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FULLY-DISCRETE FINITE ELEMENT APPROXIMATIONS
FOR A FOURTH-ORDER LINEAR STOCHASTIC PARABOLIC EQUATION

WITH ADDITIVE SPACE-TIME WHITE NOISE ∗

Georgios T. Kossioris
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and Georgios E. Zouraris
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Abstract. We consider an initial and Dirichlet boundary value problem for a fourth-order linear
stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise.
Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order
linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the
regularized problem are constructed by using, for discretization in space, a Galerkin finite element
method based on C0 or C1 piecewise polynomials, and, for time-stepping, the Backward Euler method.
We derive strong a priori estimates for the modelling error and for the approximation error to the
solution of the regularized problem.
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1. Introduction

1.1. The main problem

Let T > 0, D = (0, 1) and (Ω,F , P ) be a complete probability space. Then we consider an initial and
Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation which is formulated,
typically, as follows: find a stochastic function u : [0, T ]×D → R such that

∂tu+ ∂4
xu = ∂txW (t, x) ∀(t, x) ∈ (0, T ]×D,

∂2m
x u(t, ·)∣∣

∂D
= 0 ∀t ∈ (0, T ], m = 0, 1,

u(0, x) = 0 ∀x ∈ D,

(1.1)
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a.s. in Ω, where ∂txW denotes a space-time white noise on [0, T ] ×D (see, e.g., [17,28]). The mild solution of
the problem above (cf. [7,10]) (known also as ‘stochastic convolution’) is given by the formula

u(t, x) =
∫ t

0

∫
D

G(t− s;x, y) dW (s, y). (1.2)

Here, G(t;x, y) is the space-time Green kernel of the corresponding deterministic parabolic problem: find a
deterministic function w : [0, T ]×D → R such that

∂tw + ∂4
xw = 0 ∀(t, x) ∈ (0, T ]×D,

∂2m
x w(t, ·)∣∣

∂D
= 0 ∀t ∈ (0, T ], m = 0, 1,

w(0, x) = w0(x) ∀x ∈ D,

(1.3)

where w0 is a deterministic initial condition. In particular, we have

w(t, x) =
∫

D

G(t;x, y)w0(y) dy ∀(t, x) ∈ (0, T ] ×D (1.4)

and

G(t;x, y) =
∞∑

k=1

e−λ4
kt εk(x) εk(y) ∀(t, x, y) ∈ (0, T ] ×D ×D, (1.5)

where λk := k π for k ∈ N, and εk(z) :=
√

2 sin(λk z) ∀z ∈ D, ∀k ∈ N.

1.2. The regularized problem

Being inspired by the approach for a second order stochastic parabolic equation with additive space-time
white noise proposed in [1], we introduce in this section an approximate regularized initial and boundary value
problem which we will use to derive computable approximations to the solution u of (1.1).

Let NΔ ∈ N and (tn)NΔ
n=0 be the nodes of a partition of [0, T ]. Then, define Tn := (tn−1, tn) and Δtn :=

tn − tn−1 for n = 1, . . . , NΔ. Also, let JΔ ∈ N and (xj)
JΔ
j=0 be the nodes of a partition of D. Then, define

xj− 1
2

:= 1
2 (xj−1 +xj), Dj := (xj−1, xj) and Δxj := xj −xj−1 for j = 1, . . . , JΔ. Also, set Δt := max1≤n≤NΔ

Δtn
and Δx := max1≤j≤JΔ

Δxj . Next, for j = 1, . . . , JΔ, specify an L2(Dj)-orthogonal basis {π̂1,j, π̂2,j} of P
1(Dj)

with π̂1,j := 1√
Δxj

and π̂2,j := 2
√

3

(Δxj)
3
2
(x− xj− 1

2
). Finally, consider the fourth-order linear stochastic parabolic

problem: find a stochastic function û : [0, T ]×D → R such that

∂tû+ ∂4
xû = Ŵ in (0, T ]×D,

∂2m
x û(t, ·)∣∣

∂D
= 0 ∀t ∈ (0, T ], m = 0, 1,

û(0, x) = 0 ∀x ∈ D,

(1.6)

a.e. in Ω, where

Ŵ (t, x) :=
NΔ∑
n=1

1
Δtn

JΔ∑
j=1

XSn,j
(t, x) [Rn,1,j π̂1,j(x) +Rn,2,j π̂2,j(x) ] ∀(t, x) ∈ [0, T ]×D, (1.7)

Rn,i,j :=
∫

Sn,j

π̂i,j(x) dW (t, x),
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and Sn,j := Tn×Dj for j = 1, . . . , JΔ and n = 1, . . . , NΔ. It is well known that the solution of the problem (1.6),
according to the standard theory for parabolic problems (see, e.g., [21]), has the integral representation

û(t, x) =
∫ t

0

∫
D

G(t− s;x, y) Ŵ (s, y) dsdy ∀(t, x) ∈ [0, T ]×D. (1.8)

We next approximate the mild solution u of (1.1) by constructing numerical approximations to the solution û
of (1.6), which is a usual parabolic problem with stochastic load. Hence, the approach above results in two kind
of errors that we have to estimate: (i) the, so called, modelling error which is the difference u− û, and (ii) the
numerical approximation error for û.

Remark 1.1. Let I = {(n, i, j) : n = 1, . . . , NΔ, i = 1, 2, j = 1, . . . , JΔ}. Using the properties of the stochastic
integral (see, e.g., [28]), we conclude that Rβ ∼ N (0,Δtβ1) for all β ∈ I; also, we observe that E[Rβ Rβ′ ] = 0
for β, β′ ∈ I with β �= β′. Thus, the random variables (Rβ)β∈I are independent since they are Gaussian and
uncorrelated.

1.3. Main results of the paper

The motivation to consider the problem (1.1) is driven by the fact that its solution is part of the mild
solution of the stochastic Cahn-Hilliard equation (cf. [7,10]). The latter equation was introduced by Cook [9]
for the investigation of phase separation in spinodal decomposition (see, e.g., [12,18]). In the paper at hand, our
plan is to propose fully-discrete Backward Euler finite element methods to approximate the solution of (1.6),
and analyze their convergence to the mild solution (1.2) of (1.1). In spite of the recent contributions in the
convergence analysis of the finite element method for second order stochastic parabolic problems with additive
space-time white noise (see, e.g., [1,3,14,19,25,27,29]), the order of convergence of the finite element method for
the fourth order problem (1.1) is not conclusive. Also, we refer to [6] for the convergence analysis of a finite
difference method, to [15,16,23] for the convergence analysis of time-discretization methods for a wide family of
evolution problems that includes (1.1), while the finite element method is not among the space-discretization
techniques considered in [15,16].

The first result of the paper is the derivation of a convergent bound for the modelling error. Indeed, using
the integral representation of u and û, we obtain (see Thm. 3.1) the comparison estimate

max
t∈[0,T ]

{∫
Ω

(∫
D

|u(t, x) − û(t, x)|2 dx
)

dP
} 1

2

≤ C
(

Δt
3
8 + ε−

1
2 Δx

3
2−ε

)
, ∀ε ∈ (0, 3

2 ], (1.9)

which measures the effect of discretizing the space-time white noise by the discrete space-time white noise
kernel Ŵ . The error bound (1.9) validates the decision to approximate u via the construction of approximations
to û, because it concludes that û tends to u when Δt and Δx tend to zero.

Let M ∈ N and (τm)M
m=0 be the nodes of a partition of [0, T ], i.e. τ0 = 0, τM = T and τm−1 < τm

for m = 1, . . . ,M . Then, we define Δm := (τm−1, τm) and km := τm − τm−1 for m = 1, . . . ,M , and set
kmax := max1≤m≤M km. Also, for r ∈ {1, 2, 3} and κ(r) ∈ {1, . . . , r}, let Sr,κ(r)

h ⊂ H1
0(D) ∩ Hκ(r)(D) be a finite

element space consisting of functions which are piecewise polynomials of degree at most r over a partition of D
in intervals with maximum mesh-length h. Then, we define a discrete Laplace operator Δh : Sr,κ(r)

h → S
r,κ(r)
h

by

(Δhϕ, χ)0,D = (ϕ′, χ′)0,D ∀ϕ, χ ∈ S
r,κ(r)
h , (1.10)

and, when k(r) ≥ 2, a discrete biharmonic operator Bh : Sr,κ(r)
h → S

r,κ(r)
h by

(Bhϕ, χ)0,D = (ϕ′′, χ′′)0,D ∀ϕ, χ ∈ S
r,κ(r)
h . (1.11)
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Also, the usual L2(D)-projection operator Ph : L2(D) → S
r,κ(r)
h is specified by

(Phf, χ)0,D = (f, χ)0,D ∀χ ∈ S
r,κ(r)
h , ∀f ∈ L2(D).

Computable fully-discrete approximations of û are constructed by using the Backward Euler finite element
method described below:

Step FD1. Set
Û0

h := 0. (1.12)

Step FD2. For m = 1, . . . ,M , find Ûm
h ∈ S

r,κ(r)
h such that

Ûm
h − Ûm−1

h + kmQhÛ
m
h =

∫
Δm

PhŴ ds, (1.13)

where Qh = Δ2
h or Qh = Bh.

For the numerical method above, the first convergence result we obtain (see Thm. 6.3) is the discrete in time
L2

t (L2
P (L2

x)) error estimate:{
M∑

m=1

km

∫
Ω

(∫
D

∣∣Ûm
h (x) − û(τm, x)

∣∣2 dx
)

dP

} 1
2

≤ C
[
(kmax)

3
8 + ε−

1
2 hν−ε

]
, ∀ε ∈ (0, ν], (1.14)

where: ν depends on r, κ(r), the biharmonic operator Qh chosen and the properties of the finite element spaces
(see Thm. 5.3). Adopting a technique based on energy estimates for non-homogeneous deterministic parabolic
problems, we derive (see Thm. 6.5) the alternative discrete in time L2

t (L2
P (L2

x))-error estimate given below:{
M∑

m=1

km

∫
Ω

(∫
D

∣∣Ûm
h (x) − û(τm, x)

∣∣2 dx
)

dP

} 1
2

≤ C
[
(kmax)

3
8 + hr + hr Δt−

3
8
]
. (1.15)

Assuming that the nodes (τm)M
m=0 are equidistributed with km = Δτ for m = 1, . . . ,M , and using Duhamel’s

principle we arrive at the following discrete in time L∞
t (L2

P
(L2

x)) error estimate (see Thm. 6.9):

max
0≤m≤M

{∫
Ω

(∫
D

∣∣Ûm
h (x) − û(τm, x)

∣∣2 dx
)

dP
} 1

2

≤ C
(
ε
− 1

2
1 Δτ

3
8−ε1 + ε

− 1
2

2 hν−ε2
)
, (1.16)

for ε1 ∈ (0, 3
8 ] and ε2 ∈ (0, ν]. Finally, applying an energy estimate technique we get the following alternative

discrete in time L∞
t (L2

P (L2
x)) error estimate (see Thm. 6.10):

max
0≤m≤M

{∫
Ω

(∫
D

∣∣Ûm
h (x) − û(τm, x)

∣∣2 dx
)

dP
} 1

2

≤ C
(
ε−

1
2 Δτ

3
8−ε + hr Δτ−1

)
, (1.17)

for ε ∈ (0, 3
8 ].

We close this section with some remarks related to the error estimates above:
– To obtain the error estimate (1.14), we introduce a space-discrete approximation ûh of û and analyze

its convergence in the L∞
t (L2

P
(L2

x)) norm (see Thm. 5.3).
– Although the estimates (1.16) and (1.17) are of stronger norm, the estimates (1.14) and (1.15) have

their own value since the order of convergence is slightly better and they allow nonuniform partition
of the time interval, thus, they are naturally suited for designing adaptive methods. Following the
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adopted techniques, such estimates can be also derived for the second order equations, for which, to our
knowledge, there are no analogue results in the existing literature (cf. [3,15,16,25,27,29]).

– A first impression is that, estimates (1.14) and (1.16), are qualitatively better than the estimates (1.15)
and (1.17), respectively, because no negative powers of Δt or Δτ appear. However, choosing h = O(Δt),
the estimate (1.15) becomes of order r − 3

8 with respect to h, which is greater than ν. Also, choosing
h = O(Δτ) the estimate (1.17) becomes of order r − 1 with respect to h, which is greater than ν for
r = 3 or 2. A fair comparison could be done, by estimating the total work needed to compute an
approximation of a statistical quantity of u with error below of a given tolerance (see, e.g., [2,22]),
which is beyond the scope of the present work.

– Error estimates, in the discrete in time L∞
t (L2

P
(L2

x)) norm, for Backward Euler fully-discrete finite
element approximations, but for the stochastic heat equation with additive space-time white noise, have
been proved recently by Yan [25,27] and Bin [3]. Here, to get the estimates (1.16) and (1.17) we adopt
a different point of view. First we consider the Backward-Euler time-discrete approximations of û and
analyze their convergence to û in the discrete in time L∞

t (L2
P (L2

x)) norm (see Thm. 4.2). Then, we
compare the Backward-Euler fully-discrete approximations of û with the Backward-Euler time-discrete
approximations of û (see Prop. 6.8 and Thm. 6.10). Thus, we are able to estimate separately the error
contribution in time due to the Backward Euler time-stepping and the error contribution in space due
to the finite element method.

1.4. Overview

We close the section by an overview of the paper. Section 2 introduces notation, includes some known results
often used in the paper, recalls properties of continuous parabolic and elliptic solution operators, describes our
finite element spaces and exposes some error estimates for finite element approximations of the solution of an
one-dimensional biharmonic elliptic problem. Section 3 is dedicated to the estimation of the modelling error.
Section 4 defines the Backward Euler time-discrete approximations of û and analyzes its convergence. Section 5
defines a finite element space-discrete approximation of û and estimates its approximation error. Section 6
contains the error analysis for the Backward Euler fully-discrete approximations of û.

2. Notation and preliminaries

2.1. Function spaces and related operators

Let I ⊂ R be a bounded interval. We denote by L2(I) the space of the Lebesgue measurable functions
which are square integrable on I with respect to Lebesgue’s measure dx, provided with the standard norm
‖g‖0,I := {∫

I
|g(x)|2 dx} 1

2 for g ∈ L2(I). The standard inner product in L2(I) that produces the norm ‖ · ‖0,I is
written as (·, ·)0,I , i.e., (g1, g2)0,I :=

∫
I
g1(x)g2(x) dx for g1, g2 ∈ L2(I). For s ∈ N0, Hs(I) will be the Sobolev

space of functions having generalized derivatives up to order s in the space L2(I), and by ‖ · ‖s,I its usual norm,

i.e. ‖g‖s,I :=
{∑s

�=0 ‖∂�g‖2
0,I

} 1
2 for g ∈ Hs(I). Also, by H1

0(I) we denote the subspace of H1(I) consisting of
functions which vanish at the endpoints of I in the sense of trace. We note that in H1

0(I) the, well-known,
Poincaré-Friedrich inequality holds, i.e.,

‖g‖0,I ≤ CPF ‖g′‖0,I ∀g ∈ H1
0(I). (2.1)

To simplify the notation we set H
s(D) := Hs(D) ∩ H1

0(D) for s ∈ N.
The sequence of pairs {(λ2

k, εk

)}∞k=1 is a solution to the eigenvalue/eigenfunction problem: find nonzero
ϕ ∈ H

2(D) and σ ∈ R such that −ϕ′′ = σ ϕ in D. Since (εk)∞k=1 is a complete (·, ·)0,D-orthonormal system
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in L2(D), for s ∈ R, a subspace Ḣ
s
(D) of L2(D) (see [24]) is defined by

Ḣs(D) :=

{
v ∈ L2(D) :

∞∑
k=1

λ2s
k (v, εk)20,D

<∞
}

and provided with the norm ‖v‖Ḣs :=
(∑∞

k=1λ
2s
k (v, εk)20,D

) 1
2 ∀v ∈ Ḣs(D). Let m ∈ N0. It is well-known

(see [24]) that
Ḣm(D) =

{
v ∈ Hm(D) : ∂2i

x v |∂D = 0 if 0 ≤ i < m
2

}
(2.2)

and there exist constants Cm,A and Cm,B such that

Cm,A ‖v‖m,D ≤ ‖v‖Ḣm ≤ Cm,B ‖v‖m,D ∀v ∈ Ḣm(D). (2.3)

Also, we define on L2(D) the negative norm ‖ · ‖−m,D by

‖v‖−m,D := sup
{

(v,ϕ)0,D

‖ϕ‖m,D
: ϕ ∈ Ḣm(D) and ϕ �= 0

}
∀v ∈ L2(D),

for which, using (2.3), it is easy to conclude that there exists a constant C−m > 0 such that

‖v‖−m,D ≤ C−m ‖v‖Ḣ−m ∀v ∈ L2(D). (2.4)

Let L2 = (L2(D), (·, ·)0,D) and L(L2) be the space of linear, bounded operators from L2 to L2. We say that,

an operator Φ ∈ L(L2) is Hilbert-Schmidt, when ‖Φ‖HS :=
{∑∞

k=1 ‖Φ(εk)‖2
0,D

} 1
2 < +∞, where ‖Φ‖HS is the so

called Hilbert-Schmidt norm of Φ. We note that the quantity ‖Φ‖HS does not change when we replace (εk)∞k=1

by another complete orthonormal system of L2. It is well known (see, e.g., [11]) that an operator Φ ∈ L(L2) is
Hilbert-Schmidt iff there exists a measurable function g : D ×D → R such that Φ[v](·) =

∫
D
g(·, y) v(y) dy for

v ∈ L2(D), and then, it holds that

‖Φ‖HS =
(∫

D

∫
D

g2(x, y) dxdy
) 1

2

. (2.5)

Let LHS(L2) be the set of Hilbert Schmidt operators of L(L2) and Φ̂ : [0, T ] → LHS(L2). Also, for a random
variable X , let E[X ] be its expected value, i.e., E[X ] :=

∫
Ω
X dP . Then, the Itô isometry property for stochastic

integrals, which we will use often in the paper, reads

E

[∥∥∥∥∫ T

0

Φ̂ dW
∥∥∥∥2

0,D

]
=
∫ T

0

‖Φ̂(t)‖2
HS dt. (2.6)

We close this section by observing that: if c	 > 0, then

∞∑
k=1

λ
−(1+c�ε)
k ≤

(
1 + 2c	
c	π

)
1
ε

∀ε ∈ (0, 2]. (2.7)

2.2. Discrete space-time white noise kernel Ŵ

In the rest of the paper, we will, often, use the projection operator Π̂ : L2((0, T ) × D) → L2((0, T ) × D)
defined by

Π̂g
∣∣

Sn,j
:= 1

Δtn

2∑
i=1

(∫
Sn,j

g(t, y) π̂i,j(y) dtdy

)
π̂i,j , n = 1, . . . , NΔ, j = 1, . . . , JΔ, (2.8)



FINITE ELEMENT APPROXIMATIONS FOR A FOURTH ORDER LINEAR PARABOLIC SPDE 295

for g ∈ L2((0, T ) ×D), for which obviously holds that(∫
T

0

∫
D

(Π̂g)2 dxdt
) 1

2

≤
(∫

T

0

∫
D

g2 dxdt
) 1

2

∀g ∈ L2((0, T ) ×D). (2.9)

Next lemma, relates the stochastic integral of the projection Π̂ of a deterministic function to its space-time
L2-inner product with the discrete space-time white noise kernel Ŵ defined in Section 1.2.

Lemma 2.1. For g ∈ L2((0, T )×D), it holds that∫
T

0

∫
D

Π̂g(s, y) dW (s, y) =
∫

T

0

∫
D

Ŵ (t, x) g(t, x) dtdx. (2.10)

Proof. To obtain (2.10) we work, using (2.8) and the properties of the stochastic integral, as follows:

∫ T

0

∫
D

Π̂g(s, y) dW (s, y) =
NΔ∑
n=1

JΔ∑
j=1

2∑
i=1

1
Δtn

(∫
Sn,j

g(t, x) π̂i,j(x) dtdx

)
Rn,i,j

=
NΔ∑
n=1

JΔ∑
j=1

1
Δtn

∫
Sn,j

g(t, x)

(
2∑

i=1

π̂i,j(x)Rn,i,j

)
dtdx

=
NΔ∑
n=1

JΔ∑
j=1

1
Δtn

∫ T

0

∫
D

XSn,j (t, x) g(t, x)

(
2∑

i=1

π̂i,j(x)Rn,i,j

)
dtdx

=
∫

T

0

∫
D

g(t, x) Ŵ (t, x) dtdx. �

2.3. Linear elliptic and parabolic operators

First, we consider the following Dirichlet two-point boundary value problem: for given f ∈ L2(D) find
vE ∈ Ḣ2(D) such that

v′′E = f in D. (2.11)
We will denote by TE : L2(D) → Ḣ2(D) the solution operator of (2.11), i.e. TEf := vE, which has the property

‖TEf‖m,D ≤ C ‖f‖m−2,D, ∀f ∈ Hmax{0,m−2}(D), ∀m ∈ N0. (2.12)

Consider, also, the following Dirichlet biharmonic two-point boundary value problem: given f ∈ L2(D) find
vB ∈ Ḣ4(D) such that

v′′′′
B

= f in D. (2.13)
Letting TB : L2(D) → Ḣ4(D) be the solution operator of (2.13), i.e. TBf := vB, it is easy to verify that

‖TBf‖m,D ≤ C ‖f‖m−4,D, ∀f ∈ Hmax{0,m−4}(D), ∀m ∈ N0. (2.14)

Due to the type of boundary conditions of (2.13), we conclude that

TBf = T 2
E
f, ∀f ∈ L2(D), (2.15)

which, easily, yields
(TBv1, v2)0,D = (TEv1, TEv2)0,D ∀v1, v2 ∈ L2(D). (2.16)

Let (S(t)w0)t∈[0,T ] be the standard semigroup notation for the solution w of (1.3). For later use, we display
some a priori bounds for norms of w with respect to the initial data w0, obtained by proceeding as in the proof
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of analogous results for linear second order deterministic parabolic problems (see Chap. 3 in [20,24]): for � ∈ N0,
β, p ∈ R

+
0 and q ∈ [0, p+ 4�] there exists a constant Cp,q,� > 0 such that∥∥∂�

tS(t)w0

∥∥
Ḣp ≤ Cp,q,� t−

p−q
4 −� ‖w0‖Ḣq ∀t > 0, ∀w0 ∈ Ḣq(D), (2.17)

and a constant Cβ > 0 such that∫ tb

ta

(τ − ta)β
∥∥∂�

tS(τ)w0

∥∥2

Ḣp dτ ≤ Cβ ‖w0‖2
Ḣp+4�−2β−2 ∀tb > ta ≥ 0, ∀w0 ∈ Ḣp+4�−2β−2(D). (2.18)

2.4. Finite element spaces and approximations

Let r ∈ {1, 2, 3} and κ(r) ∈ {1, . . . , r}. Then, we consider a finite element space Sr,κ(r)
h ⊂ H

κ(r)(D) consisting
of functions which are piecewise polynomials of degree at most r over a partition of D in intervals with maximum
mesh-length h. It is well-known (cf., e.g., [4,5,8]) that the following approximation properties hold:

inf
χ∈S

r,κ(r)
h

( ‖v − χ‖0,D + h ‖v − χ‖1,D ) ≤ C h� ‖v‖�,D ∀v ∈ H
�(D), � = 2, . . . , r + 1, (2.19)

and

inf
χ∈S

r,κ(r)
h

‖v − χ‖2,D ≤ C hs−1 ‖v‖s+1,D ∀v ∈ H
s+1(D), s = 2, . . . , r, r = 2, 3, κ(r) ≥ 2. (2.20)

If the partition of D is quasi-uniform then the following inverse inequality holds:

‖χ‖�,D ≤ C h−1 ‖χ‖�−1,D, � = 1, . . . , κ(r), ∀χ ∈ S
r,κ(r)
h . (2.21)

However, in our analysis, we will not suppose that the above inverse inequality holds unless is clearly stated
(see, e.g., Prop. 5.1).

The standard Galerkin finite element approximation vE,h ∈ S
r,κ(r)
h of the solution vE of (2.11) is specified by

requiring
− ΔhvE,h = Phf, (2.22)

while a finite element approximation vI
B,h

∈ S
r,κ(r)
h of the solution vB of (2.13) is defined by the requirement

Δh(Δhv
I

B,h
) = Phf. (2.23)

We introduce, now, the operator TE,h : L2(D) → S
r,κ(r)
h being the solution operator of the finite element

method (2.22), i.e. TE,hf := vE,h = −Δ−1
h Phf for f ∈ L2(D), and the operator T I

B,h
: L2(D) → S

r,κ(r)
h being

the solution operator of the finite element method (2.23), i.e. T I
B,hf := vI

B,h = (Δh)−2Phf for f ∈ L2(D).
Hence, the following relation holds

T I

B,h
f = TE,h(TE,hf) ∀f ∈ L2(D). (2.24)

Also, using (2.22), (2.11) and (2.12), we can easily conclude that

‖(TE,hf)′‖0,D ≤‖(TEf)′‖0,D

≤C ‖f‖−1,D ∀f ∈ L2(D). (2.25)

Since TE,h is selfadjoint (see, e.g., Chap. 2 in [24]), i.e., (TE,hf, g)0,D = (f, TE,hg)0,D for f, g ∈ L2(D), using (2.24)
we, easily, arrive at

(T I

B,h
f, g)0,D = (TE,hf, TE,hg)0,D ∀f, g ∈ L2(D). (2.26)
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Due to the approximation property (2.19) of the finite element space Sr,κ(r)
h , the theory of the standard Galerkin

finite element method for second order elliptic problems (cf., e.g., [5,8]), yields that

‖TEf − TE,hf‖0,D + h ‖TEf − TE,hf‖1,D ≤ C h� ‖TEf‖�,D, � = 2, . . . , r + 1, ∀f ∈ L2(D). (2.27)

Using the estimate above, we derive the following L2(D)-approximation error bounds, for the inverse discrete
biharmonic operator T I

B,h
.

Proposition 2.2. Let r ∈ {1, 2, 3} and κ(r) ∈ {1, . . . , r}. Then, it holds that:

‖TBf − T I

B,hf‖0,D ≤ C

{
hr ‖f‖−1,D, r = 1, 2, 3,

hr+1 ‖f‖0,D, r = 1, 2,
∀f ∈ L2(D). (2.28)

Proof. See Appendix A. �

When κ(r) ≥ 2, we can define another finite element approximation vII
B,h ∈ S

r,κ(r)
h of the solution vB of (2.13)

requiring
Bh(vII

B,h) = Phf. (2.29)

Then, we denote by T II
B,h : L2(D) → S

r,κ(r)
h the corresponding solution operator, i.e. T II

B,hf := vII
B,h = B−1

h Phf

for f ∈ L2(D), which is selfadjoint, i.e.,

(T II

B,h
f, g)0,D = (f, T II

B,h
g)0,D ∀f, g ∈ L2(D). (2.30)

Also, using (2.13), (1.11), (2.29) and (2.14), we can easily arrive at

‖(T II

B,hf)′′‖0,D ≤‖(TBf)′′‖0,D

≤C ‖f‖−2,D ∀f ∈ L2(D). (2.31)

Finally, we can provide the inverse biharmonic operator T II
B,h, with the following L2(D)-approximation properties.

Proposition 2.3. Let r ∈ {2, 3} and κ(r) ≥ 2. Then, it holds that:

‖TBf − T II

B,hf‖0,D ≤ C

{
h4 ‖f‖0,D, r = 3,

hr ‖f‖−1,D, r = 2, 3
∀f ∈ L2(D). (2.32)

Proof. See Appendix B. �

3. An estimate for the modelling error

In the following theorem, we derive an L∞
t (L2

P (L2
x)) bound for the modelling error in terms of Δt and Δx.

Theorem 3.1. Let u be the solution of (1.1) and û be the solution of (1.6). Then, there exist a real constant
C > 0, independent of T , Δt and Δx, such that

max
[0,T ]

{
E
[‖u− û‖2

0,D

]} 1
2 ≤ C

[ (
1 + (Δt)

1
4
) 1

2 Δt
3
8 + ε−

1
2 Δx

3
2−ε

]
, ∀ε ∈ (0, 3

2 ]· (3.1)

Proof. Using (1.2), (1.8) and Lemma 2.1, we conclude that

u(t, x) − û(t, x) =
∫ T

0

∫
D

[X(0,t)(s)G(t− s;x, y) − G̃(t, x; s, y)
]
dW (s, y) ∀(t, x) ∈ [0, T ]×D, (3.2)
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where G̃ : (0, T ) ×D → L2((0, T ) ×D) given by

G̃(t, x; s, y) := 1
Δtn

∫
Tn

X(0,t)(s′)

(
2∑

i=1

π̂i,j(y)
∫

D

G(t− s′;x, y′) π̂i,j(y′) dy′
)

ds′ ∀(s, y) ∈ Sn,j ,

for j = 1, . . . , JΔ and n = 1, . . . , NΔ.
Let Θ :=

{
E
[‖u− û‖2

0,D

]} 1
2 and t ∈ (0, T ]. Using (3.2) and Itô isometry (2.6), we obtain

Θ(t) =

{∫
T

0

∫
D

∫
D

[
X(0,t)(s)G(t− s;x, y) − G̃(t, x; s, y)

]2

dxdyds

} 1
2

.

Now, we introduce the splitting
Θ(t) ≤ ΘA(t) + ΘB(t), (3.3)

where

ΘA(t) :=

{
NΔ∑
n=1

∫
D

∫
D

∫
Tn

[
1

Δtn

∫
Tn

X(0,t)(s′)G(t− s′;x, y) ds′ − G̃(t, x; s, y)
]2

dxdyds

} 1
2

and

ΘB(t) :=

{
NΔ∑
n=1

∫
D

∫
D

∫
Tn

[
X(0,t)(s)G(t− s;x, y) − 1

Δtn

∫
Tn

X(0,t)(s′)G(t− s′;x, y) ds′
]2

dxdyds

} 1
2

.

Estimation of ΘA(t). Using (1.5) and the (·, ·)0,D-orthogonality of (εk)∞k=1, we have

Θ2
A
(t) =

NΔ∑
n=1

JΔ∑
j=1

1
Δtn

∫
D

∫
Dj

[∫
Tn

X(0,t)(s′)
[
G(t− s′;x, y) −

2∑
i=1

(G(t− s′;x, ·), π̃i,j(·))0,Dj
π̃i,j(y)

]
ds′

]2

dydx

=
NΔ∑
n=1

JΔ∑
j=1

1
Δtn

[ ∞∑
k=1

(∫
Tn

X(0,t)(s′) e−2λ4
k(t−s′) ds′

)2 ∫
Dj

(
εk(y) −

2∑
i=1

(εk, π̃i,j)0,Dj
π̃i,j(y)

)2

dy

]

from which, using the Cauchy-Schwarz inequality, follows that

Θ2
A
(t) ≤

∞∑
k=1

(∫ t

0

e−4λ4
k(t−s′) ds′

) [∫
Dj

(
εk(y) −

2∑
i=1

(εk, π̃i,j)0,Dj
π̃i,j(y)

)2

dy

]
. (3.4)

First, we observe that ∫ t

0

e−4λ4
k(t−s′) ds′ ≤ 1

4λ4
k

∀k ∈ N. (3.5)

Next, by interpolation, using the standard approximation properties of the L2(Dj)-projection operator onto
P

1(Dj) (see, e.g. [5]), we have

(∫
Dj

(
εk(y) −

2∑
i=1

(εk, π̃i,j)0,Dj
π̃i,j(y)

)2

dy

) 1
2

≤ C (Δxj)2θ ‖εk‖Ḣ2θ

≤ C (Δxj)2θ λ2θ
k ∀θ ∈ [0, 1]. (3.6)
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Thus, from (3.4), (3.5) and (3.6) we arrive at

ΘA(t) ≤ C (Δx)2θ

( ∞∑
k=1

λ
−[1+2 ( 3

2−2θ)]

k

) 1
2

∀θ ∈ [0, 3
4 )· (3.7)

Estimation of ΘB(t). For t ∈ (0, T ], let N̂(t) := min
{
� ∈ N : 1 ≤ � ≤ NΔ and t ≤ t�

}
and

T̂n(t) := Tn ∩ (0, t) =

{
Tn, if n < N̂(t)

(tN̂(t)−1, t), if n = N̂(t)
, n = 1, . . . , N̂(t).

Thus, using (1.5) and the (·, ·)0,D-orthogonality of (εk)∞k=1 it follows that

Θ2
B
(t) =

NΔ∑
n=1

1
(Δtn)2

∫
D

∫
D

∫
Tn

[ ∫
Tn

[
X(0,t)(s)G(t − s;x, y) −X(0,t)(s′)G(t− s′;x, y)

]
ds′

]2

dxdyds

=
NΔ∑
n=1

1
(Δtn)2

∫
D

∫
D

∫
Tn

[ ∞∑
k=1

εk(x) εk(y)
∫

Tn

[
X(0,t)(s) e−λ4

k(t−s) −X(0,t)(s′) e−λ4
k(t−s′)

]
ds′

]2

dxdyds

which yields that

Θ2
B
(t) ≤

∞∑
k=1

N̂(t)∑
n=1

1
(Δtn)2 Ψk

n(t), (3.8)

where

Ψk
n(t) :=

∫
Tn

[ ∫
Tn

(
X(0,t)(s) e−λ4

k(t−s) −X(0,t)(s′) e−λ4
k(t−s′)

)
ds′

]2

ds.

Let k ∈ N and n ∈ {1, . . . , N̂(t) − 1}. Then, we have

Ψk
n(t) =

∫
Tn

(∫
Tn

∫ s′

s

λ4
k e−λ4

k(t−τ) dτds′
)2

ds

≤
∫

Tn

(∫
Tn

∫ max{s′,s}

tn−1

λ4
k e−λ4

k(t−τ) dτds′
)2

ds

≤ 2
∫

Tn

(∫
Tn

∫ s′

tn−1

λ4
k e−λ4

k(t−τ) dτds′
)2

ds+ 2
∫

Tn

(∫
Tn

∫ s

tn−1

λ4
k e−λ4

k(t−τ) dτ ds′
)2

ds

≤ 2 Δtn

(∫
Tn

∫ s′

tn−1

λ4
k e−λ4

k(t−τ) dτds′
)2

+ 2 (Δtn)2
∫

Tn

(∫ s

tn−1

λ4
k e−λ4

k(t−τ) dτ

)2

ds,

from which, using the Cauchy-Schwarz inequality and integrating by parts, we obtain

Ψk
n(t) ≤ 4 (Δtn)2

∫
Tn

(
e−λ4

k(t−s) − e−λ4
k(t−tn−1)

)2

ds

≤ 4 (Δtn)2
(
1 − e−λ4

kΔt
)2 ∫

Tn

e−2λ4
k(t−s) ds

≤ 2 (Δtn)2
(
1 − e−λ4

kΔt
)2 e−2λ4

k(t−tn)−e−2λ4
k(t−tn−1)

λ4
k

·
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Thus, by summing with respect to n, we obtain

N̂(t)−1∑
n=1

1
(Δtn)2 Ψk

n(t) ≤ 2 (1−e−λ4
kΔt)2

λ4
k

· (3.9)

Considering, now, the case n = N̂(t), we have

Ψk
N̂(t)(t) = Ψk

A
(t) + Ψk

B
(t) (3.10)

with

Ψk
A
(t) :=

∫
T̂

N̂(t)
(t)

(∫ t

t
N̂(t)−1

∫ s

s′
λ4

k e−λ4
k(t−τ) dτds′ +

∫ t
N̂(t)

t

e−λ4
k(t−s) ds′

)2

ds

Ψk
B
(t) :=

∫ t
N̂(t)

t

(∫ t

t
N̂(t)−1

e−λ4
k(t−s′) ds′

)2

ds.

Then, we have

Ψk
B(t) ≤ Δt

N̂(t)

λ8
k

[
1 − e−λ4

k

(
t−t

N̂(t)−1

) ]2

≤ Δt
N̂(t)

λ8
k

(
1 − e−λ4

k Δt
N̂(t) )2

and

Ψk
A
(t) ≤

∫ t

t
N̂(t)−1

[∫ t

t
N̂(t)−1

∫ s

s′
λ4

k e−λ4
k(t−τ) dτds′ + ΔtN̂(t) e−λ4

k(t−s)

]2

ds

≤ 2
∫ t

t
N̂(t)−1

[∫ t

t
N̂(t)−1

∫ s

s′
λ4

k e−λ4
k(t−τ) dτds′

]2

ds+
(Δt

N̂(t))
2

λ4
k

[
1 − e−2λ4

k

(
t−t

N̂(t)−1

) ]

≤ 2
∫ t

t
N̂(t)−1

[∫ t

t
N̂(t)−1

∫ max{s,s′}

t
N̂(t)−1

λ4
k e−λ4

k(t−τ) dτds′
]2

ds+
(Δt

N̂(t))
2

λ4
k

(
1 − e−2λ4

k Δt
N̂(t)

)
≤ 8 (ΔtN̂(t))2

∫ t

t
N̂(t)−1

[∫ s

t
N̂(t)−1

λ4
k e−λ4

k(t−τ) dτ

]2

ds+
(Δt

N̂(t))
2

λ4
k

(
1 − e−2λ4

k Δt
N̂(t)

)
≤ 8 (ΔtN̂(t))2

∫ t

t
N̂(t)−1

[
e−λ4

k(t−s) − e−λ4
k(t−t

N̂(t)−1)
]2

ds+
(Δt

N̂(t))
2

λ4
k

(
1 − e−2λ4

k Δt
N̂(t)

)
,

which, along with (3.10), gives

Ψk
N̂(t) ≤ 5

(Δt
N̂(t))

2

λ4
k

(
1 − e−2λ4

k Δt
N̂(t)

)
+

Δt
N̂(t)

λ8
k

(
1 − e−λ4

kΔt
N̂(t)

)2 ·
Since the mean value theorem yields: 1 − e−λ4

kΔt
N̂(t) ≤ λ4

k ΔtN̂(t), the above inequality takes the form

1
(Δt

N̂(t))
2 Ψk

N̂(t) ≤ 6 1−e
−2λ4

k Δt
N̂(t)

λ4
k

· (3.11)
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Combining (3.8), (3.9) and (3.11) we obtain

Θ2
B(t) ≤ 8

∞∑
k=1

1−e−2λ4
k

Δt

λ4
k

· (3.12)

To get a convergence estimate we have to exploit the way the series depends on Δt in the above relation:

∞∑
k=1

1−e−2 λ4
k Δt

λ4
k

≤ 1−e−2 π4 Δt

π4 +
∫ ∞

1

1−e−2 x4 π4 Δt

x4 π4 dx

≤ 4
3 π4

(
1 − e−2 π4 Δt

)
+ 8Δt

3

∫ ∞

1

e−2 x4 π4 Δt dx

≤ 8
3 Δt+ 8

3 π (Δt)
3
4

∫ ∞

0

e−2y4
dy

≤
[

8
3 (Δt)

1
4 + 28

9π

]
(Δt)

3
4 . (3.13)

Using the bounds (3.12) and (3.13) we arrive at

ΘB(t) ≤ 8
[

1
3 (Δt)

1
4 + 7

18π

] 1
2

(Δt)
3
8 . (3.14)

The error bound (3.1) follows by observing that Θ(0) = 0 and combining the bounds (3.3), (3.7), (2.7)
and (3.14). �

Remark 3.2. In contrast to (1.7), the discrete space-time white noise kernel Ŵ proposed in [1] is piecewise
constant in space and has the form: Ŵ (t, x) := 1

Δt Δx

∑
NΔ
n=1

∑
JΔ
j=1 XSn,j

(t, x)Rn,j for all (t, x) ∈ [0, T ] × D,
where Rn,j :=

∫
Sn,j

1 dW (t, x). In [20], we show that the use of the above piecewise constant in space and
time discrete space-time white noise yields a different regularized problem with corresponding modelling error
O(Δt

3
8 + Δx) which is of lower order with respect to Δx.

4. Time-discrete approximations

In this section we consider the Backward Euler time-discretization method for problem (1.6). Assuming
that the partition of the time interval is uniform, we derive a discrete in time L∞

t (L2
P (L2

x)) error estimate with
constants independent of NΔ and JΔ (see Thm. 4.2). We are interested in deriving such an error estimate for
the Backward Euler time-discrete approximations in order to use it later to estimate the approximation error
of the Backward Euler fully-discrete approximations in a discrete in time L∞

t (L2
P (L2

x)) norm (see Thm. 6.9).
The Backward Euler time-discretization method of the problem (1.6) constructs, for m = 0, . . . ,M , an

approximation Ûm of û(τm, ·) following the steps below:

Step TD1. Set
Û0 := 0. (4.1)

Step TD2. For m = 1, . . . ,M , find Ûm ∈ Ḣ4(D) such that

Ûm − Ûm−1 + km ∂4
xÛ

m =
∫

Δm

Ŵ ds a.s. (4.2)

To proceed to an error estimate in a discrete in time L∞
t (L2

P (L2
x)) norm, we will, first, derive, using interpo-

lation, a low regularity a priori error estimate in a discrete in time L2
t (L

2
x) for the Backward Euler time-discrete
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approximations, (Wm)M
m=0, of the solution w to the deterministic problem (1.3) (cf. [23,26,27]), which are

defined below:

Step DTD1. Set
W 0 := w0. (4.3)

Step DTD2. For m = 1, . . . ,M , find Wm ∈ Ḣ4(D) such that

Wm −Wm−1 + km ∂4
xW

m = 0. (4.4)

Proposition 4.1. Let (Wm)M
m=0 be the Backward Euler time-discrete approximations of the solution w of the

problem (1.3) defined in (4.3)–(4.4). If w0 ∈ Ḣ2(D), then, there exists a constant C > 0, independent of T , Δt,
Δx, M and (km)M

m=1, such that(
M∑

m=1

km ‖Wm − w(τm, ·)‖2
0,D

) 1
2

≤ C (kmax)θ ‖w0‖Ḣ4θ−2 ∀θ ∈ [0, 1]. (4.5)

Proof. The estimate (4.5) follows by interpolation, after proving it for θ = 1 and θ = 0.
Let Em(·) := w(τm, ·) −Wm(·) for m = 0, . . . ,M , and ρm :=

∫
Δm

(w(τm, ·) − w(τ, ·)) dτ for m = 1, . . . ,M .
First, we use (1.3) and (4.4), to conclude that TB(Em−Em−1)+kmEm = ρm for m = 1, . . . ,M . Then, we take
the L2(D)-inner product of both sides of the latter relation with Em, use (2.16), and then sum with respect
to m from 1 up to M , to obtain

M∑
m=1

(TEE
m − TEE

m−1, TEE
m)0,D +

M∑
m=1

km ‖Em‖2
0,D

=
M∑

m=1

(ρm, E
m)0,D. (4.6)

Since E0 = 0 and (TEE
m−TEE

m−1, TEE
m)0,D ≥ 1

2 (‖TEE
m‖2

0,D
−‖TEE

m−1‖2
0,D

) for m = 1, . . . ,M , from (4.6),
we arrive at

M∑
m=1

km ‖Em‖2
0,D

≤
M∑

m=1

k−1
m ‖ρm‖2

0,D
. (4.7)

Next, we use the Cauchy-Schwarz inequality to bound ρm as follows:

‖ρm‖2
0,D

=
∫

D

(∫
Δm

∫ τm

τ

∂τw(s, x) dsdτ
)2

dx

≤
∫

D

(∫
Δm

∫
Δm

|∂τw(s, x)| dsdτ
)2

dx

≤ (km)3
∫

Δm

‖∂τw(s, ·)‖2
0,D ds, m = 1, . . . ,M. (4.8)

Now, we combine (4.7), (4.8) and (2.18) (with β = 0, � = 1, p = 0) to obtain

M∑
m=1

km ‖Em‖2
0,D ≤ (kmax)2

∫ T

0

‖∂τw(s, ·)‖2
0,D ds

≤ C (kmax)2 ‖w0‖2
Ḣ2 , (4.9)

which yields (4.5) for θ = 1.
Since (4.4) is equivalent to TB(Wm −Wm−1) + kmWm = 0 for m = 1, . . . ,M , we take the L2(D)-inner

product of both sides of it with Wm and use (2.16), to obtain (TEW
m−TEW

m−1, TEW
m)0,D +km ‖Wm‖2

0,D
= 0
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for m = 1, . . . ,M . Proceeding as above it follows that ‖TEW
m‖2

0,D − ‖TEW
m−1‖2

0,D + 2 km ‖Wm‖2
0,D ≤ 0 for

m = 1, . . . ,M . Then, summing with respect to m from 1 up to M , and using (2.12) and (2.4) we obtain

M∑
k=1

km‖Wm‖2
0,D

≤ 1
2 ‖TEw

0‖2
0,D

≤ C ‖w0‖2
Ḣ−2 . (4.10)

In addition we have

M∑
m=1

km ‖w(τm, ·)‖2
0,D ≤

M∑
m=1

∫
D

(∫
Δm

∂τ

[
(τ − τm−1)w2(τ, x)

]
dτ
)

dx

≤
M∑

m=1

∫
D

(∫
Δm

[
w2(τ, x) + 2 (τ − τm−1)wτ (τ, x)w(τ, x)

]
dτ
)

dx

≤
M∑

m=1

∫
Δm

[
2 ‖w(τ, ·)‖2

0,D + (τ − τm−1)2 ‖wτ (τ, ·)‖2
0,D

]
dτ

≤ 2
∫

T

0

[
‖w(τ, ·)‖2

0,D
+ τ2 ‖wτ (τ, ·)‖2

0,D

]
dτ,

which, along with (2.18) (taking (β, �, p) = (0, 0, 0) and (β, �, p) = (2, 1, 0)) and (2.4), yields

M∑
m=1

km ‖w(τm, ·)‖2
0,D

≤ C ‖w0‖2
Ḣ−2 . (4.11)

Thus, the estimate (4.5) for θ = 0 follows easily combining (4.10) and (4.11). �

Next theorem proves a discrete in time L∞
t (L2

P (L2
x)) convergence estimate for the Backward Euler time

discrete approximations of û, over a uniform partition of [0, T ].

Theorem 4.2. Let û be the solution of (1.6) and (Ûm)M
m=0 be the Backward Euler time-discrete approximations

specified in (4.1)–(4.2). If km = Δτ for m = 1, . . . ,M , then there exists a constant C > 0, independent of T ,
Δt, Δx and Δτ , such that

max
1≤m≤M

{
E

[
‖Ûm − û(τm, ·)‖2

0,D

]} 1
2 ≤ C ω̃(Δτ, ε) Δτ

3
8−ε, ∀ε ∈ (0, 3

8 ], (4.12)

where ω̃(Δτ, ε) := ε−
1
2 + (Δτ)ε(1 + (Δτ)

1
4 )

1
2 .

Proof. Let I : L2(D) → L2(D) be the identity operator, Λ : L2(D) → Ḣ4(D) be the inverse elliptic operator
Λ := (I + Δτ ∂4

x)−1 which has Green function GΛ(x, y) =
∑∞

k=1
εk(x) εk(y)
1+Δτλ4

k
, i.e. Λf(x) =

∫
D
GΛ(x, y)f(y) dy for

x ∈ D and f ∈ L2(D). Obviously, GΛ(x, y) = GΛ(y, x) for x, y ∈ D, and GΛ ∈ L2(D ×D). Also, for m ∈ N, we
denote by GΛ,m the Green function of Λm, i.e. GΛ,m =

∑∞
k=1

εk(x) εk(y)
(1+Δτλ4

k)m . Thus, from (4.2), using an induction

argument, we conclude that Ûm =
∑m

j=1

∫
Δj

Λm−j+1Ŵ (τ, ·) dτ for m = 1, . . . ,M , which is written, equivalently,
as follows:

Ûm(x) =
∫ τm

0

∫
D

K̂m(τ ;x, y) Ŵ (τ, y) dydτ ∀x ∈ D, m = 1, . . . ,M, (4.13)

where K̂m(τ ;x, y) :=
∑m

j=1 XΔj
(τ)GΛ,m−j+1(x, y) ∀τ ∈ [0, T ], ∀x, y ∈ D.
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Let m ∈ {1, . . . ,M} and Em := E
[‖Ûm − û(τm, ·)‖2

0,D

]
. First, we use (4.13), (1.8), (2.10), (2.6), (2.5)

and (2.9), to obtain

Em = E

[ ∫
D

(∫ T

0

∫
D

X(0,τm)(τ)
[K̂m(τ ;x, y) −G(τm − τ ;x, y)

]
Ŵ (τ, y) dydτ

)2

dx

]

≤
∫ τm

0

(∫
D

∫
D

[K̂m(τ ;x, y) −G(τm − τ ;x, y)
]2 dydx

)
dτ

≤
m∑

�=1

∫
Δ�

(∫
D

∫
D

[
GΛ,m−�+1(x, y) −G(τm − τ ;x, y)

]2 dydx
)

dτ

≤
m∑

�=1

∫
Δ�

‖Λm−�+1 − S(τm − τ)‖2
HS dτ.

Now, we introduce the splitting
Em ≤ Bm

1 + Bm
2 , (4.14)

where

Bm
1 := 2

m∑
�=1

∫
Δ�

‖Λm−�+1 − S(τm − τ�−1)‖2
HS dτ,

Bm
2 := 2

m∑
�=1

∫
Δ�

‖S(τm − τ�−1) − S(τm − τ)‖2
HS dτ.

Estimation of Bm
1 . By the definition of the Hilbert-Schmidt norm, we have

Bm
1 ≤ 2 Δτ

m∑
�=1

( ∞∑
k=1

‖Λm−�+1εk − S(τm − τ�−1)εk‖2
0,D

)

≤ 2
∞∑

k=1

(
m∑

�=1

Δτ ‖Λm−�+1εk − S(τm − τ�−1)εk‖2
0,D

)

≤ 2
∞∑

k=1

(
m∑

�=1

Δτ ‖Λ�εk − S(τ�)εk‖2
0,D

)
.

Let θ ∈ [0, 3
8 ). Using the deterministic error estimate (4.5), we obtain

Bm
1 ≤ C (Δτ)2θ

∞∑
k=1

‖εk‖2
Ḣ4θ−2

≤ C (Δτ)2θ
∞∑

k=1

1

λ
1+8( 3

8−θ)
k

· (4.15)

The convergence of the series is ensured because 3
8 − θ > 0.

Estimation of Bm
2 . Using, again, the definition of the Hilbert-Schmidt norm we have

Bm
2 = 2

∞∑
k=1

{
m∑

�=1

∫
Δ�

‖S(τm − τ�−1)εk − S(τm − τ)εk‖2
0,D

dτ

}
. (4.16)
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Observing that S(t)εk = e−λ4
kt εk for t ≥ 0, (4.16) yields

Bm
2 = 2

∞∑
k=1

[
m∑

�=1

∫
Δ�

(∫
D

[
e−λ4

k(τm−τ�−1) − e−λ4
k(τm−τ)

]2
ε2k(x) dx

)
dτ

]

= 2
∞∑

k=1

[
m∑

�=1

∫
Δ�

e−2λ4
k(τm−τ)

[
1 − e−λ4

k(τ−τ�−1)
]2

dτ

]

≤ 2
∞∑

k=1

(
1 − e−λ4

k Δτ
)2 [∫ τm

0

e−2λ4
k(τm−τ) dτ

]

≤
∞∑

k=1

1−e−2λ4
k Δτ

λ4
k

,

from which, applying (3.13), we obtain

Bm
2 ≤ C (1 + (Δτ)

1
4 ) (Δτ)

3
4 . (4.17)

The estimate (4.12) follows by (4.14), (4.15), (4.17) and (2.7). �

5. Space-discrete approximations

Here, we consider a finite element space-discretization of the solution of (1.6), for which we derive an
L∞

t (L2
P (L2

x)) error estimate with constants independent of NΔ and JΔ (see Thm. 5.3). This is only a pre-
liminary step in deriving a discrete in time L2

t (L
2
P
(L2

x)) error estimate for the Backward Euler fully-discrete
approximations of û (see Thm. 6.3).

Let r ∈ {1, 2, 3} and κ(r) ∈ {1, . . . , r}. The space-discrete approximation of the solution û of (1.6) is the
solution of the following initial value problem: find a stochastic function ûh : [0, T ] → S

r,κ(r)
h such that

∂tûh +Qhûh = PhŴ on (0, T ],

ûh(0) = 0
a.s., (5.1)

where Qh : Sr,κ(r)
h → S

r,κ(r)
h given by Qh = Δ2

h when κ(r) ≥ 1, or, Qh = Bh when κ(r) ≥ 2.
As a first step towards obtaining an L∞

t (L2
P
(L2

x)) convergence estimate for the space-discrete approxima-
tion ûh, we will derive a low regularity L2

t (L2
x) error estimate for the space-discrete approximation wh of the

solution w of (1.3) (cf. [3,26]), which is defined as the solution of the following initial value problem: find
wh : [0, T ] → S

r,κ(r)
h such that

∂twh +Qhwh = 0 on (0, T ],

wh(0) = Phw0.
(5.2)

Since wh can be considered as the value of a linear operator of the initial condition w0, we will write it as
wh(t, ·) = [Sh(t)w0](·) for t ∈ [0, T ]. Thus, by Duhamel’s principle (cf. [24]), we have

ûh(t, x) =
∫ t

0

[Sh(t− s)Ŵ (s, ·)](x) ds a.s. (5.3)

Proposition 5.1. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, w be the solution of (1.3) and wh ∈ S
r,κ(r)
h be its space-

discrete approximation given in (5.2). If w0 ∈ Ḣ2(D), then, there exists a constant C > 0, independent of T
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and h, such that (∫ T

0

‖w − wh‖2
0,D dt

) 1
2

≤ C hν̃(r,θ) ‖w0‖Ḣξ̃(r,θ) ∀θ ∈ [0, 1], (5.4)

where:
(i) If Qh = (Δh)2 and κ(r) ≥ 1, then

ν̃(r, θ) :=

{
(r + 1) θ if r = 1, 2
3 θ if r = 3

and ξ̃(r, θ) :=
{ 3θ − 1 if r = 1, 2

2θ − 1 if r = 3.
(5.5)

(ii) If Qh = (Δh)2, r = 3, κ(3) ≥ 2 and (2.21) holds, then

ν̃(3, θ) := 4 θ − 1 and ξ̃(3, θ) := 3θ − 2. (5.6)

(iii) If Qh = Bh and κ(r) ≥ 2, then

ν̃(r, θ) :=
{ 2 θ if r = 2

4 θ if r = 3
and ξ̃(r, θ) :=

{ 3θ − 2 if r = 2
4θ − 2 if r = 3.

(5.7)

Proof. Let e := w − wh and ρ := −(TB,h − TB)∂4
xw, where TB,h = T I

B,h or T II
B,h. We will derive (5.4) by

interpolation, after showing that it holds for θ = 1 and θ = 0.
First, we can easily verify the error equation TB,het + e = ρ on [0, T ]. Then, using that TB,h is selfadjoint

(see (2.26), (2.30)), (TB,hf, f)0,D ≥ 0 for f ∈ L2(D) and TB,he(0) = 0, and proceeding as in Proposition 4.1, we
obtain ∫ T

0

‖e‖2
0,D dt ≤

∫ T

0

‖ρ‖2
0,D dt. (5.8)

Case 1. Qh = Δ2
h

Let r ∈ {1, 2}. Using (5.8), (2.28), (2.3) and (2.18) (with β = � = 0 and p = 4), we have∫
T

0

‖e‖2
0,D

dt ≤ C h2(r+1)

∫
T

0

‖w‖2
4,D

dt

≤ C h2(r+1)

∫ T

0

‖w‖2
Ḣ4 dt

≤ C h2(r+1) ‖w0‖2
Ḣ2 . (5.9)

When r = 3, then (5.8), (2.28), (2.3) and (2.18) (with β = � = 0 and p = 3) yield∫ T

0

‖e‖2
0,D dt ≤ C h6

∫ T

0

‖w‖2
3,D dt

≤ C h6

∫ T

0

‖w‖2
Ḣ3 dt

≤ C h6 ‖w0‖2
Ḣ1 . (5.10)

The relations (5.9) and (5.10) yield (5.4) with ν̃ and ξ̃ given by (5.5) and (5.6) for θ = 1. Since TBwt + w = 0
on [0, T ], we obtain (TBwt, w)0,D + ‖w‖2

0,D = 0 on [0, T ], which, along with (2.16), yields d
dt‖TEw‖2

0,D +
2 ‖w‖2

0,D
= 0 on [0, T ]. Then, integrating over [0, T ] and using (2.12), we get∫ T

0

‖w‖2
0,D dt ≤ C ‖w0‖2

−2,D. (5.11)
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Since Q−1
h = T I

B,h|Sr,κ(r)
h

, we obtain T I
B,h∂twh + wh = 0 on [0, T ], and thus (T I

B,h∂twh, wh)0,D + ‖wh‖2
0,D = 0

on [0, T ], which, along with (2.26), yields d
dt‖TE,hwh‖2

0,D
+ 2 ‖wh‖2

0,D
= 0 on [0, T ]. Then, integrating over [0, T ]

and using (2.1) and (2.25), we have

∫
T

0

‖wh‖2
0,D

dt ≤ ‖TE,hPhw0‖2
0,D

≤ C ‖(TE,hw0)′‖2
0,D

≤ C ‖w0‖2
−1,D. (5.12)

Hence, from (5.11), (5.12) and (2.4), we obtain
∫ T

0 ‖e‖2
0,D dt ≤ C ‖w0‖2

Ḣ−1 , which yields (5.4) and (5.5) with
θ = 0. Let r = 3 and κ(3) ≥ 2. Then, when (2.21) holds, we have

‖(TE,hw0)′‖2
0,D

= (w0, TE,hw0)0,D

≤‖w0‖−2,D ‖TE,hw0‖2,D

≤C ‖w0‖−2,D h
−1 ‖TE,hw0‖1,D

≤C ‖w0‖−2,D h
−1 ‖(TE,hw0)′‖0,D

which, along with (2.1), yields

‖(TE,hw0)′‖0,D ≤ C h−1 ‖w0‖−2,D. (5.13)

Now, we combine (5.11), (5.12), (5.13) and (2.4), to get
∫

T

0
‖e‖2

0,D
dt ≤ C h−1 ‖w0‖2

Ḣ−2 , which yields (5.4)
and (5.6) with θ = 0.

Case 2. Qh = Bh

For r = 2, using (5.8), (2.32), (2.3) and (2.18) (with β = � = 0 and p = 3), we have

∫ T

0

‖e‖2
0,D dt ≤ C h4

∫ T

0

‖w‖2
3,D dt

≤ C h4

∫ T

0

‖w‖2
Ḣ3 dt

≤ C h4 ‖w0‖2
Ḣ1 . (5.14)

Also, for r = 3, using (5.8), (2.32), (2.3) and (2.18) (with β = � = 0 and p = 4), we have

∫
T

0

‖e‖2
0,D

dt ≤ C h8

∫
T

0

‖w‖2
4,D

dt

≤ C h8

∫ T

0

‖w‖2
Ḣ4 dt

≤ C h8 ‖w0‖2
Ḣ2 . (5.15)

Hence, we got (5.4) and (5.7) for θ = 1.
Observing thatQ−1

h = T II
B,h

∣∣
S

r,κ(r)
h

, we obtain T II
B,h∂twh+wh = 0 on [0, T ], and thus we have (T II

B,h∂twh, wh)0,D+

‖wh‖2
0,D

= 0 on [0, T ]. The latter equation, along with (2.30), yields 1
2

d
dt (T

II
B,h
wh, wh)0,D + ‖wh‖2

0,D
= 0 on [0, T ].
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Then, integrating over [0, T ] and using (2.31), we have∫
T

0

‖wh‖2
0,D

dt ≤ 1
2 ‖(T II

B,h
Phw0)′′‖2

0,D

≤ 1
2 ‖(T II

B,hw0)′′‖2
0,D

≤ C ‖w0‖2
−2,D. (5.16)

Hence, from (5.11), (5.16) and (2.4), we obtain
∫ T

0 ‖e‖2
0,D dt ≤ C ‖w0‖2

Ḣ−2 , which yields (5.4) and (5.7) with
θ = 0. �

Next lemma shows that a discrete analogue of (1.4) holds.

Lemma 5.2. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r} and wh : [0, T ] → S
r,κ(r)
h be the space-discrete approximation

of the solution w of (1.3) defined in (5.2). Then, there exists a map Gh : [0, T ] → C(D ×D) such that

wh(t;x) =
∫

D

Gh(t;x, y)w0(y) dy ∀t ∈ [0, T ], ∀x ∈ D, (5.17)

and Gh(t;x, y) = Gh(t; y, x) for x, y ∈ D and t ∈ [0, T ].

Proof. Let dim(Sr,κ(r)
h ) = Nh and γh : Sr,κ(r)

h ×Sr,κ(r)
h → R be an inner product on Sr,κ(r)

h given by γh(χA, χB) :=
(ΔhχA,ΔhχB)0,D ∀χA, χB ∈ S

r,κ(r)
h when Qh = Δ2

h, and γh(χA, χB) := (χ′′
A, χ

′′
B)0,D ∀χA, χB ∈ S

r,κ(r)
h when

Qh = Bh. We can construct a basis (χj)
Nh
j=1 of Sr,κ(r)

h which is L2(D)-orthonormal, i.e., (χi, χj)0,D = δij
for i, j = 1, . . . , Nh, and γh-orthogonal, i.e., there are (λh,�)

Nh

�=1 ⊂ (0,+∞) such that γh(χi, χj) = λh,i δij
for i, j = 1, . . . , Nh (see Sect. 8.7 in [13]). Thus, there exists a map ω : [0, T ] → R

Nh such that wh(t;x) =∑
Nh
j=1 ωj(t)χj(x). Since wh(0) = Phw0, it follows that ωj(0) = (w0, χj)0,D for j = 1, . . . , Nh. Now, (5.2) yields

that d
dtω(t) = B ω(t) for t ∈ [0, T ], where B ∈ R

Nh×Nh with Bij := −(Qhχj , χi)0,D = −γh(χi, χj) = −λh,i δij
for i, j = 1, . . . , Nh. Hence, it follows that

ω�(t) = e−λh,� t (w0, χ�)0,D ∀t ∈ [0, T ], � = 1, . . . , Nh,

which yields (5.17) with Gh(t;x, y) =
∑Nh

j=1 e−λh,j tχj(x)χj(y). �

We are ready to derive a convergence estimate, in an L∞
t (L2

P
(L2

x)) norm, for the space-discrete approxima-
tion ûh to the solution û of the regularized problem.

Theorem 5.3. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, û be the solution of (1.6) and ûh be its space-discrete
approximation defined in (5.1). Then, there exist a constant C > 0, independent of T , Δt, Δx and h, such that

max
[0,T ]

(
E
[‖ûh − û‖2

0,D

] ) 1
2 ≤ C ε−

1
2 hν−ε, ∀ε ∈ (0, ν], (5.18)

where:
(i) If Qh = (Δh)2 and κ(r) ≥ 1, then

ν :=

{
r+1
6 if r = 1, 2

3
4 if r = 3.

(5.19)

(ii) If Qh = (Δh)2, r = 3, κ(3) ≥ 2 and (2.21) holds, then

ν := 1. (5.20)
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(iii) If Qh = Bh and κ(r) ≥ 2, then

ν :=

{
1 if r = 2
3
2 if r = 3.

(5.21)

Proof. Let ê := ûh − û and t ∈ (0, T ]. Then, (5.3), (5.17) and (1.8) yield

ê(t, x) =
∫ T

0

∫
D

X(0,t)(s)
[
Gh(t− s;x, y) −G(t− s;x, y)

]
Ŵ (s, y) dsdy ∀x ∈ D, a.s.

Thus, using Lemma 2.1, the Itô isometry property of the stochastic integral and (2.9), we obtain

E
[‖e(t, ·)‖2

0,D

] ≤ ∫ t

0

(∫
D

∫
D

[
Gh(t− s;x, y) −G(t− s;x, y)

]2
dydx

)
ds

which, along with (2.5), yields

E
[‖e(t, ·)‖2

0,D

] ≤ ∫ t

0

∥∥S(s) − Sh(s)
∥∥2

HS
ds. (5.22)

Since e(0, ·) = 0, we use (5.22), the definition of the Hilbert-Schmidt norm and (5.4), to obtain

max
[0,T ]

E
[‖e‖2

0,D

] ≤ ∫ T

0

( ∞∑
k=1

‖ S(s)εk − Sh(s)εk‖2
0,D

)
ds

≤
∞∑

k=1

(∫
T

0

∥∥S(s)εk − Sh(s)εk

∥∥2

0,D
ds

)

≤ C h2ν̃(r,θ)
∞∑

k=1

‖εk‖2
Ḣξ̃(r,θ)

≤ C h2ν̃(r,θ)
∞∑

k=1

λ
2ξ̃(r,θ)
k . (5.23)

To finish the proof we have to find the values of θ ∈ [0, 1] which ensure the convergence of the series in the right
hand side of (5.23), which is equivalent to the requirement −2 ξ̃(r, θ) > 1. Thus, using (2.7), we arrive at the
bound (5.18) with value ν given by (5.19), (5.20) and (5.21). �

6. Convergence of the fully-discrete approximations

6.1. Consistency estimates

First, we derive some Hölder-type bounds for û.

Lemma 6.1. Let û be the solution of (1.6). Then, there exist a real positive constant C, which is independent
of T , Δt and Δx, such that{

E

[∥∥∥∥∫ τb

τa

[û(τb, ·) − û(τ, ·)] dτ
∥∥∥∥2

0,D

]} 1
2

≤ C
[
1 + (τb − τa)

1
4
] 1

2 |τb − τa|1+ 3
8 (6.1)

and {
E
[‖û(τb, ·) − û(τa, ·)‖2

0,D

]} 1
2 ≤ C

[
1 + (τb − τa)

1
4
] 1

2 |τb − τa| 38 (6.2)
for τa, τb ∈ [0, T ] with τa ≤ τb.
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Proof. We will omit the proof of (6.2) because it is similar to that of (6.1) which follows.
Let m ∈ {1, . . . ,M}, τb ∈ (0, T ] and τa ∈ [0, T ] with τa < τb, and μ(·) :=

∫ τb

τa
[û(τb, ·) − û(τ, ·)] dτ . First we

assume that τa > 0. Then, we use (1.8), Lemma 2.1, the Itô-isometry property of the stochastic integral, (1.5)
and the L2(D)-orthogonality of (εk)∞k=1, to obtain

E
[‖μ‖2

0,D

] ≤ 1
Δt

NΔ∑
n=1

∫
D

∫
D

[ ∫
Tn

∫ τb

τa

[X(0,τb)(s
′)G(τb − s′;x, y) −X(0,τ)(s′)G(τ − s′;x, y)

]
dτds′

]2

dxdy

≤ 1
Δt

NΔ∑
n=1

∞∑
k=1

(∫
Tn

∫ τb

τa

[
X(0,τb)(s

′) e−λ4
k(τb−s′) −X(0,τ)(s′) e−λ4

k(τ−s′)
]

dτds′
)2

which, along with the use of the Cauchy-Schwarz inequality, yields

E
[‖μ‖2

0,D

] ≤ ∞∑
k=1

∫ T

0

[∫ τb

τa

[
X(0,τb)(s

′) e−λ4
k(τb−s′) −X(0,τ)(s′) e−λ4

k(τ−s′)
]

dτ
]2

ds′

≤ (τb − τa)
∞∑

k=1

(∫ τb

τa

∫ τ

0

[
e−λ4

k(τb−s′) − e−λ4
k(τ−s′)

]2
ds′dτ +

∫ τb

τa

∫ τb

τ

e−2λ4
k(τb−s′) ds′dτ

)

≤ (τb − τa)2
∞∑

k=1

1−e−2 λ4
k (τb−τa)

λ4
k

· (6.3)

Finally, we combine (3.13) and (6.3) to arrive at (6.1). The case τa = 0 follows by moving along the lines of the
proof above using that û(0, x) = 0. �

Next, we show a consistency result for the Backward Euler time-discrete approximations of û, which is based
on the result of Lemma 6.1.

Proposition 6.2. Let û be the solution of (1.6) and (σ̂m)M
m=1 be stochastic functions defined by

û(τm, ·) − û(τm−1, ·) + km ∂4
xû(τm, ·) =

∫
Δm

Ŵ dτ + σ̂m a.s., m = 1, . . . ,M. (6.4)

Then it holds that {
E
[‖TBσ̂m‖2

0,D

]} 1
2 ≤ C

(
1 + k

1
4
m

) 1
2 (km)1+

3
8 , m = 1, . . . ,M, (6.5)

where C is the constant in Lemma 6.1.

Proof. Letm ∈ {1, . . . ,M}. Integrating the equation in (1.6) over Δm and subtracting it from (6.4), we conclude
that TBσ̂m(·) =

∫
Δm

[ û(τm, ·) − û(τ, ·) ] dτ a.s. Thus, to get the bound (6.5), we apply the result (6.1) on the
latter equality. �

6.2. Discrete in time L2
t(L

2
P
(L2

x)) error estimate

We first obtain a discrete in time L2
t (L

2
P (L2

x)) error estimate for the Backward Euler fully-discrete approx-
imations of û, by connecting it to the error estimate of Theorem 5.3 for the space-discrete approximation
of û.

Theorem 6.3. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, û be the solution of (1.6) and (Ûm
h )M

m=0 ⊂ S
r,κ(r)
h be the

Backward Euler fully-discrete approximations of û defined in (1.12)–(1.13). Then there exists a constant C > 0,
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independent of T , Δt, Δx, h, M and (km)M
m=1, such that:

{
M∑

m=1

km E

[
‖Ûm

h − û(τm, ·)‖2
0,D

]} 1
2

≤ C
√
T
[
ε−

1
2 hν−ε + ω̂(kmax) (kmax)

3
8

]
, ∀ε ∈ (0, ν], (6.6)

where ω̂(kmax) := (1 + (kmax)
1
4 )

1
2 and ν is defined in Theorem 5.3.

Proof. Let ûh be the space-discrete approximation of û defined in (5.1), ê = û−ûh, zm
h := Ûm

h −ûh(τm) ∈ S
r,κ(r)
h

for m = 0, . . . ,M , and Vh :=
{∑M

m=1 kmE
[‖zm

h ‖2
0,D

]} 1
2 . First, we observe that

{
M∑

m=1

km E

[
‖Ûm

h − û(τm, ·)‖2
0,D

]} 1
2

≤ Vh +
√
T max

[0,T ]

{
E
[‖ê‖2

0,D

]} 1
2 . (6.7)

Integrating (5.1) over Δm and subtracting the obtained relation from (1.13), we arrive at

TB,h(zm
h − zm−1

h ) + km zm
h = ρh,m a.s., m = 1, . . . ,M, (6.8)

where ρh,m :=
∫

Δm

[
ûh(τ, ·)− ûh(τm, ·)

]
dτ , TB,h = T I

B,h
when Qh = Δ2

h, and TB,h = T II
B,h

when Qh = Bh. Take
the (·, ·)0,D-inner product of both sides of (6.8) with zm

h , sum with respect to m from 1 up to M , and use (2.26)
to obtain

M∑
m=1

(TB,h(zm
h − zm−1

h ), zm
h )0,D +

M∑
m=1

km‖zm
h ‖2

0,D =
M∑

m=1

(ρh,m, z
m
h )0,D a.s. (6.9)

Since z0
h = 0, we conclude that

M∑
m=1

(T I

B,h(zm
h − zm−1

h ), zm
h )0,D =

M∑
m=1

(TE,hz
m
h − TE,hz

m−1
h , TE,hz

m
h )0,D

≥ 1
2 ‖TE,hz

M

h ‖2
0,D a.s., (6.10)

when Qh = Δ2
h, and that

M∑
m=1

(T II

B,h(zm
h − zm−1

h ), zm
h )0,D =

M∑
m=1

((T II

B,hz
m
h )′′ − (T II

B,hz
m−1
h )′′, (T II

B,hz
m
h )′′)0,D

≥ 1
2 ‖(T II

B,hz
M

h )′′‖2
0,D a.s., (6.11)

when Qh = Bh. Thus, taking expected values in (6.9), using (6.10) or (6.11), and applying the Cauchy-Schwarz
inequality we get

(Vh)2 ≤ E

[
M∑

m=1

k−1
m ‖ρh,m‖2

0,D

]

≤ E

[
M∑

m=1

∫
D

∫
Δm

[
ûh(τ, x) − ûh(τm, x)

]2 dτ dx

]

≤
M∑

m=1

∫
Δm

E
[‖ûh(τ, ·) − ûh(τm, ·)‖2

0,D

]
dτ. (6.12)
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Using (6.12) and (6.2), we conclude that

Vh ≤
{

M∑
m=1

∫
Δm

E
[‖ê(τ, ·) − ê(τm, ·)‖2

0,D

]
dτ

} 1
2

+

{
M∑

m=1

∫
Δm

E
[‖û(τ, ·) − û(τm, ·)‖2

0,D

]
dτ

} 1
2

≤ 2
√
T max

[0,T ]

{
E
[‖ê‖2

0,D

]} 1
2 + C

√
T ω̂(kmax) (kmax)

3
8 . (6.13)

Thus, (6.6) follows from (6.7), (6.13) and (5.18). �

In the sequel, we will derive an alternative discrete in time L2
t (L

2
P (L2

x)) a priori error estimate for the Backward
Euler fully-discrete approximations of û. Before that, let us state a useful lemma for the proof of which we refer
the reader to Appendix C.

Lemma 6.4. Let û be the solution to the problem (1.6). If there exists a constant c0 > 0 such that

min
1≤n≤NΔ

Δtn ≥ c0 Δt,

then there exists a constant C > 0, independent of T , Δt and Δx, such that

max
[0,T ]

{
E
[‖∂3

xû‖2
0,D

]} 1
2 ≤ C

[
1 + (Δt)−

3
8
]
. (6.14)

Theorem 6.5. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, û be the solution of (1.6) and (Ûm
h )M

m=0 ⊂ S
r,κ(r)
h be the

Backward Euler fully-discrete approximations of û defined in (1.12)–(1.13). If there exists a constant c0 > 0
such that min1≤n≤NΔ

Δtn ≥ c0 Δt, then there exists a constant C > 0, independent of T , Δt, Δx, h, M and
(km)M

m=1, such that

{
M∑

m=1

km E

[
‖û(τm, ·) − Ûm

h ‖2
0,D

]} 1
2

≤ C
√
T
[
hr + hr (Δt)−

3
8 + ω̂(kmax) (kmax)

3
8

]
, (6.15)

where ω̂(kmax) := (1 + (kmax)
1
4 )

1
2 .

Proof. First, set ζm := û(τm, ·) − Ûm
h for m = 0, . . . ,M . Then, subtract (1.13) from (6.4) to get

TB,h(ζm − ζm−1) + km ζm = ξ1,m + ξ2,m a.s., m = 1, . . . ,M, (6.16)

where ξ1,m := −(TB,h − TB)
(∫

Δm
∂4

xûds
)
, ξ2,m := TBσ̂

m, TB,h = T I
B,h

when Qh = Δ2
h, and TB,h = T II

B,h
when

Qh = Bh. Proceeding as in the proof of Theorem 6.3 we arrive at

{
M∑

m=1

km E
[‖ζm‖2

0,D

]} 1
2

≤ Ṽ1 + Ṽ2 (6.17)

where Ṽ1 :=
{∑M

m=1 k
−1
m E

[‖ξ1,m‖2
0,D

]} 1
2 and Ṽ2 :=

{∑M

m=1 k
−1
m E

[‖ξ2,m‖2
0,D

]} 1
2 . Applying (6.5), we obtain

Ṽ2 ≤ C
√
T ω̂(kmax) (kmax)

3
8 . (6.18)
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Using the Cauchy-Schwarz inequality and the estimates (2.28) and (2.32), we have

Ṽ1 ≤ C hr

{
M∑

m=1

k−1
m E

[∥∥∥∥∫
Δm

∂4
xû dτ

∥∥∥∥2

−1,D

]} 1
2

≤ C hr

{
M∑

m=1

k−1
m E

[(∫
Δm

‖∂4
xû‖−1,D dτ

)2
]} 1

2

≤ C hr

{
M∑

m=1

E

[∫
Δm

‖∂3
xû‖2

0,D
dτ
]} 1

2

≤ C hr
√
T max

[0,T ]

{
E
[‖∂3

xû‖2
0,D

]} 1
2 . (6.19)

Thus, (6.15) follows from (6.17), (6.18), (6.19) and (6.14). �

6.3. Discrete in time L∞
t (L2

P
(L2

x)) error estimate

To get a discrete in time L∞
t (L2

P (L2
x)) error estimate for the Backward Euler fully-discrete approximations

of û, we compare them to the Backward Euler time-discrete approximations of û defined in (4.1)–(4.2). This
is obtained via a discrete in time L2

t (L
2
x) comparison estimate between: (i) the Backward Euler time-discrete

approximations of the solution w of (1.3) defined in (4.3)–(4.4), and (ii) the Backward Euler fully-discrete
approximations of the solution w of (1.3) specified below:

Step DFD1. Set
W 0

h := Phw0. (6.20)

Step DFD2. For m = 1, . . . ,M , find Wm
h ∈ S

r,κ(r)
h such that

Wm
h −Wm−1

h + kmQhW
m
h = 0. (6.21)

Proposition 6.6. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, w be the solution of the problem (1.3), (Wm)M
m=0 be

the Backward Euler time-discrete approximations of w defined in (4.3)–(4.4), and (Wm
h )M

m=0 be the Backward
Euler fully-discrete approximations of w specified in (6.20)–(6.21). If w0 ∈ Ḣ2(D), then, there exists a constant
C > 0, independent of T , h, M and (km)M

m=1, such that

(
M∑

m=1

km ‖Wm −Wm
h ‖2

0,D

) 1
2

≤ C hν̃(r,θ) ‖w0‖Ḣξ̃(r,θ) ∀θ ∈ [0, 1], (6.22)

where ν̃(r, θ) and ξ̃(r, θ) are defined in Proposition 5.1.

Proof. The bound (6.22) follows by interpolation, showing it first for θ = 0 and θ = 1.
Let Em := Wm −Wm

h for m = 0, . . . ,M . We use (4.4) and (6.21), to obtain: TB,h(Em −Em−1) + kmEm =
km (TB − TB,h)∂4

xW
m for m = 1, . . . ,M , where: TB,h = T I

B,h
when Qh = Δ2

h, and TB,h = T II
B,h

when Qh = Bh.
Since TE,hE

0 = 0 and T II
B,hE

0 = 0, proceeding as in the proof of Theorem 6.3, it follows that

M∑
m=1

km ‖Em‖2
0,D

≤
M∑

m=1

km

∥∥(TB − TB,h)∂4
xW

m
∥∥2

0,D
. (6.23)
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Case 1. Qh = Δ2
h

Let r = 1 or 2. Then, by (2.28) and (6.23), we obtain

M∑
m=1

km ‖Em‖2
0,D

≤ C h2(r+1)
M∑

m=1

km

∥∥∂4
xW

m
∥∥2

0,D
. (6.24)

Taking the (·, ·)0,D-inner product of (4.4) with ∂4
xW

m, and then integrating by parts and summing with respect
to m from 1 up to M , it follows that

M∑
m=1

(∂2
xW

m − ∂2
xW

m−1, ∂2
xW

m)0,D +
M∑

m=1

km ‖∂4
xW

m‖2
0,D = 0. (6.25)

Since
∑M

m=1

(
∂2

xW
m − ∂2

xW
m−1, ∂2

xW
m
)
0,D

≥ 1
2

[‖∂2
xW

M‖2
0,D

− ‖∂2
xW

0‖2
0,D

]
, (6.25) yields

M∑
m=1

km ‖∂4
xW

m‖2
0,D ≤ 1

2 ‖w0‖2
2,D. (6.26)

Combining, now, (6.24), (6.26) and (2.3), we obtain

(
M∑

m=1

km ‖Em‖2
0,D

) 1
2

≤ C hr+1 ‖w0‖Ḣ2 . (6.27)

Let r = 3. Then, by (2.28) and (6.23), we obtain

M∑
m=1

km ‖Em‖2
0,D

≤ C h6
M∑

m=1

km

∥∥∂3
xW

m
∥∥2

0,D
. (6.28)

Taking the (·, ·)0,D-inner product of (4.4) with ∂2
xW

m, and then integrating by parts and summing with respect
to m from 1 up to M , it follows that

M∑
m=1

(
∂xW

m − ∂xW
m−1, ∂xW

m
)
0,D

+
M∑

m=1

km ‖∂3
xW

m‖2
0,D = 0. (6.29)

Since
∑

M

m=1(∂xW
m − ∂xW

m−1, ∂xW
m)0,D ≥ 1

2

[ ‖∂xW
M‖2

0,D
− ‖∂xW

0‖2
0,D

]
, (6.29) yields

M∑
m=1

km ‖∂3
xW

m‖2
0,D ≤ 1

2 ‖w0‖2
1,D. (6.30)

Combining (6.28), (6.30) and (2.3) we get

(
M∑

m=1

km ‖Em‖2
0,D

) 1
2

≤ C h3 ‖w0‖Ḣ1 . (6.31)

Thus, the relations (6.27) and (6.31) yield (6.22) and (5.5) for θ = 1.
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Since TB,h(Wm
h − Wm−1

h ) + kmWm
h = 0 for m = 1, . . . ,M , we obtain (TB,h(Wm

h − Wm−1
h ),Wm

h )0,D +
km ‖Wm

h ‖2
0,D for m = 1, . . . ,M , which, along with (2.26), yields

M∑
m=1

km ‖Wm
h ‖2

0,D
≤ 1

2 ‖TE,hw0‖2
0,D
. (6.32)

Now, using (2.25), (2.4) and (6.32), we obtain

M∑
m=1

km ‖Wm
h ‖2

0,D
≤ C ‖w0‖2

Ḣ−1 . (6.33)

Finally, combine (6.33) with (4.10) to get
(∑M

m=1 km ‖Em‖2
0,D

) 1
2 ≤ C ‖w0‖Ḣ−1 , which is equivalent to (6.22)

and (5.5) for θ = 0. Let r = 3 and κ(3) ≥ 2. Then, when (2.21) holds, we combine (6.32), (2.1), (5.13) and (2.4)
to get

M∑
m=1

km ‖Wm
h ‖2

0,D
≤ C h−2 ‖w0‖2

Ḣ−2 . (6.34)

Thus, (6.34) with (4.10) give
(∑M

m=1 km ‖Em‖2
0,D

) 1
2 ≤ C h−1 ‖w0‖Ḣ−2 , which is equivalent to (6.22) and (5.6)

for θ = 0.

Case 2. Qh = Bh

For r = 2, using (2.32), (6.23), (6.30) and (2.3), we have

(
M∑

m=1

km ‖Em‖2
0,D

) 1
2

≤ C h2 ‖w0‖Ḣ1 . (6.35)

Also, for r = 3, using (2.32), (6.23), (6.26) and (2.3), it follows that

(
M∑

m=1

km ‖Em‖2
0,D

) 1
2

≤ C h4 ‖w0‖Ḣ2 . (6.36)

Thus, (6.35) and (6.36) yields (6.22) and (5.7) for θ = 1.
Since T II

B,h
(Wm

h −Wm−1
h ) + kmWm

h = 0 for m = 1, . . . ,M , we conclude that (T II
B,h

(Wm
h −Wm−1

h ),Wm
h )0,D +

km ‖Wm
h ‖2

0,D = 0 for m = 1, . . . ,M , which yields(
(T II

B,hW
m
h )′′ − (T II

B,hW
m−1
h )′′, (T II

B,hW
m
h )′′

)
0,D

+ km ‖Wm
h ‖2

0,D = 0, m = 1, . . . ,M.

Then, sum with respect to m, and use (2.31) and (2.4), to obtain

M∑
m=1

km ‖Wm
h ‖2

0,D ≤ 1
2 ‖(TB,hw0)′′‖2

0,D

≤C ‖w0‖2
−2,D

≤C ‖w0‖2
Ḣ−2 . (6.37)

Finally, combine (6.37) with (4.10) to get
(∑

M

m=1 km ‖Em‖2
0,D

) 1
2 ≤ C ‖w0‖Ḣ−2 , which yields (6.22) and (5.7)

for θ = 0. �



316 G.T. KOSSIORIS AND G.E. ZOURARIS

The following lemma ensures the existence of a continuous Green function for the solution operator of a
discrete elliptic problem.

Lemma 6.7. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, ε > 0, f ∈ L2(D) and ψh ∈ S
r,κ(r)
h such that

εQhψh + ψh = Phf, (6.38)

where Qh = Δ2
h when k(r) ≥ 1, or Qh = Bh when κ(r) ≥ 2. Then there exists a function Gh,ε ∈ C(D ×D)

such that

ψh(x) =
∫

D

Gh,ε(x, y) f(y) dy ∀x ∈ D (6.39)

and Gh,ε(x, y) = Gh,ε(y, x) for x, y ∈ D.

Proof. Keeping the notation and the constructions of the proof of Lemma 5.2, we conclude that there are
(μj)

Nh
j=1 ⊂ R such that ψh =

∑
Nh

j=1 μj χj . Thus, (6.38) is equivalent to μi = 1
1+ελh,i

(f, χi)0,D for i = 1, . . . , Nh.

Finally, we obtain (6.39) with Gh,ε(x, y) =
∑Nh

j=1
χj(x)χj(y)
1+ελh,j

. �

We are ready to compare, in the discrete in time L∞
t (L2

P (L2
x)) norm, the time-discrete with the fully-discrete

Backward Euler approximations of û.

Proposition 6.8. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, û be the solution of the problem (1.6), (Ûm
h )M

m=0 ⊂
S

r,κ(r)
h be the Backward Euler fully-discrete approximations of û specified in (1.12)–(1.13), and (Ûm)M

m=0 be the
Backward Euler time-discrete approximations of û specified in (4.1)–(4.2). If the partition (τm)M

m=0 is uniform,
i.e. km = Δτ for m = 1, . . . ,M , then there exists a constant C > 0, independent of Δx, Δt, h, M and Δτ ,
such that

max
1≤m≤M

{
E

[∥∥Ûm
h − Ûm

∥∥2

0,D

]} 1
2 ≤ C ε−

1
2 hν−ε, ∀ε ∈ (0, ν], (6.40)

where ν has been specified in Theorem 5.3.

Proof. Let I : L2(D) → L2(D) be the identity operator and Λh : L2(D) → S
r,κ(r)
h be the inverse discrete elliptic

operator given by Λh := (I + Δτ Qh)−1Ph and having a Green function Gh,Δτ (cf. Lem. 6.7). Also, for � ∈ N,
we denote by Gh,Δ,� the Green function of Λ�

h. Using, now, an induction argument, from (1.13) we conclude
that Ûm

h =
∑m

j=1

∫
Δj

Λm−j+1
h Ŵ (τ, ·) dτ , m = 1, . . . ,M , which is written, equivalently, as follows:

Ûm
h (x) =

∫ τm

0

∫
D

D̂h,m(τ ;x, y) Ŵ (τ, y) dydτ ∀x ∈ D, m = 1, . . . ,M, (6.41)

where

D̂h,m(τ ;x, y) :=
m∑

j=1

XΔj
(τ)Gh,Δτ,m−j+1(x, y) ∀τ ∈ [0, T ], ∀x, y ∈ D.

Using (4.13), (6.41), Lemma 2.1, the Itô-isometry property of the stochastic integral, (2.5) and (2.9), we get

E

[
‖Ûm − Ûm

h ‖2
0,D

]
≤
∫ τm

0

( ∫
D

∫
D

[K̂m(τ ;x, y) − D̂h,m(τ ;x, y)
]2 dydx

)
dτ

≤
m∑

j=1

∫
Δj

‖Λm−j+1 − Λm−j+1
h ‖2

HS dτ, m = 1, . . . ,M,
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where Λ is the inverse elliptic operator defined in the proof of Theorem 4.2. Now, we use the definition of the
Hilbert-Schmidt norm and the deterministic error estimate (6.22), to have

E

[
‖Ûm − Ûm

h ‖2
0,D

]
≤

m∑
j=1

Δτ

[ ∞∑
k=1

‖Λm−j+1εk − Λm−j+1
h εk‖2

0,D

]

≤
∞∑

k=1

⎡⎣ m∑
j=1

Δτ ‖Λjεk − Λj
hεk‖2

0,D

⎤⎦
≤ C h2ν̃(r)θ

∞∑
k=1

‖εk‖2
Ḣξ̃(r,θ) , m = 1, . . . ,M, ∀θ ∈ [0, 1].

Thus, we arrive at

max
1≤m≤M

E

[
‖Ûm − Ûm

h ‖2
0,D

]
≤ C h2ν̃(r)θ

∞∑
k=1

λ
2ξ̃(r,θ)
k , ∀θ ∈ [0, 1],

from which, requiring −2 ξ̃(r, θ) > 1, (6.40), easily, follows (cf. Thm. 5.3). �
The available error estimates allow us to conclude a discrete in time L∞

t (L2
P
(L2

x)) convergence of the Backward
Euler fully-discrete approximations of û, over a uniform partition of [0, T ].

Theorem 6.9. Let r ∈ {1, 2, 3}, κ(r) ∈ {1, . . . , r}, ν be defined in Theorem 5.3, û be the solution of prob-
lem (1.6), and (Ûm

h )M
m=0 ⊂ S

r,κ(r)
h be the Backward Euler fully-discrete approximations of û constructed by (1.12)–

(1.13). If the partition (τm)M
m=0 is uniform, i.e., km = Δτ for m = 1, . . . ,M , then there exists a constant C > 0,

independent of T , h, Δτ , Δt and Δx, such that

max
0≤m≤M

{
E

[
‖Ûm

h − û(τm, ·)‖2
0,D

]} 1
2 ≤ C

[
ω̃(Δτ, ε1) ε

− 1
2

1 (Δτ)
3
8−ε1 + ε

− 1
2

2 hν−ε2
]

for ε1 ∈ (0, 3
8 ] and ε2 ∈ (0, ν], where ω̃(Δτ, ε1) := 1 + (Δτ)ε1(1 + (Δτ)

1
4 )

1
2 .

Proof. The estimate is a simple consequence of the error bounds (6.40) and (4.12). �
Below, adopting a viewpoint similar to that in Theorem 6.5, we are able we show an alternative discrete in

time L∞
t (L2

P
(L2

x)) error estimate.

Theorem 6.10. Let r ∈ {2, 3}, κ(r) ∈ {1, . . . , r}, û be the solution of problem (1.6), and (Ûm
h )M

m=0 ⊂ S
r,κ(r)
h

be the Backward Euler fully-discrete approximations of û constructed by (1.12)–(1.13). If the partition (τm)M
m=0

is uniform, i.e., km = Δτ for m = 1, . . . ,M , then there exists a constant C > 0, independent of T , h, Δτ , Δt
and Δx, such that

max
0≤m≤M

{
E

[
‖Ûm

h − û(τm, ·)‖2
0,D

]} 1
2 ≤ C

[
ω̃(Δτ, ε) ε−

1
2 (Δτ)

3
8−ε + hr Δτ−1

]
(6.42)

for ε ∈ (0, 3
8 ], where ω̃(Δτ, ε) := 1 + (Δτ)ε(1 + (Δτ)

1
4 )

1
2 .

Proof. Set Ẑm := Ûm − Ûm
h for m = 0, . . . ,M , and combine (4.2) and (1.13) to get the error equation:

TB,h(Zm − Zm−1) + Δτ Zm = Δτ (TB − TB,h)∂4
xÛ

m for m = 1, . . . ,M , where: TB,h = T I
B,h

when Qh = Δ2
h, and

TB,h = T II
B,h when Qh = Bh. Proceed now as in the proof of Proposition 6.6 to arrive at

∑M

m=1 Δτ E
[‖Zm‖2

0,D

] ≤
C

∑
M

m=1 Δτ E

[
‖(TB − TB,h)∂4

xÛ
m‖2

0,D

]
, which after using (2.28) and (2.32) yields

max
0≤m≤M

(
E
[‖Zm‖2

0,D

]) 1
2 ≤ C hr Δτ−

1
2 max

1≤m≤M

(
E

[
‖∂3

xÛ
m‖2

0,D

]) 1
2
. (6.43)
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Since it holds that (see Appendix D)

max
1≤m≤M

(
E

[
‖∂3

xÛ
m‖2

0,D

]) 1
2 ≤ CΔτ−

1
2 , (6.44)

(6.43) yields max0≤m≤M

(
E
[‖Zm‖2

0,D

]) 1
2 ≤ C hr Δτ−

1
2 which along with (4.12) establish (6.42). �

Remark 6.11. Let us assume that h = O(Δτ). Then the order of convergence with respect to h in (6.42)
becomes equal to r − 1, which is greater than ν for r ∈ {2, 3} (cf. Thm. 5.3).

A. Appendix A

Proof of Proposition 2.2. Let f ∈ L2(D). Then, we consider the following cases with respect to r.

Case 1. r ∈ {1, 2}
Using (2.15) and (2.24) we split the error as follows

‖TBf − T I

B,h
f‖0,D ≤ ‖E1‖0,D + ‖E2‖0,D, (A.1)

where E1 :=
(
TE − TE,h

)
TEf and E2 := TE,h(TEf − TE,hf). First, we use (2.27) and (2.12) to obtain

‖E1‖0,D ≤ C hr+1 ‖TE(TEf)‖r+1,D

≤ C hr+1 ‖TEf‖r−1,D

≤ C hr+1 ‖f‖r−3,D. (A.2)

To handle ‖E2‖0,D, we apply (2.1) and (2.25) to get

‖E2‖0,D ≤ C ‖(E2)′‖0,D

≤ C ‖E	‖−1,D, (A.3)

with E	 := TEf − TE,hf ∈ H1
0(D). Let ϕ ∈ Ḣ1(D) = H1

0(D) and w = TEϕ. Then, using the Galerkin
orthogonality along with (2.19), (2.27), (2.1), (2.25) and (2.12), we obtain

(ϕ,E	)0,D = −(w′, E′
	)0,D

≤ ‖E	‖1,D inf
χ∈S

r,κ(r)
h

‖w − χ‖1,D

≤ C hs−1 ‖TEf‖s,D h
r ‖TEϕ‖r+1,D

≤ C hr+s−1 ‖f‖s−2,D ‖ϕ‖r−1,D, s = 1, 2,

from which, we conclude that
‖E	‖−1,D ≤ C hr+�+1 ‖f‖�,D, � = −1, 0. (A.4)

Thus, the estimate (2.28) for r ∈ {1, 2} is a simple consequence of (A.1), (A.2), (A.3) and (A.4).

Case 2. r = 3
We split the error in the following way

‖TBf − T I

B,h
f‖0,D ≤ ‖E1‖0,D + ‖E2‖0,D, (A.5)
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where E1 :=
(
TE − TE,h

)
TE,hf and E2 := TE(TEf − TE,hf). Using (2.27), (2.12), (2.1) and (2.25), we conclude

that

‖E1‖0,D ≤ C h3 ‖TETE,hf‖3,D

≤ C h3 ‖TE,hf‖1,D

≤ C h3 ‖f‖−1,D. (A.6)

Now, we use (2.12) to obtain

‖E2‖0,D ≤ C ‖E	‖−2,D, (A.7)

where E	 := TEf −TE,hf ∈ H1
0(D). Let ϕ ∈ Ḣ2(D) = H1

0(D)∩H2(D) and w = TEϕ. Then, using (2.19), (2.27),
(2.1), (2.25) and (2.12) we have

(ϕ,E	)0,D = −(w′, E′
	)0,D

≤ ‖E	‖1,D inf
χ∈S

3,κ(3)
h

‖w − χ‖1,D

≤ C ‖TEf‖1,D h
3 ‖TEϕ‖4,D

≤ C h3 ‖f‖−1,D ‖ϕ‖2,D.

Thus, we conclude that

‖E	‖−2,D ≤ C h3 ‖f‖−1,D. (A.8)

We combine, now, (A.5), (A.6), (A.7) and (A.8), to arrive at (2.28) for r = 3. �

B. Appendix B

Proof of Proposition 2.3. Let r ∈ {2, 3}, κ(r) ≥ 2, f ∈ L2(D) and e = TBf − T II
B,h
f . Since, (e′′, χ′′)0,D = 0 for

all χ ∈ S
r,κ(r)
h , using (2.20) and (2.14) we conclude that

‖e′′‖0,D ≤C hs−1 ‖TBf‖s+1,D

≤C hs−1 ‖f‖s−3,D, s = 2, . . . , r. (B.1)

Case 1. r = 3
Let w ∈ Ḣ4(D) be defined by TBe = w. Then, using (B.1), (2.20) and (2.14), we have:

‖e‖2
0,D =(w′′, e′′)0,D

≤‖e′′‖0,D inf
χ∈S

3,κ(3)
h

‖w − χ‖2,D

≤C hs−1 ‖f‖s−3,D h
2 ‖w‖4,D

≤C hs+1 ‖f‖s−3,D ‖e‖0,D, s = 2, 3,

which yields (2.32) for r = 3.
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Case 2. r = 2
Let w ∈ Ḣ2(D) be defined by TEe = w. Then, using (B.1), (2.20), (2.14), (2.12) and (2.1), we have:

‖e′‖2
0,D

= − (w′′, e′′)0,D

≤‖e′′‖0,D inf
χ∈S

2,κ(2)
h

‖w − χ‖2,D

≤C h2 ‖f‖−1,D ‖w‖3,D

≤C h2 ‖f‖−1,D ‖e‖1,D,

which yields

‖e‖1,D ≤ C h2 ‖f‖−1,D. (B.2)

To arrive at (2.32) for r = 2, we combine (B.2) and (2.1). �

C. Appendix C

Proof of Lemma 6.4. Let ΘΔ :=
{
E
[‖∂3

xû‖2
0,D

]} 1
2 and t ∈ (0, T ]. Also, we adopt some notation introduced in

the proof of Theorem 3.1. Using (1.8), Lemma 2.1, the Itô isometry property of the stochastic integral and (2.9),
we obtain

(ΘΔ)2(t) ≤
N̂(t)∑
n=1

1
Δtn

∫
D

∫
D

(∫
T̂n(t)

∂3
xG(t− s′;x, y) ds′

)2

dxdy.

Let (ϕk)∞k=1 be a sequence of functions defined by ϕk(x) :=
√

2 cos(λkx) ∀x ∈ D. Now, we use (1.5) and the
(·, ·)0,D-orthonormality of (ϕk)∞k=1 and (εk)∞k=1 to have

(ΘΔ)2(t) ≤
N̂(t)∑
n=1

1
Δtn

∫
D

∫
D

[ ∞∑
k=1

λ3
k ϕk(x) εk(y)

∫
T̂n(t)

e−λ4
k(t−s′) ds′

]2

dxdy

≤
∞∑

k=1

λ6
k

⎧⎨⎩
N̂(t)∑
n=1

1
Δtn

(∫
T̂n(t)

e−λ4
k(t−s′) ds′

)2
⎫⎬⎭

≤
∞∑

k=1

1
λ2

k

⎧⎨⎩
N̂(t)−1∑

n=1

1
Δtn

[
e−λ4

k(t−tn) − e−λ4
k(t−tn−1)

]2
+ 1

Δt
N̂(t)

[
1 − e−λ4

k(t−t
N̂(t)−1)

]2⎫⎬⎭
≤

∞∑
k=1

1
λ2

k

⎧⎨⎩
N̂(t)−1∑

n=1

1
Δtn

e−2λ4
k(t−tn)

[
1 − e−λ4

k (tn−tn−1)
]2

+ 1
Δt

N̂(t)

[
1 − e−λ4

k(t−t
N̂(t)−1)

]2

⎫⎬⎭ .

Hence, we arrive at

(ΘΔ)2(t) ≤
∞∑

k=1

( 1−e−λ4
k Δt )2

λ2
k

Υk(t), (C.1)

where

Υk(t) := 1
Δt

N̂(t)
+

N̂(t)−1∑
n=1

1
Δtn

e−2 λ4
k (t−tn) ∀k ∈ N.
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For k ∈ N, we bound Υk(t) as follows

Υk(t) ≤ 1
Δt

N̂(t)
+

N̂(t)−2∑
n=1

1
Δtn Δtn+1

∫ tn+1

tn

e−2λ4
k(t−s) ds+ 1

Δt
N̂(t)−1

e−2λ4
k(t−t

N̂(t)−1)

≤ C 1
Δt2

[
Δt+

∫ t

0

e−2λ4
k(t−s) ds

]
≤ C 1

Δt2

[
Δt+ 1

2λ4
k

(
1 − e−2λ4

kt
)]
. (C.2)

Combining (C.2) and (C.1) we arrive at

(ΘΔ)2(t) ≤ C

[
1

Δt

∞∑
k=1

(1−e−λ4
k

Δt)2

λ2
k

+ 1
2(Δt)2

∞∑
k=1

(1−e−λ4
k

Δt)2

λ6
k

]
,

which, along with the inequality inequality 1 − e−λ4
kΔt ≤ min{λ4

k Δt, 1} and the fact ΘΔ(0) = 0, yields

max
[0,T ]

(ΘΔ)2 ≤ C
Δt

∞∑
k=1

1−e−λ4
k Δt

λ2
k

· (C.3)

In order to find how the right hand side of (C.3) depends on Δt, we proceed as in the proof of Theorem 3.1
(cf. (3.13)) to obtain

∞∑
k=1

1−e−λ4
k Δt

λ2
k

≤ 2 π2 Δt+ 8
π (Δt)

1
4 . (C.4)

Thus, the bound (6.14) follows as a simple consequence of (C.3) and (C.4). �

D. Appendix D

Proof of (6.44). Let Λ be the inverse elliptic operator introduced in the proof of Theorem 4.2, δ = Δτ and
m ∈ {1, . . . , N}. Moving along the lines of the proof of Proposition 6.8, we obtain

E

[
‖∂3

xÛ
m‖2

0,D

]
≤

∞∑
k=1

δ

⎛⎝ m∑
j=1

‖∂3
xΛjεk‖2

0,D

⎞⎠
≤

∞∑
k=1

δ λ6
k

⎛⎝ m∑
j=1

1
(1+δλ4

k
)2j

⎞⎠
≤

∞∑
k=1

δ λ6
k

[
1− 1

(1+δλ4
k
)2m

δ2λ8
k
+2δλ4

k

]

≤
∞∑

k=1

1
δλ2

k

[
1 − 1

(1+δλ4
k)2m

]
,

which, obviously, yields E

[
‖∂3

xÛ
m‖2

0,D

]
≤ 1

δ

∑∞
k=1

1
λ2

k
= O(δ−1). �
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