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WETTING ON ROUGH SURFACES AND CONTACT ANGLE HYSTERESIS:
NUMERICAL EXPERIMENTS BASED ON A PHASE FIELD MODEL
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Abstract. We present a phase field approach to wetting problems, related to the minimization of
capillary energy. We discuss in detail both the Γ-convergence results on which our numerical algorithm
are based, and numerical implementation. Two possible choices of boundary conditions, needed to
recover Young’s law for the contact angle, are presented. We also consider an extension of the classical
theory of capillarity, in which the introduction of a dissipation mechanism can explain and predict the
hysteresis of the contact angle. We illustrate the performance of the model by reproducing numerically
a broad spectrum of experimental results: advancing and receding drops, drops on inclined planes and
superhydrophobic surfaces.
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1. Introduction

We consider the problem of finding the equilibrium shape of a liquid drop surrounded by a fluid (either vapor
or another liquid immiscible with that of the drop) and in contact with a solid surface when the solid support
has a nontrivial shape. The macroscopic physics governing this problem is quite simple: the shape is the one
that minimizes the total interfacial energy at fixed drop volume. If the solid surface is flat, the solution is well
known to be a spherical cap, with contact between liquid and solid in the shape of a circular disk, and a contact
angle given by Young’s law [9,11].

If the solid surface is patterned at a microscopic scale, either chemically or because of asperities, then the
geometric characterization of the solid-liquid contact is not trivial. Different models have been proposed. Some
are phenomenological, like the Cassie-Baxter and the Wenzel ones [9], which are based on different hypotheses
on the microscopic geometry of the solid-liquid interface (uniform and complete contact between solid and liquid
in the Wenzel case, composite contact allowing for pockets of vapour trapped between solid and liquid in the
Cassie-Baxter scenario). Other proposals are more mathematically based [1,15]. In fact, it has been shown
in [1] using the techniques of homogenization theory, that both the Wenzel and the Cassie-Baxter structures
may emerge as the one minimizing the interfacial energy, depending on the chemical and topographical details
of the solid substrate.
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Figure 1. The equilibrium shape of a liquid drop (L) surrounded by vapor (V ) and placed
over a flat solid surface (S ) is a spherical cap. The contact angle θ is determined by the physical
parameters of the problem (surface tensions).

Furthermore if we look at the evolution of drops driven by changing their volume or by tilting the solid
support quasi-statically, other features emerge: for example the contact angle is different when the front advances
or when it recedes [9]. A first attempt to derive macroscopic models for contact angle hysteresis by applying
homogenization techniques to the microscopic laws of capillarity is in [10], but much remains to be done. In
this paper, we propose a phase field model to reproduce numerically the available experimental evidence.

Within a phase field approach, the geometry of the drop is described by using a phase function φ that takes
the value 1 in the liquid phase, the value 0 in the environmental fluid, and spans the whole [0, 1] interval in
a liquid-vapor transition region. Thus the sharp interfaces of the (geometric) capillary model are replaced
by narrow transition layers of width of order ε > 0, a small parameter. The equilibrium shape of the drop is
obtained by setting up a steepest descent dynamics for φ, which then tends to a state minimizing an ε-regularized
version of the capillary energy. The parabolic PDE we obtain resembles the classical Allen-Cahn equation and
its general form reads:

− ε� φ+
1
ε
φ(1 − φ)(1 − 2φ) + λ = 0. (1.1)

In the limit as ε tends to 0, one recovers the solution of the capillary problem, with sharp interfaces between
the phases. The presence of the solid is modeled by imposing suitable boundary condition to the phase field
function (both Neumann and Dirichlet conditions have been implemented). The model can be easily adapted
to reproduce contact angle hysteresis, by changing the boundary conditions in order to account for the pinning
effects on the contact line due to dissipation.

The rest of the paper is organized as follows. In Sections 2 and 3 we discuss the models in detail. In particular,
we discuss the relationship between the geometric and phase field formulation for the problem of finding global
minimizers for the capillarity energy. Section 4 is devoted to the modeling of contact angle hysteresis in the
quasi-static evolution of capillary drops. In Section 5 we give the details of our proposed numerical method.
Section 6 contains the description of some numerical simulations reproducing known (and striking!) laboratory
experiments.

2. Phase field model for capillary drops

The energy of a liquid drop ω in contact with a solid S and surrounded by a fluid (usually air, so we will
refer to it as vapor; but we can also consider the case of two immiscible fluids, like drops of oil in water) is [9,11]

E(ω, t) =
∫

∂Sω

σSL(x) dAx + σLV

∫
∂V ω

dAx +
∫

∂S\∂Sω

σSV (x) dAx +
∫

ω

ρL(x)G(x, t) dVx (2.1)
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where ∂Sω = ∂ω ∩ ∂S is the interface between liquid and solid, often called ΣSL; ∂V ω = ∂ω \ ∂Sω is the
liquid-vapor interface ΣLV ; ∂S \ ∂ω is the solid-vapor one, ΣSV ; ρL represents the density of the fluid (we will
always consider a homogeneous fluid and we will set ρL = 1) and G(x, t) is a generic potential related to an
external force field (gravity, for example). The terms σAB(x) are the surface energies (or surface tensions) at
a point x on the AB interface. In the case where S is a homogeneous solid, these are constant and the energy
becomes

E(ω, t) = σSL|ΣSL| + σLV |ΣLV | + σSV |ΣSV | +
∫

ω

G(x, t) dVx

= (σSL − σSV )|ΣSL| + σLV |ΣLV | +
∫

ω

G(x, t) dVx + k (2.2)

where |A| denotes the measure of the set A and k is a constant that does not enter in the search for the minima
of the functional, and so it will be omitted.

The problem of capillarity is:

Given a volume V > 0, find ω∗ = argmin
|ω|=V

{E(ω, t)} · (2.3)

In some cases, it is of interest to consider an evolutionary problem driven for example by the time evolution
of the volume constraint, according to some law of the type t �→ V(t) so that ω∗ will be a function of the
parameter t. The Euler-Lagrange equations for this problem are classical [11] and give the Laplace law

2HΣLV (x) =
p

σLV
+

1
σLV

G(x, t) (2.4)

where HΣLV (x) is the mean curvature of ΣLV at x and p is the Lagrange multiplier associated with the volume
constraint (its physical meaning is the jump of pressure across ΣLV ). The Young condition on the contact
angle θ of the solid-liquid interface, see Figure 1, is also recovered as a necessary condition for (2.1) to be
stationary

cos θ = −σSL − σSV

σLV
=: cos θY . (2.5)

A phase field formulation for the capillarity problem is obtained by considering an energy of the type

Eε(φ, t) =
∫

Ω

ε|∇φ|2 +
1
ε
W (φ) + φG(x, t) dVx (2.6)

where φ is the phase function. The non-negative potential W (φ) vanishes only for the values of φ representing
the vapor and the liquid phases. It is tuned in order to produce the correct interfacial surface tension values from
the corresponding interphase transition layers in the limit as ε→ 0. Our analysis rests on a slight modification
of results by Baldo and Bellettini [4] and Modica [13], but there is a large mathematical literature on this topic
starting from the ideas of Modica and Mortola [14]. We consider two alternative formulations, one based on
Dirichlet boundary conditions, the other one based on Neumann boundary conditions. For the former case we
collect all the results we need in the following theorem. We will deal with Neumann conditions in Section 3.

For any fixed t (from here onwards, we will simplify our notation by leaving the dependence on t in the
functionals (2.1) and (2.6) as tacitly understood), we define

Ēε(φ) =

{
Eε(φ) if φ ∈ H1(Ω,R2) and φ|∂Ω = g,
+∞ otherwise in L1;

(2.7)

Ē0(φ) =

{
E({φ ≡ L}) if φ ∈ BV (Ω, {V, L}),
+∞ otherwise in L1;

(2.8)
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where g is a suitable function to be specified later (see (2.12)), while V , L ∈ R
2 are two pairs of values for the

phase function defining the vapor and the liquid phases. We will prove that if φ∗ε is a family of minimizers of Ēε

and if φ∗ is its limit in L1 (the existence of the limit is part of the proof), then the first component of φ∗ is the
characteristic function of a solution for the capillary problem (2.3), while the second one is 0 everywhere.

The external force term does not depend explicitly on ε (see Eq. (2.6)) and we can treat it separately. Indeed,
by standard properties of Γ-convergence [8], we have only to check its continuity in the desired topology. In our
case φ �→ ∫

φGdVx is continuous for the L1 topology if G is regular enough. The gravitational potential, for
example, is admissible. Thus, in the theorem, we can assume G ≡ 0 for simplicity of exposition.

We set the problem in Ω, a bounded subset of R
n (for us n = 2, 3) with piecewise C2 and Lipschitz boundary.

We decompose it into two parts: ∂Ω = ∂SΩ ∪ ∂V Ω (the set ∂SΩ coincides exactly with what we called ∂S
in (2.1)). For ψ = (ψ1, ψ2) ∈ R

2, the potential is

W (ψ) = a2ψ2
1(1 − ψ1)2 + b2ψ2

2 , (2.9)

where

a = 3σLV > 0, (2.10)

b =
1
2
(σSV + σSL − σLV ) > 0. (2.11)

We denote by L = (1, 0) and V = (0, 0) the only two zeros of W , as announced. Finally, let g : ∂Ω → R
2 be

such that g ≡ V on ∂V Ω and g ≡ (φS , 1) := S on ∂SΩ, where φS is the unique solution of

cos θY = −4φ3
S + 6φ2

S − 1 0 ≤ φS ≤ 1. (2.12)

We are now in position to state the following theorem.

Theorem 2.1. Let Ē0 and Ēε be given by (2.8) and (2.7). Then Ē0 is the Γ-limit of Ēε as ε tends to
zero in the topology of L1. Moreover for every ε > 0 let φ∗ε = argmin

{
Ēε(φ) :

∫
Ω
φ1 = V}

; then the se-
quence (φ∗ε ) is pre-compact in L1 and every cluster point, say φ∗, belongs to BV (Ω, {V, L}) and we have
φ∗ = argmin

{
Ē0(φ) :

∫
Ω
φ1 = V}

.

Proof. The proof uses classical arguments, but we give here some details because they are essential in the
construction of the numerical scheme presented in Section 5. Our discussion entails two steps: in the first one
we establish the link between our problem and that considered by Baldo and Bellettini [4]. After that we show
how to handle the volume constraint.

Let us define a metric on R
2 (other possible and equivalent definitions of this metric are presented in [4], this

formulation is the computationally most convenient one):

d(v1, v2) = min
{∫ +∞

−∞

{
ρ̇2 +W (ρ)

}
dt ρ(−∞) = v1, ρ(+∞) = v2

}
(2.13)

and a functional on BV (Ω, {V, L})

Ẽ0(φ) = 2d (V, L)Hn−1(∂∗{φ ≡ L} ∩ ∂∗{φ ≡ V }) + 2
∫

∂Ω

d(φ|∂Ω(x), g(x))dHn−1(x) (2.14)

where ∂∗A denotes the reduced boundary of the set A and Hn−1 denotes the Hausdorff measure of dimension
n−1. We now want to show that in our situation 2Ē0 = Ẽ0. In the wetting setting, we label as “liquid” the set
{φ ≡ L} and the set {φ ≡ V } as “vapor”. Moreover, considering our choice of g, the functional (2.14) becomes

Ẽ0(φ) = 2d(V, L)|ΣLV (φ)| + 2d(V, S)|ΣSV (φ)| + 2d(S,L)|ΣSL(φ)|. (2.15)
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Indeed, the integral in (2.14) decomposes into the sum of two terms because g is constant and φ can assume
only the values V and L. Then we have only to show that equation (2.12) and the metric (2.13) give us the
correct value for the surface tensions if we choose appropriately the values of the parameters a and b in the
potential. Substituting the appropriate values, we obtain

σLV = d(L, V ) = min
∫ +∞

−∞
{ρ̇2

1 +W ((ρ1, 0))}dt

= 2
∫ 1

0

√
W ((τ, 0))dτ =

a

3
(2.16)

σSV = d(S, V ) = 2
∫ φS

0

√
W ((τ, 0))dτ + 2

∫ 1

0

√
W ((0, τ))dτ

= −2a
(
−φ

2
S

2
+
φ3

S

3

)
+ b (2.17)

σSL = d(S,L) = 2
∫ 1

φS

√
W ((τ, 0))dτ + 2

∫ 1

0

√
W ((0, τ))dτ

= 2a
(

1
6
− φ2

S

2
+
φ3

S

3

)
+ b. (2.18)

Hence b = 1
2 (σSL+σSV −σLV ) and equation (2.12) holds. Notice that the condition b > 0 can always be reached

because we can add the same quantity to σSV and σSL without changing the problem: the system (2.16)–(2.18)
sees only the difference σSV − σSL. Notice also that a key feature of our approach is to choose a value for the
boundary condition that is not a zero of the potential: the metric d measures the distance between φ and the
value at the boundary and it reproduces the correct interfacial energy. Finally, observe that the form of W ,
see (2.9), implies that the minimal φ2 is always the constant 0, also if this value does not match the boundary
condition. Thus, from now on, we will write simply φ instead of φ1 to denote the only nontrivial component of
the phase function.

Having established the link with the setting of [4], the proof of the Γ-convergence result can be easily
adapted to our case. Handling the volume constraint is not a difficult task [3,6,8]. The subspace {φ ∈ L1,∫
φ1 = V} is closed in the L1 topology and, in the recovering sequence of the Γ-lim sup, we can always assume∫
φε =

∫
φ.

The external force field can be easily added at this point. From the theorem we know that when ε goes to zero
the minimizers of Ē0 are functions in BV (Ω, {V, L}). More precisely the first component will take the value 1 in
the region occupied by the liquid and the value 0 in the vapor region. Hence, looking at (2.2) and (2.6),∫

Ω

φ1G(x, t) dVx =
∫

ω

G(x, t) dVx (2.19)

as desired.

3. Neumann boundary conditions

We now describe an alternative approach to the phase field formulation, based on Neumann-type boundary
conditions. For this purpose, we use a result of Modica [13]. We consider, for simplicity, the situation of a
region Ω ⊆ R

3 whose boundary is the solid surface S. Inside this set we want to solve the capillary problem for
a prescribed volume of liquid L. In the sequel we will not discuss explicitly the volume constraint, which can be
added later exactly as before. Our formulation is based on a potential of the type W (x) = a2x2(1 − x)2 (with
a > 0 to be specified later), while in [13] the minima of the potential should be strictly positive: this limitation
can be removed by choosing appropriately the boundary term (see the functional (3.3) below).
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Let σ : [0; +∞) → R
+ be any continuous function and define

σ̂(x) = inf
s≥0

{
σ(s) + 2

∣∣∣∣
∫ s

x

√
W (y) dy

∣∣∣∣
}
, (3.1)

c0 =
∫ 1

0

√
W (y) dy. (3.2)

Consider the functional

EN
ε (φ) =

{∫
Ω ε|Dφε|2 + 1

εW (φε) dx+
∫

∂Ω σ(φ̃ε) dHn−1(x) if φ ∈ H1(Ω,R),
+∞ otherwise in L1,

(3.3)

where φ̃ε denotes the trace of φε on the boundary. Then we have that EN
ε Γ-converges to [13]

EN
0 (φ) = 2c0 |ΣLV | + σ̂(1) |ΣSL| + σ̂(0) |ΣSV | . (3.4)

The physical interpretation of the convergence result is the following. Choose, as in [17], σ(x) := Nx, where N
is a constant. The Euler-Lagrange equations for (3.3) yields the boundary condition

− 2ε
∂φ

∂n
= N. (3.5)

Here n is the outward unit normal vector to ∂Ω. By an appropriate choice of a and N we can recover the
correct surface tensions. This is an easy calculation:

2c0 =
a

3
= σLV , (3.6)

σ̂(0) = 0, (3.7)

σ̂(1) = inf
s≥0

{
Ns+ 2a

(
s3

3
− s2

2
+

1
6

)}
= σSL − σSV . (3.8)

We remark that the hypothesis on the sign of the function σ(·), restricts our study to values N ≥ 0 and thus
to contact angles θY ≥ π

2 . The model for acute contact angles can be obtained by putting φ ≡ 0 in the liquid
phase and φ ≡ 1 in the vapor. It is easy to see that in the Euler-Lagrange equation this exchange produces the
same results than considering negative values of N in the usual representation. In any case, the study of the
minimum problem (3.8) gives us a non-linear equation that chooses the right value of N for the angle we want
to simulate.

4. Contact angle hysteresis: incremental formulation

for quasistatic evolution

Following [2,10], we consider the following discrete incremental formulation for the problem of the quasistatic
evolution of a drop. Given the configuration ω∗(t) of a drop at time t, the one at time t+ δt is given by:

ω∗(t+ δt) = argmin
|ω|=V(t+δt)

{E(ω, t+ δt) +D(ω, ω∗(t))} (4.1)

where the dissipation D(ω1, ω2) is given by

D(ω1, ω2) = μ|∂Sω1 � ∂Sω2|. (4.2)
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Here A � B = (A \B)∪ (B \A) denotes the symmetric difference of the sets A and B and μ > 0 is a parameter
giving the dissipated energy per unit variation of the wetted area.

To illustrate the meaning of this formulation, we consider the case of a drop on a horizontal plane, subject to
no gravity. It can be shown that, in this case, ω∗(t) is always a spherical cap [11]. Thus energy and dissipation
can be written as:

E = (σSL − σSV )πa2 + σLV A (4.3)

D(ω1, ω2) = D(a1, a2) = μπ|a2
1 − a2

2| (4.4)

where A = 2πRh is the area of the spherical cap of radius R and height h, while a is the radius of the wetted
area, namely, the interface between the solid and the liquid. Since we have that

δA||ω|=V(t+δt) = 2πa cos θ δa, (4.5)

where the left hand side denotes variations of A at fixed volume |ω| = V(t+ δt), the Euler-Lagrange equation
for the incremental variational problem becomes

− (σSL − σSV )2πa− σLV cos θ 2πa ∈ ∂μπ|a2 − a2(t)|, (4.6)

where

∂μπ|a2 − a2(t)| =

⎧⎪⎨
⎪⎩
{2πaμ} if a > a(t)
πa[−μ, μ] if a = a(t)
{−2πaμ} if a < a(t)

(4.7)

is the sub-differential of the convex function a �→ μπ|a2 − a2(t)|. Another way to see this is to consider left
and right variation for the parameter a. In this case we do not have to face the singularity of the dissipation
term (4.4) at a1 = a2 and we will deduce a couple of inequalities. In any case, the result is the following

cos θ ∈

⎧⎪⎨
⎪⎩
{cos θr} if a < a(t)
[cos θr, cos θa] if a = a(t)
{cos θa} if a > a(t)

(4.8)

where
cos θa = cos θY − μ

σLV
(4.9)

defines the advancing contact angle and

cos θr = cos θY +
μ

σLV
(4.10)

defines the receding contact angle.

Returning to the general case (4.1), we look for solutions ω = ω(t+ δt) of the incremental problem: minimize

F (ω, t+ δt) = (σSL − σSV )|∂Sω| + σLV |∂V ω| + μ|∂Sω � ∂Sω(t)|, (4.11)

by the phase field method discussed in Section 2. We can also add the gravity term, if needed. Thus, in practice,
we are led to solve

φ∗ε (t+ δt) = argmin
{
Eε(φ, t+ δt), subject to

∫
Ω

φ = V(t+ δt)
}

(4.12)
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with

φ =

{
φa

S on ∂Ωa
ε

φr
S on ∂Ωr

ε

(4.13)

where φa
S and φr

S are the Dirichlet boundary conditions associated with the advancing and the receding angle
respectively, computed with an equation similar to that in (2.12), but with θa, θr in place of θY . The regions
∂Ωr

ε and ∂Ωa
ε are ε-approximations of the wet and the dry part of the solid

∂Ωr
ε � ∂Ω ∪ ∂Sω (receding contact zone), (4.14)

∂Ωa
ε � ∂Ω \ ∂Sω (advancing contact zone). (4.15)

5. Numerical implementation

The first issue is the choice between a penalty formulation to implement the volume constraint and the use
of a Lagrange multiplier. We opted for a Lagrange multiplier because of its physical meaning associated with
Laplace law (2.4). So, the Euler-Lagrange equation for the phase field model becomes (here we set G = 0 and
a = 1 for simplicity) ⎧⎪⎪⎨

⎪⎪⎩
−ε� φ+

1
ε
φ(1 − φ)(1 − 2φ) + λ = 0 in Ω

φ = φS on ∂SΩ
φ = 0 on ∂V Ω

(5.1)

where the value of λ has to be calculated in order to match the constraint
∫
φ = V(t).

To solve the equilibrium equation we transform the problem into a parabolic PDE generated by a gradient
flow [5], and we follow an artificial relaxation dynamics until the system reaches the equilibrium configuration.
The gradient flow is introduced by setting φ = φ(τ, x), where τ is a fictitious time, and solving

φτ = ε� φ− 1
ε
φ(1 − φ)(1 − 2φ) − λ. (5.2)

Here the Laplacian is with respect to the space derivatives and the subscript τ denotes a time derivative. The
solution of our original equation (5.1) will be limτ→+∞ φ(τ, ·). In fact, along the flow (5.2), the energy is
decreasing in time

d
dτ
Eε = −2

∫
Ω

|φτ |2 dx ≤ 0. (5.3)

For the time integration of the equation, we have found it convenient to use a forward Euler scheme. Of course,
like for the standard heat equation, this scheme is only stable for small values of dτ . It is well known that
treating the Laplacian term as implicit allows for bigger values of dτ at the expense of solving a linear system
at each iteration. Treating the entire right hand side (Laplacian and non-linear term) as implicit gives an
unconditionally stable scheme, but requires solving a system of non-linear equations. We have tested all these
schemes and we have found no significant advantage of the implicit over the explicit algorithm. Also, since
we are only interested in converged (in the fictitious time τ) solutions, there is no need to use higher order
(semi-implicit) methods like Cranck-Nicolson.

In order to find at each iteration the correct value for the Lagrange multiplier associated with the volume
constraint λ, we have used a splitting method. Namely, given an initial guess φ0 that satisfies the appropriate
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boundary condition (for the Dirichlet case), we follow the scheme

φN+ 1
2 = dτ

(
ε� φN − 1

ε
φN (1 − φN )(1 − 2φN )

)
+ φN (5.4)

λN =
V − ∫

Ω φ
N+ 1

2∫
Ω

1
(5.5)

φN+1 = φN+ 1
2 + λN (5.6)

where V =
∫
Ω
φ0. By construction, we have that

∫
Ω
φN = V stays constant during the iterations. (For semi-

implicit or fully implicit schemes, the same method applies with only slight modifications.)
For the space derivatives we have used instead a high order approximation nine-point stencil. This is classical

in the 2-D case, but non trivial in the axisymmetric case. The derivation can be found in [16].
When studying the hysteresis of the contact angle, we notice that the conditions (2.12) and (3.8) derived for

the limit configurations as ε goes to zero do not apply exactly in the approximate problem we solve (this is the
meaning of the “�” symbol in (4.15) and (4.14)). Indeed we have to consider that the interface is not yet sharp,
but has a width which depends on ε. The effect of this is that our drops tend to advance or recede quicker than
real ones. In order to stabilize the triple junction among the phases we add a third zone on the solid surface
which is in contact with the liquid-vapor interface (see Fig. 4). On this third zone we put a boundary condition
that correspond to a bigger advancing contact angle near the free area and a condition for a smaller receding
angle near the wetted zone. The precise value of these stabilizing angles are specified in the example section.

6. Examples

In this section we describe some numerical simulations. Our goal, here, is to show how rich a behavior can be
captured in spite of the simplicity of our model. The spirit of this demonstration is that of a proof of principle,
and we present the results of “small simulations”. Our efforts towards devising numerical efficient schemes in
order to make large scale simulations possible will be described elsewhere.

The computational grid is of 100×100 points regardless of the physical size of the objects we simulate. With
such a grid, we can set ε = 0.008 · a where a is the coefficient in the potential (2.10). This ensures interfaces
of width � 5 grid points: a value small enough with respect to the size of the drop, but sufficient for a good
resolution of the shape of the interface.

The value of dτ depends on the evolution scheme. For the forward Euler scheme we set dτ = 0.001, while
we can reach dτ = 0.005 for the semi-implicit scheme. Several tests proved the stability of the simulation with
these values.

In the 2-D simulations we use a trapezoidal rule for the quadrature, while we pass to the Cavalieri-Simpson
rule in the axisymmetric cases. We followed [18] for the condition on the axis of symmetry in order to ensure
a second order accuracy. The convergence of the schemes is tested on the time gradient. We always obtained a
value for this estimator below 10−9 summing the contribution of all computational nodes.

A remark about the size of the simulated drops is in order. If we set gravity to zero, the capillary problem is
purely geometric and the length scale is irrelevant. In a realistic situation gravity can never be zero, but there is
a typical length above which its effects become noticeable. We can define this capillary length, κ−1 :=

√
σLV /ρg

(usually, for water in contact with air, it is of the order of few mm [9]). If the size of the drop is much smaller
than this value, then capillary forces dominate gravity. Thus, setting G = 0 means to consider very small drops.
When gravity is non zero we will specify precisely the length scales for which the simulation is relevant.

6.1. Spherical cap

We consider a drop on a plane and we first increase and then decrease its volume in order to observe
the hysteresis of the contact angle. This simulation is performed in order to obtain a benchmark case. In-
deed, the analytic solution for this problem is known: it is a spherical cap that does not move its base
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Figure 2. Inflating the drop causes first an increase of the contact angle with no motion of
the contact line (a). With a further volume increment the drop advances (b). If the volume is
then decreased, the first effect is only a modification of the contact angle, with fixed contact
area (c).

Figure 3. A receding drop simulated with a Dirichlet BC (a) and with a Neumann BC (b).

until the advancing (or the receding) contact angle is reached. Knowing this, we test our approach with
an axisymmetric formulation.

Each time we add (or subtract) volume, we solve the gradient flow and we compare the phase field solution
with the sharp interface one (see Figs. 2 and 3). The agreement is satisfactory: the analytic solution is always
inside the contour lines of the transition layer from 1 (liquid) to 0 (vapor). A comparison between the two
proposed formulations shows that the Neumann scheme outperforms the Dirichlet in simulating the hysteresis
phenomenon. The differences are particularly visible during the receding stage in a hydrophobic situation, or
during the advancing stage in a hydrophilic case (see Figs. 2 and 3 and the discussion below).

The main difficulty here is the treatment of the triple junction among the three phases (solid, liquid and
vapor) in the diffuse interface setting. As mentioned earlier we overcome this problem by defining a third zone
on the solid boundary, which can be subdivided into two parts: the semi-wet and the semi-dry zones.
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Figure 4. The determination of the different zones on a solid surface modeled by Dirichlet
BC (a) and Neumann BC (b).

Figure 5. We check the initial position of the phase field solution with the shape given by the
integration of the ODE arising from the sharp interface formulation.

We proceed as follows, on the row of computational nodes above the solid, we find the transition point between
values smaller or larger than 0.5 and we project this point on the solid. The semi-wet zone (respectively semi-
dry) consist of the two nodes from this point towards the liquid (toward the vapor). We reached the desired
stabilization decreasing (increasing) by 15 degrees the angle that the Neumann boundary condition would
impose in those points. For the Dirichlet scheme we need a modification of 20 degrees. We summarize the
situation with a graph in Figure 4, where we plot the contour lines of a drop with a Young contact angle of
120 degrees. The algorithm proceeds as described in Section 4: starting from the solution at time t, we identify
the three zones on the solid surface; we then calculate the solution at time t + δt (i.e. with an increased or
decreased volume) keeping fixed the boundary conditions calculated from the previous step. For this procedure
the Neumann scheme is more precise, because the contour lines are not bent by the solid surface. This explains
the improvement passing from panel a) to panel b) in Figure 3.

Because of these results, in the next sections we will use the Neumann scheme each time we deal with
hysteresis. The Dirichlet formulation will be used when we deal with non-smooth geometries for the solid
(i.e. when the normal derivative cannot be directly defined) and dissipation effects are not our main interest.

6.2. Drop between parallel plates

Inspired by the striking experiments of Lafuma and Quéré [12], we consider the case of a drop compressed
between two plates.
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Figure 6. Evolution of the front near the lower plate during compression; notice the initial
modification of the contact angle, while it remains fixed in the following steps.

Our results are plotted in Figures 5 and 6. What we can observe with these simulations are the macroscopic
effects of hysteresis. The physics at the micro (nano) scale is explored later, when we consider textured solid
surfaces (pillars).

Energy minimizers are again axisymmetric. Figure 5 compares the phase field solution with the numerical
solution of the ODE arising from the sharp interface formulation. We stick to an axisymmetric formulation also
for the evolution problem.

The procedure followed for the quasi-static movements of the plates is based on a “predictor-corrector”
scheme. Starting from a stable state, we cancel (add, respectively) a computational row at half the distance
from the plates in order to decrease (increase) the distance between the plates. The prediction stage is done
by looking for a new energy minimizing configuration, but keeping artificially fixed the wetted zones over the
two plates. In the correction stage we release this constraint as follows. If the equilibrium configuration of the
prediction stage has reached or even overcome the advancing (receding) contact angle, then a new minimization
is performed. Otherwise the previous shape is accepted (see Fig. 7). In this way we do not loose information
about the liquid-solid interface that are essential in the modeling of hysteresis of the contact angle.

Figure 6 collects a sequence of snapshots of the evolution of the profile near the lower plate: we plot the
contour lines of φ at several time steps during the simulation, superimposing them. The picture shows clearly
the initial variation of the contact angle and the subsequent advancing of the front with a constant contact
angle equal to the advancing angle.

6.3. Drops on an inclined plane: the 2-D case

The 2-D simulation represents a portion (of unit thickness) of a 3-D situation invariant in the orthogonal
direction. This, admittedly artificial, scenario of a cylindrical drop is already quite rich and interesting. In
Figure 8 a typical situation is shown: the hysteresis of the contact angle allows for the equilibrium of a drop on
an inclined plane.

In the simulations we change the inclination of the plane and we follow the changes in shape up to the limit
configuration in which the drop starts to move and roll down. In Figures 9–12 the effect of gravity on drops
of different volumes becomes more and more visible as the size of the drops increases. In these graphs we only
draw the contour line φ = 0.5 and we superimpose the lines coming from different inclinations of the plane.

We consider water drops in air (σLV = 73 mN·m−1, hence κ−1 = 2.7 mm) on a hydrophobic solid with
θY = 120◦; the contact angle hysteresis is set to ± 15◦.

Like in a laboratory experiment, the initial condition for the simulation is important: with a first calculation
we find the drop of the desired volume in the absence of gravity and meeting the Young angle condition (dotted
line in the pictures). Then gravity and dissipation are added at the same time. As a consequence, the drop
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Figure 7. An advancing drop: the lines starting nearer to the bottom left corner represent the
rejected configuration in which the contact zones between liquid and solid plates are artificially
pinned.

Figure 8. A phase field representation of a drop in equilibrium on an inclined plane. Equilib-
rium is an effect of the hysteresis of the contact angle.

Figure 9. For d̄ = 2.2, the drop is stable up to 90◦.
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Figure 10. For d̄ = 3.6 the drop is stable up to 60◦.

Figure 11. For d̄ = 5.8 the limit of stability is 18◦.

Figure 12. For d̄ = 10.9 the drop falls already at 3◦.

stays symmetric but it acquires a contact angle larger than the Young value. The bigger the volume, the higher
is the gravitational effect and thus the wider the angle. The effect of this is also visible when we later incline
the plane: if the size of the drop is above the capillary length, the drops change their shape and their wet zone.
With this preparation, drops move first the advancing zone: indeed the starting angle is closer to the advancing
angle and the drops will reach it sooner.
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Figure 13. In the initial configuration the drop fills the central hole, but it can jump to the
next pillars.

We increase the inclination of the plane slowly in order to simulate a quasi-static evolution of the type
described in Section 3. At each step we increase the angle by 3◦. In the pictures we superimpose the equilibrium
configurations, as long as they exist. This means that, after the last frame shown, the drop falls down because
gravity overcomes dissipation and the quasi-static model cannot describe what is happening next.

In order to compare our results with the results of 3D experiments, we consider an auxiliary parameter. We
define d̄ as the diameter of the sphere whose volume is equal to that of our cylindrical drop with unit height.
The pictures show that for values less than the capillary length the gravity effects are not visible. For d̄ � κ−1

something moves, but the detachment is not apparent. Above this critical size the drops are flattened by gravity,
they fall earlier, and with a smaller inclination of the plane.

6.4. Pillars

Wetting phenomena on a (microscopically) rough surface have been the object of intense recent studies (see [9]
and the references therein). Two “models” are used to interpret the experimental evidence: the Cassie-Baxter
and the Wenzel one. In the first one, the main assumption is that the liquid phase sees only the top of the
asperities of the solid phase, leaving some vapor in the holes under it. The Wenzel model is based on the
opposite scenario: the liquid fills all the cavities of the solid. This difference produces different predictions on
the advancing and the receding contact angle.

Here we propose some simulations in a 2D geometry that illustrate some aspects of the phenomena described
above. In Figures 13 and 14 a drop is placed over a periodic array of pillars. Increasing the drop volume, the
liquid can fill the holes or it can jump them. For θY = 120◦, theoretical predictions based on homogenization
theory [1] say that absolute minimizers will jump if a/b ≤ 2, where a is the width of the hole and b its height.
Our results are very close to that value. The slight disagreement is explained by the fact that an advancing
drop with a thick interface “foresees” the contact with the next pillar.

An important remark is the following. Our current implementation of the method limits us to “small”
simulations. This forces us to work with drops of a size comparable to that of the pillars. This excludes from
our results the analysis of the implications on the behavior of drops of macroscopic sizes, because the size of
our pillars is typically few nanometers. In spite of these limitations, we can still reproduce a very rich range of
interesting physical phenomena, related to stability and metastability of capillary drops on rough surfaces. A
first interesting situation is the one described by Lafuma and Quéré in [12]: even in a geometry where the solid
roughness would produce a Cassie-Baxter energy minimizing state, a Wenzel state can be reached by imposing
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Figure 14. By slightly decreasing the height of the pillars the situation changes completely.

Figure 15. Compression induces a meta-stable Wenzel state on a Cassie-Baxter drop.

an external force. Moreover, when this force is relaxed, this final state is maintained, reflecting its (meta)-
stability. For large drops, gravity is a strong enough force to produce this effect, while the technique of the
squeezing plates can achieve the same goal for any drop size. The results obtained by this second “technique”
are shown in Figures 15 and 16. In the first group of pictures the upper plate is flat, while in the second group
it is rough. Both situations allow for the transition between the two regimes, but the final configuration is
different: drops adhere stronger on rough surfaces (if they are in a Wenzel regime [12]) and the strength of this
bond can even allow for a splitting of the drop.

Another interesting experiment is described by Callies and Quéré in [7]. They put a large drop on a rough
surface that admits as ground state the Wenzel one. But the small curvature of such a large drop allows to
observe a metastable Cassie-Baxter state. They let the drop evaporate and when a critical size is reached,
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Figure 16. Compression between two rows of pillars. Notice the splitting of the drop.

Figure 17. With a low curvature we can observe a C-B metastable state.

a sudden change in the shape is observed: due to the larger curvature of the smaller drop, the water fills the
solid roughness and a large change in the contact angle is produced. In Figures 17 and 18 we show a numerical
version of a very similar experiment.
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Figure 18. Decreasing the volume and so increasing the curvature, the Wenzel state is reached.
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(1987) 497.
[14] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. It. B 14 (1977) 285–299.
[15] N.A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19 (2003) 1249–1253.
[16] S.J. Polak, An increased accuracy scheme for diffusion equations in cylindrical coordinates. J. Inst. Math. Appl. 14 (1974)

197–201.
[17] P. Seppecher, Moving contact lines in the Cahn-Hilliard theory. Int. J. Engng. Sci. 34 (1996) 977–992.
[18] J.C. Strikwerda, Finite Difference Schemes and PDE. SIAM (2004).


	Introduction
	Phase field model for capillary drops
	Neumann boundary conditions
	Contact angle hysteresis: incremental formulation for quasistatic evolution
	Numerical implementation
	Examples
	Spherical cap
	Drop between parallel plates
	Drops on an inclined plane: the 2-D case
	Pillars

	References

