θ), t)ψε(t− s)dθ dve(z) dvg(x) ds dvg(y). (5.12)

Now integration over s, y yields that the first summand in (5.12) can be estimated by

C

|K||e|

∫
K

∫
e

∫ dg(x,z)

0

‖∇gα(γxz(θ), t)‖g︸ ︷︷ ︸
≤‖∇gα‖L∞(M)

(1 + Cε)dθ dve(z) dvg(x) ≤ C(1 + ε)δ(K).

To estimate the second summand in (5.12) we observe

‖∇1χε(γxz(θ), y)‖g ≤ Cε−d−1
I{dg(γxz(θ),y)≤ε}.
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Due to (5.9) integration over s and y yields that the second summand in (5.12) is smaller than

C

|K||e|

∫
K

∫
e

∫ dg(x,y)

0

Cε−1 dθ dve(z) dvg(x) ≤ C
δ(K)
ε

·

So we have due to the weak BV estimate Lemma 5.4∫
M×R+

∫ T

0

∑
K∈T

∑
e∈∂K

[
max

(c,d)∈C(uh
K,uh

Ke
)
|e||fK,e(c, d) − fK,e(c, c)|

]
rK,e dvg(x)dt ds ≤ C√

h

(
h

ε
+ h+ hε

)

= C
√
h

(
1
ε

+ 1 + ε

)
.

(5.13)

We observe that due to (3.1)–(3.4) we have∫ T

0

∑
K∈T

∑
e∈∂K

Cδ(K)|e| ≤ 3Cβ−1k.

Now it remains to estimate∫
M2×R+

|uh(x, 0) − u0(x)|α(x, 0)χε(x, y)ψε(−s) ds dvg(y) dvg(x).

Integrating with respect to y, s yields that this term is smaller than

C(1 + Cε)
∫

M

|uh(x, 0) − u0(x)| dvg(x) ≤ C(1 + ε)h

for ε, h small enough by Lemma 3.2. This finally implies∫
M×R+

|uh(x, t) − u(x, t)|αt(x, t) dvg(x) dt

+
∫

M×R+

[f(x, u(x, t)�uh(x, t)) − f(x, u(x, t)⊥uh(x, t))] · ∇gα(x, t) dvg(x) dt

≥ −C
(
ε+ Ch+ hε+

√
h

ε
+
√
h+ 2

√
hε+ hε

)

= −C
(
h

1
4 + h+ h

3
2 + h

1
4 + h

1
2 + h+ h

3
2

)
where we set ε = h

1
4 for the last equality. �

Now we can state the main theorem which specifies the convergence rate. This result is more general with
respect to the grids than the work of Amorim et al. [1] because they impose the lines joining the vertices of the
polyhedra to be geodesic. Nevertheless we believe the techniques of their proof also work for the more general
grids considered here.

Now the convergence proof is quite easy and only consists of choosing a sensible test function α in Lemma 5.7.

Theorem 5.8. Provided the assumptions of Lemma 5.7 hold, then we have for every time T > 0 a constant
C > 0 depending only on f, u0, M, g, T, {fK,e}, β, k, Nc, R̄ such that∫ T

0

∫
M

|uh(x, t) − u(x, t)| dvg(x) dt ≤
{
Ch

1
2 : d = 1

Ch
1
4 : d ≥ 2.
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Proof. For t ≥ 0 we define

ρ(t) :=

{
(1 − t) exp

(
1

t2−1

)
: t ≤ 1

0 : t ≥ 1

and ρT (t) := ρ
(

t
2T

)
. We have ρT (t) ∈ [0, e] and there exists ε > 0 such that ρ′(t) < −ε ∀t ∈ [0, 1

2 ] and therefore
ρ′T (t) < −ε

2T ∀t ∈ [0, T ]. Now we define α(x, t) = ρT (t), then we have α ∈ C∞
0 (M ×R+,R+) and ∇gα = 0 which

implies

−ε
2T

∫
M

∫ T

0

|uh(x, t) − u(x, t)| dvg(x) dt ≥
∫

M

∫ T

0

αt(x, t)|uh(x, t) − u(x, t)| dvg(x) dt

≥
{
−Ch 1

2 : d = 1
−Ch 1

4 : d ≥ 2,

which proves the theorem. �

6. Appendix

6.1. Proof of Lemma 2.4

Let {Uα}α∈A and {Vα}α∈A be finite coverings of M with Ūα ⊂ Vα, such that there is an orthonormal basis
{Xα

i }i=1,...,n of vector-fields over Vα. Let R be the constant from Lemma 2.2, then we define for every α

Kα := {(x, y) ∈M2: x ∈ Ūα, dg(x, y) ≤ R}, (6.1)

K̃α := {(x, y) ∈M2: x ∈ Vα, dg(x, y) < 2R}, (6.2)

and observe that each Kα is compact. Furthermore we define for α ∈ A, i = 1, . . . , n

hα
i : K̃α −→ TM (x, y) �→

(
y, (T expx)exp−1

x (y)(X
α
i (x))

)
,

which is smooth as a function of (x, y). Hence its norm is bounded on Kα, which proves (2.11) because there are
only finitely many α ∈ A. For fixed x ∈ Vα the map hα

i (x, ·) is a vector-field on B2R(x) and hence ∇yh
α
i (x, y),

the covariant derivative with respect to y, is well-defined and smooth on K̃α. Furthermore

∇yh
α
i (x, x) = 0 ∀x ∈ Vα (6.3)

(cf. [13]), which implies
divg,yh

α
i (x, x) = 0,

because the divergence is the trace of the covariant derivative. For every α, i, j, k

(x, y) �→ 〈∇Xj(y)h
α
i (x, y), Xk(y)〉

is smooth on K̃α and vanishes for x = y due to (6.3). Its gradient is bounded on Kα and we have

‖∇yh
α
i (x, y)‖g ≤ d2 sup

j,k
|〈∇Xjh

α
i , Xk〉| ≤ d2Ci,αdg(x, y) (6.4)

for (x, y) ∈ Kα, where ‖ · ‖g denotes the operator norm with respect to g. This obviously implies

|divg,yh
α
i (x, y)| ≤ d3Ci,αdg(x, y).
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Now let x ∈M, y ∈ BR(x) and v ∈ TxM then there is some α ∈ A such that x ∈ Uα and we have

v =
∑

i

〈Xα
i (x), v〉Xα

i (x).

Hence

(T expx)exp−1
x (y)(v) = (T expx)exp−1

x (y)

(∑
i

〈Xα
i , v〉Xα

i

)

=
∑

i

〈Xα
i (x), v〉(T expx)exp−1

x (y)(X
α
i (x))

=
∑

i

〈Xα
i (x), v〉hα

i (x, y)

=⇒
∣∣∣divg,y(T expx)exp−1

x (y)(v)
∣∣∣ =

∣∣∣∣∣∑
i

〈Xα
i (x), v〉divg,yh

α
i (x, y)

∣∣∣∣∣
≤
∑

i

〈Xα
i (x), v〉d3Ci,αdg(x, y)

≤ ‖v‖gCdg(x, y),

where C = d3
∑

i,α Ci,α. So we proved (2.10) and next we will show (2.12). Due to the continuity of χ′ we have

∣∣∣∣χ′
(
dg(x, y)

ε

)∣∣∣∣ ≤ C1{dg(x,y)<ε} (6.5)

and define

β(t) :=
〈
(T expx)exp−1

x (γxy(t))(v) − Pxγxy(t)(v), γ′xy(t)
〉
·

We recall (2.9), hence to prove (2.12) we need an estimate for β(dg(x, y)). We have β(0) = 0 and

d
dt
β(t) = γ′xy(t)

〈
(T expx)exp−1

x (γxy(t))(v) − Pxγxy(t)(v), γ′xy(t)
〉

= 〈∇γ′
xy(t)(T expx)exp−1

x (γxy(t))(v), γ
′
xy(t)〉

because ∇γ′
xy
γ′xy = ∇γ′

xy
Pxγxy(v) = 0. Hence we have for some α ∈ A

∣∣∣∣ ddtβ(t)
∣∣∣∣ ≤∑

i

‖γ′xy‖2
g‖∇g,yh

α
i (x, y)‖g‖v‖g

(6.4)

≤ Cdg(x, y)‖v‖g.

Hence we have |β(dg(x, y))| ≤ C(dg(x, y))2‖v‖g and using (2.9) and (6.5)

∣∣∣〈(T expx)exp−1
x (y)(v) − Pxy(v),∇g,yχε(x, y)

〉∣∣∣ ≤ 1
εd+1

C1{dg(x,y)<ε}|β(dg(x, y))|

≤ 1
εd−1

C1{dg(x,y)<ε}‖v‖g.
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6.2. Proof of Lemma 3.2

Proof. Miranda et al. showed in [16] that there exists a sequence (fj)j ∈ C∞(M) such that

‖fj − u‖L1(M) ≤
1
j

and lim
j→∞

∫
M

‖∇gfj‖g dvg(x) = TVM (u) <∞. (6.6)

For every j we have

‖u− ū‖L1(M) ≤ ‖u− fj‖L1(M) + ‖fj − f̄j‖L1(M) + ‖f̄j − ū‖L1(M)

‖f̄j − ū‖L1(M) =
∑
K

‖f̄j − ū‖L1(K) ≤
∑
K

‖fj − u‖L1(K) = ‖fj − u‖L1(M)

⇒ ‖u− ū‖L1(M) ≤ 2‖u− fj‖L1(M) + ‖fj − f̄j‖L1(M).

Furthermore we have for every K ∈ T

‖fj − f̄j‖L1(K) ≤
∫

K

∣∣∣∣fj(x) −
1
|K|

∫
K

fj(y) dvg(y)
∣∣∣∣ dvg(x)

≤ 1
|K|

∫
K2

|fj(x) − fj(y)| dvg(y) dvg(x).

When the diameter of all elements is smaller than R, then for every pair of points x, y ∈ K there is a unique
minimizing geodesic from x to y. It can be written as

γ : [0, 1] −→M θ �→
{

expy((1 − θ) exp−1
y (x)) for 0 ≤ θ ≤ 1

2

expx(θ exp−1
x (y)) for 1

2 ≤ θ ≤ 1.

This implies

‖fj − f̄j‖L1(K) ≤ 1
|K|

∫
K2

∫ 1
2

0

∣∣∣∇gfj(expy((1 − θ) exp−1
y (x)))

× (T expy)(1−θ) exp−1
y (x)(exp−1

y (x))
∣∣∣ dθ dvg(x) dvg(y)

+
1
|K|

∫
K2

∫ 1

1
2

∣∣∣∇gfj(expx(θ exp−1
x (y)))

× (T expx)θ exp−1
x (y)(exp−1

x (y))
∣∣∣ dθ dvg(x) dvg(y). (6.7)

Due to (2.11) we have

‖(T expy)(1−θ) exp−1
y (x)(exp−1

y (x))‖g ≤ C‖ exp−1
y (x)‖g ≤ Cδ(K). (6.8)
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Inserting (6.8) in (6.7) implies

‖fj − f̄j‖L1(K) ≤ Cδ(K)
|K|

∫
K2

∫ 1
2

0

‖∇gfj(expy((1 − θ) exp−1
y (x)))‖g dθ dvg(x) dvg(y)

+
Cδ(K)
|K|

∫
K2

∫ 1

1
2

‖∇gfj(expx(θ exp−1
x (y)))‖g dθ dvg(x) dvg(y)

=
Cδ(K)
|K|

∫
K

∫ 1
2

0

∫
(1−θ) exp−1

y (K)

‖∇gfj(expy(w))‖g
1

(1 − θ)d
| det(T expy)w| dθ dw dvg(y)

+
Cδ(K)
|K|

∫
K

∫ 1

1
2

∫
θ exp−1

x (K)

‖∇gfj(expx(v))‖g
1
θd

| det(T expx)v| dθ dv dvg(x)

where the determinants are computed with respect to orthonormal bases of the respective tangent spaces. The
determinant of (T expx)v is continuous and positive on the compact set K := {(x, v) ∈ TM : ‖v‖g ≤ R} so there
exists C > 0 such that

1
C
< | det(T expx)v| < C ∀(x, v) ∈ K. (6.9)

We have

‖fj − f̄j‖L1(K) ≤ Cδ(K)
|K|

∫
K

∫ 1
2

0

∫
expy((1−θ) exp−1

y (K))

‖∇gfj(z)‖g| det((T exp−1
y )z)| dvg(z)dθ dvg(y)

+
Cδ(K)
|K|

∫
K

∫ 1

1
2

∫
expx(θ exp−1

x (K))

‖∇gfj(z)‖g| det((T exp−1
x )z)| dvg(z)dθ dvg(x).

By definition of convex hull (Def. 2.3) we get

expy((1 − θ) exp−1
y (K)) ⊂ convK for 0 ≤ θ ≤ 1 and x, y ∈ K

expx(θ exp−1
x (K)) ⊂ convK for 0 ≤ θ ≤ 1 and x, y ∈ K.

This implies by (6.9) due to

‖fj − f̄j‖L1(K) ≤ Cδ(K)
|K|

∫
K

∫
conv K

‖∇gfj(z)‖g dvg(z) dvg(y) +
Cδ(K)
|K|

∫
K

∫
conv K

‖∇gfj(z)‖g dvg(z) dvg(x)

≤ Cδ(K)‖∇gfj‖L1(conv K).

Finally we have due to (6.6) and our assumption on the triangulation

‖u− ū‖L1(M) ≤ lim
j→∞

2‖u− fj‖L1(M) + lim
j→∞

‖fj − f̄j‖L1(M)

= lim
j→∞

∑
K

‖fj − f̄j‖L1(K)

≤ Ch lim
j→∞

∑
K

‖∇gfj‖L1(conv K)

≤ ChNcTVM (u). �
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