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AN ALGEBRAIC THEORY OF ORDER
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Abstract. In this paper, we present an abstract framework which describes algebraically the deriva-
tion of order conditions independently of the nature of differential equations considered or the type of
integrators used to solve them. Our structure includes a Hopf algebra of functions, whose properties are
used to answer several questions of prime interest in numerical analysis. In particular, we show that,
under some mild assumptions, there exist integrators of arbitrarily high orders for arbitrary (modified)
vector fields.
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1. Introduction

When one needs to compute the numerical solution of a differential equation of a specific type (ordinary,
differential-algebraic, linear...) with a method of a given class of one-step numerical integration schemes, a
deciding criterion to pick up the right one is its order of convergence: the systematic determination of order
conditions thus appears as a pivotal question in the numerical analysis of differential equations. Given a
family of vector fields with some specific property (say for instance linear, additively split into a linear and a
nonlinear part, scalar...) and a set of numerical schemes (rational approximations of the exponential, exponential
integrators, Runge-Kutta methods...), a fairly general recipe consists in expanding into series both the exact
solution of the problem and its numerical approximation: order conditions are then derived by comparing the
two series term by term, once their independence has been established. Depending on the equation and on the
numerical method, these series can be indexed by integers or trees, and can expressed in terms of elementary
differentials or commutators of Lie-operators. Despite the great variety of situations encountered in practice
and of ad-hoc techniques, the problems raised are strikingly similar and can be described as follows:

(Q1) Is it possible to construct a set of algebraically independent order conditions?
(Q2) What are the order conditions corresponding to a scheme obtained by composition of two given methods?
(Q3) Are there numerical schemes within the class considered of arbitrarily high order for arbitrary vector

field?
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(Q4) Are there numerical schemes within the set of methods considered that approximate modified vector
fields?

The Butcher group [3], originally formulated to address these questions for Runge-Kutta methods, has a rich
structure with (as first pointed out by [8]) an underlying commutative Hopf algebra of rooted trees. In the past
few years, such a Hopf algebra turned out to have far-reaching applications in several areas of mathematics and
physics: they were rediscovered in non-commutative geometry by Connes and Moscovici [7] and they describe
the combinatorics of re-normalization in quantum field theory as described by Kreimer [12]. Hopf algebras on
planar rooted trees have been recently considered and studied for generalizations of Runge-Kutta methods to
Lie group integrators [1,14]. The Hopf algebra of rooted trees associated to Butcher’s group (as well as the Hopf
algebras of planar rooted trees in [1,14]) can be seen as a particular instance of a more general construction
that we consider in the present work: given a group G of one-step integration schemes together with a map
ν : G × R → G (that corresponds to re-scaling the time-step) and a set T of functions on G (describing how
close are two integration schemes to each other), we consider the algebra of functions H generated by T , which
under some natural assumptions gives rise to a commutative graded algebra of functions on G that turns out
to have a Hopf algebra structure. Within this algebraic framework, we then address the questions listed above
and provide answers that are relevant to many practical situations.

The paper is organized as follows: in Section 2, we present two simple situations aimed at introducing
and motivating the main objects considered in the sequel. The first example is concerned with convergent
approximations of the exponential, while the second one is concerned with approximations of two-by-two rotation
matrices. In both cases, the set of integrators equipped with the composition law forms a group G, while functions
on G relevant to order conditions “naturally” form a graded algebra H. Though several options exist to express
the order conditions, the algebra H of functions they generate is the same. We also demonstrate in these two
situations that the relation initiating the co-product in H can be derived easily.

Section 3 constitutes the core of the paper: it introduces an algebraic concept, that we call group of abstract
integration schemes, composed of a group G, an algebra H of functions on G, and a scaling map ν whose existence
is essential to the subsequent results. We begin by proving that, under some reasonable assumptions of a purely
algebraic nature, the algebra H can be equipped with a co-product and an antipode, that give rise to a graded
Hopf algebra structure. In particular, the co-product of H is per se the key to the second question in our list. It
furthermore endows the linear dual H∗ of H with an algebra structure, where a new group G and a Lie-algebra g
can be defined and related through the exponential and logarithm maps. These two structures, standard in the
theory of commutative Hopf algebras, are of prime interest in our context, since g can be interpreted, in the
more usual terminology of ODEs, as the set of “modified vector fields”, while G can be interpreted as a larger
group of “integrators” containing G. We then prove that all elements of G can be “approximated” up to any
order by elements of G. With an appropriate topology for G, this can be interpreted by saying that G is dense
in G: this answers the third and fourth questions in our list. The proof of this result also provides a positive
answer to the first question of our list.

Section 4 considers the application of the results of previous sections to the case of composition integration
methods. The group of abstract integration schemes is constructed explicitly leading to a new set of independent
order conditions.

2. The derivation of order conditions in two simple situations

In this section, we consider two simple and hopefully enlightening examples and show how the derivation of
order conditions naturally lead to some of the objects used in the sequel.

2.1. Approximation of the exponential by convergent series

Consider the class of integrators ψ for the linear equation

ẏ = λy (2.1)
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which can be expanded in the parameter z = λh as a convergent series of the form

ψ(z) = 1 +
∞∑
k=1

akz
k

on a disc D(0, rψ) ⊂ C. For instance, one might think of explicit Runge-Kutta methods, for which ψ(z) is a
polynomial, or of implicit Runge-Kutta methods, for which ψ(z) is a rational function. The set

G =

{
ψ; ∃ rψ > 0, ∀z ∈ D(0, rψ), ψ(z) = 1 +

∞∑
k=1

akz
k

}

is a group for the usual products of series. The scaling map ν : G × R → G is defined as (ψ)λ = ν(ψ, λ) where
(ψ)λ(z) = ψ(λz)

Moreover, we can define a set of embedded equivalence relations
(n)
≡ on G by saying that, given ψ and φ in G,

ψ
(n)
≡ φ ⇐⇒ ψ(z) = φ(z) + O(zn+1) as z → 0.

An integrator ψ ∈ G is then said to be of order p ≥ 1 if and only if ψ
(p)
≡ ϕ, where ϕ(z) = exp(a1z) (with

a1 = ψ′(0)). Note that, owing to our definition, any ψ ∈ G is at least of order 1. Also, it is clear that if ψ ∈ G
is of order n, then for all λ ∈ R, (ψ)λ is also of order n.

2.1.1. Two different sets of functions generating the order conditions

In this part, we introduce two different sets of functions that both generate the order conditions. Each is
based upon one of the following equivalent definitions of order

ψ(z)
(p)
≡ exp(a1z) ⇐⇒ 1 + log(ψ(z))

(p)
≡ 1 + a1z,

and are thus expected to generate the same algebras. However, some of the questions in introduction are more
conveniently answered using one set rather than the other.

We define the functions ui, i = 0, . . . ,∞ of RG , i.e. functions from G into R, as follows: for all ψ ∈ G,

u0(ψ) = 1 and ui(ψ) = ai for i ≥ 1.

An integrator ψ ∈ G is then of order p ≥ 1 if and only if

∀ 1 ≤ i ≤ p, ui(ψ) =
(u1(ψ))i

i!
· (2.2)

Notice that, for each λ ∈ R, ψ ∈ G, ui((ψ)λ) = λiui(ψ). The functions ui generate a graded algebra H ⊂ RG

obtained by considering:

H =
⊕
n∈N

Hn,

where

Hn = Span

{
k∏
i=1

uni ; n1 + n2 + . . .+ nk = n

}
·
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We see that the functions ui are convenient to express order conditions. However, their expression does not
allow for an easy answer to Question (Q2) of the introduction: if ψ and φ are two integrators of order p, the
value of ui on ψ ◦ φ can be expressed as follows

ui(ψ ◦ φ) = ui(ψ) + ui(φ) +
i−1∑
j=1

uj(ψ)ui−j(φ),

so that checking conditions (2.2) requires some combinatorial manipulations, which, though evidently tractable,
are not immediate. Alternatively, we can define another set of functions wi as follows (computed from the
Taylor series of log(1 + x)):

w0(ψ) = 1 and wi(ψ) =
∑

j/S(j)=i

(−1)#j+1

#j
aj

where j = (j1, . . . , jk) is an ordered multi-index of positive integers, #j = k, S(j) = j1+. . .+jk and aj =
∏k
l=1 ajl .

In this case, ψ ∈ G is of order p ≥ 2 if and only if

∀p, 2 ≤ i ≤ p, wi(ψ) = 0. (2.3)

Note that the functions wi can also be defined recursively, as this was the case for functions ui. We have indeed

wi(ψ) = ai −
∑

j/S(j)=i,#j>1

1
σ(j)

wj(ψ) (2.4)

where j = [jr11 , . . . , j
rk

k ] is now an unordered multi-index of pairwise distinct non-zero-integers j1, . . . , jk,
each jl being repeated rl > 0 times, #j = r1 + . . . + rk, S(j) = r1j1 + . . . + rkjk, σ(j) = r1! . . . rk! and
wj(ψ) =

∏k
l=1(wjl (ψ))rl . The values of functions wi on the composed integrator ψ ◦ φ have extremely simple

expressions

wi(ψ ◦ φ) = wi(ψ) + wi(φ) for i ≥ 1,

so that checking the order conditions is obvious if both ψ and φ are of order p. We see that the functions wi
again generate the same sub-algebra of R

G since they can be easily expressed in terms of functions ui.

2.2. Approximation of rotation matrices

Let us assume that we want to approximate the rotation matrix(
cos(x) sin(x)
− sin(x) cos(x)

)
(2.5)

with products of the form(
1 0

−a2s+1x 1

)(
1 a2sx
0 1

)
. . .

(
1 0

−a3x 1

)(
1 a2x
0 1

)(
1 0

−a1x 1

)
, (2.6)

where s ≥ 1 and aj ∈ R for each j ≥ 1. Clearly, (2.6) is a 2×2 matrix with polynomial entries, and determinant
one.

Each different matrix of the form (2.6) can be identified with a finite sequence ψ = (a1, a2, . . . , a2s+1) of real
numbers satisfying that aj �= 0 for 2 ≤ j ≤ 2s. Let us consider the set G of such sequences (including the zero
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sequence ε = (0), with s = 0). For each sequence ψ = (a1, a2, . . . , a2s+1) of G, we denote by ψ(x) the product
of matrices (2.6). Notice that, for the zero sequence ε = (0), ε(x) is the 2 × 2 identity matrix.

The set G can be endowed with a group structure with neutral element ε and the group law ◦ : G × G → G
defined as follows

(a1, . . . , a2s+1) ◦ (b1, . . . , b2m+1) = (a1, . . . , a2s, a2s+1 + b1, b2, . . . , b2m+1). (2.7)

When a2s+1 + b1 = 0, (2.7) must be interpreted by identifying sequences of the form (a1, . . . , am, 0, am+2, . . . ,
a2s+1) with (a1, . . . , am−1, am+am+2, am+3, . . . , a2s+1). Clearly, we have that the product of matrices ψ(x)φ(x)
with ψ, φ ∈ G is precisely (φ ◦ ψ)(x).

We define for each n ≥ 0, the equivalence relation
(n)
≡ on G as follows: Given ψ, φ ∈ G, we write ψ

(n)
≡ φ if

ψ(x) = φ(x) + O(x2n+1) as x→ 0.

We now address the problem of characterizing the equivalence relations
(n)
≡ in terms of the sequence ψ =

(a1, . . . , a2s+1). It is straightforward to check that there exist functions un : G → R and vn : G → R for n ≥ 1
such that

ψ(x) =
(

1 + u2(ψ)x2 + u4(ψ)x4 + . . . u1(ψ)x + u3(ψ)x3 + . . .
v1(ψ)x + v3(ψ)x3 + . . . 1 + v2(ψ)x2 + v4(ψ)x4 + . . .

)

where

u1(ψ) =
∑

1≤i≤s
a2i, u2(ψ) =

∑
1≤j≤i≤s

a2j−1a2i, u3(ψ) =
∑

i≤k≤j≤i≤s−1

a2ka2j+1a2i+2,

v1(ψ) =
∑

1≤i≤s+1

a2i−1, v2(ψ) =
∑

1≤j≤i≤s
a2ja2i+1, v3(ψ) =

∑
1≤k≤j≤i≤s

a2k−1a2ja2i+1,

and so on. In particular, v2s+1(ψ) = a1 . . . a2s+1, and if a1 = 0, then v2s(ψ) = a2 . . . a2s+1. Similarly, u2s(ψ) =
a1 . . . a2s if a2s+1 = 0, and u2s−1(ψ) = a1 . . . a2s−1 if a1 = a2s+1 = 0. This shows that

ψ = ε ⇐⇒ ∀n ∈ N/{0}, un(ψ) = vn(ψ) = 0. (2.8)

We clearly have that ψ
(n)
≡ φ if and only if

ui(ψ) = ui(φ), vi(ψ) = vi(φ), for i = 1, . . . , n. (2.9)

However, the set of conditions (2.9) that characterizes ψ
(n)
≡ φ has the inconvenience of not being algebraically

independent, due to the fact that det(ψ(x)) = 1, which implies that

u2i +
2i−1∑
j=1

(−1)jvju2i−j + v2i = 0, for i ≥ 1.

Actually, a set of independent conditions that characterizes ψ
(n)
≡ φ can be obtained by considering (2.9) for

odd indices i and either ui(ψ) = ui(φ) or vi(ψ) = vi(φ) for even values of the indices i ≤ n.
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Some straightforward algebra leads to the following identities that relate the values of the functions un, vn
for the composition ψ ◦ φ to the values for ψ and φ:

u2k(ψ ◦ φ) = u2k(ψ) + u2k(φ) +
∑
i+j=k

(u2i(ψ)u2j(φ) + u2i−1(ψ)v2j+1(φ)),

v2k(ψ ◦ φ) = v2k(ψ) + v2k(φ) +
∑
i+j=k

(v2i(ψ)v2j(φ) + v2i−1(ψ)u2j+1(φ)),

u2k−1(ψ ◦ φ) = u2k−1(ψ) + u2k−1(φ) +
∑
i+j=k

(u2i(ψ)u2j−1(φ) + u2i−1(ψ)v2j(φ)),

v2k−1(ψ ◦ φ) = v2k−1(ψ) + v2k−1(φ) +
∑
i+j=k

(v2i(ψ)v2j−1(φ) + v2i−1(ψ)u2j(φ)).

It is easy to check that, for each n ≥ 1 and each s ≥ 1, un(a1, . . . , a2s+1) and vn(a1, . . . , a2s+1) are polynomials
of homogeneous degree n in the variables a1, . . . , a2s+1. Equivalently, if for each ψ = (a1, . . . , a2s+1) ∈ G and
each λ ∈ R we denote by (ψ)λ the scaled element (ψ)λ = (λa1, . . . , λa2s+1), then

un((ψ)λ) = λnun(ψ), vn((ψ)λ) = λnvn(ψ).

3. Groups of abstract integration schemes

Motivated by the examples in Section 2, we will consider a group G with neutral element ε, an algebra H of
functions on G and a map ν

ν : G × R → G
(ψ, λ) �→ ψλ

(3.1)

satisfying the following assumptions:
(H1): For each u ∈ H, there exist v1, w1, . . . , vm, wm ∈ H such that

u(ψ ◦ φ) =
m∑
j=1

vj(ψ)wj(φ), ∀(ψ, φ) ∈ G × G. (3.2)

(H2): Given ψ, φ ∈ G, (ψ ◦ φ)λ = (ψ)λ ◦ (φ)λ for all λ ∈ R, and ψ0 = ε.
(H3): The set

Hn = {u ∈ H: u(ψλ) = λnu(ψ) for all λ ∈ R} (3.3)

where, by convention, 00 = 1, is a finite-dimensional vector space and

H =
⊕
n≥0

Hn.

(H4): Given ψ, φ ∈ G, if u(ψ) = u(φ) for all u ∈ H, then ψ = φ.
We will say that a function u ∈ H is homogeneous if u ∈ Hn for some positive integer n, and we will say that
n is the (homogeneous) degree of u and write |u| = n in that case. From assumptions (H1 −H4), one can draw
some immediate consequences:

• By Assumption (H3), H =
⊕

n≥0 Hn is a graded algebra: given two functions u ∈ Hn and v ∈ Hm,
uv ∈ Hm+n.
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• For any ψ ∈ G, we have the identification ψ1 = ψ. This follows from assumptions (H3) and (H4): for
any u ∈ Hn, u(ψ1) = 1nu(ψ) = u(ψ).

• The statement of Assumption (H1) holds with |vj | + |wj | = |u|: consider u ∈ Hn and v1, w1, . . . , vm,
wm ∈ H the functions of Assumption (H1). By Assumption (H3), we can suppose that all vj ’s and wj ’s
are homogeneous functions, otherwise a similar equality would hold with another set of homogeneous
functions. Then, for all real λ, we have

λnu(ψ ◦ φ) = u((ψ ◦ φ)λ) = u(ψλ ◦ φλ) =
m∑
j=1

λ|vj |+|wj|vj(ψ)wj(φ) (3.4)

for all ψ, φ ∈ G. This implies that, for each n′ �= n,∑
|vj |+|wj |=n′

vj(ψ)wj(φ) = 0 ∀(ψ, φ) ∈ G × G,

so that all terms with powers of λ different from n can be omitted from (3.4).
• For all u ∈ Hn with n > 0, one has u(ε) = 0. By Assumption (H2), ψ0 = ε for each ψ ∈ G, so that for
u ∈ Hn, n ≥ 1, u(ε) = u(ψ0) = 0nu(ψ) = 0.

• H0 is isomorphic to R, i.e. H0 = R11, where 11 is the unity function (i.e., 11(ψ) = 1 for all ψ ∈ G). Indeed,
if u ∈ H0, then u(ψ) = u(ψ1) = u(ψ0) = u(ε) for all ψ ∈ G, and thus

u = u(ε) 11 ∀u ∈ H0. (3.5)

Definition 3.1. We say that the triplet (G,H, ν) satisfying assumptions (H1)–(H4) is a group of abstract
integration schemes and call accordingly each element ψ of G an abstract integration scheme.

Definition 3.2. Given two elements ψ and φ of G, we say that ψ
(n)
≡ φ if

∀u ∈
n⊕
k=0

Hk, u(ψ) = u(φ).

It is clear that ψ
(0)
≡ φ and that ψ

(n+1)
≡ φ implies ψ

(n)
≡ φ. In addition, given ψ, ψ̂, φ, φ̂ ∈ G and n ≥ 1, if

ψ
(n)
≡ φ and ψ̂

(n)
≡ φ̂, then ψ ◦ ψ̂

(n)
≡ φ ◦ φ̂.

It is easy to check that the example in Section 2.1 is a group of abstract integration schemes. This is
also the case for the example in Section 2.2, where conditions (H1), (H2) and (H3) are trivially checked, and
condition (H4) is a consequence of (2.8).

In Section 3.1 we describe how H can be endowed with a graded Hopf algebra structure. In Sections 3.2
and 3.3 we present some standard results on commutative Hopf algebras in detail. In particular, we show that
the exponential and logarithm maps are bijections between an extension G of the group G and a Lie-algebra g.
Finally, in Section 3.4, we prove the main result of this paper on the approximation properties of G.

3.1. The graded Hopf algebra structure of H
We now consider the tensor product algebra H⊗H of H by itself, which can be identified with a sub-algebra

of the algebra of functions RG×G as follows: ∀(u, v) ∈ H×H, define (u⊗ v) : G × G → R as

∀(φ, ψ) ∈ G × G, (u⊗ v)(φ, ψ) = u(φ)v(ψ).

Then, H⊗H can be defined as the linear span of {u⊗ v: (u, v) ∈ H×H}.
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Definition 3.3. Let (G,H, ν) be a group of abstract integration schemes (satisfying Assumptions (H1) to (H4)).
We define the map Δ : H −→ RG×G as follows

∀(φ, ψ) ∈ G × G, Δ(u)(φ, ψ) = u(φ ◦ ψ).

By definition, Δ is linear, Δ(11) = 11 ⊗ 11, and Δ(uv) = Δ(u)Δ(v) for all (u, v) ∈ H × H, so that Δ is an
algebra morphism from H to the algebra RG×G of functions on G × G.

Lemma 3.4. Given u ∈ Hn with n ≥ 1, there exists a finite (and possibly empty) sequence of homogeneous
functions {v1, w1, . . . , vm, wm} ⊂ H such that |vj | + |wj | = n, |vj | �= 0, |wj | �= 0 and

Δ(u) = u⊗ 11 + 11 ⊗ u+
m∑
j=1

vj ⊗ wj . (3.6)

Proof. We already have that the statement of Assumption (H1) holds with |vj | + |wj | = |u|, which implies by
Definition 3.3 that there exist m > 1 and {v1, w1, . . . , vm, wm} ⊂ H with |vj | + |wj | = n such that

Δ(u) =
m∑
j=1

vj ⊗ wj .

Considering successively Δ(u)(ψ, ε) = u(ψ ◦ ε) = u(ψ) and Δ(u)(ε, ψ) = u(ε ◦ ψ) = u(ψ) for arbitrary ψ ∈ G,
one immediately checks that ∑

j/|vj |=n, |wj|=0

wj(ε) vj =
∑

j/|vj |=0, |wj |=n
vj(ε)wj = u,

and thus, by virtue of (3.5),∑
j/|vj |=n, |wj |=0

vj ⊗ wj =
∑

j/|vj |=n, |wj |=0

wj(ε) vj ⊗ 11 = u⊗ 11,

∑
j/|vj |=0, |wj |=n

vj ⊗ wj =
∑

j/|vj |=0, |wj |=n
vj(ε) 11 ⊗ wj = 11 ⊗ u.

All other terms in the sum then satisfy |vj | �= 0 and |wj | �= 0. �

Lemma 3.4 shows in particular that the image of Δ is in H ⊗H ⊂ RG×G , and that Δ is a graded algebra
morphism from H to H⊗H:

Δ(Hn) ⊂
n⊕
k=0

Hk ⊗Hn−k.

In what follows, it will be convenient to identify ε ∈ G to the linear form ε : H → R such that ε(u) = u(ε),
that is,

ε(11) = 1, ε(u) = 0 if |u| ≥ 1. (3.7)

Clearly, ε is an algebra morphism from H to R. By Definition 3.3 and the group structure of G, it immediately
follows that the commutative graded algebra of functions H has a structure of graded bi-algebra with co-
product Δ, and counit ε. In addition, given that H0 = R11 (i.e. H is graded connected), H is a graded
connected bialgebra and as such has an antipode S : H → H, that gives a structure of commutative graded
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connected Hopf algebra (see [4] for a general definition of a graded Hopf algebra) to H3. In our context, the
antipode S is an algebra morphism S : H → H satisfying S(u)(ψ) = u(ψ−1), which implies that S(11) = 11 and,
if (3.6) holds for u ∈ Hn with n ≥ 1, then

0 = S(u) + u+
m∑
j=1

S(vj)wj , 0 = u+ S(u) +
m∑
j=1

vjS(wj). (3.8)

Observe that any of the equalities in (3.8) can be used to obtain S(u) recursively (in terms of the image by S
of homogeneous functions of lower degree) starting from S(11) = 11.

3.2. Exponential and logarithm maps

We first notice that the co-algebra structure of H endows the linear dual H∗ of H with an algebra structure,
where the product αβ ∈ H∗ of two linear forms α, β ∈ H∗ is defined as

αβ(11) = α(11)β(11)

and for all u ∈ Hn with n ≥ 1 satisfying (3.6),

αβ(u) = α(u)β(11) + α(11)β(u) +
m∑
j=1

α(vj)β(wj).

We can also write

αβ = μR ◦ (α⊗ β) ◦ Δ, (3.9)

where μR is the multiplication in the algebra R. Clearly, the unity element in H∗ is the counit ε : H → R of H.
Note that with respect to the trivial Lie-bracket commutator

∀(α, β) ∈ H∗ ×H∗, [α, β] = αβ − βα,

H∗ can also be seen as a Lie-algebra.

Definition 3.5. Consider the following Lie-sub-algebra H∗
(1) of H∗

H∗
(1) = {β ∈ H∗ : β(11) = 0}

and the group

ε+ H∗
(1) = {α ∈ H∗: α(11) = 1}·

The exponential exp is defined as a map from H∗
(1) to ε+ H∗

(1) satisfying

exp(β) =
∑
n≥0

1
n!
βn for all β ∈ H∗

(1).

Similarly, the logarithm log : ε+ H∗
(1) → H∗

(1) is defined as

log(α) =
∑
n≥1

(−1)n

n
(α− ε)n for all α ∈ ε+ H∗

(1).

3It may be of theoretical interest to observe that, H is a Hopf sub-algebra of the Hopf algebra of representative functions of the
group G.
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Though defined as infinite series, both maps are well defined, since

βn+1(u) = 0 if u ∈
n⊕
k=0

Hk

for all β ∈ H∗
(1). Indeed, this can be shown as follows: Consider for each n ≥ 0 the subspace H∗

(n) of H∗

defined as

H∗
(n) = {β ∈ H∗: β(u) = 0 if |u| < n}·

Then, by definition (3.9) of the multiplication in H∗, we have that, for β ∈ H∗
(n) and β′ ∈ H∗

(n′),

∀u ∈
n+n′⊕
k=0

Hk, (ββ′)(u) = β(11)β′(u) + β(u)β′(11) +
m∑
j=1

β(vj)β′(wj)

where all pairs of homogeneous functions (vj , wj) are such that either |vj | < n or |wj | < n′. As a consequence,
it follows that

∀ (n,m) ∈ N
2, H∗

(n)H∗
(m) ⊂ H∗

(n+m). (3.10)

In particular βn+1 ∈ H∗
(n+1) provided that β ∈ H∗

(1).

Note that, as a straightforward consequence of (3.10) and of the definition of exp, we have the following
result, which will be used later on.

Lemma 3.6. Let (n,m) ∈ N2 and consider β ∈ H∗
(n) and γ ∈ H∗

(m), then

exp(β) exp(γ) − exp(β + γ) ∈ H∗
(n+m). (3.11)

Proof. The series-expansion of exp(β) exp(γ)− exp(β+ γ) is composed of products of the form βi1γj1 . . . βikγjk

where at least one i and one j is non-zero. The statement thus follows from relation (3.10). �
Next result follows from the fact that the exponential and logarithm defined as power series are formally

reciprocal to each other.

Lemma 3.7. The maps exp : H∗
(1) −→ ε + H∗

(1) and log : ε + H∗
(1) −→ H∗

(1) are linear bijections that are
reciprocal to each other, that is,

∀β ∈ H∗
(1), (log ◦ exp)(β) = β,

∀α ∈ ε+ H∗
(1), (exp ◦ log)(α) = α.

Remark 3.8. In the sequel, the following relations will become useful: for β ∈ H∗
(1) and λ ∈ R, consider

αλ = exp(λβ). Then we have

d
dλ
αλ = βαλ = αλβ, α0 = ε and

d
dλ
αλ
∣∣∣∣
λ=0

= β,

where d
dλα

λ ∈ H∗ and d
dλα

λ
∣∣
λ=0

∈ H∗ are defined as follows:

∀u ∈ H,
( d

dλ
αλ
)
(u) =

d
dλ

(
αλ(u)

)
,
( d

dλ
αλ
∣∣∣∣
0

)
(u) =

d
dλ

(
αλ(u)

)∣∣∣∣
λ=0

.
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3.3. The group G and its Lie algebra g

An important consequence of the Hopf algebra structure of H is that G can be viewed as the subgroup of a
group4 G ⊂ ε + H∗

(1) ⊂ H∗, with associated Lie algebra5 g. To this aim, we will eventually identify elements
of G with elements of G ⊂ H∗ through the relation

∀ψ ∈ G, ∀u ∈ H, ψ(u) = u(ψ). (3.12)

Recall that in particular, we identify the neutral element ε in G with the counit (3.7) of H (which is the unity
element in H∗).

Definition 3.9. The group G is defined as

G =
{
α ∈ H∗; ∀(u, v) ∈ H×H, α(uv) = α(u)α(v)andα(11) = 1

}
i.e. the subset of H∗ of algebra morphisms from H to R.

It is rather straightforward to check that:

• Since Δ is an algebra morphism from H to H⊗H, α⊗β a morphism from H⊗H to R⊗R for (α, β) ∈ G2

and μR a morphism from R ⊗ R to R, formula (3.9) shows that αβ is itself an algebra morphism and
thus belongs to G.

• Any ψ ∈ G (and in particular, the neutral element ψ = ε) belongs, through the identification (3.12),
to G: Indeed, ψ(11) = 11(ψ) = 1, and for any (u, v) ∈ H × H, ψ(uv) = uv(ψ) = u(ψ)v(ψ) = ψ(u)ψ(v).
Thus, G can be seen as a subgroup of G.

• Any α ∈ G has an inverse defined in terms of the antipode S as α−1 = α ◦ S: We have that α−1α(11) =
α(S(11))α(11) = α(11)2 = 1, and similarly one gets that αα−1(11) = 1. For u ∈ Hn with n ≥ 1, if
(3.6) holds, then (3.8) implies, by taking into account that α is an algebra morphism, that α−1α(u) =
αα−1(u) = 0.

Eventually, the embedded equivalence relations
(n)
≡ in G can be extended to G as follows:

Definition 3.10. Given α, γ ∈ G and n ≥ 0, we write α
(n)
≡ γ if

α(u) = γ(u) for all u ∈ Hk, k ≤ n.

Definition 3.11. The Lie-algebra g of infinitesimal characters of H is the Lie-sub-algebra of H∗ defined by the
set

g = {β ∈ H∗: ∀(u, v) ∈ H2, β(uv) = β(u)ε(v) + ε(u)β(v)}·

Note that:
• For any β ∈ g, β(11) = β(11 ·11) = 2β(11)ε(11) = 2β(11), and thus β(11) = 0. Hence, g ⊂ H∗

(1). Furthermore,
given u, u′ ∈

⊕
n≥1 Hn, β(uu′) = 0, since ε(u) = ε(u′) = 0.

• g is clearly a subspace of H∗.
Although this is standard in the literature, for the sake of clarity we prove here that g is a Lie-algebra for the
Lie-bracket [β̂, β] = β̂β − ββ̂: Given u ∈ Hn and u′ ∈ Hn′ with n, n′ > 1, let us assume (3.6) and an analogous

4The group of characters of H, or equivalently, the group of group-like elements of the dual Hopf algebra of H.
5The Lie algebra of infinitesimal characters of H, or equivalently, the Lie algebra of primitive elements of the dual Hopf algebra

of H.
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expression for Δ(u′) with m′ ≥ 0 and |v′j | + |w′
j | = n′, then, since Δ(uu′) = Δ(u)Δ(u′), one gets

Δ(uu′) = uu′ ⊗ 11 + u⊗ u′ + u′ ⊗ u+ 11 ⊗ uu′ +
∑
i,j

viv
′
j ⊗ wiw

′
j (3.13)

+
∑
j

(uv′j ⊗ w′
j + v′j ⊗ uw′

j) +
∑
i

(u′vj ⊗ wj + vj ⊗ u′wj),

so that

(β̂β)(uu′) = β̂(u)β(u′) + β̂(u′)β(u),

and thus [β̂, β](u, u′) = 0.

The following result is standard for arbitrary commutative graded Hopf algebras [4].

Theorem 3.12. The restriction of exp to g is a bijection from g to G.

Proof. Consider β ∈ H∗
(1), α = exp(β) and αλ = exp(λβ) in ε+ H∗

(1). We will prove by induction on n that, if
β ∈ g or α ∈ G, then,

αλ(uu′) = αλ(u)αλ(u′) and β(uu′) = 0 (3.14)

for all u, u′ ∈ ∪k≥1Hk with |u| + |u′| ≤ n. This trivially holds for n = 1 (the set of such pairs (u, u′) with
|u| + |u′| ≤ 1 is empty). For n ≥ 2, formula (3.13) and the induction hypothesis imply that

d
dλ

(αλ(uu′) − αλ(u)αλ(u′)) = (βαλ)(uu′) − (βαλ)(u)αλ(u′) − (βαλ)(u′)αλ(u)

= β(uu′)

or equivalently, after integration

αλ(uu′) − αλ(u)αλ(u′) = λβ(uu′),

and in particular α(uu′)−α(u)α(u′) = β(uu′), so that (3.14) holds provided that α ∈ G or β ∈ g. This completes
the proof. �

Remark 3.13. For any α ∈ G, the map λ �→ αλ defines a “near-to-identity” smooth curve in G, in the sense that
α0 = ε and for any u ∈ H, λ �→ αλ(u) is a smooth function from R into itself. Clearly, d

dλα
λ
∣∣
λ=0

= log(α) ∈ g.
Actually, it is straightforward to check that, for any near-to-identity smooth curve c : R → G, d

dλc(λ)
∣∣
λ=0

∈ g.
Using the terminology of the theory of Lie-groups, we can loosely say that the Lie-algebra g can then be seen
as the “tangent space at identity” of G.

In the sequel, it will be useful to consider, for each n ≥ 1, the subspaces gn of the Lie algebra g defined as

gn = {β ∈ g: β(u) = 0 if u ∈ Hk with k �= n}· (3.15)

Note that each gn is finite-dimensional since Hn is itself finite-dimensional. Clearly, each β ∈ g can be written as

β =
∑
n≥1

βn, βn ∈ gn,



AN ALGEBRAIC THEORY OF ORDER 619

where, for each n ≥ 1, the “projected” linear form βn ∈ gn is obtained as

βn(u) =
{
β(u) if |u| = n,
0 if |u| = k �= n.

The commutative graded Hopf algebra H is connected (i.e., H0 = R 11) and of finite type (i.e., each Hn is
finite-dimensional), which implies that there exists a set T ⊂ H of homogeneous functions that freely generates
the algebra H, that is, such that the set

F =
{
u1 . . . um : u1, . . . , um ∈ T

}
(3.16)

is a basis of the vector space H. More specifically, the following can be proven from standard results6:

Theorem 3.14. Given a group of abstract integration schemes (G,H, ν) and a basis {δn,i : i = 1, . . . , ln}
for each gn, n ≥ 1 defined in (3.15), there exist un,i ∈ H, n ≥ 1, i = 1, . . . , ln satisfying the following two
conditions:

• The set T = {un,i ∈ H, n ≥ 1, i = 1, . . . , ln} freely generates the algebra H.
• Given α ∈ G, consider for each n ≥ 1 the element αn ∈ G defined as

αn = exp
(
α(un,1)δn,1

)
. . . exp

(
α(un,ln)δn,ln

)
, (3.17)

then,

∀n ≥ 1, α
(n)
≡ α1 . . . αn. (3.18)

3.4. The order of an abstract integration scheme

Recall that, given an element β ∈ g, one can write β = β1 + β2 + . . . , where βn ∈ gn for each n ≥ 1.
We typically interpret, in the context of numerical integration of ODEs, β1 as a basic vector field and β as a
modified vector field. If ψ is an element of G, then it is typically aimed at approximating exp(β1) where β1 can
be obtained as the first term in the development of β = log(ψ) or alternatively as

du(ψλ)
dλ

∣∣∣∣
λ=0

=
{
u(ψ) if |u| = 1

0 otherwise. (3.19)

It is straightforward to check that, if another element β̂ ∈ g is decomposed in accordance with β, we have
(βkβ̂n−k)(u) = 0 unless |u| = n, and it follows that

∀n ≥ 1, (ββ̂)n =
n−1∑
k=1

βkβ̂n−k.

For all u ∈ Hn and all λ ∈ R, we thus have

u(ψλ) = λnε(u) +
n∑
k=1

λn

k!

∑
i1+...+ik=n

(
βi1 . . . βik

)
(u),

6As a consequence of the application of the Milnor-Moore theorem [13], H is the graded dual Hopf algebra of the universal
enveloping Hopf algebra of the Lie algebra

⊕
n≥1 gn. Then, a basis of H of the form (3.16) is obtained by considering the dual

basis of a Poincaré-Witt-Birkhoff basis of the universal enveloping bi-algebra of a Lie algebra [2].
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i.e.

ψλ = exp(λβ1 + λ2β2 + . . .).

In particular, it becomes clear why

β1 =
dψλ
dλ

∣∣∣∣
λ=0

,

and we are led to the following definition of order

Definition 3.15. An integration scheme ψ ∈ G is said to be of order n ≥ 1 if there exists β ∈ g such that

∀λ ∈ R, ψλ
(n)
≡ exp(λβ), (3.20)

or, equivalently, if

ψ
(n)
≡ exp

( dψλ
dλ

∣∣∣∣
λ=0

)
. (3.21)

Now, the question arises as to whether there exist abstract integration schemes of arbitrarily high order in G.
Theorem 3.17 provides an affirmative answer to that question. Before proving it, we first consider the following
preliminary result:

Lemma 3.16. Let n and k be two non-zero integers and consider β ∈ gn and γ ∈ gn+k. Then it holds that

∀ (λ, λ̄, μ, μ̄) ∈ R
4, exp(λβ + μγ) exp(λ̄β + μ̄γ)

(n+k)
≡ exp((λ + λ̄)β + (μ+ μ̄)γ). (3.22)

Proof. Lemma 3.6 implies that exp(λβ + μγ) − exp(λβ) exp(μγ) ∈ H∗
(2n+k) ⊂ H∗

(n+k+1) so that

exp(λβ + μγ)
(n+k)
≡ exp(λβ) exp(μγ),

and similarly

exp(λ̄β + μ̄γ)
(n+k)
≡ exp(λ̄β) exp(μ̄γ),

exp(μγ) exp(λ̄β)
(n+k)
≡ exp(μγ + λ̄β)

(n+k)
≡ exp(λ̄β) exp(μγ).

As a consequence, we have

exp(λβn + μγ) exp(λ̄βn + μ̄γ)
(n+k)
≡ exp(λβ) exp(μγ) exp(λ̄β) exp(μ̄γ)

(n+k)
≡ exp(λβ) exp(λ̄β) exp(μγ) exp(μ̄γ)

= exp((λ+ λ̄)β) exp((μ+ μ̄)γ)
(n+k)
≡ exp((λ+ λ̄)β + (μ+ μ̄)γ). �

Theorem 3.17. Assume that (G,H, ν) is a group of abstract integration schemes. Then, given arbitrary ψ ∈ G
and n ≥ 1, there exists φ ∈ G such that

φ
(n)
≡ exp

( dψλ
dλ

∣∣∣∣
λ=0

)
.
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Proof. Denote β1 = dψλ

dλ

∣∣∣
λ=0

. Then, by definition, ψ
(1)
≡ exp(β1) and more generally, for any λ ∈ R, ψλ

(1)
≡

exp(λβ1). Now, let β = log(ψ) and write

β = β1 + β2 + . . .+ βk + . . .

According to previous discussion, we have

ψλ = exp(λβ1 + λ2β2 + . . .).

Then the “triple jump” composition (of elements in G)

φ = ψλψ
−1
μ ψλ ∈ G,

where ψ−1
μ denotes the inverse in G of ψμ, with Lemma 3.16 shows that

φ
(2)
≡ exp

(
(2λ− μ)β1 + (2λ2 − μ2)β2

)
,

and thus φ
(2)
≡ exp(β1) provided μ =

√
2λ and λ = (2 −

√
2)−1. Repeating recursively this procedure, starting

from

φ = exp(β1 + β̃3 + . . .),

allows to prove the result. �

3.5. Three fundamental results

In the present subsection we address three important related questions:
• Assume that, given α ∈ G and n ≥ 1, we want to find ψ ∈ G such that

ψ
(n)
≡ α. (3.23)

Does there exist a set T ⊂ H of homogeneous functions such that the equalities

u(ψ) = α(u) for all u ∈ T with |u| ≤ n, (3.24)

provide a set of independent conditions that characterizes (3.23)?
• Is it possible to “approximate” any α ∈ G by ψ ∈ G in the sense that (3.23) holds for arbitrary n (this

is question (Q4) of the introduction)?
• Given a group of abstract integration schemes (G,H, ν), does there exist H̃ �= H such that (G, H̃, ν) is

a group of abstract integration schemes giving rise, according to Definition 3.2, to the same family of

equivalent relations
(n)
≡ ?

The first question can be answered in two steps:
(i) According to Theorem 3.14, there exists a set T of homogeneous functions (i.e., T = ∪n≥1Tn with

Tn ⊂ Hn) that freely generates the algebra H, that is, such that the set F in (3.16) is a basis of the
vector space H. For this T ⊂ H, the set of conditions (3.24) characterizes (3.23), since for α ∈ G,
one has

∀m ≥ 2, ∀ (u1, . . . , um) ∈ T m, α(u1 . . . um) = α(u1) . . . α(um).
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(ii) Despite the fact that for T , conditions (3.24) are algebraically independent, non-polynomial dependences
among the functions in T could exist that would allow to reduce the number of conditions required to
characterize (3.23). As a consequence of Theorem 3.20 given below, for any n ≥ 1 and any map a from
∪nk=1Tk into R, there exists ψ ∈ G such that

∀u ∈ ∪nk=1Tk, u(ψ) = a(u).

This guarantees that conditions (3.24) are actually independent of each other.
The second question has an affirmative answer, stated in Theorem 3.20 below. Its proof requires the

following technical results.

Lemma 3.18. Assume that ψ ∈ G and βn ∈ gn are such that

ψ
(n)
≡ exp(βn).

Then, for each k ≥ 0 there exists φ ∈ G such that

φ
(n+k)
≡ exp(βn). (3.25)

Proof. If there exists φ ∈ G for which (3.25) holds, then φ
(n+k+1)

≡ exp(βn + βn+k) for some βn+k ∈ gn+k, and
thus:

∀λ ∈ R, φλ
(n+k+1)

≡ exp(λnβn + λn+kβn+k).

Proceeding as in Theorem 3.17, we have that

φλ ◦ (φμ)−1 ◦ φλ
(n+k+1)

≡ exp((2λn − μn)βn + (2λn+k − μn+k)βn+k),
(n+k+1)

≡ exp(βn) for λ =
(
2 − 2

n
n+k

)−1/n
and μ = 2

1
n+k λ.

The result then follows by induction. �
Lemma 3.19 (Lem. 1.1 in [10]). Given a set G and a finite-dimensional subspace V of the set of functions RG,
there exist a basis {v1, . . . , vm} of V and 1ψ, . . . ,mψ ∈ G such that vi(jψ) = 1 if i = j and vi(jψ) = 0 otherwise,
and thus

u =
m∑
j=1

u(jψ)vj .

Theorem 3.20. Given a group of abstract integration schemes (G,H, ν), for arbitrary α ∈ G and n ≥ 1 there
exists ψ ∈ G such that

ψ
(n)
≡ α.

Proof. Consider the set

K = {α ∈ G; ∀n ∈ N/{0}, ∃ψ ∈ G, ψ
(n)
≡ α}·

In order to prove that K = G, as stated by the theorem, we first notice that K satisfies the following properties:
(P1) K is a subgroup of G.
(P2) For α ∈ K, define αλ by αλ(u) = λnα(u) for all (λ, u) ∈ R ×Hn. Then, αλ ∈ K.
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(P3) If α ∈ K and α
(n)
≡ exp(βn) where n ≥ 1 and βn ∈ gn, then exp(βn) ∈ K. This follows from Lemma 3.18.

(P4) Let n ≥ 1 and βn and γn in gn. If exp(βn) and exp(γn) are in K, then exp(βn + γn) ∈ K. Indeed, by

Lemma 3.6, exp(βn) exp(γn)
(n)
≡ exp(βn + γn), and then (P3) implies exp(βn + γn) ∈ K.

(P5) Let n ≥ 1, βn in gn and μ ∈ R. If exp(βn) ∈ K, then exp(μβn) ∈ K. As a matter of fact, (P2) implies
exp(λnβn) ∈ K, while (P1) and (P2) imply exp(−λnβn) ∈ K.

By virtue of Theorem 3.14, K = G if for each n ≥ 1,

∀μ ∈ R, i = 1, . . . , ln, exp
(
μδn,i

)
∈ K. (3.26)

We will prove (3.26) by induction on n ≥ 1. Given k ≥ 1, assume that (3.26) holds for all n < k.
Consider the subspace Wk of Hk having {uk,i : i = 1, . . . , lk} as a basis (the functions un,i are linearly

independent, as the set T in Theorem 3.14 freely generates the algebra H). Lemma 3.19 applied for the
subspace Wk ⊂ R

G implies that there exist 1ψ, . . . , lkψ ∈ G and a new basis {vk,i : i = 1, . . . , lk} of Wk such
that, for each i = 1, . . . , lk,

uk,i =
lk∑
j=1

uk,i(jψ)vk,j .

As the matrix (uk,i(jψ))lki,j=1 is invertible, and {δk,i : i = 1, . . . , lk} is a basis of gk,⎧⎨⎩δ̄k,i =
lk∑
j=1

uk,j(iψ)δk,j : i = 1, . . . , lk

⎫⎬⎭ (3.27)

is also a basis of gk.
Now, Theorem 3.14 applied for α = iψ ∈ G, i = 1, . . . , lk, and the induction hypothesis, followed by repeated

application of Lemma 3.6 implies that, for each i = 1, . . . , lk, there exists γ ∈ K such that

γ
(k)
≡ exp

(
lk∑
i=1

uk,i(ψ)δk,i

)
= exp(δ̄k,i),

and by Property (P3), exp(δ̄k,i) ∈ K, and finally, (3.26) follows from Properties (P4) and (P5) and the fact
that (3.27) is a basis of gk. �

As for the third question, we have the following:

Theorem 3.21. Consider a group of abstract integration schemes (G,H, ν) giving rise (see Def. 3.2), to the

family of equivalence relations
(n)
≡ , n ≥ 1. If (G, Ĥ, ν) is also a group of abs. int. schemes and gives rise to the

same family of equivalence relations, then Ĥ = H.

Proof. Consider two different algebras H̃, Ĥ ⊂ RG , such that (G, H̃, ν) and (G, Ĥ, ν) are groups of abstract
integration schemes and give rise to the same family of equivalence relations through Definition 3.2. Then, it is
straightforward to check that this is also true for the algebra H generated by H̃ ∪ Ĥ. Given a set T̂ = ∪n≥1T̂n
of homogeneous functions that freely generates the algebra Ĥ, it is possible to construct a set T = ∪n≥1Tn of
homogeneous functions that freely generates the algebra H and T̂n ⊂ Tn for all n ≥ 1. As H �= Ĥ by assumption,
T̂n �= Tn for some n ≥ 1, and then there exist two different maps a and b from ∪nk=1Tk into R, such that their
restriction to ∪nk=1T̂k coincide. As in the second step (ii) above, there exist ψ and φ in G such that

∀u ∈ ∪nk=1T̂k u(ψ) = u(φ),



624 P. CHARTIER AND A. MURUA

and u(ψ) �= u(φ) for some u ∈ ∪nk=1Tk. This implies ψ
(n)
≡ φ w.r.t. (G, Ĥ, ν), while ψ �

(n)
≡ φ w.r.t. (G,H, ν) in

contradiction with the assumption of the theorem. �

4. The group of composition integration schemes

As a preamble to the discussion of order conditions for composition methods, we introduce the set Gc of finite
sequences ψ = (μ1, . . . , μ2s) of real numbers satisfying that μj �= μj+1 for 1 ≤ j ≤ 2s− 1, including the empty
sequence ε = (). The set Gc is a group, with neutral element ε and composition law defined, for ψ, φ ∈ G/{ε} as
follows:

(μ1, . . . , μ2s) · (ν1, . . . , ν2k) = (μ1, μ2) . . . (μ2s−1, μ2s) . . . (ν1, ν2) . . . (ν2k−1, ν2k)

where for λ, μ, ν ∈ R,

(λ, μ) · (μ, ν) =
{
ε if λ = ν,
(λ, ν) otherwise,

and, if (μ1, . . . , μ2s) ∈ G, then

(μ1, μ2) . . . (μ2s−1, μ2s) = (μ1, . . . , μ2s).

In particular, we have that (μ1, . . . , μ2s) · (μ2s, . . . , μ1) = ε.

Now, consider successively:

• a smooth system of ODEs

ẏ = f(y), f : R
d → R

d; (4.1)

• its exact flow ϕh from Rd to itself (such that ϕh(y(t)) ≡ y(t+ h) for any solution y(t) of (4.1)) and
• a consistent integrator χh for (4.1), that is to say a smooth map χh from Rd to itself which depends

smoothly on the real parameter h and is such that

χh(y) = y + hf(y) + O(h2) = ϕh(y) + O(h2)

as h→ 0.

Given ψ = (μ1, . . . , μ2s) ∈ Gc, a new integrator ψh for the system (4.1) can then be obtained as

ψh = χμ2sh ◦ χ−1
μ2s−1h

◦ . . . ◦ χμ2h ◦ χ−1
μ1h

. (4.2)

Definition 4.1. Given ψ ∈ Gc and p ≥ 1, we say that ψ is a consistent integration scheme of order p if for
arbitrary χh the integrator (4.2) satisfies

ψh(y) = ϕh(y) + O(hp+1) as h→ 0 (4.3)

for the h-flow ϕh of the system (4.1) with

f(y) =
d
dh
χh(y)

∣∣∣∣
h=0

. (4.4)
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Clearly, (4.3) is equivalent to the following: For all smooth real functions g ∈ C∞(Rd; R), all y ∈ Rd,

g(ψh(y)) = g(ϕh(y)) + O(hp+1) as h→ 0.

Motivated by that, we consider, for each n ≥ 0 and each ψ ∈ Gc, the linear differential operator θn(ψ) acting
on smooth functions g ∈ C∞(Rd; R) as follows: θ0(ψ) is the identity operator I, and for each n ≥ 1

θn(ψ)[g](y) =
1
n!

dn

dhn
g(ψh(y))|h=0 , (4.5)

so that formally,

g(ψh(y)) =
∑
n≥0

hnθn(ψ)[g](y).

For arbitrary ψ and φ in Gc, we have∑
n≥0

hnθn(φ · ψ)[g](y) = g(ψh ◦ φh(y)) =
∑
n≥0

hnθn(ψ)[g](φh(y))

=
∑
n≥0

hn
∑
m≥0

hmθm(φ)[θn(ψ)[g]](y)

=

⎛⎝∑
n≥0

∑
m≥0

hn+mθm(φ)θn(ψ)

⎞⎠ [g](y),

and equating like powers of h, we get for each n ≥ 0,

θn(φ · ψ) =
n∑
k=0

θk(φ)θn−k(ψ) = θn(φ) + θn(ψ) +
n−1∑
k=1

θk(φ)θn−k(ψ). (4.6)

For the scaling map, as defined for a group of abstract integration schemes, we define ν by ν(ψ, λ) = (ψ)λ,
where for each ψ = (μ1, . . . , μ2s) ∈ Gc and each λ ∈ R,

ν(ψ, λ) = (ψ)λ = (λμ1, . . . , λμ2s). (4.7)

It clearly holds, for each n ≥ 0, λ ∈ R, ψ ∈ Gc, that

θn((ψ)λ) = λnθn(ψ). (4.8)

Obviously, the integrator ψh given by (4.2) for (μ1, . . . , μ2s) = (0, 1) ∈ Gc is precisely the basic integrator χh.
Let us denote, χ = (0, 1) ∈ Gc, so that each ψ = (μ1, . . . , μ2s) can be written as

ψ = (χ−1)μ1 · (χ)μ2 . . . (χ
−1)μ2s−1 · (χ)μ2s .

Let also denote, for each n ≥ 0, Xn = θn(χ). That is, Xn is the linear differential operator such that, for each
g ∈ C∞(Rd; R) and each y ∈ Rd,

Xn[g](y) = θn(χ)[g](y) =
1
n!

dn

dhn
g(χh(y))|h=0 . (4.9)
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Then, each θn(ψ) for ψ ∈ Gc and n ≥ 1 is a linear combination of differential operators of the form Xi1 . . . Xim

with m ≥ 1 and i1 + . . .+ im = n, more precisely,

θn(ψ) =
∑
m≥1

∑
i1+...+im=n

ui1,...,im(ψ)Xi1 . . . Xim (4.10)

for suitable functions ui1,...,im ∈ RGc . Indeed, this is trivially so for ψ = χ. By considering (4.6) with ψ = χ
and φ = χ−1, one can check by induction on n that (4.10) is also true for ψ = χ−1. If (4.10) holds for given
ψ ∈ Gc, then by (4.8), it is also true for (ψ)λ. If (4.10) holds for ψ, φ ∈ Gc, then by virtue of (4.6), it is also true
for φ · ψ.

Proposition 4.2. Consider for m ≥ 1 and (i1, . . . , im) ∈ (N+)m the functions ui1,...,im ∈ RGc are recursively
defined as follows. Given ψ = (μ1, . . . , μ2s) ∈ Gc,

ui(ψ) =
s∑
j=1

(μi2j − μi2j−1), ui1,...,im(ψ) =
s∑
j=1

(μi2j − μi2j−1)ui1,...,im−1(
jψ), (4.11)

where jψ ∈ G is defined for each j ≥ 1 as

jψ =

⎧⎨⎩
(μ1, . . . , μ2j−2, μ2j−1, 0) if μ2j−1 �= 0,
(μ1, . . . , μ2j−2) if μ2j−1 = 0 and j > 1,
ε otherwise.

Then, (4.10) holds for arbitrary basic integrators χh and arbitrary ψ ∈ Gc and n ≥ 1.

Proof. From (4.10) and (4.6) one gets that

ui1,...,im(ψ · (χ)λ) = ui1,...,im(ψ) + λim ui1,...,im−1(ψ),

which together with the equalities

ψ = 2sψ · (χ)μ2s ,
j+1ψ · (χ)μ2j+1 = jψ · (χ)μ2j

lead to the recursion (4.11). �

As for the expansion of g(ϕh(y)) for the exact h-flow of the system (4.1), it formally holds that

g(ϕh(y)) = g(y) +
∑
n≥1

1
n!
Fn = exp(hF ),

where F is the Lie derivative of the ODE system (4.1), that is, the first order linear differential operator F
acting on functions in C∞(Rd; R) as follows: For each g ∈ C∞(Rd; R) and each y ∈ Rd

F [g](y) =
d∑
j=1

f j(y)
∂g

∂yj
(y). (4.12)

Notice that, (4.4) and (4.9) imply that F = X1. Thus, the composition integrator (4.2) associated to a given
ψ ∈ Gc is consistent of order p if and only if

∀n ≤ p, θn(ψ) =
1
n!

(X1)n.
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This, together with Proposition 4.2 implies the following: Let F0 = {11}, and for each n ≥ 1

Fn = {ui1,...,im : m ≥ 1, i1, . . . , im ≥ 1, i1 + . . .+ im = n}· (4.13)

Given p ≥ 1, if

∀u ∈
⋃
n≥1

Fn, u(ψ) =

⎧⎨⎩ 1
m! if ψ =

m︷ ︸︸ ︷
(1, . . . , 1)

0 otherwise,
(4.14)

then ψ is consistent of order p. However, are all the conditions (4.14) necessary for the integration scheme ψ
be of order p? The following lemma shows that they are actually necessary.

Lemma 4.3. Given d ≥ 1 and a multi-index (i1, . . . , id) ∈ (N+)d with i1 + . . . + id = n ≥ 1, there exists
χh : Rd → Rd and g ∈ C∞(Rd; R) such that for y = 0 ∈ Rd, Xj1 . . . Xjm [g](0) �= 0 if and only if (j1, . . . , jm) =
(i1, . . . , id).

Proof. Consider the basic integrator χh : Rd → Rd defined as χh(y) = y + (hi1 , hi2y1, . . . , hidyd−1)T and
g(y) = y1 for y = (y1, . . . , yd) ∈ R

d. �

It is straightforward to check the following result.

Lemma 4.4. Let us consider for each u ∈ RGc and each n ≥ 1, the new function [u]n ∈ RGc defined as follows.
Given ψ = (μ1, . . . , μ2s) ∈ Gc,

[u]n(ψ) =
s∑
j=1

(μn2j − μn2j−1)u(jψ), (4.15)

where jψ ∈ G is defined for each j ≥ 1 as in Proposition 4.2. Then, given u, v ∈ RGc and n, k ≥ 1,

[u]n[v]k = [u[v]k]n + [v[u]n]k + [uv]n+k.

This implies that the product of two functions of the form (4.11) is a linear combination of functions of that
form, and in particular that

• the order conditions (4.14) are not independent of each other. For instance, we have that (u1)2 =
2 u1,1 + u2, and thus u1(ψ) = 1 and u2(ψ) = 0 imply u1,1(ψ) = 1/2.

• the vector space Hc spanned by the set F = ∪n≥0Fn is a subalgebra of RGc .
However, how can we obtain from them a set of independent (necessary and sufficient) order conditions?

How are different sets of independent order conditions of composition integrators related? In order to answer
these questions, we will first show that (Gc,Hc, ν) has (with the algebra Hc spanned by the set of functions F)
a structure of a group of abstract integration schemes, and then interpret the algebraic results in precedent
sections in the context of series of differential operators of the form (4.10).

Lemma 4.5. Given ψ ∈ Gc, the composition integrator (4.2) corresponding to arbitrary basic integrators χh is
the identity map if and only if ψ = ε.

Proof. The ‘if’ part trivially holds, and the ‘only if’ part can be proven by considering the symplectic Euler
method applied to the harmonic oscillator as basic integrator χh : R2 → R2, that is,

χh(y) =
(

1 0
−h 1

)(
1 h
0 1

)
y. (4.16)
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Then, given ψ ∈ Gc/{ε}, that is, ψ = (μ1, . . . , μ2s) ∈ Gc with s ≥ 1, the composition integrator (4.2) corre-
sponding to the basic integrator χh is defined as the map ψh : R2 → R2 given by

ψh(y) =
(

1 0
−a2s+1h 1

)(
1 a2sh
0 1

)
. . .

(
1 0

−a3h 1

)(
1 a2h
0 1

)(
1 0

−a1h 1

)
y, (4.17)

where a1 = −μ1, a2s+1 = μ2s, and aj = (−1)j(μj − μj−1) for j = 2, . . . , 2s, and thus aj �= 0 for all j. The
required result then follows by showing that the map ψh given in (4.17) cannot be the identity map unless
aj = 0 for some j ∈ {2, . . . , 2s}. Indeed, if ψh(y) ≡ y, then, with the notation in Section 2.2, for all n ≥ 1,
un(ψ) = vn(ψ) = 0, and from (2.8), we conclude that aj = 0 for some j ∈ {2, . . . , 2s}. �
Theorem 4.6. The triplet (Gc,Hc, ν), where Hc is the algebra of functions on Gc spanned by the set (4.13) and
the scaling map ν given by (4.7), is a group of abstract integration schemes.

Proof. From (4.6) and (4.10) and Lemma 4.3, one easily gets that, given a multi-index (i1, . . . , im) and ψ, φ ∈ Gc,

ui1,...,im(ψ · φ) = ui1,...,im(ψ) + ui1,...,im(φ) +
m−1∑
j=1

ui1,...,ij (ψ)uij+1,...,im(φ). (4.18)

We thus have that assumption (H1) holds. It is straightforward to check assumption (H2). Assumption (H3)
trivially holds with Hn the linear span of (4.13). As for assumption (H4), it follows from (4.6) and (4.10) and
Lemma 4.5. �
Proposition 4.7. The set F = ∪n≥0 Fn of homogeneous functions on Gc is a basis of the algebra Hc.

Proof. It is not difficult to check that, for each ψ = (μ1, . . . , μ2s) ∈ Gc satisfying μj = 0 for odd j, then, for
each multi-index (i1, . . . , im),

ui1,...,im(ψ) =
∑

1≤j1<...<jm≤s
μi12j1 . . . μ

im
2jm

,

so that ui1,...,im(ψ) = 0 if s < m and otherwise, for each k = 1, . . . , s, the degree of ui1,...,im(ψ) as a polynomial
in the variables μ2(s−k+1), . . . , μ2s is is−k+1 + . . .+ is. This implies the linear independence of the set F . �

Proposition 4.7 together with Lemma 4.4 actually shows that Hc is the quasi-shuffle (Hopf) algebra of
Hoffman [11] (over the graded set {1, 2, 3, . . .} with grading |n| = n), and in particular, admits the set of
Lyndon multi-indices as a set of free generators of the algebra Hc, thus giving a set of (necessary and sufficient)
independent order conditions for the group of composition integration schemes.

Definition 4.8. Consider the lexicographical order < on F (for 1 < 2 < 3 < . . .). Given i1, . . . , im ≥ 1,
(i1, . . . , im) is a Lyndon multi-index if (i1, . . . , ik) < (ik+1, . . . , im) for each 1 ≤ k < m. We consider for each
n ≥ 1, the subset Ln ⊂ Fn of functions ui1,...,im such that (i1, . . . , im) is a Lyndon multi-index.

The first subsets Ln = {u ∈ L: |u| = n} are the following:

L1 = {u1}, L2 = {u2}, L3 = {u12, u3}, L4 = {u112, u13, u4},
L5 = {u1112, u113, u122, u14, u23, u5}·

Proposition 4.9. The set L = ∪n≥1 Ln freely generates the algebra Hc.

Notice that (4.18) implies that the coproduct Δ in Hc is defined as

Δ(ui1,...,im) = ui1,...,im ⊗ 11 + 11 ⊗ ui1,...,im +
m−1∑
j=1

ui1,...,ij ⊗ uij+1,...,im , (4.19)
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which endows the linear dual H∗
c with an algebra structure, where the multiplication has a useful interpretation

in the context of series of linear differential operators: It is straightforward to check that, if we associate a
formal series of the form ∑

m≥1

∑
i1,...,im≥1

hi1+...+imα(ui1,...,im)Xi1 . . . Xim (4.20)

to each α ∈ H∗
c , then the multiplication in H∗

c corresponds to the (formal) composition of the corresponding
series of differential operators. This implies that, if β ∈ g, then

exp
( ∑
m≥1

∑
i1,...,im≥1

hi1+...+imβ(ui1,...,im)Xi1 . . . Xim

)

formally coincides with (4.20) with α = exp(β) ∈ Gc. In particular, given ψ ∈ Gc, β = dψλ

dλ

∣∣∣
λ=0

∈ g, where

β(u1) = u1(ψ) and β(ui1,...,im) = 0 otherwise, so that∑
m≥1

∑
i1,...,im≥1

hi1+...+imβ(ui1,...,im)Xi1 . . . Xim = hu1(ψ)X1,

and thus

exp
( dψλ

dλ

∣∣∣∣
λ=0

)
(ui1,...,im) =

{
u1(ψ)m

m! if (i1, . . . , im) = (1, . . . , 1),
0 otherwise.

Corollary 4.10. A set of independent necessary and sufficient conditions for an arbitrary ψ ∈ Gc to be consis-
tent of order p is the following: u1(ψ) = 1, and

∀u ∈
⋃
n≥1

Ln, u(ψ) = 0.

Remark 4.11. A systematic construction of an independent set of necessary and sufficient order conditions
for composition integrators was obtained in [17] in terms of a certain set of functions T̂ ⊂ R

Gc indexed by
certain subset of labeled rooted trees. According to Theorem 3.21, the algebra of functions generated by T̂
(which happens to satisfy, together with Gc and ν, the assumptions (H1)–(H4)) must coincide with Hc. With
the notation introduced in Lemma 4.4, let Fn−1, Tn (n ≥ 1) be sets of functions on Gc recursively defined as
follows: F0 = {11}, and for each n ≥ 1,

Tn =
{
[u]k: u ∈ Fn−k, k = 0, . . . , n− 1

}
,

Fn =
{
u1 . . . um: ui ∈ Tni and

m∑
i=1

ni = n
}
·

It is not difficult to see that the set T =
⋃
n≥1 Tn can be naturally indexed by rooted trees labeled by the set

{1, 2, 3, . . .}. A subset T̂ ⊂ T (in one-to-one correspondence with a Hall set [2] on the alphabet {1, 2, 3, . . .})
is identified in [17] that provides a set of necessary and sufficient order conditions for composition integrators
(see also [9]), which implies that T̂ freely generates the (quasi-shuffle) algebra Hc. Actually, a different subset
T̂ ⊂ T that freely generates the quasi-shuffle algebra Hc can be obtained associated to each generalized Hall set
on the alphabet {1, 2, 3, . . .} (see [16] for a closely related sets of free generators of the shuffle algebra indexed
by subsets of labeled rooted trees).
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5. Conclusion

In this paper, we have introduced an algebraic structure, that we call group of abstract integration schemes,
and composed of a group, an algebra of functions acting on this group and a scaling map. In Section 2, we have
have considered two very simple examples of integrators, for respectively arbitrary linear differential equations
and linear Schrödinger-like differential equations: these examples, though basic in comparison with the theory
that follows, share essential characteristics with more involved situations and are of great help to get a grip
on the general situation. From a set of four assumptions, of a purely algebraic nature, we exhibit step by
step a structure of graded Hopf algebra. The richness of this structure enables us to prove several results that
answer recurrent questions in numerical analysis (in particular, questions (Q1) to (Q4) of the introduction). An
interesting aspect of this work, is, according to us, that it is independent of the specific differential equation
considered and the specific type of integrators. On top of the two examples considered in the introduction, and
composition methods, studied in [17], receive much attention here: a new presentation of order conditions is
revealed based only upon the theory developed here.

We note that, the case of Runge-Kutta methods, of much historic interest (see [3]), can be easily treated
within the present framework. The existence of an underlying group of abstract integration schemes for a given
class of integration schemes can also be stated under very mild assumptions on the relevant series expansions of
the integration methods. Moreover, the algebraic structure of the Hopf algebra introduced here is richer than
this paper allows to show within a limited number of pages. In particular, the Hopf algebra structure of H can
be interpreted (as in the case of composition methods in Sect. 4) in terms of formal series expansions of linear
differential operators. This also applies for the Hopf algebra structure of Runge-Kutta methods, which have
very useful interpretations in terms of series expansion such as S-series (see [15,16]). Note that S-series, that
generalize in a sense B-series, have proven very useful in a number of results in geometric integrations [5,6]. It
is thus the intention of the authors to pursue this work in a second article.
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