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AN ITERATIVE PROCEDURE TO SOLVE A COUPLED TWO-FLUIDS
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Abstract. This paper introduces a scheme for the numerical approximation of a model for two turbu-
lent flows with coupling at an interface. We consider the variational formulation of the coupled model,
where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence
of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough
flows, whenever bounded in W 1,p Sobolev norms for p large enough. Under the same assumptions, we
show that the limit is a solution of the initial problem. Finally, we give some numerical experiments
to enlighten the theoretical work.

Mathematics Subject Classification. 63N30, 76M10.

Received March 29, 2008. Revised August 1st, 2009.
Published online February 23, 2010.

1. Introduction

In this contribution we focus our attention on the modelling of the surface layer between the atmosphere and
the ocean. We are interested in designing effective procedures to solve the following coupled model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (αi(ki)∇ui) + grad pi = fi in Ωi,
∇ · ui = 0 in Ωi,

−∇ · (γi(ki)∇ki) = αi(ki)|∇ui|2 in Ωi,
ui = 0 on Γi,
ki = 0 on Γi,

αi(ki)∂niui − pini + κ(ui − uj)|ui − uj | = 0 on Γ, 1 ≤ i �= j ≤ 2,
ki = λ|u1 − u2|2 on Γ.

(1.1)

Where each triple (ui, pi, ki) is defined in the domain Ωi, 1 ≥ i ≥ 2. The generic point in R2, resp. in R3, is
denoted by x = (x, z), resp. x = (x, y, z).
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System (1.1) is a simplified model for two stationary turbulent flows in adjacent domains, coupled by boundary
conditions on the interface, such as the system atmosphere-ocean. Indeed, it is a simplified mathematical
formulation of the RANS (Reynolds Averaged Navier-Stokes) model of order 1 used to simulate a stationary
mean flow when convection is neglected. This kind of modelling is often used in engineering or geophysics,
see for instance Bernardi et al. [6], Launder and Spalding [16], Mohammadi and Pironneau [21], Piquet [22],
Wilcox [23].

In what follows, Ωi (i = 1, 2) are bounded domains of Rd, d = 2, 3, which are either convex or of class C1,1,
with boundaries ∂Ωi = Γi ∪ Γ, Γ = Ω1 ∩Ω1 being the interface between the two fluids. Γ is assumed to be flat.
Indeed, we assume that the so-called “rigid lid hypothesis” (introduced by Bryan in [9]) holds, an hypothesis
which is standard in geophysics and oceanography. Each of the two turbulent fluids is modeled by a simplified
one-equation turbulence model whose unknowns are the velocity ui and the turbulent kinetic energy (TKE) ki.

In the first equation we model the generation of eddy viscosity in flow i by the term

−αi(ki)∇ui.

The (positive) quantity αi(ki) is the eddy viscosity. This is a simplification of the usual modelling of Reynolds
Stress Tensor by

Ri � −αi(ki)
(∇ui + ∇tui

)
.

We prefer the first expression for simplicity of mathematical analysis, although our analysis still holds for the
second one. We also neglect transport effects, we intend to analyze them in a forthcoming paper. The fluids
are assumed to be incompressible (second equation). In the third equation we model the generation of TKE by
means of a production source term

αi(ki)|∇ui|2,
although the physical one should be

αi(ki)|∇ui + ∇tui|2.
Again, we prefer the first expression for simplicity of mathematical treatment. Also the turbulent diffusion
of TKE is the function γi(ki). We neglect the viscous dissipation effects, to avoid to manage an additional
statistic of the turbulence (a mixing length or the turbulent dissipation ε, for instance). We assume non-
slipping boundary conditions in the boundary parts Γi for simplicity (fourth and fifth equations). These in
practice are replaced by wall-laws to simulate the generation of turbulence on solid boundaries. The sixth
equation globally models the interaction of the two boundary layers on one and another side of the interface Γ
as friction effects, by means of a set of boundary conditions similar to Manning’s law. Finally, the last equation
models the production of TKE in the interface. The coefficients κi and λ are positive.

We assume that the turbulent diffusions αi and γi belong to W 1,∞(R) and verify αi ≥ ν, γi ≥ ν, for some
ν > 0. The eddy diffusions usually are unbounded functions of the TKE of the form a + b

√
k, as we use in

the numerical simulations reported in Section 5 (see for instance [8,17,21]). But this renders the analysis much
more complex even for a one-fluid turbulence model (see [18]). So we consider a simplified model, that still
includes several realistic non-linear interactions.

System (1.1) was studied in [3] where existence and uniqueness of small smooth solutions were proved.
Spectral and Finite Element discretizations were studied in subsequent papers by the same authors and co-
workers (see [4,5]). In these papers, the ability of these discretization techniques to approach the solution of
model (1.1) was proved. However, in both cases the discretizations achieved consisted in fully non-linear sets
of algebraic equations. Our purpose here is to derive iterative procedures to solve system (1.1) that decouples
the interaction of the problem, leading to mildly non-linear problems.

Let us introduce the function spaces

Xi =
{
vi ∈ H1(Ωi); vi = 0 on Γi

}
,

L2
0(Ωi) =

{
qi ∈ L2(Ωi);

∫
Ωi

qi = 0
}

. (1.2)
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Consider also two conjugate positive real numbers r and r′ i.e.

1
r

+
1
r′

= 1, such that r > d.

We introduce the following iterative procedure to solve (1.1): once known un
i ∈ Xi, pn

i ∈ L2
0(Ωi), ki ∈ W 1,r′

(Ωi),
i = 1, 2, solve:

Problem 1. Obtain un+1
i ∈ Xi, i = 1, 2, such that

∫
Ωi

αi(kn
i )∇un+1

i : ∇vi dx −
∫

Ωi

(∇ · vi) pn+1
i dx + κi

∫
Γ

|un+1
i − un+1

j |(un+1
i − un+1

j ) · vidτ =
∫

Ωi

fi · vidτ,

∀vi ∈ Xi, and

∫
Ωi

(∇ · un+1
i ) qidx = 0, ∀qi ∈ L2

0(Ωi),

and

Problem 2. Obtain kn+1
i ∈ W 1,r′

(Ωi), i = 1, 2, such that

kn+1
i = 0 on Γi, kn+1

i = λ|un+1
1 − un+1

2 |2 on Γ,∫
Ωi

γi(kn
i )kn+1

i ϕidx =
∫

Ωi

αi(kn
i )|∇un+1

i |2 ϕi dx, ∀ϕi ∈ W 1,r
0 (Ωi).

Remark 1.1. We take r > d to give a sense to the equation for the ki in model (1.1). Indeed, the term
αi(kn

i )|∇un+1
i |2 belongs to L1(Ωi), and it follows from the Sobolev Imbedding Theorem that the test function ϕi

in Problem 2 belongs to L∞(Ωi), so that the right-hand member is well defined.

Observe that Problem 1 is in reality non-linear due to the presence of the Manning-like source term. This
is a mild non-linearity due to the monotonic nature of this term, that may be made explicit in practice if
mass-lumping techniques are used.

Our main result states that if the sequences (un
i )n and (kn

i )n are respectively bounded in W 1,3+ε(Ωi)d and
W 1,3(Ωi), then, for small enough data (in a convenient sense), the iterative scheme is contracting. This regularity
is realistic, as it is not far from the W 1,2 regularity that has been proved for problem (1.1) for general data.
The main ingredients to show the convergence of our scheme are the convenient choices of test functions, and
the use of the harmonic liftings Ri of Dirichlet boundary conditions on Γ on the Ωi (see the proof of Thm. 3.4).

Our paper is organised as follows. In Section 2 we introduce a weak formulation of the above iterative
procedure. Section 3 is devoted to prove the contractiveness of the TKE sequence. Due to the production term
of the TKE on interface Γ: ki = λ|u1 − u2|2, it is necessary to estimate the expression

∣∣∣∣ |un+1
1 − un+1

2 |2 − |un
1 − un

2 |2
∣∣∣∣

H
1
2
00(Γ)

, (1.3)

where the special space H
1
2
00(Γ) is the subspace of H

1
2 (Γ) whose extension by zero to ∂Ω1 (for instance, it could

be also to ∂Ω2) belongs to H
1
2 (∂Ω1). An intrinsic scalar product on H

1
2
00(Γ) is defined as

((u, v))
H

1
2
00(Γ)

=
∫

Γ

u(x) v(x) dx +
∫

Γ

∫
Γ

(u(x) − u(y)) (v(x) − v(y))
|x − y|d dxdy +

∫
Γ

u(x) v(x)
d(x, ∂Γ)

, (1.4)

where the first two summands define the H
1
2 (Γ) scalar product (see Adams and Fournier [1], Thm. 7.48). Its

expression involves the distance d(x, ∂Γ) to the boundary of ∂Γ. It comes from the restriction to H
1
2
00(Γ) of the

scalar product in H
1
2 (∂Ω1) for instance. It is given by Lions and Magenes in [20], Chapter 1, Theorem 11.7.
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The estimation of (1.3) is done using a Grisvard’s result (Lem. 3.5 in the paper at hand, see [14] for the
original reference) on estimates in W s,p of products of functions of W sj ,pj , for some real numbers s, sj and
some non-negative integers p, pj, j = 1, 2. Concerning the sequence of pressure iterates (pn

i )n, we use a specific
inf-sup condition (see Cor. 3.7) to show that it is a Cauchy sequence, see Theorem 3.8.

The convergence analysis is performed in Section 4. In Theorem 4.1 we prove that the triple (un
i , kn

i , pn
i )n

has a unique limit, which is a solution of the variational formulation (2.3)–(2.4).
We finally present some numerical tests in Section 5. These tests are realized with the software FreeFEM3D

(see [12]) in meaningful situations, that agree with the expectations of our result.

2. Iterative scheme

We shall at first describe the weak formulation of problem (1.1). We assume that αi and γi are bounded
functions from the set of nonnegative real numbers R+ onto R, and belong to W 1,∞(Ωi), which satisfy

∀� ∈ R+, δ1 ≥ αi(�) ≥ ν and δ1 ≥ γi(�) ≥ ν, (2.1)

and
∀� ∈ R+, |α′

i(�)| ≤ δ2 and |γ′
i(�)| ≤ δ2, (2.2)

where δ1, δ2 and ν are positive constants.
System (1.1) admits the following variational formulation:

Find (ui, pi, ki) ∈ Xi × L2(Ωi) × W 1,r′
(Ωi) such that, for all (vi, qi, ϕi) ∈ Xi × L2(Ωi) × W 1,r

0 (Ωi),

ai(ki;ui,vi) + bi(vi, pi) + κi

∫
Γ

|ui − uj |(ui − uj) · vi dτ =
∫

Ωi

fi · vi dx

bi(ui, qi) = 0, (2.3)

and,

ki = 0 on Γi, ki = λ|ui − uj |2 on Γ, and

Ci(ki; ki, ϕi) =
∫

Ωi

αi(ki)|∇ui|2 ϕi dx, (2.4)

where the forms ai(·; ·, ·), bi(·, ·) and Ci(·; ·, ·) are defined by

ai(�i;ui,vi) =
∫

Ωi

α(�i)∇ui : ∇vi dx,

bi(vi, qi) = −
∫

Ωi

qi ∇ · vi dx,

Ci(�i; ki, ϕ) =
∫

Ωi

γi(�i) ∇ki · ∇ϕi dx.

Note that the bilinear forms ai and Ci in (2.3) depend on ki.

Remark 2.1. Since ui ∈ Xi then its trace on Γ belongs to H
1
2
00(Γ). Thus by using definition of this space ui|Γ

belongs to H
1
2 (Γ) and applying the Sobolev embedding from H

1
2 (Γ) into L3(Γ)d, we conclude that the integral∫

Γ

|ui − uj |(ui − uj) · vi dτ is well defined.
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This formulation makes sense, as αi(ki)|∇ui|2 ∈ W 1,r′
(Ωi) when ui ∈ Xi. In Lewandowski [19] it is proved

that this formulation admits at least a solution.

We shall consider the following iterative procedure:
Given (un

i , pn
i , kn

i ) ∈ Xi × L2(Ωi) × W 1,r′
(Ωi), i = 1, 2, obtain (un+1

i , pn+1
i , kn+1

i ) ∈ Xi × L2(Ωi) × W 1,r′
(Ωi),

such that ∀(vi, qi, ϕi) ∈ Xi × L2(Ωi) × W 1,r
0 (Ωi),

ai(kn
i ;un+1

i ,∇vi) + bi(vi, p
n+1
i ) + κi

∫
Γ

|un+1
i − un+1

j |(un+1
i − un+1

j ) · vidτ =
∫

Ωi

fi · vidτ, (2.5)

and bi(un+1
i , qi) = 0, (2.6)

and

kn+1
i = 0 on Γi, (2.7)

kn+1
i = λ|un+1

1 − un+1
2 |2 on Γ, (2.8)

Ci(kn
i ; kn+1

i , ϕi) =
∫

Ωi

αi(kn
i )|∇un+1

i |2 ϕi dx. (2.9)

3. Contractiveness

In this section we prove that the sequence of TKE (kn
i )n is contracting, and that consequently the sequences

of velocities (un
i )n also is contracting, in the sense that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2∑
i=1

‖∇(un+1
i − un

i )‖2
L2(Ωi)

≤ K
2∑

i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

, and

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

≤ K

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

.

(3.1)

We may interpret these inequalities in the sense that the sequence of pairs (un
i , kn

i )n is contracting in the Hilbert
space Xi ×L2(Ωi). However, to simplify our derivation, we shall not explicitly use this space. Finally, we show
that the pressures (pn

i )n is a Cauchy sequence.
We suppose from now on that the sequences (un

i )n and (kn
i )n verify the following hypothesis.

Hypothesis 3.1. ∀n ∈ N, un
i ∈ W 1,3+ε(Ωi)d and kn

i ∈ W 1,3(Ωi), and one has

‖un
i ‖W 1,3+ε(Ωi)d ≤ M, ‖kn

i ‖W 1,3(Ωi) ≤ M,

where M and ε are two fixed positive numbers.

Remark 3.2. Note that the natural estimates for velocities in model (1.1) are in H1 norm, not in W 1,3 norm.
Indeed, choosing vi equal to 1

κi
un+1

i ∈ Xi in equation (2.5), and summing upon i = 1, 2 gives

2∑
i=1

1
κi

(∫
Ωi

αi(kn
i )|∇un+1

i |2dx

)
+

∫
Γ

|un+1
1 − un+1

2 |3dτ =
2∑

i=1

1
κi

∫
Ωi

fiun+1
i dx.

Since the integrated term on Γ is nonnegative and thanks to (2.1), we deduce

ν

cM

2∑
i=1

‖∇un+1
i ‖2

L2(Ωi)d ≤ 1
cm

2∑
i=1

∫
Ωi

fiun+1
i dx.
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Using the Cauchy-Schwarz and Poincaré-Friedrichs inequalities, we obtain

2∑
i=1

‖∇un+1
i ‖2

L2(Ωi)d ≤ c

ν2

2∑
i=1

‖fi‖2
L2(Ωi)d , (3.2)

where c is a positive constant, depending only on the domains Ωi and the friction coefficients κi.

We next prove that the contractiveness of the TKE implies that of the velocities.

Lemma 3.3. Assume that Hypothesis 3.1 holds and that fi ∈ L2(Ωi)d, i = 1, 2. Then there exists a positive
constant c, depending only on Ωi, such that

2∑
i=1

‖∇(un+1
i − un

i )‖2
L2(Ωi)d ≤ cδ2

2M2

ν2

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)d . (3.3)

Proof. Let us take vi =
1
κi

(un+1
i − un

i ) ∈ Xi as a test function in (2.5) at iterations n and n + 1. Then,

calculating the difference between both obtained equations, and summing on i = 1, 2, yields

2∑
i=1

1
κi

∫
Ωi

αi (kn)∇ (
un+1

i − un
i

)
: ∇ (

un+1
i − un

i

)
dx

+
2∑

i=1

1
κi

∫
Ωi

(
αi (kn) − αi

(
kn−1

i

))∇un
i : ∇ (

un+1
i − un

i

)
dx

+
∫

Γ

(∣∣un+1
1 − un+1

2

∣∣ (un+1
1 − un+1

2

) − |un
1 − un

2 | (un
1 − un

2 )
) · ((un+1

1 − un+1
2

) − (un
1 − un

2 )
)
dτ = 0.

The following inequality holds for all vectors a,b ∈ Rd,

(|b|b − |a| a) · (b − a) ≥ 0. (3.4)

To prove it, consider the function J : Rd → R defined by J(a) = 2
3 |a|3. J is convex and differentiable. Thus,

(∇J(a) −∇J(b)) · (b − a) ≥ 0, ∀a, b ∈ R
d.

Then, (3.4) follows as ∇J(a) = |a|a · b.
We deduce that

2∑
i=1

1
κi

∫
Ωi

αi(kn
i )|∇(un+1

i − un
i )|2 dx +

2∑
i=1

1
κi

∫
Ωi

(αi(kn
i ) − αi(kn−1

i ))∇un
i · ∇(un+1

i − un
i ) dx ≤ 0. (3.5)
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It comes from Hypothesis 3.1 that ∇un
i belongs to L3(Ωi)d and that ‖∇un

i ‖L3(Ωi)d ≤ M . Furthermore, according
to the relation (2.2) and the canonical injection from H1(Ωi) to L6(Ωi) and Hölder inequality, we obtain

ν
2∑

i=1

‖∇(un+1
i − un

i )‖2
L2(Ωi)d ≤ δ2

2∑
i=1

∫
Ωi

|kn
i − kn−1

i | |∇un
i | |∇(un+1

i − un
i )| dx

≤ δ2

2∑
i=1

‖kn
i − kn−1

i ‖L6(Ωi) ‖∇un
i ‖L3(Ωi)d‖∇(un+1

i − un
i )‖L2(Ωi)d ,

≤ δ2
2M

2

2ν

2∑
i=1

‖kn
i − kn−1

i ‖2
L6(Ωi)

+
ν

2

2∑
i=1

‖∇(un+1
i − un

i )‖2
L2(Ωi)d .

From this estimate we conclude relation (3.3). �

We next prove the contractiveness of the sequence of TKE (kn
i )n.

Theorem 3.4. Assume that Hypothesis 3.1 holds and that fi ∈ L2(Ωi)d. Then there exists a positive constant c,
depending only on Ωi and on the data κi and λ, such that for all n ∈ N∗,

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi) ≤ c

(δ2
1 + 1)δ2

2

ν3
M

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi). (3.6)

Proof. The proof of this theorem is made in several steps.

First step. Choice of the test function

We first choose a particular test function ϕi in the equations (2.7)–(2.9). For that purpose, we need to

introduce the special space H
1
2
00(Γ) (see [20], Chap. 1, Thm. 11.7 for instance). We also need to introduce the

following operator. Let Ri be a continuous harmonic lifting operator from H
1
2
00(Γ) to H1(Ωi), defined as follows.

For any η in H
1
2
00(Γ), Riη belongs to H1(Ωi), and satisfies

⎧⎨
⎩

−ΔRiη = 0 in Ωi,
Riη = η on Γ, and
Riη = 0 on Γi.

Moreover, one has

∀η ∈ H
1
2
00(Γ), ‖Riη‖H1(Ωi) ≤ cR‖η‖

H
1
2
00(Γ)

, (3.7)

where cR > 0 depends only on Ωi.
According to Hypothesis 3.1, ∀n ∈ N∗, kn

i ∈ W 1,3(Ωi), then its trace on Γ belongs to W
2
3 ,3(Γ). Thus, by

Sobolev’s injections, it belongs to H
1
2 (Γ). Furthermore, kn

i = 0 on Γi, then kn
i |Γ belongs to H

1
2
00(Γ).

The idea consists in choosing the test function ϕi equal to (kn+1
i − kn

i )− Ri(kn+1
i − kn

i ) in equation (2.9) at
steps n and n + 1. Then, we make the difference between both obtained equations, and sum upon i = 1, 2. We
find

ν

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
0,Ωi

≤
7∑

j=1

Ij , (3.8)
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where

I1 =
2∑

i=1

∣∣∣∣
∫

Ωi

αi(kn
i )(|∇un+1

i |2 − |∇un
i |2) (kn+1

i − kn
i ) dx

∣∣∣∣,

I2 =
2∑

i=1

∣∣∣∣
∫

Ωi

(αi(kn
i ) − αi(kn−1

i ))|∇un
i |2 (kn+1

i − kn
i ) dx

∣∣∣∣,

I3 =
2∑

i=1

∣∣∣∣
∫

Ωi

(γi(kn
i ) − γi(kn−1

i ))∇kn
i · ∇(kn+1

i − kn
i ) dx

∣∣∣∣,

I4 =
2∑

i=1

∣∣∣∣
∫

Ωi

(γi(kn
i ) − γi(kn−1

i ))∇kn
i · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣,

I5 =
2∑

i=1

∣∣∣∣
∫

Ωi

αi(kn
i )(|∇un+1

i |2 − |∇un
i |2)Ri(kn+1

i − kn
i ) dx

∣∣∣∣,

I6 =
2∑

i=1

∣∣∣∣
∫

Ωi

(αi(kn
i ) − αi(kn−1

i ))|∇un
i |2 Ri(kn+1

i − kn
i ) dx

∣∣∣∣, and

I7 =
2∑

i=1

∣∣∣∣
∫

Ωi

γi(kn
i )∇(kn+1

i − kn
i ) · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣.

Second step. Estimates of Ij, 1 ≤ j ≤ 7

Estimation of I1. We write |∇un+1
i |2−|∇un

i |2 = ∇ (
un+1

i − un
i

) ·∇ (
un+1

i + un
i

)
, and use Hypothesis 3.1, and

relation (2.1). Thanks to the Sobolev embedding of H1(Ωi) into L6(Ωi) and from Hölder and Poincaré-Friedrichs
inequalities, we obtain

∣∣∣∣
∫

Ωi

αi(kn
i )(|∇un+1

i |2 − |∇un
i |2) (kn+1

i − kn
i ) dx

∣∣∣∣
≤ δ1‖∇(un+1

i − un
i )‖L2(Ωi)d

(
‖un+1

i ‖W 1,3(Ωi)d + ‖un
i ‖W 1,3(Ωi)d

)
‖kn+1

i − kn
i ‖L6(Ω)

≤ Mcδ1‖∇(un+1
i − un

i )‖L2(Ωi)d‖∇(kn+1
i − kn

i )‖L2(Ωi),

where c is a positive constant, depending only on domains Ωi. To simplify the calculations, we introduce a
positive number β which we shall fix later.

According to Young’s inequality

1
β

a2 + βb2 ≥ 2ab, ∀a, b ∈ R, and ∀β > 0, (3.9)

we obtain

∣∣∣∣
∫

Ωi

αi(kn
i )(|∇un+1

i |2 − |∇un
i |2) (kn+1

i − kn
i ) dx

∣∣∣∣≤ ν

β
‖∇(kn+1

i − kn
i )‖2

L2(Ωi)
+

βM2δ2
1c

2

ν
‖∇(un+1

i − un
i )‖2

L2(Ωi)d .
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Summing upon i = 1, 2, and due to the relation (3.3) from Lemma 3.3, there exists a positive constant c1,
depending only on Ωi, αi and M , such that

I1 ≤ c1βδ2
1δ2

2M
2

ν3

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

+
ν

β

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

. (3.10)

Estimation of I2 and I3. Using the same arguments we used for estimation of I1, there exists two positive
constants, depending only on Ωi, γi and M , such that

I2 ≤ c2βδ2
2M2

ν

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

+
ν

β

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

, (3.11)

and

I3 ≤ c3βδ2
2M2

ν

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

+
ν

β

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

. (3.12)

Estimation of I4. We recall that

I4 =
2∑

i=1

∣∣∣∣
∫

Γi

(γi(kn
i ) − γi(kn−1

i ))∇kn
i · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣.

Let us apply the Mean Value Theorem to the function γi, use relation (2.2) and Hölder inequality. We find

∣∣∣∣
∫

Γi

(γi(kn
i ) − γi(kn−1

i ))∇kn
i · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣ ≤ δ2‖kn
i − kn−1

i ‖L6(Ωi)‖∇kn
i ‖L3(Ωi)‖∇Ri(kn+1

i − kn
i )‖L2(Ωi).

The continuity of the lifting operator (3.7) and Hypothesis 3.1 imply

∣∣∣∣
∫

Γi

(γi(kn
i ) − γi(kn−1

i ))∇kn
i · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣≤ cRδ2M‖kn
i − kn−1

i ‖L6(Ωi)‖kn+1
i − kn

i ‖
H

1
2
00(Γ)

.

According to the continuity of the canonical injection from H1(Ωi) to L6(Ωi), the continuity of the trace operator
from Xi to H

1
2
00(Γ), and using Young’s inequality (3.9), there exists a positive constant c4 > 0, depending only

on Ωi, γi, and M , such that

∣∣∣∣
∫

Γi

(γi(kn
i ) − γi(kn−1

i ))∇kn
i · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣≤ c4βδ2
2M2

ν
‖∇(kn

i − kn−1
i )‖2

L2(Ωi)
+

ν

β
‖∇(kn+1

i − kn
i )‖2

L2(Ωi)
.

Summing on i = 1, 2, we find

I4 ≤ c4βδ2
2M2

ν

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

+
ν

β

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

. (3.13)

Estimation of I5. We have

I5 =
2∑

i=1

∣∣∣∣
∫

Ωi

αi(kn
i )(|∇un+1

i |2 − |∇un
i |2)Ri(kn+1

i − kn
i ) dx

∣∣∣∣.
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Replacing |∇un+1
i |2 − |∇un

i |2 by ∇(un+1
i − un

i ) · ∇(un+1
i + un

i ), and using Hypothesis 3.1, Hölder inequality
and formula (3.7), there exists a positive constant θ > 0, depending only on Ωi, such that

∣∣∣∣
∫

Ωi

αi(kn
i ) (|∇un+1

i |2 − |∇un
i |2)Ri(kn+1

i − kn
i ) dx

∣∣∣∣≤ θδ1M‖∇(un+1
i − un

i )‖L2(Ωi)d‖∇(kn+1
i − kn

i )‖L2(Ωi).

Then, using relations (3.3) from Lemma 3.3 and (3.9), and summing on i = 1, 2, we obtain the following
estimation of I5:

I5 ≤ c5βδ2
1δ2

2M
2

ν3

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

+
ν

β

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

. (3.14)

Estimation of I6. Applying the same techniques, we have
∣∣∣∣
∫

Ωi

(αi(kn
i ) − αi(kn−1

i ))|∇un
i |2 Ri(kn+1

i − kn
i ) dx

∣∣∣∣≤ δ2‖kn
i − kn−1

i ‖L6(Ωi)‖∇un
i ‖2

L3(Ωi)d‖Ri(kn+1
i − kn

i )‖L6(Ωi).

Using the continuity of the lifting operator Ri from H1 to H
1
2
00(Γ), the continuity of the canonical injection from

H1(Ωi) to L6(Ωi), and Poincaré-Friedrichs inequality, there exists a positive constant c6, depending only on Ωi,
such that∣∣∣∣
∫

Ωi

(αi(kn
i ) − αi(kn−1

i ))|∇un
i |2 Ri(kn+1

i − kn
i ) dx

∣∣∣∣ ≤ c6δ2M‖∇(kn
i − kn−1

i )‖L2(Ωi)‖∇(kn+1
i − kn

i )‖L2(Ωi),

≤ c6βδ2
2M

2

ν
‖∇(kn

i − kn−1
i )‖2

L2(Ωi)
+

ν

β
‖∇(kn+1

i − kn
i )‖2

L2(Ωi)
.

Summing on i = 1, 2, we deduce the following estimation of I6,

I6 ≤ c6βδ2
2M2

ν

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

+
ν

β

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

. (3.15)

Estimation of I7. The estimation of I7 is more involved. To achieve it, we use a result of continuity of the
product of traces on Γ due to Grisvard [13,14].

Lemma 3.5. Assume that Ω is a bounded Lipschitz-continuous open subset of Rd. Let s, s1 and s2 be three
non negative reals and p, p1, p2 be three real numbers in [1, +∞) such that s1 ≥ s, s2 ≥ s and either

s1 + s2 − s ≥ d

(
1
p1

+
1
p2

− 1
p

)
≥ 0, si − s > d

(
1
pi

− 1
p

)
i = 1, 2 (3.16)

or

s1 + s2 − s > d

(
1
p1

+
1
p2

− 1
p

)
≥ 0, si − s ≥ d

(
1
pi

− 1
p

)
i = 1, 2. (3.17)

Then the mapping (u, v) → uv is a continuous bilinear map from W s1,p1(Ω) × W s2,p2(Ω) to W s,p(Ω).

Using the results of Hebey [15], this lemma also holds for Sobolev spaces defined on compact Riemannian
manifolds. This is the case of Γ.

We remind that

I7 =
2∑

i=1

∣∣∣∣
∫

Ωi

γi(kn
i )∇(kn+1

i − kn
i ) · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣.
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Using relation (2.1), Cauchy-Schwarz inequality, and the continuity of the lifting (3.7), we find

∣∣∣∣
∫

Ωi

γi(kn
i )∇(kn+1

i − kn
i ) · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣≤ cRδ1‖∇(kn+1
i − kn

i )‖L2(Ωi)‖kn+1
i − kn

i ‖
H

1
2
00(Γ)

.

The boundary condition equation (2.7) implies that (kn+1
i − kn

i )|Γ = λ(|un+1
1 − un+1

2 |2 − |un
1 − un

2 |2)|Γ. Thus

‖kn+1
i − kn

i ‖
H

1
2
00(Γ)

= λ
∥∥[

(un+1
1 − un

1 ) − (un+1
2 − un

2 )
] [

(un+1
1 + un

1 ) − (un+1
2 + un

2 )
]∥∥

H
1
2
00(Γ)

.

Let us apply Lemma 3.5, by taking

s1 = s =
1
2
, s2 = 1 − 1

3 + ε
,

p1 = p = 2, p2 = 3 + ε,

and (un+1
1 − un

1 ) − (un+1
2 − un

2 ) = u ∈ H
1
2 (Γ)

(
= W

1
2 ,2(Γ) = W s1,p1(Γ)

)
,

(un+1
1 − un

1 ) − (un+1
2 − un

2 ) = v ∈ W 1− 1
3+ε ,3+ε(Γ) (= W s2,p2(Γ)) .

We obtain
∣∣∣∣
∫

Ωi

γi(kn
i )∇(kn+1

i − kn
i ) · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣ ≤ cRλδ1||∇(kn+1
i − kn

i )||L2(Ωi)

×
[
||un+1

1 − un
1 ||

H
1
2
00(Γ)

+ ||un+1
2 − un

2 ||
H

1
2
00(Γ)

]

×
[
||un+1

1 + un
1 ||W 1− 1

3+ε
,3+ε

(Γ)d
+ ||un+1

2 + un
2 ||W 1− 1

3+ε
,3+ε

(Γ)d

]
.

Using the continuity of the trace operators from W 1,3+ε(Ωi)d to W 1− 1
3+ε ,3+ε(Γ)d and from H1(Ωi) to H

1
2
00(Γ),

there exists a positive constant c′7, depending only on domains Ωi and λ, such that

∣∣∣∣
∫

Ωi

γi(kn
i )∇(kn+1

i − kn
i ) · ∇Ri(kn+1

i − kn
i ) dx

∣∣∣∣
≤ c′7δ1||∇(kn+1

i − kn
i )||L2(Ωi)

( 2∑
i=1

||un+1
i − un

i ||H1(Ωi)d

)( 2∑
i=1

||un+1
i + un

i ||W 1,3+ε(Ωi)d

)

≤ 2Mc′7δ1||∇(kn+1
i − kn

i )||L2(Ωi)

2∑
i=1

||un+1
i − un

i ||H1(Ωi)d (by Hypothesis 3.1)

≤ 2Mc′7δ1||∇(kn+1
i − kn

i )||L2(Ωi)

2∑
i=1

||∇(un+1
i − un

i )||L2(Ω)d (by Poincaré-Friedrichs inequality).

According to relation (3.3) of Lemma 3.3, relation (3.9) and summing upon i = 1, 2, there exists a positive
constant c7, depending only on Ωi and λ such that

I7 ≤ c7βδ2
1M2

ν

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

+
ν

β

2∑
i=1

‖∇(kn+1
i − kn

i )‖L2(Ωi). (3.18)
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Finally, using estimations (3.10)–(3.18), relation (3.8), and choosing β = 14 (for instance), there exists a positive
constant c, depending only on Ωi, κi and λ, such that

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

≤ c(1 + δ2
1)δ

2
2M2

ν3

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

.

This finishes the proof of the Theorem 3.4. �

Corollary 3.6 (convergence of the iterative process). Under the hypotheses of Theorem 3.4, there exists a

positive constant c, depending only on Ωi and on the data κi and λ, such that if K = c
(1 + δ2

1)δ2
2

ν3
M2 < 1, then

the sequences (un
i )n and (kn

i )n are contracting, in the sense of relation (3.1), i.e.

2∑
i=1

‖∇(un+1
i − un

i )‖2
L2(Ωi)

≤ K

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

, and

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

≤ K

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
L2(Ωi)

.

Furthermore, from estimate (3.3), as K < 1, (un
i )n is a Cauchy sequence,

2∑
i=1

‖∇(um
i − un

i )‖2
0 ≤ 1 − Km−n+1

1 − K

2∑
i=1

‖∇(kn
i − kn−1

i )‖2
0, ∀n ≤ m ∈ N. (3.19)

Then, since Xi and H1(Ωi) are Banach spaces, the sequences (un
i )n and (kn

i )n have unique strong limits in Xi

and H1(Ωi), ui and ki.

We next prove that the sequence (pn
i )n is a Cauchy sequence. For that purpose, we use the following inf-sup

condition proved in [3], Lemma 3.1.

Corollary 3.7 (inf-sup condition). Assume that Ωi is bounded Lipschitz-continuous open subset of Rd. Then,
there exists a positive constant βi > 0, depending only on the domain Ωi, such that

∀qi ∈ L2(Ωi), sup
vi∈Xi

bi(vi, qi)
‖vi‖H1(Ωi)

≥ βi‖qi‖L2(Ωi).

Theorem 3.8 (convergence of the pressure). Assume that Hypothesis 3.1 holds, that fi ∈ L2(Ωi)d and that
K < 1. Then, (pn

i )n is a Cauchy sequence. More specifically, there exists positive constants c′, depending only
on Ωi, αi, and M , and c′′ depending only on Ωi, such that for any two non negative integers m ≥ n,

2∑
i=1

‖pm+1
i − pn+1

i ‖2
0 ≤ c′

β2(1 − K)

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
0

+
c′′

β2

∥∥|um+1
1 − um+1

2 |(um+1
1 − um+1

2 ) − |un+1
1 − un+1

2 |(un+1
1 − un+1

2 )
∥∥2

L
3
2 (Γ)d ,

where β = min{β1, β2}.
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Proof. For all vi ∈ Xi, we make the difference of equation (2.5) at steps m and n. This yields for 1 ≤ i �= j ≤ 2,

bi(vi, pm+1
i − pn+1

i )
‖vi‖H1(Ωi)d

= − κi

∫
Γ

[
|um+1

i − um+1
j |(um+1

i −um+1
j ) − |un+1

i − un+1
j |(un+1

i − un+1
j )

]
· vi

‖vi‖H1(Ωi)d

dτ

−
∫

Ωi

αi(km
i )∇(um+1

i − un+1
i ) :

∇vi

‖vi‖H1(Ωi)d

dx

−
∫

Ωi

(αi(km
i ) − αi(kn

i ))∇un
i :

∇vi

‖vi‖H1(Ωi)d

dx.

We know that the sequence (un
i )n belongs to H1(Ωi), then its trace on γ belongs to H

1
2 (Γ), thus in L3(Γ)d by

injection, i.e.
∣∣∣∣|um+1

i − um+1
j |(um+1

i − um+1
j ) − |un+1

i − un+1
j |(un+1

i − un+1
j )

∣∣∣∣∈ L
3
2 (Γ)d, ∀i �= j and n ≤ m.

Using the Mean Value Theorem, relations (2.1)–(2.2) and Hölder inequality, we find

bi(vi, pm+1
i − pn+1

i )
‖vi‖H1(Ωi)

≤
∣∣∣∣
∣∣∣∣ |um+1

i − um+1
j |(um+1

i − um+1
j ) − |un+1

i − un+1
j |(un+1

i − un+1
j )

∣∣∣∣
∣∣∣∣
L

3
2 (Γ)d

‖vi‖L3(Γ)d

‖vi‖H1(Ωi)

+ δ1‖∇(um+1
i − un+1

i )‖L2(Ωi)d

‖∇vi‖L2(Ωi)d

‖vi‖H1(Ωi)

+ δ2‖km
i − kn

i ‖L6(Ωi)‖∇un
i ‖L3(Ωi)d

‖∇vi‖L2(Ωi)d

‖vi‖H1(Ωi)
·

Applying the continuity of the trace operator from H1(Ωi) to H
1
2 (Γ), and the continuity of the canonical

injection from H
1
2 (Γ) to L3(Γ)d, there exists a positive constant c, depending only on Ωi, αi and M , such that

for all vi ∈ Xi

bi(vi, pm+1
i − pn+1

i )
‖vi‖H1(Ωi)

≤ c

(∣∣∣∣
∣∣∣∣ |um+1

i − um+1
j |(um+1

i − um+1
j ) − |un+1

i − un+1
j |(un+1

i − un+1
j )

∣∣∣∣
∣∣∣∣
L

3
2 (Γ)d

+ ‖∇(um+1
i − un+1

i )‖L2(Ωi)d + ‖∇(km
i − kn

i )‖L2(Ωi)‖∇un
i ‖L3(Ωi)d

)
.

Using the inf-sup condition (Cor. 3.7), and summing on i = 1, 2, we obtain

β

2∑
i=1

‖pm+1
i − pn+1

i ‖L2(Ωi) ≤ c

[ ∣∣∣∣
∣∣∣∣|um+1

1 − um+1
2 |(um+1

1 − um+1
2 ) − |un+1

1 − un+1
2 |(un+1

1 − un+1
2 )

∣∣∣∣
∣∣∣∣
L

3
2 (Γ)d

+
√

2
( 2∑

i=1

‖∇(um+1
i − un+1

i )‖2
L2(Ωi)d

) 1
2

+
√

2
( 2∑

i=1

‖∇(km
i − kn

i )‖2
L2(Ωi)

) 1
2
]
.

According to relation (3.19)

2∑
i=1

‖pm+1
i − pn+1

i ‖2
L2(Ωi)

≤ 4
√

2
c2

β2(1 − K)

2∑
i=1

‖∇(kn+1
i − kn

i )‖2
L2(Ωi)

+
2c2

β2

∣∣∣∣
∣∣∣∣|um+1

1 − um+1
2 |(um+1

1 − um+1
2 ) − |un+1

1 − un+1
2 |(un+1

1 − un+1
2 )

∣∣∣∣
∣∣∣∣
2

L
3
2 (Γ)d

. (3.20)
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We have proved that the sequence (un
i )n converges in H1(Ωi) strong. Then, using the continuity of the trace

operator from H1(Ωi) to H
1
2 (Γ), and that of the canonical injection from H

1
2 (Γ) into L3(Γ)d, we deduce that

the sequence ([
(un

1 − un
2 )|un

1 − un
2 |

]
|Γ

)
n

is a Cauchy sequence in L
3
2 (Γ)d. Thus

∣∣∣∣
∣∣∣∣|um+1

1 − um+1
2 |(um+1

1 − um+1
2 ) − |un+1

1 − un+1
2 |(un+1

1 − un+1
2 )

∣∣∣∣
∣∣∣∣
2

L
3
2 (Γ)d

−→ 0.

We conclude that (pn
i )n is a Cauchy sequence in L2(Ωi), i = 1, 2. �

We shall denote by pi the limit of the sequence (pn
i )n.

4. Identification of the limit

In this section, we show that the limit (ui, pi, ki) of the sequence (un
i , pn

i , kn
i )n is a solution of the variational

formulation (2.3)–(2.4).

Theorem 4.1 (identification of the limit). Under the same assumptions of Theorem 3.6, the limit (ui, pi, ki)
of the sequence (un

i , pn
i , kn

i )n is a solution of the variational formulation (2.3)–(2.4).

Proof. The proof is made of three steps:
• Stokes equation (2.3) is verified by (ui, pi, ki);
• The TKE equation (2.4) is verified by (ui, pi, ki); and
• The boundary conditions are verified, i.e. ki = λ|u1 − u2|2 on Γ and ki vanishes on Γi.

First step. Stokes equation

Let vi ∈ Xi, and let us show that

ai(ki,ui,vi) + bi(vi, pi) + κi

∫
Γ

|ui − uj |(ui − uj)vi dτ =
∫

Ωi

fi vidx, ∀1 ≤ i �= j ≤ 2.

We first focus on the bilinear form ai(·; ·, ·). ki is the limit of the sequence (kn
i )n in H1(Ωi). Then, there exists a

subsequence of (kn
i )n that converges a.e. in Ωi to ki. As the global sequence is contracting, all the subsequences

are convergent and converge to ki. Thus, as the function αi is continuous and bounded, lim
n→∞αi(kn

i ) = αi(ki), a.e.

in Ωi. Moreover, the sequence (un
i )n converges strongly to the unique limit ui in H1(Ωi), then lim

n→∞∇un
i = ∇ui

strongly in L2(ωi)d. Hence by the inverse Lebesgue theorem (see for instance [7], Thm. IV.9), there exists a
further subsequence, still denoted by (∇un

i )n, which tends to ∇ui a.e. on Ωi, and ∀n ∈ N, |∇ui| ≤ gi, where
the function gi belongs to L2(Ωi). Thus ∀vi ∈ Xi,

lim
n→∞αi(kn

i )∇un
i : ∇vi = αi(ki)∇ui : ∇vi, a.e. on Ωi, and

|αi(kn
i )∇un

i : ∇vi| ≤ δ1|gi‖∇vi| ∈ L1(Ωi).

Again, using the uniqueness of the limit of all subsequences of (un
i )n, we obtain lim

n→∞ ai(kn
i ;un+1

i ,vi) =

ai(ki;ui,vi).
Due to the strong convergence of the sequence (pn

i ) to pi in L2(Ωi), we have
lim

n→∞ bi(vi, p
n+1
i ) = bi(vi, pi), for each vector vi that belongs to Xi.
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Concerning the boundary term, since the trace of un
i on Γ belongs to H

1
2 (Γ) and using the compactness of

the canonical injection of H
1
2 (Γ) to L3(Γ)d, we have lim

n→∞un
i = ui in L3(Γ)d, thus for 1 ≤ i �= j ≤ 2

lim
n→∞ |un+1

i − un+1
j |(un+1

i − un+1
j ) = |ui − uj |(ui − uj), strongly in L

3
2 (Γ)d.

Furthermore, the trace of the vector vi belongs to L3(Γ)d, then

lim
n→∞κi

∫
Γ

|un+1
i − un+1

j |(un+1
i − un+1

j )vi dτ = κi

∫
Γ

|ui − uj |(ui − uj)vi dτ.

We proved that the limit (ui, pi, ki) of the sequence (un
i , pn

i , kn
i )n verifies the first equation of the Stokes prob-

lem (2.3). Concerning the second one, due to the fact that bi(un+1
i , qi) = 0, ∀qi ∈ L2(Ωi), and to the strong

convergence in H1(Ωi) of the sequence (un
i )n to ui, we deduce that bi(ui, qi) = 0, ∀qi ∈ L2(Ωi).

Second step. Equation for the TKE

We want to show that ∀ϕi ∈ W 1,r
0 (Ωi),

∫
Ωi

γi(ki)∇ki · ∇ϕi dx =
∫

Ωi

αi(ki)|∇ui|2 ϕi dx. To achieve this

result, we only need to show that

lim
n→∞

∫
Ωi

γi(kn
i )∇kn+1

i · ∇ϕidx =
∫

Ωi

γi(ki)∇ki · ∇ϕidx, and

lim
n→∞

∫
Ωi

αi(kn
i )|∇un+1

i |2ϕi dx =
∫

Ωi

αi(ki)|∇ui|2ϕi dx.

(4.1)

The idea consists in choosing test functions ϕi that belong to D(Ωi) at first, then by density we will consider
all test functions in W 1,r

0 (Ωi).
Let us write γi(kn

i )∇kn+1
i − γi(ki)∇ki using (4.1). For all ϕi ∈ D(Ωi):

∫
Ωi

(γi(kn
i )∇kn+1

i − γi(ki)∇ki) · ∇ϕidx =
∫

Ωi

γi(kn
i )∇(kn+1

i − ki) · ∇ϕidx +
∫

Ωi

(γi(kn
i ) − γi(ki))∇ki · ∇ϕidx.

Using the Cauchy-Schwarz inequality, and the strong convergence of the sequence (kn
i )n to ki in H1(Ωi), we

obtain ∣∣∣∣
∫

Ωi

γi(kn
i )∇(kn+1

i − ki) · ∇ϕidx
∣∣∣∣ ≤ δ1‖∇(kn+1

i − ki)‖L2(Ωi)‖∇ϕi‖L2(Ωi) −−−−→n→∞ 0.

On the other hand, we apply the Mean Value Theorem to the function γi, and using Hölder inequality, we find
∣∣∣∣
∫

Ωi

(γi(kn
i ) − γi(ki))∇ki · ∇ϕidx

∣∣∣∣ ≤ δ2‖kn
i − ki‖L2(Ωi)‖∇ki‖L2(Ωi)‖∇ϕi‖∞ −−−−→

n→∞ 0.

We deduce that for all ϕi ∈ D(Ωi), lim
n→∞

∫
Ωi

γi(kn
i )∇kn+1

i · ∇ϕi dx =
∫

Ωi

γi(ki)∇ki · ∇ϕi dx. Let η be a strictly

positive real, such that for all integer n ≥ n0, we have
∣∣∣∣
∫

Ωi

γi(kn
i )∇kn+1

i · ∇ϕi dx −
∫

Ωi

γi(ki)∇ki · ∇ϕi dx
∣∣∣∣ ≤ η

3
, ∀ϕi ∈ D(Ω). (4.2)

Let now ϕi belong to W 1,r
0 (Ωi). Since D(Ωi) is dense in W 1,r

0 (Ωi), there exists a sequence (ϕm
i )m ≥ 0 that

belongs to D(Ωi), such that for m ≥ m0, we have ‖ϕm
i − ϕi‖W 1,r

0 (Ωi)
≤ η

3 . Thanks to the Sobolev continuous
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embedding from W 1,r
0 (Ωi) to H1

0 (Ω), we can write for m ≥ m0

‖ϕm
i − ϕi‖H1

0 (Ωi) ≤
η

3
· (4.3)

Thanks to the triangular inequality, we obtain

∣∣∣∣
∫

Ωi

γi(kn
i )∇kn+1

i · ∇ϕi dx −
∫

Ωi

γi(ki)∇ki · ∇ϕi dx
∣∣∣∣≤

∣∣∣∣
∫

Ωi

γi(kn
i )∇kn+1

i · ∇ϕi dx −
∫

Ωi

γi(kn
i )∇kn+1

i · ∇ϕm
i dx

∣∣∣∣
+

∣∣∣∣
∫

Ωi

γi(kn
i )∇kn+1

i ·∇ϕm
i dx−

∫
Ωi

γi(ki)∇(ki)·∇ϕm
i dx

∣∣∣∣
+

∣∣∣∣
∫

Ωi

γi(ki)∇(ki) · ∇ϕm
i dx −

∫
Ωi

γi(ki)∇(ki) · ∇ϕidx
∣∣∣∣.

(4.4)

Hölder inequality implies

∣∣∣∣
∫

Ωi

γi(kn
i )∇kn+1

i · ∇ϕi dx −
∫

Ωi

γi(ki)∇ki · ∇ϕi dx
∣∣∣∣≤ δ1‖∇kn+1

i ‖L2(Ωi)‖∇(ϕm
i − ϕi)‖L2(Ωi)

+
∣∣∣∣
∫

Ωi

γi(kn
i )∇kn+1

i · ∇ϕm
i dx −

∫
Ωi

γi(ki)∇(ki) · ∇ϕm
i dx

∣∣∣∣ + δ1‖∇ki‖0‖∇(ϕm
i − ϕi)‖L2(Ωi).

Using relations (4.2)–(4.3), and the strong convergence of the sequence (kn
i )n in H1(Ωi), we deduce that for any

function ϕi ∈ W 1,r
0 (Ωi), we have

lim
n→∞

∫
Ωi

γi(kn
i )∇(kn+1

i ) · ∇ϕi dx =
∫

Ωi

γi(ki)∇(ki) · ∇ϕi dx.

To show the second equation of the relation (4.1), we write

∣∣∣∣
∫

Ωi

αi(kn
i )|∇un+1

i |2 − αi(ki)|∇ui|2ϕi dx
∣∣∣∣

≤
∫

Ωi

αi(kn
i )

∣∣∣∣|∇un+1
i |2 − |∇ui|2

∣∣∣∣|ϕi| dx +
∫

Ωi

|αi(kn
i ) − αi(ki)| |∇ui|2|ϕi| dx,

thanks to Hypothesis 3.1, the Sobolev embedding from H1(Ωi) to L6(Ωi) and Hölder inequality, we can write
for all ϕi ∈ D(Ωi),

∣∣∣∣
∫

Ωi

αi(kn
i )|∇un+1

i |2 − αi(ki)|∇ui|2ϕi dx
∣∣∣∣

≤ δ1‖ϕi‖∞‖∇un+1
i ‖L2(Ωi)d‖∇ui‖L2(Ωi)d‖∇(un+1

i − ui)‖L2(Ωi)d + cM2δ2‖ϕi‖∞‖kn
i − ki‖H1(Ωi),

where c is a positive constant, depending only on the Ωi. Due to the strong convergence in H1 of the sequences
(un

i )n and (kn
i )n to ui and ki,

∣∣∣∣
∫

Ωi

(
αi(kn

i )|∇un+1
i |2 − αi(ki)|∇ui|2

)
ϕi dx

∣∣∣∣ ≤ η

3
·
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Let now ϕi ∈ W 1,r
0 (Ωi). The density of D(Ωi) in W 1,r

0 (Ωi), implies that there exists a sequence (ϕm
i )m in D(Ωi),

such that
‖ϕm

i − ϕi‖L3(Ωi) ≤ c(Ωi)‖ϕm
i − ϕi‖W 1,r(Ωi) ≤

η

3
,

where c(Ωi) only depends on Ωi. Finally, using the triangular inequality, we obtain

∣∣∣∣
∫

Ωi

(
αi(kn

i )|∇un+1
i |2 − αi(ki)|∇ui|2

)
ϕi dx

∣∣∣∣≤
∣∣∣∣
∫

Ωi

(
αi(kn

i )|∇un+1
i |2 − αi(ki)|∇ui|2

)
ϕm

i dx
∣∣∣∣

+
∣∣∣∣
∫

Ωi

αi(kn
i )|∇un+1

i |2(ϕm
i − ϕi) dx

∣∣∣∣+
∣∣∣∣
∫

Ωi

αi(ki)|∇ui|2(ϕm
i − ϕi) dx

∣∣∣∣.
Thus,

∣∣∣∣
∫

Ωi

(
αi(kn

i )|∇un+1
i |2 − αi(ki)|∇ui|2

)
ϕi dx

∣∣∣∣ ≤ ‖αi‖∞‖∇un+1
i ‖2

L3(Ωi)d‖ϕm
i − ϕi‖L3(Ωi)

+
ε

3
+ ‖αi‖∞‖∇ui‖2

L3(Ωi)d‖ϕm
i − ϕi‖L3(Ωi).

We deduce that ∀ϕi ∈ W 1,r
0 (Ωi), lim

n→∞

∫
Ωi

αi(kn
i )|∇un+1

i |2ϕi dx =
∫

Ωi

αi(ki)|∇ui|2ϕi dx.

Third step. Boundary conditions of TKE on Γ

In this step, we show that ki = λ|u1 − u2|2 on Γ.
Consider the following triangular inequality

‖λ|u1 − u2|2 − ki‖
H

1
2 (Γ)

≤ ‖λ|un
1 − un

2 |2 − ki‖
H

1
2 (Γ)

+ ‖λ|un
1 − un

2 |2 − λ|u1 − u2|2‖
H

1
2 (Γ)

.

Due to the strong convergence of (kn
i )n to ki in H1(Ωi), and thanks to the continuity of the trace operator from

H1(Ωi) to H
1
2 (Γ), the sequence kn

i converges strongly to ki in H
1
2 (Γ). Furthermore, kn

i = λ|un+1
1 − un+1

2 |2
on Γ. Thus,

lim
n→∞λ|un+1

1 − un+1
2 |2 = ki,

strongly in H
1
2 (Γ).

Let us now prove that
lim

n→∞ ‖λ|un
1 − un

2 |2 − λ|u1 − u2|2‖
H

1
2 (Γ)

= 0.

Using the identity a2 − b2 = (a − b)(a + b) and Lemma 3.5, we obtain

‖λ|un
1 −un

2 |2−λ|u1−u2|2‖
H

1
2 (Γ)

≤ λ || (un
1 − u1) − (un

2 − u2) ||
H

1
2 (Γ)

|| (un
1 + u1) − (un

2 + u2) ||
W

1− 1
3+ε

,3+ε
(Γ)d

,

so,

‖λ|un
1 − un

2 |2 − λ|u1 − u2|2‖
H

1
2 (Γ)

≤ λ
[
‖un

1 − u1‖
H

1
2 (Γ)

+ ‖un
2 − u2‖

H
1
2 (Γ)

] [
‖un

1 + u1‖
W

1− 1
3+ε

,3+ε
(Γ)d

+ ‖un
2 + u2‖

W
1− 1

3+ε
,3+ε

(Γ)d

]
.

Due to the continuity of the trace operators from W 1,3+ε(Ω1)d to W 1− 1
3+ε ,3+ε(Γ)d and from H1(Ωi) to H

1
2 (Γ),

and by Hypothesis 3.1, there exists a positive constant c, that only depends on the domains Ωi, such that

‖λ|un
1 − un

2 |2 − λ|u1 − u2|2‖
H

1
2 (Γ)

≤ cMλ
(‖un

1 − u1‖H1(Ω1) + ‖un
2 − u2‖H1(Ω2)

)
.
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Finally, due to the strong convergence of (un
i )n to ui in H1(Ωi), we deduce that

lim
n→∞ ‖λ|un

1 − un
2 |2 − λ|u1 − u2|2‖

H
1
2 (Γ)

= 0.

Consequently, ki = λ|u1 − u2|2 on Γ. This, finishes the proof of this theorem. �

5. Numerical experiments

To conclude this paper, we use the algorithm introduced to solve the interaction of the ocean and the
atmosphere in a simplified geometry. The discretization is performed using a Spectral method based on Legendre
polynomials (see [2,10] or [11] for instance) that we have implemented in FreeFEM3D4.

The algorithm presented in this paper is nonlinear, thus it cannot be used “as is”. Various strategies could
be employed to treat this nonlinearity (Newton or fixed point algorithms, etc.). According to the monotonic
nature of the nonlinear friction boundary condition on the boundary Γ, we choose to linearize the term

∫
Γ

|un+1
i − un+1

j |(un+1
i − un+1

j ) · vidτ

of Problem 1. We replace it by ∫
Γ

|un
i − un

j |(un+1
i − un+1

j ) · vidτ.

This term is linear and still monotonic in the unknowns (un+1
1 ,un+1

2 ), due to property (3.4). The problems for
(un+1

1 , pn+1
1 ) and (un+1

2 , pn+1
2 ) still are coupled but the overall problem is linear and admits a unique solution:

Obtain (un+1
i , pn+1

i , kn+1
i ) ∈ Xi × L2(Ωi) × W 1,r′

(Ωi), such that ∀(vi, qi, ϕi) ∈ Xi × L2(Ωi) × W 1,r
0 (Ωi),

ai(kn
i ;un+1

i ,∇vi) + bi(vi, p
n+1
i ) + κi

∫
Γ

|un
i − un

j |(un+1
i − un+1

j ) · vidτ =
∫

Ωi

fi · vidτ, (5.1)

and bi(un+1
i , qi) = 0. (5.2)

To perform a somewhat realistic computation, we consider turbulent viscosities αi and γi with the structure
νt + �

√
k. We consider the data reported in [5]:

• Geometry:
– Ω1 = ]0, 5[ × ]0, 1[ × ]0, 1[ describes the atmosphere;
– Ω1 = ]0, 5[ × ]0,−1[ × ]0, 1[ is the ocean.

• Physical data (taken from [5]):
– γ1(k1) = 3 × 10−3 + 0.277× 10−4

√
k1;

– γ2(k2) = 3 × 10−2 + 0.185× 10−5
√

k2;
– αi(·) = γi(·), for i = 1, 2.

• Friction coefficients (coming also from [5]):
– κi = 10−3, for i = 1, 2; and
– λ = 5 × 10−2.

These data correspond to an air-sea flow, each modeled by a simplified TKE-mixing layer turbulence model.
The mixing lengths are calculated by wall laws. The friction coefficients, in their turn, are just tentative.
The physical units are in MKS system. The velocity boundary conditions imposes that u1 = 0 on Γ1 \ Γ̃1,
u1 = (1, 0, 0) on Γ̃1 and u2 = 0 on Γ2, where Γ̃1 is the upper face (y = 1) of Ω1. These settings are chosen in
order to create a driven cavity-like flow in Ω1. One expects to generate another driven cavity-like flow in Ω2

rotating in the opposite sense.

4http://www.freefem.org/ff3d/.
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(a) u1 on the plane z = 0.5 (b) u1 on the plane x = 2.5

(c) u2 on the plane z = 0.5 (d) u2 on the plane x = 2.5

Figure 1. Velocity fields on cutting planes.

(a) k1 on the plane z = 0.5 (b) k2 on the plane z = 0.5

Figure 2. Turbulent Kinetic Energy on cutting plane.

The results are obtained using a (PN )3×PN−2 discretization of (ui, pi) to avoid spurious modes of the Stokes
problem. The TKE is discretized using a PN space. For this particular simulation we have chosen the following
degrees for ui and ki: 28 in direction x and 8 in directions y and z.

Computed velocity fields ui and the TKE ki are represented in Figures 1 and 2. The results are quantitatively
correct: The atmosphere flow generates a driven-lid like flow in the ocean, due to the boundary conditions on
the velocity at z = 0. Also, there is generation of TKE at z = 0, again due to the TKE generation boundary
conditions.
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Figure 3. Convergence history: computed L2 norm of the difference of successive iterates.

Figure 3 shows the expected exponential convergence rate of the algorithm due to its contractiveness. Note
that this does not depend on the type of discretization (see [24] where Finite Element approximations have also
been used).

6. Conclusion

In this paper, we have presented and analyzed a numerical scheme for the approximation of a model of two
steady turbulent fluids with coupling at the interface. This is a simplified model for the atmosphere-ocean
interaction, where we have neglected Coriolis forces and buoyancy effects, but have kept several non-linear
interactions across the common boundary.

The proposed scheme is mainly linear, a monotone nonlinearity being just kept at the interface between
the fluids. We showed the convergence of the triple (un

i , pn
i , kn

i ), for reasonable hypothesis on the regularity
of the velocity and the turbulent kinetic energy. This contribution ends with some numerical results, in good
agreement with the theoretical expectations. Notably, the exponential convergence that appeared through the
contractiveness of the sequences (un

i )n and (kn
i )n is found in our tests.

Several extensions to this work can be considered. To name a few, taking into consideration anisotropic
diffusion and Coriolis forces (more realistic) are straightforward generalizations of the present analysis. Also,
switching to unsteady incompressible flows should be possible using our approach. Taking into account buoyancy
effects is more technically involved, but it should also be possible, similarly to the extension of the standard
analysis for incompressible Navier–Stokes to buoyancy effects.

Acknowledgements. The authors are grateful to Christine Bernardi for her help and encouragements.
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