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ABOUT STABILITY AND REGULARIZATION OF ILL-POSED ELLIPTIC
CAUCHY PROBLEMS: THE CASE OF C1,1 DOMAINS

Laurent Bourgeois1

Abstract. This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy
problems for the Laplace’s equation in domains with C1,1 boundary. It is an extension of an earlier
result of [Phung, ESAIM: COCV 9 (2003) 621–635] for domains of class C∞. Our estimate is established
by using a Carleman estimate near the boundary in which the exponential weight depends on the
distance function to the boundary. Furthermore, we prove that this stability estimate is nearly optimal
and induces a nearly optimal convergence rate for the method of quasi-reversibility introduced in [Lattès
and Lions, Dunod (1967)] to solve the ill-posed Cauchy problems.
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1. Introduction

The question of stability for ill-posed elliptic Cauchy problems is a central question in the fields of inverse
problems and controllability. Concerning the inverse problems for example, the aim is generally to retrieve
some unknown object, for example an obstacle or a distributed parameter, with the help of some boundary
measurements. These measurements are noisy data by nature. Given two sets of data the distance of which
is σ, the problem of stability amounts to study the distance in term of σ between the corresponding two retrieved
objects. In particular, a practical motivation is numerics: the better is the stability we obtain, the better is
the numerical reconstruction we expect. In this view, the stability for ill-posed elliptic Cauchy problems is an
important first step in order to study the stability of more complex inverse problems governed by elliptic PDEs,
as it may be seen for example in [1] concerning the inverse obstacle problem and in [6] concerning the corrosion
detection problem. The following paper is focused on this first step.

A number of authors have studied the stability for ill-posed elliptic Cauchy problems since the first con-
tributions of John [14] and Payne [20]. In the meantime, the so-called Carleman estimates have become a
very efficient tool to derive not only unique continuation properties (see for instance [5,22]) but also stability
estimates (see for instance [6,13,18,21,24]).

The obtained stability estimates take some various forms, depending on the geometry of the domain and on
the regularity of the function. But a classical and general result is that the stability estimates are, following
the vocabulary introduced by John [14], of Hölder type in a subdomain which does not include a neighborhood
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of the boundary where limit conditions are unknown, and of logarithmic type in the whole domain, as it will be
described again in the following paper. In the particular case of the Helmholtz equation, the authors of [12,23]
analyzed the influence of the frequency on the Hölder and the logarithmic stability estimates, precisely on the
constant in front of these estimates.

Here we are interested in the influence of the regularity of the boundary on stability estimates, precisely on
the optimal exponent of the logarithmic stability estimate in the whole domain. In [1], a logarithmic stability
estimate is established in the case of a Lipschitz domain for functions of class C1,α with 0 < α < 1, with the
help of doubling inequalities. The exponent of the logarithm is however unspecified in that paper. In [6], a
stability estimate is obtained in two dimensions in C2,α class domains with 0 < α < 1 and for functions of
class C2. In [24], a stability estimate is obtained in domains of class C2 for functions of class Hη, where η > 2
depends on the dimension. In these two last papers, the exponent is specified but not proved to be optimal.

In the following paper, we specify the exponent of the logarithmic stability estimate in the case of a domain
with C1,1 boundary for functions in H2. Precisely, we prove that this exponent is any κ < 1 and that the
value 1 cannot be improved. In this sense, our stability estimate in nearly optimal. The case of a domain
with Lipschitz boundary, which requires a completely different technique, is considered in [3]. The choice of the
functional spaceH2 is motivated by a particular application of our stability estimate, which is the derivation of a
convergence rate for the method of quasi-reversibility to regularize the ill-posed Cauchy problems for the elliptic
operator P [17]. We hence obtain a nearly optimal convergence rate for the method of quasi-reversibility in the
whole domain, which is new and completes the result of [16] concerning this convergence rate in a subdomain.

The starting point of our study is the nice article of Phung [21], who obtained the following conditional
stability estimate for the operator P = −Δ. − k., k ∈ R. For a bounded and connected domain Ω ⊂ R

N of
class C∞, if Γ0 is an open part of ∂Ω, then for all κ ∈ ]0, 1[, there exist constants C, δ0 > 0 such that for all
δ ∈ ]0, δ0[, for all function u ∈ H2(Ω) which satisfies

||u||H2(Ω) ≤M, ||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ, (1.1)

where M is a constant,

||u||H1(Ω) ≤ C
M

(log(M/δ))κ
· (1.2)

A similar estimate holds with ||u||H1(ω) replacing ||u||H1(Γ0) + ||∂nu||L2(Γ0) in (1.1) for any open domain ω � Ω.
The label “conditional” stems from the first inequality of (1.1), which is required to obtain stability. We also
notice that despite u ∈ H2(Ω), we only estimate ||u||H1(Ω) in (1.2), which is due to the estimation of the
function u up to the part of the boundary ∂Ω which is complementary to Γ0 (see the proof of Prop. 2.4).
In [21], the proof of (1.2) for C∞ domains is mainly based on an interior Carleman estimate [8,11], as well
as a Carleman estimate near the boundary [19]. Precisely, the analysis of stability near the boundary follows
from a Carleman estimate in the half-space after using a local mapping from the Cartesian coordinates to the
geodesic normal coordinates, which separates normal and tangential second derivatives in the principal part
of the transformed operator. The Carleman estimates apply to the transformed operator and use microlocal
analysis.

The aim of this paper is to prove that the stability estimate (1.2) still holds for domains of class C1,1 with the
same assumptions. Because it is based on geodesic normal coordinates, the technique used in [21] is not strictly
speaking applicable to domains of class C1,1. By definition of a C1,1 domain, a particular mapping enables us
to flatten the boundary and then probably to continue the analysis on the transformed operator in the spirit
of [21], despite separation between normal and tangential second derivatives does not hold anymore.

The present paper is however devoted to an alternative technique that uses no local change of coordinates
and which is based on the distance function to the boundary. Precisely, we use Carleman estimates near the
boundary directly on the initial geometry and on the initial Laplace operator, by following the friendly method
of [9] instead of microlocal analysis, and the exponential weight is a function of the distance to the boundary.

Our paper is organized as follows. The second section is devoted to the derivation of our stability estimate with
the help of a Carleman inequality. This is based on the local regularity of the distance function to the boundary,
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which is related to the regularity of the domain. In Section 3 we prove that such stability estimate in nearly
optimal. Lastly, in Section 4 we derive some convergence rates for the method of quasi-reversibility to regularize
the ill-posed Cauchy problems.

2. A stability estimate in domains of class C1,1

2.1. About the regularity of the distance function

We consider a bounded and connected domain Ω ⊂ R
N of class C1,1. For x ∈ Ω, we denote d∂Ω(x) the

distance function to the boundary ∂Ω, and we define the set

π∂Ω(x) = {y ∈ ∂Ω, |x− y| = d∂Ω(x)},

where |.| denotes the Euclidean norm in R
N . At any point y ∈ ∂Ω, the outward unit normal is denoted n(y).

There are a number of contributions concerning the regularity of function d∂Ω near the boundary. Among
these, the following theorem is proved in [7] (see Thm. 4.3, p. 219).

Theorem 2.1. If the domain Ω ⊂ R
N is of class C1,1, then for all x0 ∈ ∂Ω, there exists a neighborhood W(x0)

of x0 such that if W (x0) = W(x0) ∩ Ω,

∀x ∈W (x0), π∂Ω(x) = {P∂Ω(x)}

is a singleton and the map: W (x0) → R
N

x �→ P∂Ω(x)

is Lipschitz continuous in W (x0). Moreover,

∀x ∈W (x0), ∇d∂Ω(x) = −n(P∂Ω(x)).

As a result, ∇d∂Ω is Lipschitz continuous in W (x0), so d∂Ω ∈ C1,1(W (x0)), in particular the components of
∇2d∂Ω belong to L∞(W (x0)).

Remark 2.1. As proved by a counterexample in [7], p. 222, when Ω is only of class C1,α, with 0 ≤ α < 1,
then d∂Ω may be not differentiable in a neighborhood of ∂Ω. In particular, ∇d∂Ω is not a C0 function in a
neighborhood of ∂Ω.

2.2. A Carleman estimate near the boundary

We consider x0 ∈ ∂Ω, R0 > 0, and the set B = Ω ∩ B(x0, R0). We define H̃2
0 (B) as the restrictions to B of

functions in H2
0 (B(x0, R0)).

Let the function ψ satisfy ψ ∈ C1(B), ∇ψ 
= 0 on B, and ∇2ψ ∈ (L∞(B))N×N .
We define for ε ≥ 0,

Kε = {x ∈ B, ψ(x) ≥ ε}.
In the following, ψ is chosen such that only two cases occur (see Fig. 1). In the first case K0 = B, the
boundary of K0 in then included in ∂Ω ∪ ∂B(x0, R0) and we denote ∂K0 = B ∩ ∂Ω. In the second case
{x, ψ(x) > 0} ∩ ∂Ω = ∅, the boundary of K0 is then included in {x, ψ(x) = 0} ∪ ∂B(x0, R0) and we denote
∂K0 = {x ∈ B, ψ(x) = 0}.

Denoting φ(x) = eαψ(x) for α > 0, we have the following lemma.
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Figure 1. Two cases for definition of K0 and ∂K0.

Lemma 2.1. Let define u ∈ C∞
0 (B(x0, R0)) and v = u eλφ with λ > 0.

With the following definitions

p1 = 2α2λ

∫
K0

φ(∇ψ.∇v)2 dx,

p2 = α4λ3

∫
K0

φ3|∇ψ|4v2 dx, p3 = α2λ

∫
K0

φ|∇ψ|2|∇v|2 dx,

d1 = 2αλ
∫
K0

φ∇tv.∇2ψ.∇v dx, d2 = −αλ
∫
K0

φ(Δψ)|∇v|2 dx,

d3 = 2α3λ

∫
K0

φ|∇ψ|2(∇ψ.∇v)v dx, d4 = 4α2λ

∫
K0

φ(∇tψ.∇2ψ.∇v)v dx,

d5 = 2α3λ3

∫
K0

φ3(∇tψ.∇2ψ.∇ψ)v2 dx, d6 = α3λ3

∫
K0

φ3(Δψ)|∇ψ|2v2 dx,

b1 = −2αλ
∫
∂K0

φ(∇ψ.∇v)∂v
∂n

dΓ, b2 = αλ

∫
∂K0

φ
∂ψ

∂n
|∇v|2 dΓ,

b3 = −2α2λ

∫
∂K0

φ|∇ψ|2v ∂v
∂n

dΓ, b4 = −α3λ3

∫
∂K0

φ3|∇ψ|2 ∂ψ
∂n

v2 dΓ,

p0 =
∫
K0

(k + α2λφ|∇ψ|2 − αλφ(Δψ))2v2 dx, p =
∫
K0

(Pu)2 e2λφ dx,

we have

p1 + p2 + p3 + d1 + d2 + d3 + d4 + d5 + d6 + b1 + b2 + b3 + b4 ≤ p0 + p.
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Proof. We first find an expression of Pu as a function of v. Since u = ve−λφ,

∂u

∂xj
=

(
∂v

∂xj
− αλφ

∂ψ

∂xj
v

)
e−λφ,

∂2u

∂xj2
=

(
∂2v

∂xj2
− αλφ

∂2ψ

∂xj2
v − α2λφ

(
∂ψ

∂xj

)2

v − αλφ
∂ψ

∂xj

∂v

∂xj

)
e−λφ

−
(
∂v

∂xj
− αλφ

∂ψ

∂xj
v

)
αλφ

∂ψ

∂xj
e−λφ

=

(
∂2v

∂xj2
− αλφ

∂2ψ

∂xj2
v − α2λφ

(
∂ψ

∂xj

)2

v − 2αλφ
∂ψ

∂xj

∂v

∂xj
+ α2λ2φ2

(
∂ψ

∂xj

)2

v

)
e−λφ,

whence

Δu+ k u =
(
Δv + k v − αλφ(Δψ)v − α2λφ|∇ψ|2v − 2αλφ(∇ψ.∇v) + α2λ2φ2|∇ψ|2v) e−λφ.

The above equation can be rewritten

−Pu eλφ = M1v +M2v +M3v,

by denoting

M1v = Δv + α2λ2φ2|∇ψ|2v
M2v = −2αλφ(∇ψ.∇v) − 2α2λφ|∇ψ|2v
M3v = k v + α2λφ|∇ψ|2v − αλφ(Δψ)v.

It follows that

||M1v +M2v||2L2(K0)
= ||Pu eλφ +M3v||2L2(K0)

,

whence

(M1v,M2v)L2(K0) ≤ ||Pu eλφ||2L2(K0)
+ ||M3v||2L2(K0)

.

We now develop that left-hand side term. Since M1v and M2v are both the sum of two terms, with obvious
notations we have

(M1v,M2v)L2(K0) = I11 + I12 + I21 + I22.
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By integration by parts in K0, we obtain by using the Einstein notation for repeated indices,

I11 = −2αλ
∫
K0

φ(Δv)(∇ψ.∇v) dx

= 2αλ
∫
K0

∂v

∂xi

∂.

∂xi

(
φ
∂ψ

∂xj

∂v

∂xj

)
dx− 2αλ

∫
∂K0

φ
∂v

∂n
(∇ψ.∇v) dΓ

= 2αλ
∫
K0

φ
∂v

∂xi

∂2ψ

∂xi∂xj

∂v

∂xj
dx+ 2α2λ

∫
K0

φ
∂v

∂xi

∂ψ

∂xi

∂ψ

∂xj

∂v

∂xj
dx

+ 2αλ
∫
K0

φ
∂v

∂xi

∂ψ

∂xj

∂2v

∂xi∂xj
dx− 2αλ

∫
∂K0

φ
∂v

∂n
(∇ψ.∇v) dΓ

= 2α2λ

∫
K0

φ(∇ψ.∇v)2 dx+ 2αλ
∫
K0

φ∇tv.∇2ψ.∇v dx

+αλ

∫
K0

φ∇ψ.∇(|∇v|2) dx− 2αλ
∫
∂K0

φ
∂v

∂n
(∇ψ.∇v) dΓ.

The third term of the above sum can be rewritten

I ′11 := αλ

∫
K0

φ∇ψ.∇(|∇v|2) dx

= −αλ
∫
K0

∂.

∂xi

(
φ
∂ψ

∂xi

)
|∇v|2 dx+ αλ

∫
∂K0

φ
∂ψ

∂n
|∇v|2 dΓ

= −αλ
∫
K0

φ(Δψ)|∇v|2 dx− α2λ

∫
K0

φ|∇ψ|2|∇v|2 dx+ αλ

∫
∂K0

φ
∂ψ

∂n
|∇v|2 dΓ.

Similarly, we have

I12 = −2α2λ

∫
K0

φ|∇ψ|2vΔv dx

= 2α2λ

∫
K0

∇(φ|∇ψ|2v).∇v dx− 2α2λ

∫
∂K0

φ|∇ψ|2v ∂v
∂n

dΓ

= 2α3λ

∫
K0

φ|∇ψ|2(∇ψ.∇v)v dx+ 2α2λ

∫
K0

φv∇(|∇ψ|2).∇v dx

+ 2α2λ

∫
K0

φ|∇ψ|2|∇v|2 dx− 2α2λ

∫
∂K0

φ|∇ψ|2v ∂v
∂n

dΓ.

I21 = −2α3λ3

∫
K0

φ3|∇ψ|2(∇ψ.∇v)v dx = −α3λ3

∫
K0

φ3|∇ψ|2 ∂ψ
∂xi

∂(v2)
∂xi

dx

= α3λ3

∫
K0

div(φ3|∇ψ|2∇ψ)v2 dx− α3λ3

∫
∂K0

φ3|∇ψ|2 ∂ψ
∂n

v2 dΓ

= 3α4λ3

∫
K0

φ3|∇ψ|4v2 dx+ α3λ3

∫
K0

φ3div(|∇ψ|2∇ψ)v2 dx

−α3λ3

∫
∂K0

φ3|∇ψ|2 ∂ψ
∂n

v2 dΓ.
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Lastly

I22 = −2α4λ3

∫
K0

φ3|∇ψ|4v2 dx.

If we add all terms and simplify, we finally obtain

(M1v,M2v)L2(K0) = p1 + p2 + p3 + d1 + d2 + d3 + d4 + d5 + d6 + b1 + b2 + b3 + b4.

Since
||M3v||2L2(K0)

= p0, ||Pu eλφ||2L2(K0)
= p,

this completes the proof of the lemma. �
We obtain the following Carleman estimate in K0.

Proposition 2.1. There exist K,α0, λ0 > 0 such that ∀α ≥ α0, ∀λ ≥ λ0, ∀u ∈ H̃2
0 (B),

α4λ3

∫
K0

φ3|∇ψ|4u2e2λφ dx+ α2λ

∫
K0

φ|∇ψ|2|∇u|2e2λφ dx

≤ K

∫
K0

|Pu|2e2λφ dx+Kαλ

∫
∂K0

φ|∇ψ||∇u|2e2λφ dΓ +Kα3λ3

∫
∂K0

φ3|∇ψ|3u2e2λφ dΓ.

Proof. For u ∈ C∞
0 (B(x0, R0)), we denote v = u eλφ and use the notations of Lemma 2.1. Since ∇ψ 
= 0 on B,

we have

p2 + d5 + d6 ≥ α3λ3

∫
K0

φ3|∇ψ|4
(
α+

2μ−(ψ) + Δψ
|∇ψ|2

)
v2 dx,

p3 + d1 + d2 ≥ αλ

∫
K0

φ|∇ψ|2
(
α+

2μ−(ψ) − Δψ
|∇ψ|2

)
|∇v|2 dx,

where μ−(ψ) (resp. μ+(ψ)) is the smallest (resp. largest) eigenvalue of ∇2ψ. Since μ−(ψ) and Δψ belong to
L∞(B), there exists a constant c such that

2μ−(ψ) ± Δψ
|∇ψ|2 ≥ c a.e. in K0.

Hence, for sufficiently large α there exist constants K,K ′ > 0 such that

p2 + d5 + d6 ≥ Kα4λ3

∫
K0

φ3|∇ψ|4v2 dx,

p3 + d1 + d2 ≥ K ′α2λ

∫
K0

φ|∇ψ|2|∇v|2 dx.

Now we look at terms d3 and d4.

|d3| ≤ 2α3λ

∫
K0

φ|∇ψ|2|∇ψ.∇v||v| dx.

By using Young’s formula,

|d3| ≤ α2λ

∫
K0

φ(∇ψ.∇v)2 dx+ α4λ

∫
K0

φ|∇ψ|4v2 dx

≤ α2λ

∫
K0

φ(∇ψ.∇v)2 dx+ α4λ

∫
K0

φ3|∇ψ|4v2 dx,

since φ ≥ 1 in K0.
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Hence we have

p1 + d3 ≥ α2λ

∫
K0

φ(∇ψ.∇v)2 dx− α4λ

∫
K0

φ3|∇ψ|4v2 dx

≥ −α4λ

∫
K0

φ3|∇ψ|4v2 dx.

|d4| ≤ 4α2λ

∫
K0

φμ(ψ)|∇ψ||∇v||v| dx

with μ(ψ) = max(|μ−(ψ)|, |μ+(ψ)|), and by using again Young’s formula,

|d4| ≤ 2α3λ2

∫
K0

φμ(ψ)|∇ψ|2v2 dx+ 2α
∫
K0

φμ(ψ)|∇v|2 dx.

Since μ(ψ) ∈ L∞(B), there exists a constant C such that

μ(ψ)
|∇ψ|2 ≤ C a.e. in K0.

Then, since φ ≥ 1 in K0,

|d4| ≤ 2Cα3λ2

∫
K0

φ3|∇ψ|4v2 dx+ 2Cα
∫
K0

φ|∇ψ|2|∇v|2 dx.

We now consider the case of p0.
We have

p0 = α4λ2

∫
K0

φ2|∇ψ|4
(

1 +
k

α2λφ|∇ψ|2 − 1
α

Δψ
|∇ψ|2

)2

v2 dx.

For λ ≥ 1 and sufficiently large α, we obtain

p0 ≤ 2α4λ2

∫
K0

φ3|∇ψ|4v2 dx.

If we gather all the above estimates, we obtain

p1 + p2 + p3 + d1 + d2 + d3 + d4 + d5 + d6 − p0

≥ K0α
4λ3

∫
K0

φ3|∇ψ|4v2 dx+K1α
2λ

∫
K0

φ|∇ψ|2|∇v|2 dx,

with

K0 = K − 1
λ2

− 2C
αλ

− 2
λ
, K1 = K ′ − 2C

αλ
·

As a result, when α and λ are large enough, we have K0,K1 > 0.
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Now let us consider |bi|, i = 1, 2, 3, 4. We have

|b1 + b2| ≤ 3αλ
∫
∂K0

φ|∇ψ||∇v|2 dΓ,

|b3| ≤ 2α2λ

∫
∂K0

φ|∇ψ|2|∇v||v| dΓ,

≤ αλ

∫
∂K0

φ|∇ψ||∇v|2 dΓ + α3λ

∫
∂K0

φ|∇ψ|3v2 dΓ,

|b4| ≤ α3λ3

∫
∂K0

φ3|∇ψ|3v2 dΓ.

Since φ ≥ 1, for λ ≥ 1 we have

|b1 + b2 + b3 + b4| ≤ 4αλ
∫
∂K0

φ|∇ψ||∇v|2 dΓ + 2α3λ3

∫
∂K0

φ3|∇ψ|3v2 dΓ.

Applying Lemma 2.1, we obtain that for sufficiently large α, λ, there exists a constant K > 0 such that

α4λ3

∫
K0

φ3|∇ψ|4v2 dx+ α2λ

∫
K0

φ|∇ψ|2|∇v|2 dx ≤ K

∫
K0

|Pu|2 e2λφ dx

+Kαλ

∫
∂K0

φ|∇ψ||∇v|2 dΓ +Kα3λ3

∫
∂K0

φ3|∇ψ|3v2 dΓ.

Now we replace v in the above estimate by its expression as a function of u.

v = u eλφ, ∇v = (∇u)eλφ + αλφu(∇ψ)eλφ.

We obtain

2α4λ3

∫
K0

φ3|∇ψ|4u2e2λφ dx+ α2λ

∫
K0

φ|∇ψ|2|∇u|2e2λφ dx+ 2α3λ2

∫
K0

φ2|∇ψ|2u(∇ψ.∇u)e2λφ dx

≤ K

∫
K0

|Pu|2e2λφ dx+Kαλ

∫
∂K0

φ|∇ψ||∇u|2e2λφ dΓ

+ 2Kα2λ2

∫
∂K0

φ2|∇ψ|u(∇ψ.∇u)e2λφ dΓ + 2Kα3λ3

∫
∂K0

φ3|∇ψ|3u2e2λφ dΓ.

We now use the following Young’s inequalities:

∣∣∣∣2α3λ2

∫
K0

φ2|∇ψ|2u(∇ψ.∇u)e2λφ dx
∣∣∣∣ ≤ 1

r
α4λ3

∫
K0

φ3|∇ψ|4u2e2λφ dx+ α2λr

∫
K0

φ|∇ψ|2|∇u|2e2λφ dx,

with r > 0, and

∣∣∣∣2α2λ2

∫
∂K0

φ2|∇ψ|u(∇ψ.∇u)e2λφ dΓ
∣∣∣∣ ≤ αλ

∫
∂K0

φ|∇ψ||∇u|2e2λφ dΓ + α3λ3

∫
∂K0

φ3|∇ψ|3u2e2λφ dΓ.
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As a conclusion, if we choose 1/2 < r < 1, we obtain K > 0 such that for α, λ large enough, and for all
u ∈ C∞

0 (B(x0, R0)),

α4λ3

∫
K0

φ3|∇ψ|4u2e2λφ dx+ α2λ

∫
K0

φ|∇ψ|2|∇u|2e2λφ dx

≤ K

∫
K0

|Pu|2e2λφ dx+Kαλ

∫
∂K0

φ|∇ψ||∇u|2e2λφ dΓ +Kα3λ3

∫
∂K0

φ3|∇ψ|3u2e2λφ dΓ.

By density, the above result remains true for u ∈ H̃2
0 (B). �

Remark 2.2. In the following, we can use a simpler statement as in Proposition 2.1. Once we have fixed
α = α0 > 0, we can drop α and ψ from the Carleman inequality and obtain there exist K,λ0 > 0 such that
∀λ ≥ λ0, ∀u ∈ H̃2

0 (B),

λ3

∫
K0

u2e2λφ dx+ λ

∫
K0

|∇u|2e2λφ dx ≤ K

∫
K0

|Pu|2e2λφ dx+Kλ

∫
∂K0

|∇u|2e2λφ dΓ +Kλ3

∫
∂K0

u2e2λφ dΓ.

We hence obtain the same Carleman inequality as in Proposition 2.1 from [19].

2.3. Two stability estimates near the boundary

We consider a bounded and connected domain Ω ⊂ R
N with a C1,1 boundary ∂Ω, and Γ0 an open domain

of ∂Ω. This implies that there exist x0 ∈ Γ0 and τ > 0 with ∂Ω ∩B(x0, τ) ⊂ Γ0.
In this section we apply the Carleman estimate of Proposition 2.1 to obtain two stability estimates near the

boundary. We use approximately the same method as in [21], with however two main differences. First, we use
Carleman estimates involving weights eαψ1 , eαψ2 , where the functions ψ1, ψ2 are defined hereafter and depend
on the distance function to the boundary, instead of a Carleman estimate in the half-space after a local change
of coordinates. Second, as concerns Proposition 2.4, we use the level curves of a well-chosen weight instead of a
perturbation of the domain in order to introduce the open domain ω1 � Ω in the right-hand side of the estimate.
Before deriving these two stability estimates, we recall the following useful proposition, which is proved in [21]
with the help of an interior Carleman estimate, and which is not influenced by the regularity of the domain.

Proposition 2.2. Let ω0, ω1 be two open domains such that ω0, ω1 � Ω. There exist s, c, ε0 > 0 such that
∀ε ∈ ]0, ε0[, ∀u ∈ H2(Ω),

||u||H1(ω1) ≤
c

ε

(||Pu||L2(Ω) + ||u||H1(ω0)

)
+ εs ||u||H1(Ω).

For all x0 ∈ ∂Ω, we can choose the set W (x0) in Theorem 2.1 as B where B = Ω ∩ B(x0, R0), for some R0

with 0 < R0 < 1. In the following, we will use the two functions ψ1, ψ2 defined in Ω by:

ψ1(x) = R− d∂Ω(x) − 1
2
r(x)2, (2.1)

ψ2(x) = γ ◦ r(x)d∂Ω(x) + (1 − γ ◦ r(x))d̃∂Ω(x), (2.2)

d̃∂Ω(x) = d∂Ω(x) +
1
2
(d∂Ω(x)2 − r(x)2), (2.3)

with r(x) = |x− x0|.
Here, R > 0 is chosen such that ψ1 > 0 on B. We easily prove that for sufficiently small R0 and r0 < R0,

{d̃(x) > ε} ∩ B(x0, R0) 
= ∅ for all ε with 0 ≤ ε ≤ r0. Furthermore, γ is a C2 function on [0, R0] such that
γ = 1 on the segment [0, r0], and which is non increasing on [r0, R0] with 0 < γ(R0) < 1. Lastly we assume that
γ′(r) + 2γ(r) > 0 on [0, R0]. Such a function γ exists, take for example γ(r) = γ̃(r − r0) for r ∈ [r0, R0] with
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γ̃(r) = (2r2 + 2r + 1)e−2r. Since γ(r) ∈ [0, 1], we have {ψ2(x) > ε} ∩ B(x0, R0) 
= ∅ for all ε with 0 ≤ ε ≤ r0.
We have the following result.

Lemma 2.2. The two functions ψ1 and ψ2 satisfy the following properties: for i = 1, 2, ψi ∈ C1(B), ∇ψi 
= 0
on B, and ∇2ψi ∈ (L∞(B))N×N .

Proof. Theorem 2.1 implies that d∂Ω(x) ∈ C1(B) and ∇2d∂Ω ∈ (L∞(B))N×N , which implies the same properties
for ψ1 and ψ2.

We first verify that ∇ψ1 
= 0 in B. Using Theorem 2.1, we obtain that in B,

∇ψ1(x) = n(y) − (x− x0),

where y = P∂Ω(x). If for some x ∈ B we had ∇ψ1(x) = 0, then we would have |x− x0| = 1, which is impossible
since R0 < 1.

We consider now ∇ψ2. A straightforward calculation leads to

∇ψ2 = ∇d∂Ω − 1
2
∇(γ ◦ r)(d2

∂Ω − r2) + (1 − γ ◦ r)(d∂Ω∇d∂Ω − (x − x0)).

Now using the fact that ∇d∂Ω = −n(y) and ∇(γ ◦ r) = γ′ ◦ r(x)(x − x0)/|x− x0|, we obtain

∇ψ2 = −n(y) − 1
2
γ′(r)(d2

∂Ω − r2)
x− x0

|x− x0| + (1 − γ(r))(−d∂Ωn(y) − (x− x0)).

If x ∈ b with b = Ω ∩ B(0, r0), then ∇ψ2 = −n(y) 
= 0. Now assume that ∇ψ2(x) = 0 for some x ∈ B \ b. For
any τ(y) ⊥ n(y), we have

∇ψ2(x).τ(y) = 0 = −(x− x0).τ
(

1
2

γ′(r)
|x− x0| (d

2
∂Ω − r2) + 1 − γ(r)

)
.

Since d∂Ω(x) ≤ r(x) on B, γ′ ≤ 0 and 1 − γ > 0 on ]r0, R0], we have necessarily (x − x0).τ(y) = 0, whence
x− x0 = −η n(y) for some η ∈ R.

Furthermore,

∇ψ2(x).n(y) = 0 = −1 +
1
2
γ′(r)(d2

∂Ω − η2)sgn(η) − (1 − γ(r))(d∂Ω − η),

that is
−1

2
γ′(r)(η2 − d2

∂Ω)sgn(η) + (1 − γ(r))(η − d∂Ω) = 1.

But, since γ′ ≤ 0, 1 − γ > 0 and d∂Ω ≤ |η| ≤ R0 < 1,

−1
2
γ′(r)(η2 − d2

∂Ω)sgn(η) + (1 − γ(r))(η − d∂Ω) ≤ −1
2
γ′(r) + 1 − γ(r),

and −γ′/2 + 1 − γ < 1 since γ′ + 2γ > 0, which is a contradiction. �

Now we prove the two following estimates.

Proposition 2.3. Let x0 ∈ Γ0 and τ > 0 such that ∂Ω ∩B(x0, τ) ⊂ Γ0. There exists a neighborhood ω0 of x0,
there exist s, c, ε0 > 0 such that ∀ε ∈ ]0, ε0[, ∀u ∈ H2(Ω),

||u||H1(Ω∩ω0) ≤
c

ε

(||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)

)
+ εs ||u||H1(Ω).
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Proposition 2.4. Let x0 ∈ ∂Ω. There exist a neighborhood ω of x0 and an open domain ω1 � Ω such that for
all κ ∈ ]0, 1[, there exist c, ε0 > 0 such that ∀ε ∈ ]0, ε0[, ∀u ∈ H2(Ω),

||u||H1(Ω∩ω) ≤ ec/ε
(||Pu||L2(Ω) + ||u||H1(ω1)

)
+ εκ ||u||H2(Ω).

Proof of Proposition 2.3. We apply Proposition 2.1 and Remark 2.2 with function ψ = ψ1 defined by (2.1).
Here K0 = B since ψ1 > 0 on B and ∂K0 = B ∩ ∂Ω (see the definition at the beginning of Sect. 2.2 and
the left-hand side of Fig. 1). We assume that R0 < τ so that ∂K0 ⊂ Γ0. We consider z0 and z1 such that
0 < z1 < z0 < R, with

√
2(R− z1) < R0. This last condition implies that {x ∈ Ω, ψ1(x) ≥ z1} ⊂ B(x0, R0).

Next, we define v = χu, where χ is a function in C∞
0 (B(x0, R0)) such that χ = 1 on Kz1 .

Thus we have v ∈ H̃2
0 (B), and there exist K,λ0 > 0 such that for fixed (sufficiently large) α and for all

λ ≥ λ0, ∫
K0

(v2 + |∇v|2)e2λφ dx ≤ K

∫
K0

|Pv|2e2λφ dx+Kλ2

∫
∂K0

(v2 + |∇v|2)e2λφ dΓ.

We hence obtain

∫
Kz0

(u2 + |∇u|2)e2λφ dx ≤ K ′
∫
K0

|Pu|2e2λφ dx

+K ′
∫
K0\Kz1

(u2 + |∇u|2)e2λφ dx+K ′λ2

∫
∂K0

(u2 + |∇u|2)e2λφ dΓ.

By denoting h(z) = eαz, and since ψ1 ≥ z0 in Kz0 , ψ1 ≤ R in K0 and ψ1 < z1 in K0 \Kz1 (see the left-hand
side of Fig. 2), it follows that

e2λh(z0)||u||2H1(Kz0) ≤K ′e2λh(R)||Pu||2L2(K0)
+K ′e2λh(z1)||u||2H1(K0)

+K ′λ2e2λh(R)
(
||u||2H1(∂K0)

+ ||∂nu||2L2(∂K0)

)
,

and thus for sufficiently large λ,

||u||H1(Kz0) ≤K ′′λeλ(h(R)−h(z0))
(||Pu||L2(K0) + ||u||H1(∂K0) + ||∂nu||L2(∂K0)

)
+K ′′e−λ(h(z0)−h(z1))||u||H1(K0).

Taking into account the fact that h(R)−h(z0) > 0 and h(z0)−h(z1) > 0, by changing variable λ→ ε we obtain
that there exist s, c, ε0 > 0 such that for all ε, 0 < ε < ε0, for all u ∈ H2(Ω),

||u||H1(Kz0) ≤ c

ε

(||Pu||L2(K0) + ||u||H1(∂K0) + ||∂nu||L2(∂K0)

)
+ εs ||u||H1(K0).

This ends the proof since K0 ⊂ Ω, ∂K0 ⊂ Γ0 and Kz0 = {x ∈ Ω, d∂Ω(x) + r2(x)/2 ≤ R − z0} can be written
Ω ∩ ω0, where ω0 is a neighborhood of x0. �

In order to prove Proposition 2.4, we need the two following lemmas.

Lemma 2.3. Let s, β, A and B denote four non negative reals such that β ≤ B. If ∃ c, ε0 > 0 such that ∀ε,
0 < ε < ε0,

β ≤ c

ε
A+ εsB,

then
β ≤ C A

s
s+1B

1
s+1 ,
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Figure 2. Left: proof of Proposition 2.3. Right: proof of Proposition 2.4.

where C(s) = max(D(s), D̃(s)),

D(s) = c
s

s+1 (s
1

s+1 + s−
s

s+1 ), D̃(s) =
(
c/sε

(s+1)
0

) s
s+1

.

C(s) is a bounded function on each interval [0, s0].

Proof. We denote εmin and fmin the minimizer and the minimum of

f(ε) =
c

ε
A+ εsB

respectively, that is

εmin =
(
cA

sB

) 1
s+1

, fmin = D(s)A
s

s+1B
1

s+1 ,

with
D(s) = c

s
s+1 (s

1
s+1 + s−

s
s+1 ).

One should distinguish two cases. First, if ε0 > εmin, the result follows with C = D(s).
If ε0 ≤ εmin, one has

ε0 ≤
(
cA

sB

) 1
s+1

,

and hence
B ≤ A

(
c/sε

(s+1)
0

)
.

Using assumption β ≤ B, we obtain

β ≤ B
s

s+1B
1

s+1 ≤ D̃(s)A
s

s+1B
1

s+1 ,

with

D̃(s) =
(
c/sε

(s+1)
0

) s
s+1

,
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and the result follows with C = D̃(s). To prove that C(s) is a bounded function of s ∈ [0, s0] for fixed ε0, we
just have to verify that D(s) and D̃(s) are continuous on [0, s0], in particular at 0. �
Lemma 2.4. If Ω ⊂ R

N is a bounded, connected and Lipschitz continuous domain, and if d∂Ω(x) denotes the
distance of x to ∂Ω, then ∀r ∈ ]0, 1/2[, ∀u ∈ Hr(Ω),∣∣∣∣

∣∣∣∣ udr∂Ω

∣∣∣∣
∣∣∣∣
L2(Ω)

≤ C ||u||Hr(Ω),

with C > 0 depending only on r and on Ω.

Lemma 2.4 is known as Hardy’s inequality and is proved for example in [10], p. 6.

Proof of Proposition 2.4. The first step consists in finding an estimate far away from x0, by applying Propo-
sition 2.1 and Remark 2.2 with function ψ = ψ2 defined by (2.2)–(2.3). Here K0 = {x ∈ B, ψ2(x) ≥ 0} and
∂K0 = {x ∈ B, ψ2(x) = 0} (see the definition at the beginning of Sect. 2.2 and the right-hand side of Fig. 1).
We consider the domains Kz,z′ = {x ∈ B, z ≤ ψ2(x) ≤ z′}, with 0 ≤ z < z′ ≤ r0. For v ∈ H̃2

0 (B), there exist
K,λ0 > 0 such that for fixed (sufficiently large) α ≥ 1 and for all λ ≥ λ0,∫

K0

(v2 + |∇v|2)e2λφ dx ≤ K

∫
K0

|Pv|2e2λφ dx+Kλ2

∫
∂K0

(v2 + |∇v|2)e2λφ dΓ.

Let ε be such that 0 < ε < r0. Denoting again h(z) = eαz, since ψ2 ≥ ε in Kε,r0 , ψ2 ≤ R0 in K0 and ψ2 = 0
on ∂K0, we obtain

e2λh(ε)||v||2H1(Kε,r0) ≤ Ke2λh(R0)||Pv||2L2(K0) +Kλ2e2λh(0)
(
||v||2H1(∂K0)

+ ||∂nv||2L2(∂K0)

)
,

and hence, by using a classical trace theorem,

||v||H1(Kε,r0 ) ≤ K ′eλ(h(R0)−h(ε))||Pv||L2(K0) +K ′λe−λ(h(ε)−h(0))||v||H2(K0).

We notice that h(ε) − h(0) ≥ αε ≥ ε and λ ≤ (2/ε)eελ/2, whence there exist d, L > 0 such that

||v||H1(Kε,r0) ≤ Ledλ||Pv||L2(K0) + L
1
ε
e−ελ||v||H2(K0).

Next, s > 0 and μ > 0 are uniquely defined by edλ = 1/μ and e−ελ = μs. It follows in particular that s = ε/d,
and for 0 < μ ≤ μ0 = e−dλ0 , ∀v ∈ H̃2

0 (B),

ε||v||H1(Kε,r0) ≤ 1
μ
Lε||Pv||L2(K0) + μs L||v||H2(K0).

We apply Lemma 2.3 with s = ε/d, β = ε||v||H1(Kε,r0), A = Lε||Pv||L2(K0) and B = L||v||H2(K0). There
exists C (independent of ε) such that for ε with 0 < ε < r0, for v ∈ H̃2

0 (B),

||v||H1(Kε,r0) ≤ C
(||Pv||L2(K0)

) ε
ε+d

(
1
ε
||v||H2(K0)

) d
ε+d

.

At this step we reproduce exactly the same calculations as in [21]. We introduce now s > 0, such that

(
ε−

d
ε (s+1)

) ε
ε+d

(εs)
d

ε+d =
(

1
ε

) d
ε+d

,
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it follows that

||v||H1(Kε,r0) ≤ C
(
ε−

d
ε (s+1)||Pv||L2(K0)

) ε
ε+d (

εs||v||H2(K0)

) d
ε+d .

Moreover,
ε−

d
ε (s+1) = e

d
ε (s+1) log 1

ε ,

and for small ε, if we introduce μ > 1,
1
ε

log
1
ε
≤ 1
μ− 1

1
εμ

(which is obtained by remarking that log 1/εμ−1 ≤ 1/εμ−1 for small ε). This leads to

ε−
d
ε (s+1) ≤ e

d(s+1)
(μ−1)εμ ,

and finally, ∀s > 0, ∀μ > 1, ∃ c > 0 such that for sufficiently small ε, ∀v ∈ H̃2
0 (B),

||v||H1(Kε,r0) ≤ C
(
ec/ε

μ ||Pv||L2(K0)

) ε
ε+d (

εs||v||H2(K0)

) d
ε+d .

By using the fact that ∀a, b ≥ 0, ∀ρ ∈ [0, 1], aρb1−ρ ≤ a+ b, we obtain

||v||H1(Kε,r0) ≤ C
(
ec/ε

μ ||Pv||L2(K0) + εs||v||H2(K0)

)
.

We denote Iε = Kε ∩ B(x0, r0), and Jε the complementary part of Iε in b with b = Ω ∩ B(x0, r0) (see the
right-hand side of Fig. 2). Since for x ∈ B(x0, r0) we have ψ2 = d∂Ω, it is easy to verify that Iε ⊂ Kε,r0 . We
finally have

||v||H1(Iε) ≤ C
(
ec/ε

μ ||Pv||L2(K0) + εs||v||H2(K0)

)
. (2.4)

The second step consists in finding an estimate of ||v||H1(Jε) uniformly in ε, with the help of Lemma 2.4 in the
domain b for v ∈ H̃2

0 (B). It follows that for all r ∈ ]0, 1/2[,∣∣∣∣
∣∣∣∣ vdr∂b

∣∣∣∣
∣∣∣∣
L2(b)

≤ C ||v||Hr(b),

and since d∂b ≤ d∂Ω = ψ2 < ε in Jε,

||v||L2(Jε) ≤ C εr||v||Hr(b) ≤ C εr||v||H1/2(b).

By using a classical interpolation inequality and a Young’s inequality, it follows that ∀η > 0,

||v||L2(Jε) ≤ C′ εr||v||1/2H1(b)||v||1/2L2(b) ≤ C′
(
ε2r

η
||v||H1(b) + η||v||L2(b)

)
.

Since the above inequality is also true for the first derivatives of v, it follows that ∀r ∈ ]0, 1/2[, ∃C′ > 0 such
that ∀η > 0,

||v||H1(Jε) ≤ C′
(
ε2r

η
||v||H2(b) + η||v||H1(b)

)
. (2.5)

Using ||v||H1(b) ≤ ||v||H1(Iε) + ||v||H1(Jε), and gathering (2.4) and (2.5), we obtain

||v||H1(b) ≤ C
(
ec/ε

μ ||Pv||L2(K0) + εs||v||H2(B)

)
+ C′

(
ε2r

η
||v||H2(B) + η||v||H1(b)

)
.
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Choosing s = 2r and η such that C′η = 1/2, we obtain ∀r ∈ ]0, 1/2[, ∀μ > 1, ∃ c > 0 such that for sufficiently
small ε, ∀v ∈ H̃2

0 (B),

||v||H1(b) ≤ C
(
ec/ε

μ ||Pv||L2(K0) + ε2r||v||H2(B)

)
,

where C is a new constant. We obtain that ∀κ ∈ ]0, 1[, ∃ c > 0 such that for sufficiently small ε, ∀v ∈ H̃2
0 (B),

||v||H1(b) ≤ ec/ε||Pv||L2(K0) + εκ||v||H2(B).

The third step consists in coming back to a function u ∈ H2(Ω). To this end we consider a function χ ∈
C∞

0 (B(x0, R0)) such that χ = 1 in B(x0, r1) with 0 < r0 < r1 < R0, and v = χu ∈ H̃2
0 (B). Applying the

previous estimate to v, and denoting Dz,z′ = B(x0, z
′) \ B(x0, z) for z < z′, one obtains there exists a new

constant C such that

||u||H1(b) ≤ Cec/ε
(
||Pu||L2(K0) + ||u||H1(K0∩Dr1,R0 )

)
+ Cεκ||u||H2(B).

Given the particular definition of ψ2, we have K0 ∩Dr1,R0 ⊂ Ω. Indeed, assume that x ∈ K0 ∩Dr1,R0 and
d∂Ω(x) = 0, then

ψ2(x) = −1
2

(1 − γ ◦ r(x)) |x− x0|2 ≤ −1
2
(1 − γ(r1))r21 < 0,

which is not possible. We conclude that there exists a neighborhood ω of x0 and an open domain ω1 � Ω such
that ∀κ ∈ ]0, 1[, there exist c, ε0 > 0, ∀ε ∈ ]0, ε0[, ∀u ∈ H2(Ω),

||u||H1(Ω∩ω) ≤ ec/ε
(||Pu||L2(Ω) + ||u||H1(ω1)

)
+ εκ||u||H2(Ω),

which completes the proof. �

Remark 2.3. It is natural to wonder if the proofs of Propositions 2.3 and 2.4 are still applicable to domains
that are less smooth than C1,1, in particular Lipschitz domains. The answer is clearly no. Indeed, as can be
seen in the proof of our Carleman estimate in Proposition 2.1, the choice of ψ1 and ψ2 as set in (2.1)–(2.3) is
not possible when Ω is not C1,1 any longer, because in such situation (see Rem. 2.1) the components of ∇2d∂Ω

and hence of ∇2ψi (i = 1, 2) may be not functions any more in the classical sense. This is the reason why for
Lipschitz domains, in particular, another technique has to be used (see [3]).

2.4. Derivation of the final estimate

Our final estimate for C1,1 domains results from Propositions 2.2, 2.3 and 2.4. Precisely, Proposition 2.3
enables us to “propagate” Cauchy data on Γ0 to a neighborhood of any smooth point x0 of Γ0, in particular
to an open domain ω0 � Ω. Proposition 2.2 enables us to “propagate” data from this open domain ω0 to any
other open domain ω1 � Ω. Lastly, Proposition 2.4 enables us to propagate data on an open domain ω1 � Ω
up to a neighborhood of any point x ∈ ∂Ω.

Theorem 2.2. Let Ω be a bounded and connected domain Ω ⊂ R
N with a C1,1 boundary ∂Ω. If Γ0 is a non-

empty open domain of ∂Ω, then
∀κ ∈ ]0, 1[, ∃ c, ε0 > 0, ∀ε ∈ ]0, ε0[, ∀u ∈ H2(Ω),

||u||H1(Ω) ≤ ec/ε
(||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)

)
+ εκ ||u||H2(Ω). (2.6)

From Theorem 2.2 we obtain the following corollary.

Corollary 2.1. With the assumptions of Theorem 2.2, ∀κ ∈ ]0, 1[, ∃C, δ0 > 0 such that ∀δ ∈ ]0, δ0[, ∀u ∈ H2(Ω)
with

||u||H2(Ω) ≤M, ||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ,
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where M is a constant,

||u||H1(Ω) ≤ C
M

(log(M/δ))κ
·

Proof. We deduce from Theorem 2.2 that for ε ≤ ε0,

||u||H1(Ω) ≤ ec/εδ +Mεκ. (2.7)

Denoting f(ε) = ec/εδ +Mεκ for ε > 0, the minimizer εmin of f solves

g(εmin) =
M

δ
, g(ε) :=

c

κ

ec/ε

εκ+1
·

The function g is non increasing with g(0+) = +∞ and g(+∞) = 0, so that the above equation has a unique
solution εmin for each δ > 0.

If ε0 > εmin, then by choosing ε = εmin in (2.7) we obtain that

||u||H1(Ω) ≤
(κ
c
ε0 + 1

)
Mεκmin = CMεκmin. (2.8)

For sufficiently small δ, εmin is sufficiently small to have for some c′ > c,

M

δ
= g(εmin) ≤ ec

′/εmin .

It follows that εmin ≤ c′/ log(M/δ), and we obtain the required result by plugging this estimate in (2.8). If
ε0 ≤ εmin, we obtain g(ε0) ≥M/δ, and thus

||u||H1(Ω) ≤M ≤ g(ε0)δ = C
M

M/δ
·

The result follows from the fact that for small δ, M/δ ≥ (log(M/δ))κ. In our proof, C is independent of u,
M , δ. �
Remark 2.4. Let Γ1 denote the complementary part of Γ0 in ∂Ω. It follows from Corollary 2.1 that that for
all κ ∈ ]0, 1[,

||u||H1/2(Γ1) + ||∂nu||H−1/2(Γ1) ≤ C(κ)
M

(log(M/δ))κ
,

for all u ∈ H2(Ω) such that Pu = 0, ||u||H2(Ω) ≤M for some constant M > 0 and ||u||H1(Γ0) + ||∂nu||L2(Γ0) ≤ δ

for sufficiently small δ. This estimate should be compared to the one proved in [6] for 2D functions in C2(Ω)
with the help of a Carleman estimate obtained in [4].

It is useful to complete Theorem 2.2 with the following one in a truncated domain, which is more classical
(see for example [13]). It results from Propositions 2.2 and 2.3.

Theorem 2.3. We consider a bounded and connected domain Ω ⊂ R
N of class C1,1. If Γ0 is a non-empty open

domain of ∂Ω, then ∃ s, c, ε0 > 0 such that ∀ε ∈ ]0, ε0[, ∀u ∈ H2(Ω),

||u||H1(Ωρ) ≤ c

ε

(||Pu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)

)
+ εs ||u||H1(Ω), (2.9)

||u||H2(Ωρ) ≤ c

ε

(||Pu||L2(Ω) + ||u||H3/2(Γ0) + ||∂nu||H1/2(Γ0)

)
+ εs ||u||H1(Ω), (2.10)

where Ωρ is defined, for small ρ > 0, by Ωρ = {x ∈ Ω, d(x,Γ1) > ρ}, and Γ1 is the open domain of ∂Ω such
that Γ0 ∩ Γ1 = ∅ and ∂Ω = Γ0 ∪ Γ1.
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Proof. The estimate (2.9) is an obvious consequence of Propositions 2.2 and 2.3. The proof of (2.10) requires
the following regularity estimate, which is easy to derive. For ρ′ > ρ, there exists C > 0 such that for all
v ∈ H2(Ω) with v|Γ0 = 0 and (∂nv)|Γ0 = 0,

||v||H2(Ωρ′ ) ≤ C(||v||H1(Ωρ) + ||Pv||L2(Ωρ)). (2.11)

We can define (u|Γ0 , ∂nu|Γ0) ∈ H3/2(Γ0) ×H1/2(Γ0) for u ∈ H2(Ω), and a continuous extension E : (g0, g1) ∈
H3/2(Γ0) ×H1/2(Γ0) → ũ ∈ H2(Ω) such that (ũ|Γ0 , ∂nũ|Γ0) = (g0, g1) (see [10], p. 37).

Let us suppose that ũ = E((u|Γ0 , ∂nu|Γ0)). Since v := u− ũ satisfies (2.9) with v|Γ0 = 0 and ∂nv|Γ0 = 0, and
since v satisfies (2.11) as well, we obtain that for small ρ > 0,

||v||H2(Ωρ) ≤ c

ε
||Pv||L2(Ω) + εs ||v||H1(Ω).

We obtain the estimate (2.10) by coming back to the function u and using the continuity of E. �

3. About the sharpness of the stability estimate

In this section, we prove that the estimate (2.6) is nearly sharp in a sense we define later on. In this view,
we take P = −Δ, Ω is the 2D rectangle ]0, X [ × ]0, Y [ and Γ0 is the segment ]0, Y [ on the y axis. Ω is not a
domain of class C1,1. Nevertheless, (2.6) holds in Ω for functions u defined in ]0, X [ × R such that u ∈ H2(Ω)
and u(x, y + Y ) = u(x, y), for all (x, y) ∈ ]0, X [ × R. We prove this simply by using Propositions 2.2, 2.3, 2.4
and the Y -periodicity of function u along the y axis.

The estimate (2.6) is nearly sharp in the following sense: there does not exist a function ε → g(ε) with
limε→0 g(ε)/ε = 0, such that for some c, ε0 > 0, for all ε ∈ ]0, ε0[, for all u such as described above,

||u||H1(Ω) ≤ ec/ε
(||Δu||L2(Ω) + ||u||H1(Γ0) + ||∂nu||L2(Γ0)

)
+ g(ε) ||u||H2(Ω).

In other words, g cannot decrease faster than ε when ε tends to 0. Since in (2.6) g(ε) = εκ for all κ < 1, this
proves that (2.6) is nearly sharp.

We prove this by contradiction. Assume limε→0 g(ε)/ε = 0. We define, for X > 0 and Y = 2π, the following
sequence of functions, which is inspired from the famous example of Hadamard

um(x, y) = φ(x)em(x, y), em(x, y) = emxeimy,

with m ∈ N and φ is a C2 function defined in R by

⎧⎨
⎩

φ = 0 x ≤ 0
φ ≥ 0 0 ≤ x ≤ A
φ = 1 x ≥ A,

with X > A > 0.
We have of course um ∈ H2(Ω), um(x, y + Y ) = um(x, y) for all (x, y) ∈ ]0, X [ × R, and the definition of φ

leads to um|Γ0 = 0 and (∂xum)|Γ0 = 0. From the stability estimate, we obtain that for all m ∈ N and for all
ε < ε0,

||um||H1(Ω) ≤ ec/ε||Δum||L2(Ω) + g(ε)||um||H2(Ω). (3.1)
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After some simple calculations, we have

∂um
∂x

= (mφ+ φ′)em(x, y),
∂um
∂y

= (imφ)em(x, y),

∂2um
∂x2

= (m2φ+ 2mφ′ + φ′′)em(x, y),
∂2um
∂x∂y

= im(mφ+ φ′)em(x, y)

∂2um
∂y2

= −(m2φ)em(x, y), Δum = (2mφ′ + φ′′)em(x, y).

Now let us consider the estimate (3.1). Concerning the left-hand side, we obtain after some simple calculations
and by using the fact that φ(x) = 1 when x ∈ [A,X ] that

||um||H1(Ω) ≥ C1

√
m
√

e2mX − e2mA, (3.2)

for some constant C1 > 0. Concerning the right-hand side, by using the fact that supi=0,1,2 supx∈R
|φ(i)(x)| <

+∞ and φ′(x) = 0 when x ∈ [A,X ],

||Δum||L2(Ω) ≤ C2

√
m
√

e2mA − 1, ||um||H2(Ω) ≤ C3m
3/2
√

e2mX − 1, (3.3)

for some constants C2, C3 > 0. Combining the estimates (3.1), (3.2) and (3.3), we obtain that for all m and all
ε < ε0, √

e2mX − e2mA ≤ Cec/ε
√

e2mA − 1 + Cg(ε)m
√

e2mX − 1,

for some constant C > 0. Dividing the above equation by
√

e2mX − 1, we obtain

√
1 − e−2m(X−A)

√
1 − e−2mX

≤ Cec/εe−m(X−A)

√
1 − e−2mA

√
1 − e−2mX

+ Cg(ε)m. (3.4)

It remains to select η such that 0 < η < X − A and define the sequence (εm)m such that εm = 1/(km) with
k = (X −A− η)/c > 0. Hence we have ec/εm−m(X−A) = e−ηm. The left-hand side of (3.4) converges to 1 when
m→ +∞, while the first term of the right-hand side tends to 0 when ε is replaced by εm, as well as the second
term since g(1/m)m→ 0 when m→ +∞. Thus, we have found a contradiction.

Remark 3.1. To the author’s knowledge, the validity of (2.6) in the limit case κ = 1 is an open problem, even
for domains of class C∞.

4. Application to the method of quasi-reversibility

In this section, we use the stability estimates obtained before in order to derive some convergence rates for the
quasi-reversibility method, and therefore to complete the results already obtained in [16] in truncated domains.
The method of quasi-reversibility, first introduced in [17], enables one to regularize the ill-posed elliptic Cauchy
problems. Specifically, we consider a domain Ω as described in the statement of Theorem 2.2, and a truncated
domain Ωρ as defined in the statement of Theorem 2.3.

Now we assume that u ∈ H2(Ω) solves the ill-posed Cauchy problem with (g0, g1) ∈ H3/2(Γ0) ×H1/2(Γ0):⎧⎪⎪⎨
⎪⎪⎩

Pu = 0 in Ω

u|Γ0 = g0

∂nu|Γ0 = g1.

(4.1)
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Given some noisy data (gσ0 , gσ0 ) ∈ H3/2(Γ0) ×H1/2(Γ0) with

||gσ0 − g0||H3/2(Γ0) + ||gσ1 − g1||H1/2(Γ0) ≤ σ,

we consider the formulation of quasi-reversibility for α > 0: find uσα ∈ H2(Ω), such that ∀v ∈ H2(Ω), v|Γ0 =
∂nv|Γ0 = 0, ⎧⎪⎪⎨

⎪⎪⎩
(Puσα, Pv)L2(Ω) + α(uσα, v)H2(Ω) = 0

uσα|Γ0 = gσ0

∂nu
σ
α|Γ0 = gσ1 .

(4.2)

Using Lax-Milgram theorem, we easily prove that formulation (4.2) is well-posed. If we denote uα = u0
α, which

is the solution of quasi-reversibility without noise, we obtain for some constant C0 > 0,

||uσα − uα||H2(Ω) ≤ C0
σ√
α
· (4.3)

On the other hand, we easily prove by using (4.1) and (4.2) that there exist constants C1, C2 > 0 such that

||uα − u||H2(Ω) ≤ C1, ||P (uα − u)||L2(Ω) ≤ C2

√
α. (4.4)

Using (4.4) and then Corollary 2.1, Theorem 2.3 (combined with Lem. 2.3) for function uα − u ∈ H2(Ω), we
obtain there exist γ ∈ ]0, 1/2[, C(κ) > 0 for all κ ∈ ]0, 1[, such that for sufficiently small α > 0,

||uα − u||H2(Ωρ) ≤ C αγ , (4.5)

||uα − u||H1(Ω) ≤ C(κ)
1

(log(1/α))κ
· (4.6)

Choosing α = σ in (4.3), we obtain exactly the same estimates for uσα − u as in (4.5) and (4.6) simply by
replacing the regularization parameter α by the amplitude of noise σ in the right-hand side.

Remark 4.1. In [2], Theorem 3 is not optimal in the sense that we can obtain the Hölder convergence rate (4.5)
and not only a logarithmic convergence rate as stated in the theorem.

Remark 4.2. It should be easy to prove Theorem 2.2 and Corollary 2.1 for some more general elliptic operators,
for example

Pu = −
N∑

i,j=1

∂i(aij(x)∂ju) +
N∑
j=1

bj(x)∂ju+ c(x)u,

if we assume that the coefficients bj (j = 1, ..., N) and c all belong to L∞(Ω), that the coefficients aij are
Lipschitz continuous in Ω, satisfy aij = aji and for some constant a > 0,

N∑
i,j=1

aij(x)ξiξj ≥ a|ξ|2, ∀x ∈ Ω, ∀ξ ∈ R
N .

Remark 4.3. There is an analogy of our result with case of the stability estimate for the parabolic equation
with the reversed time direction, that is the problem of finding the initial condition from the lateral Cauchy
data in the time interval ]0, T [. One obtains for that problem a Hölder stability estimate of the solution in the
incomplete time interval ]a, T [ with a > 0 [18] and one obtains a logarithmic stability estimate when a = 0 [15].

Acknowledgements. The author thanks M.V. Klibanov for being at the origin of Remark 4.1 and J. Le Rousseau for his
lesson in global Carleman estimates. He also thanks the referees for their valuable comments.
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