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THEORETICAL ASPECTS AND NUMERICAL COMPUTATION
OF THE TIME-HARMONIC GREEN’S FUNCTION FOR AN ISOTROPIC

ELASTIC HALF-PLANE WITH AN IMPEDANCE BOUNDARY CONDITION

Mario Durán1, Eduardo Godoy1 and Jean-Claude Nédélec2

Abstract. This work presents an effective and accurate method for determining, from a theoretical
and computational point of view, the time-harmonic Green’s function of an isotropic elastic half-plane
where an impedance boundary condition is considered. This method, based on the previous work done
by Durán et al. (cf. [Numer. Math. 107 (2007) 295–314; IMA J. Appl. Math. 71 (2006) 853–876]) for
the Helmholtz equation in a half-plane, combines appropriately analytical and numerical techniques,
which has an important advantage because the obtention of explicit expressions for the surface waves.
We show, in addition to the usual Rayleigh wave, another surface wave appearing in some special cases.
Numerical results are given to illustrate that. This is an extended and detailed version of the previous
article by Durán et al. [C. R. Acad. Sci. Paris, Ser. IIB 334 (2006) 725–731].
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Introduction

The Green’s functions for elastic half-spaces have been studied by many authors, because of their applicability
in important areas of science and engineering such as seismology, geophysics, and structural engineering. In
particular, the main motivation of the present study comes from a difficulty that arises in mining engineering,
during the rock blasting in an underground mine. When the blasting devices are set out, the engineers attempt
to take full advantage of the energy irradiated, but at the same time they desire to prevent the expansive
wave from concentrating an important amount of energy at the exploitation areas of the mine, as serious
damage could be caused. As a preliminary approach to this problem, we consider a linear isotropic elastic
model, where the ground is represented as a half-plane and the underground mine can be described as a local
perturbation of the boundary. Additionally, an impedance boundary condition, also named in related literature
non-absorbing or passive boundary condition, is imposed in order to have a more general description of the
surface dynamics. We propose that the computation of resonant states associated with this domain can provide
a basic knowledge about the most probable directions that waves could take to radiate the energy generated.
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To compute numerically these resonant states, a boundary integral equations method is proposed. However, such
methods require evaluation of boundary integrals containing the associated Green’s function, hence the need of
an efficient procedure for computing the Green’s function, capable of yielding accurate enough expressions.

The standard method for obtaining half-space Green’s functions employs application of Fourier or Laplace
transforms in space to the partial differential equation of motion, as well as in time when dealing with transient
problems. Systems of ordinary differential equations are achieved, which can be analytically solved, leading
to the Green’s function transferred to the Fourier or Laplace domain. This procedure has been widely used
by many authors, nevertheless, the calculation of the inverse transforms in a numerically efficient way is not
a simple matter, and there exist different approaches to this problem in related works. In 1974, Johnson [13]
considered time-domain isotropic elasticity in a half-space and employed Cagniard-de Hoop inversion. The same
method was applied in 1999 by Richter and Schmid [17] for a half-plane, including application to BEM. The
Cagniard-de Hoop inversion has been proved to be a useful method for the transient case, but there is not direct
application to time-harmonic problems. The case of layered half-spaces has been widely studied in seismology,
and there are inversion methods specially adapted for this kind of solids. In 1983, Franssens [11] used a modified
propagator matrix method for calculating the associated 2D Green’s function. Another references about this
kind of methods can be found in Chapter 4 of the book by Jensen et al. [12]. The anisotropic case has received
more attention in recent years, in particular, general anisotropic half-spaces has been studied in 1996 by Wang
and Achenbach [20] and in 1997 by Spies [18]. Wang and Achenbach did not deal with any Fourier or Laplace
transforms but they constructed directly the solution by superposition of transient plane waves. The solution
was expressed as integrals on finite domains, however, this method was limited to source points placed on the
surface. Spies applied Fourier transforms in space and time, but no methods to calculate the inverse transforms
were proposed. More recently, in 2007, Chen and Dravinski [4,5] considered time-harmonic Green’s functions
for a triclinic half-space, using a double Fourier transform. The inversion was made by employing contour
integration and Gauss-Legendre quadrature.

In this paper we deal with an isotropic elastic half-plane and embedded point sources. Although the
anisotropic case could be considered as more attractive due to its generality, the obtention of explicit ex-
pressions that characterize the surface waves becomes more difficult. As we will see, the impedance boundary
condition has a direct influence on the surface waves that appear, and none of the works mentioned above deal
with this kind of boundary condition. A slightly similar condition can be found in the paper by Linkov [15],
where a model of the rupture process associated with a propagating crack was proposed. The Appendix of this
work presents quite general interface conditions for two bonded elastic half-planes, including elastic, softening
and viscous deformation. By neglecting one of the two half-planes, it is possible to approach our problem from
another point of view.

The method used in the present work to compute the associated Green’s function is based on recent works by
Durán et al. [9], and Durán et al. [10] for the acoustic case with impedance boundary conditions. The half-plane
Green’s function of the Helmholtz’s equation was theoretically determined in [9] and numerically implemented
in [10]. The Fourier transform is applied only in the horizontal sense, and the spectral Green’s function (that is,
transferred to the Fourier domain) is expressed as a sum of two terms. The first one can be analytically inverted
and it corresponds to the full-plane Green’s function. The second term takes into account the particular effect of
the half-plane and, in order to make an accurate computation of its inverse Fourier transform, it is decomposed
into a sum of three new terms, where two of them contain singularities in the spectral variable (pseudo-poles and
poles) and they can be analytically inverted, whereas the remaining term is regular, decreasing at infinity, and
its inverse transform is numerically approximated via a backward FFT algorithm. In particular, the poles of the
spectral Green’s function have special significance, because each pair of poles is associated with the existence
of a surface wave. These poles are determined from the roots of an algebraic equation, which in general has to
be numerically solved. The well-known Rayleigh wave is obtained as a function of the impedance. Moreover,
we have found that if the impedance takes a certain value, which only depends on the physical parameters of
the elastic medium, a new surface wave appears.
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1. Basic mathematical model

Let us consider a locally perturbed half-plane Ωe representing the ground. Its boundary is denoted by Γ. We
assume this domain to be constituted by an elastic, homogeneous, and isotropic medium. Let u : Ωe −→ C2 be
the displacement field of the perturbed half-plane, satisfying the time-harmonic elasticity equation:

div σ(u(x)) + ρω2u(x) = 0 x ∈ Ωe, (1.1)

where ρ is the solid density and ω is a given pulsation or angular frequency. The stress tensor σ is described by
the isotropic Hooke’s law:

σ(u(x)) = λdiv u(x) I + μ
(∇u(x) + ∇u(x)T

)
, (1.2)

where λ, μ > 0 are the Lamé’s constants, and I is the 2 × 2 identity matrix. In a geophysical framework, the
normal stresses on the ground surface are made equal to the atmospheric pressure exerted by the air, which can
be neglected in practice, since it has no influence on the elastic waves that occur in the ground. Therefore, we
assume null normal stresses on Γ, that is,

σ(u(x))n · n = 0, x ∈ Γ, (1.3)

where n denotes the unit outward normal vector to Γ. In addition, we could also suppose shear stresses to be
null, obtaining a Neumann boundary condition (free-traction) on Γ. Alternatively, shear displacements could
be set to zero, leading to a mixed boundary condition on Γ, which corresponds to a Neumann one in the normal
sense and a Dirichlet one in the tangential sense. In the present work, we consider a Robin-type boundary
condition in the tangential sense, which assumes that shear stresses are proportional to shear displacements
on Γ. This assumption is mathematically expressed as

σ(u(x))n · τ = ωZ u(x) · τ x ∈ Γ, (1.4)

where τ denotes the unit tangent vector to Γ and Z is the surface elastic impedance, which could be complex in
general, but in the present work we treat only the case where Z is real. From a physical point of view, as (1.4)
establishes a linear relation between stresses and displacements, the impedance Z can be regarded as a shear
stiffness modulus associated with the surface. If Z is negative, the surface behaves in a way similar to that of
a spring-mass system, where forces are opposite to displacements, that is, a hardening phenomenon. On the
contrary, if Z is positive, we obtain that both quantities have the same sign, which can be assimilated to a surface
softening phenomenon in the linear elastic range (cf. [15]). Furthermore, it is worth to remark that if Z = 0,
we retrieve the free-traction boundary condition, and if |Z| −→ +∞, we approximate the mixed boundary
condition mentioned above. Hence, our impedance boundary condition can be regarded as an intermediate case
between these two. Both relations (1.3) and (1.4) can be written in vector form as

− σ(u(x))n + ωZ(u(x) · τ ) τ = 0 x ∈ Γ. (1.5)

Therefore, the time-harmonic elasticity system with an impedance boundary condition in a perturbed half-plane
is expressed as follows:

div σ(u(x)) + ρω2u(x) = 0 in Ωe, (1.6a)

−σ(u(x))n + ωZ(u(x) · τ ) τ = f (x) on Γ, (1.6b)

+ Outgoing radiation conditions when |x| −→ +∞, (1.6c)

where a non-homogeneous data f is added to the right-hand side of (1.6b). For the sake of simplicity, the
function f is assumed to have compact support. When determining resonant states, f is set to zero and
we look for complex numbers ω (the resonances) and non-zero displacement fields u (the resonant states) satis-
fying (1.6). Additionally, radiation conditions at infinity have to be prescribed in order to ensure mathematical
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well-posedness of the model. From a physical point of view, these radiation conditions eliminate solutions that
correspond to incoming waves, allowing only outgoing waves, which have the right physical sense. The obtention
of an explicit form for the radiation conditions associated with (1.6) constitutes a complex matter, and it is
beyond the scope of the present work.

To solve (1.6) by integral equation techniques, it is necessary to know the associated Green’s function in the
non-perturbed half-plane. By convention, we consider the upper half-plane R2

+, defined as

R
2
+ =

{
x = (x1, x2) ∈ R

2/ x2 > 0
}
. (1.7)

Notice that in this case, vectors n and τ become (0,−1) and (1, 0), respectively. Let x and y be the receiver
and source points, respectively, with x,y ∈ R2

+. The Green’s function of (1.6), denoted by G = G(x,y), is a
2×2 matrix function with complex values. Its column vectors, denoted by gj = gj(x,y) (j = 1, 2), must satisfy

divx σx(gj(x,y)) + ρω2gj(x,y) = −δ(x − y)êj in R
2
+, (1.8a)

σx(gj(x,y))ê2 + ωZ(gj(x,y) · ê1) ê1 = 0 on {x2 = 0}, (1.8b)

+ Outgoing radiation conditions when |x| −→ +∞, (1.8c)

where δ(x−y) is the Dirac mass evaluated at x and centered at y, and êj is the jth canonic vector of R2. The
variable x is added as a subindex in order to emphasize that all the involved derivatives are with respect to x.

For a broader framework about Green’s functions and their use in integral equations for time-harmonic
problems, see Bonnet [3], Colton and Kress [6], Linkov [14], and Nédélec [16].

2. Spectral Green’s function

To solve system (1.8), a partial Fourier transform in the horizontal variable x1 is applied, which uses a special
Fourier variable s normalized by ω. Let us denote this transform by Fω, defined as

Φ(s, x2) =
[Fωφ

]
(s, x2) =

∫ +∞

−∞
φ(x1, x2) e−iωs(x1−y1) dx1, (2.1a)

φ(x1, x2) =
[F−1

ω Φ
]
(x1, x2) =

ω

2π

∫ +∞

−∞
Φ(s, x2) eiωs(x1−y1) ds, (2.1b)

where for the sake of simplicity, the dependence on the source point y is not explicitly written for the time
being. Applying Fω to system (1.8) both for j = 1 and j = 2 yields

C22
∂2Ĝ

∂x2
2

(s, x2) + iωs (C12 + C21)
∂Ĝ

∂x2
(s, x2) − ω2(s2C11 − ρI) Ĝ(s, x2) = −δ(x2 − y2) I, (2.2a)

C22
∂Ĝ

∂x2
(s, 0) + ω (isC21 + ZI1) Ĝ(s, 0) = 0, (2.2b)

which corresponds to a matrix ODE’s system for Ĝ = FωG. The matrices Cjl are defined by

Cjl =
[
c1j1l c1j2l

c2j1l c2j2l

]
, 1 ≤ j, l ≤ 2, (2.3)
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where the coefficients cijkl are given by

cijkl =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ+ 2μ if i = j = k = l,
λ if i = j and k = l �= i,
μ if i = k and j = l �= i,
μ if i = l and j = k �= i,
0 in any other case,

(2.4)

and I1 = ê1ê
T
1 . The matrix function Ĝ denotes the spectral Green’s function. As it was done in [9] for the

Helmholtz equation, we attempt to express Ĝ as a sum of two terms:

Ĝ(s, x2) = ĜP (s, x2) + ĜB(s, x2), (2.5)

where ĜP is a term associated with the full-plane and ĜB is a term that takes into account the half-plane’s
surface and the boundary condition considered. In order to calculate the solution to (2.2), we start by solving the
homogeneous equation of (2.2a) on both sides {0 ≤ x2 ≤ y2} and {x2 ≥ y2}. After that, suitable transmission
conditions are imposed at x2 = y2. Notice that if the right-hand side of (2.2a) is set to zero, then the differential
equation becomes the same for both columns of Ĝ, so it is possible to write the homogeneous equation in vectorial
form:

C22 r′′(x2) + iωs (C12 + C21) r′(x2) − ω2(s2C11 − ρI) r(x2) = 0, (2.6)
where s is assumed to be a parameter. Any solution of (2.6) can be expressed as a linear combination of terms
of the form

r(x2) = w e−iωνx2 , (2.7)
where ν ∈ C is a scalar and w ∈ C2 is a vector, which are unknowns and not depending on y. Substituting (2.7)
in (2.6) and expanding, leads to a characteristic equation:

A(s, ν)w = 0, (2.8)

where
A(s, ν) = ν2C22 − νs (C21 + C12) + s2C11 − ρI. (2.9)

Thus, the pairs (ν,w) in (2.7) are the non-trivial solutions of the characteristic equation (2.8). In particular,
the scalars ν have to be such that A is singular, that is,

detA(s, ν) = 0. (2.10)

Replacing (2.9) in (2.10) and expanding, leads to a polynomial equation for ν:(
ν2 + (s2 − s2L)

)(
ν2 + (s2 − s2T )

)
= 0, (2.11)

where sL and sT are the longitudinal and transversal slownesses, respectively, defined by

sL =
√

ρ

λ+ 2μ
, sT =

√
ρ

μ
, (2.12)

which satisfy sL < sT . Equation (2.10) has four independent solutions. They are

νL+ = i θL(s), νL− = −i θL(s), νT+ = i θT (s), νT− = −i θT (s), (2.13)

where θL(·) and θT (·) are the following functions:

θL(s) =
√
s2 − s2L, θT (s) =

√
s2 − s2T . (2.14)
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Figure 1. Domain of complex maps θL(·) and θT (·).

Even though s ∈ R, these are complex maps, therefore, an exact meaning has to be given to the square roots.
We put

θL(s) =
√
s− sL

√
s+ sL, θT (s) =

√
s− sT

√
s+ sT ,

and we consider particular branches in the complex plane to define each root, as indicated in Figure 1. The
exact definitions are:

θL(s) = −isL exp
( ∫ s

0

u

u2 − s2
du

)
, θT (s) = −isT exp

( ∫ s

0

u

u2 − s2
du

)
. (2.15)

When dealing with these definitions, θL(s) and θT (s) have always non negative real part for s ∈ R (for more
details, see [9,10]). Then, the vectors w are computed by substituting the associated values ν in (2.8):

wL+ =
[

is
θL(s)

]
, wL− =

[ −is
θL(s)

]
, wT+ =

[
θT (s)
−is

]
, wT− =

[
θT (s)

is

]
. (2.16)

The general solution of (2.6) can be expressed as a linear combination:

r(x2) = αL+e−iωνL+x2 wL+ + αL−e−iωνL−x2 wL− + αT+e−iωνT+x2 wT+ + αT−e−iωνT−x2 wT− , (2.17)

for general complex coefficients αL+ , αL− , αT+ , and αT− . Moreover, r(x2) has to verify a boundary condition
at x2 = 0, which can be easily obtained from (2.2b):

C22 r′(0) + ω (isC21 + ZI1) r(0) = 0. (2.18)

Replacing r(x2) from (2.17) in (2.18) leads to the next identity:

αL+vL+ + αL−vL− + αT+vT+ + αT−vT− = 0, (2.19)

where the vectors vj are obtained from the vectors wj (j = L+, L−, T+, T−) by means of the relation

vj = (νjC22 − sC21 + iZI1)wj . (2.20)
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Substituting (2.13) and (2.16) in (2.20) yields

vL+ =
[ −s (

2μ θL(s) + Z
)

iμ
(
s2 + θT (s)2

) ]
, vL− =

[ −s (
2μ θL(s) − Z

)
−iμ

(
s2 + θT (s)2

) ]
, (2.21a)

vT+ =
[

iμ
(
s2 + θT (s)2

)
+ iθT (s)Z

2μs θT (s)

]
, vT− =

[ −iμ
(
s2 + θT (s)2

)
+ iθT (s)Z

2μs θT (s)

]
. (2.21b)

As each column of Ĝ is expressed in the form (2.17), we use a concise notation to write Ĝ directly. For this,
we define the matrices

W+ =
[
wL+

∣∣wT+

]
, W− =

[
wL−

∣∣wT−
]
, (2.22)

which fulfill the properties

W−1
± = − 1

detW±
W±, detW+ = detW−. (2.23)

Additionally, we define the diagonal matrix

D(x2) = diag
[
eωθL(s)x2 , eωθT (s)x2

]
, (2.24)

which satisfies

D(x2) = diag
[
e−iωνL+x2 , e−iωνT+x2

]
, D(−x2) = diag

[
e−iωνL−x2 , e−iωνT−x2

]
. (2.25)

The spectral Green’s function Ĝ is then expressed as follows:

Ĝ(s, x2) =

{
W+D(x2)A+ +W−D(−x2)A− if 0 ≤ x2 ≤ y2,

W+D(x2)B+ +W−D(−x2)B− if x2 ≥ y2,
(2.26)

where A+, A−, B+, and B− are unknowns matrices depending on s and y2. These matrices are determined
by using the radiation conditions when x2 tends to infinity, the transmissions conditions at x2 = y2, and the
boundary condition at x2 = 0 given by (2.19). Let us begin by analyzing the case when x2 −→ +∞. If
|s| > sL, then θL(s) is real, positive and the functions eωθL(s)x2 and e−ωθL(s)x2 are exponentially increasing and
decreasing in x2, respectively. On the contrary, if |s| < sL, then θL(s) is purely imaginary and both the above
exponential functions behave oscillatorily in x2. Indeed, it can be easily verified that in accordance with our
definition of complex square roots, the imaginary part of θL(s) is negative. Consequently, eωθL(s)x2 contains
waves that travel in the −x2 sense, that is, incoming terms, whereas e−ωθL(s)x2 contains waves that travel in the
+x2 sense, that is, outgoing terms. The analysis for the functions θT (s), eωθT (s)x2 and e−ωθT (s)x2 is completely
analogous. We want to eliminate any exponentially increasing term in x2, because it has no physical meaning,
and all the incoming terms, in order to fulfill the radiation conditions at infinity. It is easy to observe that all
these undesired behaviors occur in the matrix D(x2) (see (2.24) and (2.26)), therefore, it is natural to set

B+ = 0, (2.27)

and then we only keep the terms that behave as desired, which are contained within the matrix D(−x2). Let
us study now the transmission conditions at x2 = y2. We assume Ĝ to be continuous at x2 = y2, that is,

W−D(−y2)B− = W+D(y2)A+ +W−D(−y2)A−. (2.28)

However, Ĝ is not differentiable at this point. Then, its first derivative has a jump at x2 = y2, given by[
∂Ĝ

∂x2

]
(s, y2) = lim

x2→y+
2

∂Ĝ

∂x2
(s, x2) − lim

x2→y−
2

∂Ĝ

∂x2
(s, x2). (2.29)
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Computing the derivatives from (2.26), replacing (2.22) and combining with (2.28), (2.14) and (2.12) yields

[
∂Ĝ

∂x2

]
(s, y2) = − 2ρω

detW+
C−1

22 NW+D(y2)A+, (2.30)

where

N = diag
[
θL(s), θT (s)

]
. (2.31)

Consequently, the second derivative of Ĝ in the sense of distributions corresponds to a Dirac mass centered
at y2 and multiplied by the jump of the derivative of Ĝ at x2 = y2. Substituting Ĝ from (2.26) in (2.2a) and
combining with (2.23), (2.28) and (2.30) gives A+:

A+ = − 1
2ρω

D(−y2)W+N
−1. (2.32)

Notice that at the moment, we have the solution to (2.2a) (taking into account the right-hand side). Finally,
the boundary condition at x2 = 0 given by (2.19) is imposed to each column of Ĝ, obtaining:

V+A+ + V−A− = 0, (2.33)

where the matrices V+ and V− are defined from the vectors vL+ , vL− , vT+ , and vT− as follows:

V+ =
[
vL+

∣∣vT+

]
, V− =

[
vL−

∣∣vT−
]
. (2.34)

Then, replacing (2.32) in (2.33), we determine A−:

A− =
1

2ρω
V −1
− V+D(−y2)W+N

−1, (2.35)

and substituting (2.32) and (2.35) in (2.28) gives B−:

B− = − 1
2ρω

(
D(y2)W− − V −1

− V+D(−y2)W+

)
N−1. (2.36)

After that, replacing (2.27), (2.32), (2.35), and (2.36) in (2.26), the terms of the sum in (2.5) can be determined.
The first term ĜP is given by

ĜP (s, x2) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2ρω
W+D(x2 − y2)W+N

−1 if 0 ≤ x2 ≤ y2,

− 1
2ρω

W−D(y2 − x2)W−N−1 if x2 ≥ y2,

(2.37)

and the second term ĜB is given by

ĜB(s, x2) =
1

2ρω
W−D(−x2)V −1

− V+D(−y2)W+N
−1. (2.38)
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Replacing (2.22), (2.24), and (2.31) in (2.37), yields ĜP , which is a symmetric matrix, whose components are

ĜP
11(s, x2) =

1
2ρω

(
s2θL(s)−1e−ωθL(s)|x2−y2| − θT (s) e−ωθT (s)|x2−y2|), (2.39a)

ĜP
12(s, x2) =

is
2ρω

sign(x2 − y2)
(
e−ωθL(s)|x2−y2| − e−ωθT (s)|x2−y2|), (2.39b)

ĜP
22(s, x2) = − 1

2ρω
(
θL(s) e−ωθL(s)|x2−y2| − s2θT (s)−1e−ωθT (s)|x2−y2|). (2.39c)

From now on we call this term full-plane term. On the other hand, substituting (2.22), (2.34), (2.24), and (2.31)
in (2.38), we obtain the components of ĜB:

ĜB
11(s, x2) = − 1

2ρω

((
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)−1

×
(
s2θL(s)−1

((
2s2 − s2T

)2 + 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)
e−ωθL(s)(x2+y2)

+ θT (s)
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) − μ−1s2T θT (s)Z

)
e−ωθT (s)(x2+y2)

− 4s2
(
2s2 − s2T

)
θT (s)

(
e−ω(θL(s)x2+θT (s)y2) + e−ω(θT (s)x2+θL(s)y2)

))
, (2.40a)

ĜB
21(s, x2) = − is

2ρω

((
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)−1

×
(((

2s2 − s2T
)2 + 4s2θL(s) θT (s) + μ−1s2T θT (s)Z

)
e−ωθL(s)(x2+y2)

+
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) − μ−1s2T θT (s)Z

)
e−ωθT (s)(x2+y2)

− 4
(
2s2 − s2T

)(
θL(s) θT (s) e−ω(θL(s)x2+θT (s)y2) + s2e−ω(θT (s)x2+θL(s)y2)

))
, (2.40b)

ĜB
12(s, x2) =

is
2ρω

((
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)−1

×
(((

2s2 − s2T
)2 + 4s2θL(s) θT (s) + μ−1s2T θT (s)Z

)
e−ωθL(s)(x2+y2)

+
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) − μ−1s2T θT (s)Z

)
e−ωθT (s)(x2+y2)

− 4
(
2s2 − s2T

)(
s2e−ω(θL(s)x2+θT (s)y2) + θL(s) θT (s) e−ω(θT (s)x2+θL(s)y2)

))
, (2.40c)

ĜB
22(s, x2) = − 1

2ρω

((
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)−1

×
(
θL(s)

((
2s2 − s2T

)2 + 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)
e−ωθL(s)(x2+y2)

+ s2θT (s)−1
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) − μ−1s2T θT (s)Z

)
e−ωθT (s)(x2+y2)

− 4s2
(
2s2 − s2T

)
θL(s)

(
e−ω(θL(s)x2+θT (s)y2) + e−ω(θT (s)x2+θL(s)y2)

))
. (2.40d)

Henceforth we call this term boundary term.
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3. Effective calculation of Green’s function

In order to obtain an effective expression for the desired Green’s function G(x,y), it is necessary to calculate
accurately the inverse Fourier transform of the spectral Green’s function Ĝ(s, x2), given by

G(x,y) =
ω

2π

∫ +∞

−∞
Ĝ(s, x2) eiωs(x1−y1) ds. (3.1)

This computation is made separately for the terms ĜP (s, x2) and ĜB(s, x2) obtained in the previous section.
Furthermore, substituting (2.39) and (2.40) in (3.1), it is possible to verify a priori that the components of the
Green’s function fulfill the symmetries

G11(x,y) = G11(y,x), G12(x,y) = G21(y,x),

G21(x,y) = G12(y,x), G22(x,y) = G22(y,x),
(3.2)

for all x,y ∈ R2
+. In other words, it holds that G(x,y) = G(y,x)T .

3.1. The full-plane term

To calculate GP (x,y), it suffices to compute the inverse Fourier transforms of the next three functions
(see (2.14) and (2.39)):

ψ1(s, x2) =
s2e−ω

√
s2−s2

0 |x2−y2|√
s2 − s20

, (3.3a)

ψ2(s, x2) =
√
s2 − s20 e−ω

√
s2−s2

0 |x2−y2|, (3.3b)

ψ3(s, x2) = i sign(x2 − y2) s e−ω
√

s2−s2
0 |x2−y2|, (3.3c)

where s0 > 0 is given. In the calculations, the following integral formulas are required (cf. [1]):

∫ ∞

0

e−b
√

ξ2+a2√
ξ2 + a2

cos (cξ) dξ = K0

(
a
√
b2 + c2

)
, (3.4a)∫ ∞

0

e−b
√

ξ2+a2
cos (cξ) dξ =

ab√
b2 + c2

K1

(
a
√
b2 + c2

)
, (3.4b)∫ ∞

0

ξ e−b
√

ξ2+a2√
ξ2 + a2

sin (cξ) dξ =
ac√
b2 + c2

K1

(
a
√
b2 + c2

)
, (3.4c)∫ ∞

0

ξ e−b
√

ξ2+a2
sin (cξ) dξ =

a2b c

b2 + c2
K2

(
a
√
b2 + c2

)
, (3.4d)

where K0(·), K1(·) and K2(·) denote the modified Bessel functions of the second kind of order 0, 1 and 2,
respectively (see [2] for their definition and properties). These functions can be expressed in terms of the
Hankel functions of the first kind as follows (cf. [2]):

Kn(s) =
π

2
in+1H(1)

n (is), (3.5)
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where s ∈ C and n ∈ N. Additionally, we resort to the next recurrence relations for Hankel functions (cf. [2]):

d
ds

H(1)
n (s) =

n

s
H(1)

n (s) −H
(1)
n+1(s), (3.6a)

2n
s
H(1)

n (s) = H
(1)
n+1(s) +H

(1)
n−1(s). (3.6b)

The inverse Fourier transform of (3.3c) is computed by employing formulas (3.4), identity (3.5), and rela-
tions (3.6), obtaining

F−1
ω ψ1(x1, x2) =

iω
2
s20

(
1

ωs0r
H

(1)
1 (ωs0r) −H

(1)
2 (ωs0r)

(x1 − y1)2

r2

)
, (3.7a)

F−1
ω ψ2(x1, x2) =

iω
2
s20

(
− 1
ωs0r

H
(1)
1 (ωs0r) +H

(1)
2 (ωs0r)

(x2 − y2)2

r2

)
, (3.7b)

F−1
ω ψ3(x1, x2) = − iω

2
s20H

(1)
2 (ωs0r)

(x1 − y1)(x2 − y2)
r2

, (3.7c)

where r denotes the distance between x and y, that is,

r = |x − y| =
√

(x1 − y1)2 + (x2 − y2)2. (3.8)

Using formulas (3.7) with s0 substituted by sL or sT as appropriate, we obtain the following expression for the
components of GP (x,y):

GP
ij(x,y) =

i
4μ

(
a(r) δij + b(r)

(xi − yi)(xj − yj)
r2

)
, 1 ≤ i, j ≤ 2, (3.9)

where a(·), b(·) are the functions given by

a(r) = H
(1)
0 (ωsT r) − 1

ωsT r

(
H

(1)
1 (ωsT r) − β H

(1)
1 (ωsLr)

)
, (3.10a)

b(r) = H
(1)
2 (ωsT r) − β2H

(1)
2 (ωsLr), (3.10b)

and β = sL/sT . The expression (3.9) corresponds exactly to the full-plane Green’s function of the time-
harmonic elasticity system (see [3,7] for details).

3.2. The boundary term

The boundary term GB(x,y) requires special attention, because ĜB has singularities (pseudo-poles and
poles) that make difficult the calculation of its inverse Fourier transform. For that reason, these singularities are
previously removed by subtracting certain suitable terms, whose inverse transforms are analytically calculable.
The advantage of this approach is that the remaining term is regular and its inverse Fourier transform can be
numerically approximated. Hence, this procedure decomposes the term ĜB into a sum of three terms:

ĜB(s, x2) = ĜB,reg(s, x2) + ĜB,psp(s, x2) + ĜB,pol(s, x2), (3.11)

where ĜB,reg corresponds to the regular part, ĜB,psp is the part of pseudo-poles and ĜB,pol is the part of poles.
Their inverse Fourier transforms are denoted by GB,reg(x,y), GB,psp(x,y) and GB,pol(x,y), respectively, and
they are separately computed as described below.
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3.2.1. Pseudo-poles

Singularities known as pseudo-poles (or half-order poles) are present in the diagonal components ĜB
11 and ĜB

22,
due to the factors θL(s)−1 and θT (s)−1, respectively. Specifically, ĜB

11 has two pseudo-poles at s = ±sL, whereas
ĜB

22 has two pseudo-poles at s = ±sT . These singularities can be removed by subtracting the terms

ĜB,psp
11 (s, x2) = − 1

2ρω
s2θL(s)−1e−ωθL(s)(x2+y2), (3.12a)

ĜB,psp
22 (s, x2) = − 1

2ρω
s2θT (s)−1e−ωθT (s)(x2+y2). (3.12b)

As components ĜB
21 and ĜB

12 have no pseudo-poles, the term ĜB,psp in (3.11) corresponds to a diagonal matrix.
Once the subtraction is done, the term ĜB − ĜB,psp can be written as follows:(

ĜB − ĜB,psp
)
(s, x2) = − 1

2ρω

((
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)−1

χ(s, x2), (3.13)

where χ(s, x2) is a 2 × 2 matrix function whose components are

χ11(s, x2) = θT (s)
(
8s4e−ωθL(s)(x2+y2)

+
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) − μ−1s2T θT (s)Z

)
e−ωθT (s)(x2+y2)

− 4s2
(
2s2 − s2T

)(
e−ω(θL(s)x2+θT (s)y2) + e−ω(θT (s)x2+θL(s)y2)

))
, (3.14a)

χ21(s, x2) = is
(((

2s2 − s2T
)2 + 4s2θL(s) θT (s) + μ−1s2T θT (s)Z

)
e−ωθL(s)(x2+y2)

+
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) − μ−1s2T θT (s)Z

)
e−ωθT (s)(x2+y2)

− 4
(
2s2 − s2T

)(
θL(s) θT (s)e−ω(θL(s)x2+θT (s)y2) + s2e−ω(θT (s)x2+θL(s)y2)

))
, (3.14b)

χ12(s, x2) = − is
(((

2s2 − s2T
)2 + 4s2θL(s) θT (s) + μ−1s2T θT (s)Z

)
e−ωθL(s)(x2+y2)

+
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) − μ−1s2T θT (s)Z

)
e−ωθT (s)(x2+y2)

− 4
(
2s2 − s2T

)(
s2e−ω(θL(s)x2+θT (s)y2) + θL(s) θT (s)e−ω(θT (s)x2+θL(s)y2)

))
, (3.14c)

χ22(s, x2) = θL(s)
((

2s2 − s2T
)2 + 4s2θL(s) θT (s) + μ−1s2T θT (s)Z

)
e−ωθL(s)(x2+y2)

+ 2s2
(
4s2θL(s) − μ−1s2TZ

)
e−ωθT (s)(x2+y2)

− 4s2
(
2s2 − s2T

)
θL(s)

(
e−ω(θL(s)x2+θT (s)y2) + e−ω(θT (s)x2+θL(s)y2)

)
. (3.14d)

These functions do not have any singularity. Moreover, it is straightforward to verify that χ11, χ22 are even
functions in s, and χ21, χ12 are odd functions in s. Then, the inverse Fourier transform of (3.12) is analytically
computed by employing formulas (3.4), (3.5), and (3.8), obtaining

GB,psp
11 (x,y) = − iβ2

4μ

(
1

ωsLr̄
H

(1)
1 (ωsLr̄) −H

(1)
2 (ωsLr̄)

(x1 − y1)2

r̄ 2

)
, (3.15a)

GB,psp
22 (x,y) = − i

4μ

(
1

ωsT r̄
H

(1)
1 (ωsT r̄) −H

(1)
2 (ωsT r̄)

(x1 − y1)2

r̄ 2

)
, (3.15b)

where
r̄ =

√
(x1 − y1)2 + (x2 + y2)2. (3.16)
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3.2.2. Poles

The poles of the spectral Green’s function are removed from the term ĜB − ĜB,psp given by (3.13), which
does not have pseudo-poles. As the matrix function χ(s, x2) is regular in s, all the poles come from the common
denominator in (3.13). These poles are located at those values of s such that this denominator vanishes, that
is, they are solutions to the equation(

2s2 − s2T
)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z = 0. (3.17)

This equation can not, in general, be solved analytically. So it is necessary to employ numerical procedures,
and this matter is discussed in the next section. Nevertheless, as (3.17) only depends on s2 (see (2.14)), we
can establish a priori that the poles correspond to pairs symmetrically located with respect to the origin in
the complex plane. Thus, we take two solutions, namely, s = ŝ and s = −ŝ, with Re

(
ŝ
)
> 0, and we assume

that ĜB − ĜB,psp has two simple poles at these locations. The method we use to extract the poles is based on
subtracting a simple term from ĜB − ĜB,psp, which behaves in the same way at the neighborhood of each pole
and is regular elsewhere. We express this term as follows:

ĜB,pol(s, x2) = − 1
2ρω

(
1

s− ŝ
C+(ŝ, x2) +

1
s+ ŝ

C−(ŝ, x2)
)
, (3.18)

where C+(ŝ, x2) and C−(ŝ, x2) are the residue matrices of the poles at s = ŝ and s = −ŝ, respectively. These
matrices correspond to the next limits

C+(ŝ, x2) = −2ρω lim
s→+ŝ

(s− ŝ)
(
ĜB − ĜB,psp

)
(s, x2), (3.19a)

C−(ŝ, x2) = −2ρω lim
s→−ŝ

(s+ ŝ)
(
ĜB − ĜB,psp

)
(s, x2). (3.19b)

Combining with (3.13), we obtain

C+(ŝ, x2) = lim
s→+ŝ

(s− ŝ)χ(s, x2)(
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
, (3.20a)

C−(ŝ, x2) = lim
s→−ŝ

(s+ ŝ)χ(s, x2)(
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
· (3.20b)

Because of the evenness or oddness of each component of χ(s, x2) (see (3.14)), it is direct to verify that the next
symmetries hold:

C+
11(ŝ, x2) = −C−

11(ŝ, x2), C+
12(ŝ, x2) = C−

12(ŝ, x2),

C+
21(ŝ, x2) = C−

21(ŝ, x2), C+
22(ŝ, x2) = −C−

22(ŝ, x2).
(3.21)

Hence, to simplify notation, we put cij(ŝ, x2) = C+
ij (ŝ, x2), and the matrices C+(ŝ, x2) and C−(ŝ, x2) are

expressed as follows:

C+(ŝ, x2) =
[
c11(ŝ, x2) c12(ŝ, x2)
c21(ŝ, x2) c22(ŝ, x2)

]
, C−(ŝ, x2) =

[ −c11(ŝ, x2) c12(ŝ, x2)
c21(ŝ, x2) −c22(ŝ, x2)

]
, (3.22)

where the coefficients cij(ŝ, x2) can be computed by using L’Hôpital’s rule:

cij(ŝ, x2) =
χij(ŝ, x2)

d
ds

((
2s2 − s2T

)2 − 4s2θL(s) θT (s) + μ−1s2T θT (s)Z
)∣∣

s=ŝ

· (3.23)
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Figure 2. Contours in the complex plane for cases (a) x1 − y1 ≥ 0 and (b) x1 − y1 ≤ 0.

The inverse Fourier transform of (3.18) is analytically computed. In order to determine the diagonal terms of
GB −GB,psp, the next inverse transform has to be calculated:

F−1
ω

(
1

s− ŝ
− 1
s+ ŝ

)
(x,y) =

ω

2π

∫ +∞

−∞

(
1

s− ŝ
− 1
s+ ŝ

)
eiωs(x1−y1) ds. (3.24)

Let us assume that ŝ is strictly real. In that case, the computation of the integral in (3.24) must be carefully
made, because the functions 1/(s− ŝ) and 1/(s+ ŝ) are not integrable in R. In order to overcome this difficulty,
the pole at s = ŝ is regarded as the limit

ŝ = lim
ε→0+

ŝε = lim
ε→0+

ŝ+ iε. (3.25)

Therefore, the calculation is made assuming that the poles are placed at s = ±ŝε, where ε > 0 is fixed. This
procedure takes out both poles from the real axis and the inverse Fourier transform becomes correctly defined
in the classical sense. Notice that the pole at s = ŝ is displaced to the upper complex half-plane, whereas the
pole at s = −ŝ is displaced to the lower complex half-plane. This particular choice of sign for the imaginary
part of each pole gives the solution having the right physical sense, that is, outgoing waves (for a more detailed
explanation, see [9,10]). Once the inverse transform has been computed, we take the limit ε −→ 0+ at the
expression we have obtained. Let us define the function fε = fε(s) as the term under the integral sign in (3.24)
when ŝ is replaced by ŝε, that is,

fε(s) =
(

1
s− ŝε

− 1
s+ ŝε

)
eiωs(x1−y1). (3.26)

This function has two complex simple poles at s = ŝε and at s = −ŝε. The integral in (3.24) is computed by
application of Cauchy’s residues theorem. This calculation is separately performed for the cases x1 − y1 ≥ 0
and x1 − y1 ≤ 0, dealing with different clockwise-oriented contours in the complex plane for each case. These
contours are shown in Figure 2, where R > |ŝε| is a parameter destined to tend to infinity. When x1 − y1 ≥ 0,
we integrate along the upper contour, which consists of two parts, namely, the straight line I+

R and the upper
semicircle S+

R (see Fig. 2a). Notice that only the pole at s = ŝε lies inside this contour, then it follows from the
residues theorem that ∫

I+
R

fε(s) ds+
∫

S+
R

fε(s) ds = 2πi Res
s=ŝε

fε(s). (3.27)
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As the contour is clockwise oriented, the following limit is immediate:∫
I+

R

fε(s) ds −−−−−−→
R−→+∞

∫ +∞

−∞

(
1

s− ŝε
− 1
s+ ŝε

)
eiωs(x1−y1) ds. (3.28)

Moreover, it is straightforward to prove the estimation∣∣∣∣ ∫
S+

R

fε(s) ds
∣∣∣∣ ≤ ∫ π

0

2R|ŝε|
R2 − |ŝε|2 e−ωR sin θ(x1−y1)dθ, (3.29)

and as x1 − y1 ≥ 0, it follows from (3.29) that∫
S+

R

fε(s) ds −−−−−−→
R−→+∞

0. (3.30)

On the other hand, the residue of fε associated with the pole at s = ŝε is computed as follows:

Res
s=ŝε

fε(s) = lim
s→ŝε

(
s− ŝε

)
fε(s) = lim

s→ŝε

(
1 − s− ŝε

s+ ŝε

)
eiωs(x1−y1) = eiωŝε(x1−y1). (3.31)

Consequently, taking the limit R −→ +∞ in (3.27) and replacing (3.28), (3.30), and (3.31) leads to the identity∫ +∞

−∞

(
1

s− ŝε
− 1
s+ ŝε

)
eiωs(x1−y1) ds = 2πi eiωŝε(x1−y1), (3.32)

which is valid when x1 − y1 ≥ 0. In the case x1 − y1 ≤ 0, we integrate along the lower contour, which consists
of the straight line I−R and the lower semicircle S−

R (see Fig. 2b). The procedure is analogous to the previous
case, but this time it is necessary to take into account that this contour only encircles the pole at s = −ŝε. We
finally obtain the identity ∫ +∞

−∞

(
1

s− ŝε
− 1
s+ ŝε

)
eiωs(x1−y1) ds = 2πi e−iωŝε(x1−y1), (3.33)

which is valid when x1 − y1 ≤ 0. In the general case, both identities (3.32) and (3.33) can be expressed in a
single form: ∫ +∞

−∞

(
1

s− ŝε
− 1
s+ ŝε

)
eiωs(x1−y1) ds = 2πi eiωŝε |x1−y1|. (3.34)

Finally, taking the limit ε −→ 0+ in (3.34) and replacing in (3.24), we obtain

F−1
ω

(
1

s− ŝ
− 1
s+ ŝ

)
(x,y) = iω eiωŝ |x1−y1|. (3.35)

In order to determine the off-diagonal terms of GB −GB,psp, it is necessary to compute:

F−1
ω

(
1

s− ŝ
+

1
s+ ŝ

)
(x,y) =

ω

2π

∫ +∞

−∞

(
1

s− ŝ
+

1
s+ ŝ

)
eiωs(x1−y1) ds. (3.36)

The development for calculating the integral in (3.36) is completely analogous to that already done for (3.24).
The final result is

F−1
ω

(
1

s− ŝ
+

1
s+ ŝ

)
(x,y) = iω sign(x1 − y1) eiωŝ |x1−y1|. (3.37)
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If ŝ has a nonzero imaginary part, the inverse Fourier transform of (3.18) can be computed directly by using
the Cauchy’s residues theorem, leading to the same result in function of ŝ. Then, substituting (3.35) and (3.37)
in (3.18) yields the components of GB,pol:

GB,pol
11 (x,y) = − i

2ρ
c11(ŝ, x2) eiωŝ |x1−y1|, (3.38a)

GB,pol
21 (x,y) = − i

2ρ
c21(ŝ, x2) sign(x1 − y1) eiωŝ |x1−y1|, (3.38b)

GB,pol
12 (x,y) = − i

2ρ
c12(ŝ, x2) sign(x1 − y1) eiωŝ |x1−y1|, (3.38c)

GB,pol
22 (x,y) = − i

2ρ
c22(ŝ, x2) eiωŝ |x1−y1|, (3.38d)

where explicit expression for the coefficients cij can be obtained by replacing (3.14) in (3.23) and expanding:

c11(ŝ, x2) =
θT (ŝ)
ŝ

(
4(2ŝ2 − s2T ) − 8 θL(ŝ) θT (ŝ) − 4ŝ2

(
θL(ŝ)
θT (ŝ)

+
θT (ŝ)
θL(ŝ)

)
+ μ−1 s2T

θT (ŝ)
Z

)−1

×
(
8ŝ4e−ωθL(ŝ)(x2+y2) +

((
2ŝ2 − s2T

)2 + 4ŝ2θL(ŝ) θT (ŝ) − μ−1s2T θT (ŝ)Z
)
e−ωθT (ŝ)(x2+y2)

− 4ŝ2
(
2ŝ2 − s2T

)(
e−ω(θL(ŝ)x2+θT (ŝ)y2) + e−ω(θT (ŝ)x2+θL(ŝ)y2)

))
, (3.39a)

c21(ŝ, x2) = i
(

4(2ŝ2 − s2T ) − 8 θL(ŝ) θT (ŝ) − 4ŝ2
(
θL(ŝ)
θT (ŝ)

+
θT (ŝ)
θL(ŝ)

)
+ μ−1 s2T

θT (ŝ)
Z

)−1

×
(((

2ŝ2 − s2T
)2 + 4ŝ2θL(ŝ) θT (ŝ) + μ−1s2T θT (ŝ)Z

)
e−ωθL(ŝ)(x2+y2)

+
((

2ŝ2 − s2T
)2

+ 4ŝ2θL(ŝ) θT (ŝ) − μ−1s2T θT (ŝ)Z
)
e−ωθT (ŝ)(x2+y2)

− 4
(
2ŝ2 − s2T

)(
θL(ŝ) θT (ŝ)e−ω(θL(ŝ)x2+θT (ŝ)y2) + ŝ2e−ω(θT (ŝ)x2+θL(ŝ)y2)

))
, (3.39b)

c12(ŝ, x2) = − i
(

4(2ŝ2 − s2T ) − 8 θL(ŝ) θT (ŝ) − 4ŝ2
(
θL(ŝ)
θT (ŝ)

+
θT (ŝ)
θL(ŝ)

)
+ μ−1 s2T

θT (ŝ)
Z

)−1

×
(((

2ŝ2 − s2T
)2 + 4ŝ2θL(ŝ) θT (ŝ) + μ−1s2T θT (ŝ)Z

)
e−ωθL(ŝ)(x2+y2)

+
((

2ŝ2 − s2T
)2 + 4ŝ2θL(ŝ) θT (ŝ) − μ−1s2T θT (ŝ)Z

)
e−ωθT (ŝ)(x2+y2)

− 4
(
2ŝ2 − s2T

)(
ŝ2e−ω(θL(ŝ)x2+θT (ŝ)y2) + θL(ŝ) θT (ŝ)e−ω(θT (ŝ)x2+θL(ŝ)y2)

))
, (3.39c)

c22(ŝ, x2) =
θL(ŝ)
ŝ

(
4(2ŝ2 − s2T ) − 8 θL(ŝ) θT (ŝ) − 4ŝ2

(
θL(ŝ)
θT (ŝ)

+
θT (ŝ)
θL(ŝ)

)
+ μ−1 s2T

θT (ŝ)
Z

)−1

×
(((

2ŝ2 − s2T
)2 + 4ŝ2θL(ŝ) θT (ŝ) + μ−1s2T θT (ŝ)Z

)
e−ωθL(ŝ)(x2+y2)

+ 2ŝ2
(
4ŝ2 − μ−1s2T θL(ŝ)−1Z

)
e−ωθT (ŝ)(x2+y2)

− 4ŝ2
(
2ŝ2 − s2T

)(
e−ω(θL(ŝ)x2+θT (ŝ)y2) + e−ω(θT (ŝ)x2+θL(ŝ)y2)

))
. (3.39d)

The expressions (3.38) and (3.39) complete that presented in the previous article [8].
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3.2.3. Regular part

Once the terms corresponding to pseudo-poles and poles have been subtracted from ĜB, the following term
remains:

ĜB,reg(s, x2) = ĜB(s, x2) − ĜB,psp(s, x2) − ĜB,pol(s, x2), (3.40)

which is regular, because all its singularities in s have been removed. Furthermore, ĜB decreases fast at infinity
in s, since ĜB − ĜB,psp is exponentially decreasing. The inverse Fourier transform of ĜB,reg is numerically
approximated by an inverse discrete Fourier transform (IDFT). In order to perform this computation, we resort
to an algorithm of backward Fast Fourier Transform (FFT). Both the spatial and spectral domains are truncated
in a symmetric way by considering the intervals [−xmax, xmax] and [−smax, smax] where xmax > 0 and smax > 0
are maximum values for |x1| and |s|, respectively. These domains are discretized by taking N equispaced
samples for both variables. Thus, if φ(x1) is a function and Φ(s) is its Fourier transform Fω, their discrete
approximations φn and Φm, are

Φm =
xmax

N

N−1∑
n=0

φn e−
2πinm

Nω , φn =
2ω
π

smax

N

N−1∑
m=0

Φm e
2πinm

Nω , 0 ≤ n,m ≤ N − 1. (3.41)

This algorithm gives a numerical approximation of GB,reg(x,y) in a bounded region of R2
+.

4. Numerical computation of poles

The poles of the spectral Green’s function are determined by solving (3.17). This equation can be expressed
in terms of sL and sT by substituting (2.14) in (3.17):(

2s2 − s2T
)2 − 4s2

√
s2 − s2L

√
s2 − s2T + μ−1s2T

√
s2 − s2T Z = 0. (4.1)

In general, (4.1) can only be solved by numerical methods. Nevertheless, when Z = 0 an analytical solution is
possible. In this case, this equation becomes:(

2s2 − s2T
)2 − 4s2

√
s2 − s2L

√
s2 − s2T = 0. (4.2)

Replacing sL and sT from (2.12) and expanding, we obtain that s2 is a root of a third degree equation:

x3 + a2x
2 + a1x+ a0 = 0, (4.3)

where the coefficients a0, a1 and a2 are given by

a0 = − s8T
16(s2T − s2L)

, a1 =
s6T

2(s2T − s2L)
, a2 = −s

2
T (3s2T − 2s2L)
2(s2T − s2L)

· (4.4)

This polynomial equation can be analytically solved by means of well-known explicit formulas for their roots.
In the general case Z ∈ R, the roots of (4.1) are numerically approximated by a Newton’s algorithm.

Next, we present a numerical example of calculation of poles. The elastic medium we consider is limestone,
which is a sedimentary rock whose physical parameters are approximately (cf. [19]):

ρ = 2.400 [kg·m−3], E = 70 [GPa], ν = 0.3, (4.5)

where E is the Young’s modulus and ν is the Poisson’s ratio. The Lamé’s constants can be obtained by the
well-known formulas

λ =
νE

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
· (4.6)
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Figure 3. Dependence of Rayleigh slowness with Z.

Replacing the values of E and ν from (4.5) in (4.6) yields the following values for λ and μ:

λ = 40.3846 [GPa], μ = 26.9231 [GPa], (4.7)

and replacing these values in formulas (2.12) we obtain the following numerical values for the slownesses:

sL = 1.5959× 10−4 [s·m−1], sT = 2.9857× 10−4 [s·m−1]. (4.8)

Applying the foregoing procedure, we have found that for all Z in R, there exist two real poles at the locations
s = sR and s = −sR. The positive quantity sR corresponds to the Rayleigh slowness, which is associated with
the well-known Rayleigh surface wave, guided by the infinity boundary. Its value varies with the impedance Z
as indicated in Figure 3, where we can observe that sR is an increasing function of Z, which approaches
asymptotically sT when Z decreases to −∞. Moreover, we have found by numerical evidence that for certain
values of Z, the spectral Green’s function has two additional poles, which are in general complexes. These poles
can be written as s = ±(sA + iδA) where sA and δA are positives quantities. The whole curve described by
the positive pole as a function of Z in the complex plane is shown in Figure 4, where the zones corresponding
to true poles of the spectral Green’s function are emphasized. Notice that these poles are located at the zone
sL < Re(s) < sT , this is due to the definition of the complex square roots considered in (4.1) (see Fig. 1). The
dependence of sA and δA on Z is shown in Figures 5a and 5b, respectively, where the solution area is indicated
again. Figures 4 and 5 put in evidence that there exists a positive value of the impedance, which we denote
by Z∗, such that the imaginary part δA vanishes. In this particular case, Ĝ has two additional real poles and
there appears another surface wave, whose slowness is denoted by s∗. Indeed, the exact values of Z∗ and s∗ can
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Figure 4. Additional pole behavior in the complex plane as a function of Z.

Figure 5. Additional pole as a function of Z. (a) Real part sA. (b) Imaginary part δA.
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Figure 6. Components of G (real part) with Z = Z1: (a) G11, (b) G12, (c) G21, (d) G22.

be analytically calculated. In effect, replacing s = s∗ in (4.1) and assuming sL < s∗ < sT gives

(
s2T − 2s∗2

)2 − i
(
4s∗2

√
s∗2 − s2L − 1

μ
s2T Z

∗
)√

s2T − s∗2 = 0. (4.9)

Notice that the first term is real and the second term is pure imaginary. Hence, in order to fulfill equation (4.9),
both terms have to vanish separately. The first term yields s∗, whereas the second term (together with the
value of s∗ just obtained), gives Z∗. These values are

s∗ =
√

2
2
sT , Z∗ = 2μ

√
s2T
2

− s2L. (4.10)

Replacing the numerical values of sT , sL, and μ from (4.7) and (4.8) yields

s∗ = 2.1112× 10−4 [s·m−1], Z∗ = 7.4421 [MPa·s·m−1]. (4.11)

It is important to notice that when Z approaches Z∗, the imaginary part of the additional pole becomes small
(see Fig. 5b). This phenomenon produces abrupt variations in the spectral Green’s function, which, although
are not true singularities, they can cause numerical problems in computing the FFT. Therefore, even if the
additional poles are complexes, it could be necessary to extract them in some cases.

5. Numerical results of the Green’s function

Next, we present some numerical results of the Green’s function. The elastic material corresponds to lime-
stone, and a frequency f = 5 [Hz] is assumed, that is, a pulsation ω = 2πf = 31.4159 [rad·s−1]. The source
point y is fixed at (y1, y2) = (0.500 [m]). The FFT is performed with N = 216 points. Three cases were
simulated, assuming Z1 = 0 [MPa·s·m−1], Z2 = Z∗ = 7.4421 [MPa·s·m−1], and Z3 = 60 [MPa·s·m−1]. The
results are presented in Figures 6, 7, and 8, respectively. Each figure shows contour plots in x = (x1, x2) of each
component of G (real part). The numerical values have been scaled to [0, 1] in all cases.



ELASTIC GREEN’S FUNCTION WITH NON-ABSORBING BOUNDARY CONDITION 691

Figure 7. Components of G (real part) with Z = Z2: (a) G11, (b) G12, (c) G21, (d) G22.

Figure 8. Components of G (real part) with Z = Z3: (a) G11, (b) G12, (c) G21, (d) G22.
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