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1
, Daniele A. Di Pietro

1
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Abstract. In the present work we introduce a new family of cell-centered Finite Volume schemes for
anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general
framework for the convergence study of finite volume methods is provided and then used to establish
the convergence of the new method. Fairly general meshes are covered and a computable sufficient
criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous
diffusivity, we introduce a non-standard test space in H1

0 (Ω) and prove its density. Thorough assessment
on a set of anisotropic heterogeneous problems as well as a comparison with classical multi-point Finite
Volume methods is provided.
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1. Introduction

One of the key ingredients for the numerical solution of Darcy equations is the discretization of anisotropic
heterogeneous elliptic terms [9]. Significant mathematical effort has therefore been devoted to finding consistent
and robust Finite Volume (FV) discretizations of anisotropic heterogeneous elliptic terms on general meshes.
Ideally, a method should (i) be consistent and coercive on general polyhedral meshes as well as robust with
respect to the anisotropy and heterogeneity of the permeability tensor; (ii) yield well-conditioned linear systems
for which optimal preconditioning strategies can be devised; (iii) have a narrow stencil, both to improve matrix
sparseness and to reduce the communication in parallel implementations. The latter requirement speaks in
favour of cell-centered methods. However, at present time, no unconditionally coercive and consistent compact
stencil cell-centered method has been found. Indeed, although several symmetric methods display unconditional
coercivity, they either entail severe mesh restrictions, as in [4], or exhibit very large stencils, as in [6,24].

The so-called Multi Point Flux Approximation (MPFA) methods have been independently introduced in the
middle of the 90s by Aavatsmark et al. [2] and Edwards and Rogers [21]. The key idea is to obtain consistency
on general meshes at the expense of a larger stencil while preserving the second order convergence of the classical
two-points method. As mentioned, however, coercivity only holds under suitable conditions on both the mesh
and the permeability tensor. The compact stencil MPFA L method has been proposed by Aavatsmark et al.
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[3,5] as an improvement of the MPFA O method of [1] both in terms of stencil size and monotonicity properties.
The convergence of the MPFA O method has been theoretically proved in [4] on two-dimensional quadrilateral
grids and in [7,8] on general two- and three-dimensional polyhedral meshes. In [25], the equivalence of multi-
points methods with the lowest-order Mixed Finite Element method on matching triangular grids has been
pointed out, and local coercivity conditions have been proposed. Other relatively inexpensive methods that
deserve being mentioned are those developed in the Mimetic Finite Difference framework of [14–16], as well as
the Hybrid Finite Volume scheme of [24] or the Mixed Finite Volume scheme of [19]. The analogies among the
three classes of methods have been recently pointed out in [20]. Finally, a unified framework covering both FV
and discontinuous Galerkin methods expressed in weak form has recently been introduced in [10] relying on the
discrete functional analysis results of [17,23].

In this work we propose a family of cell-centered schemes generalizing the MPFA L method. The key idea
is to write the flux through a face as the weighted average of several L-type fluxes. A proper choice of the
weights enhances the coercivity of the method, thereby improving its robustness with respect to the skewness of
the mesh and to the anisotropy and heterogeneity of the permeability tensor. The provided convergence proof
covers more general FV schemes expressed in terms of numerical fluxes and it is inspired by the techniques
of Eymard, Gallouët and Herbin (see, e.g., [22,24]). The relevant requirements are weak flux consistency and
coercivity. Convergence is then obtained using the discrete Sobolev embeddings and Rellich theorem proved
in [24], Section 5. Unlike in [10], where methods in weak formulation are considered, we focus here on lower
order methods in flux formulation. The interest of flux formulation is that (i) it provides a natural means to
implement new methods in traditional two-point FV codes; (ii) it is more natural for a number of multi-points
methods and (iii) it allows to further reduce the set of requirements for convergence (flux continuity, e.g., is not
needed).

From a practical viewpoint, the proposed method is a good compromise between accuracy, robustness and
computational cost. Indeed, the methods of [14–16,20,24] require the introduction of additional face unknowns
whose local elimination in terms of cell unknowns is, in general, not possible. While the resulting stability
properties are highly appreciable, the increase in computational cost is often not affordable in large industrial
simulations. Unconditionally coercive cell-centered methods like the ones of [24], Section 2.2, or of [6] have
stencils extending to neighbours of neighbours, resulting in denser matrices and increased memory require-
ments. Also, in parallel implementations, two layers of ghost cells are needed to ensure communications among
subdomains, resulting in heavily penalized scalability (message passing is still considered a bottle-neck when it
comes to large industrial cases). More compact methods like the MPFA L method have up to now been based
on (sophisticated) heuristics rather than on a extensive mathematical analysis. To the best of our knowledge,
the present work contains the first rigorous convergence proof for the MPFA L method for general meshes and
arbitrary heterogeneous anisotropic diffusion tensors. The aim of this paper is also to identify a minimal set
of requirements for convergence and investigate the benefits of a deeper mathematical comprehension. The
resulting MPFA G method outperforms the original version of [3,5] on a number of representative test cases
modelling some of the difficulties encountered in industrial simulations.

In order to avoid artificial regularity assumptions on the permeability tensor in the consistency proof, we have
introduced a permeability dependent test space Q composed of continuous functions with possibly discontinuous
gradients but continuous fluxes. This space is proved to be dense in H1

0 (Ω) following the ideas of [18]. To the
best of our knowledge, the idea of selecting a problem-taylored test space as well as the density proof are new;
also, the density results for Q is a general tool of independent interest.

The work is organized as follows: in Section 2 we present a general convergence study based on a minimal
set of requirements; the analysis applies to fairly general FV methods expressed in terms of numerical fluxes. In
Section 3 we present the G method, a generalization of the MPFA L scheme, and show that it fits in the analysis
framework of Section 2; Section 4 is devoted to numerical tests. The performances of the proposed method are
evaluated on a set of anisotropic and heterogeneous benchmarks on general meshes. A comparison against the
MPFA O and L methods as well as against a variant of the symmetric unconditionally coercive scheme of [24],
Section 2.2 (hereafter labeled Success), is provided.



THE G METHOD FOR HETEROGENEOUS ANISOTROPIC DIFFUSION ON GENERAL MESHES 599

2. Abstract framework

2.1. Model problem

Let Ω ⊂ R
d, d ≥ 1, be an open bounded connected polygonal domain with boundary ∂Ω and let PΩ

def=
{Ωi}i=1...NΩ denote a finite partition of Ω into open connected disjoint polygonal subsets. Let Λ be a symmetric
tensor-valued function such that (s.t.) (i) Λ|Ωi

∈ [C2(Ωi)]d,d for all i = 1 . . .NΩ and (ii) there exist 0 < α0 <

β0 < +∞ s.t., for almost every (a.e.) x ∈ Ω, the spectrum of Λ(x) is contained in [α0, β0]. Consider the following
problem: {

∇·(−Λ ∇u) = f in Ω,
u = 0 on ∂Ω,

(2.1)

where f ∈ Lr(Ω) with r > 1 if d = 2 and r = 2d
d+2 if d > 2. The existence and uniqueness of a weak solution

u ∈ H1
0 (Ω) of problem (2.1) is a classical result.

Remark 2.1. Other standard types of boundary conditions can be considered. However, for easiness of pre-
sentation, we have preferred to consider the simpler homogeneous Dirichlet case.

In what follows, we shall provide the definition of a FV discretization of problem (2.1) as well as an analysis
framework covering fairly general (possibly nonconforming) polygonal meshes.

Definition 2.1 (admissible family of discretizations). An admissible family of finite volume discretizations
{Dn}n∈N is a triplet Dn = (Tn, En,Pn), where

(i) Tn is a finite family of non-empty connected open disjoint subsets of Ω (the cells or control volumes) s.t.
Ω = ∪K∈TnK and Tn is compatible with PΩ (each cell is contained in one element of the partition PΩ).
For all K ∈ Tn, we denote by mK > 0 its d-dimensional measure (the volume) and let ∂K def= K \K;

(ii) En is a finite family of subsets of Ω (the faces) s.t., for all σ ∈ En, σ is a non-empty closed subset of a
hyperplane of R

d with (d − 1)-dimensional measure mσ > 0 (the area), and s.t. the intersection of two
different faces has zero (d−1)-dimensional measure. We assume that, for all K ∈ Tn, there exists a subset
EK of En such that ∂K = ∪σ∈EKσ. For a given σ ∈ En, either Tσ

def= {K ∈ Tn |σ ∈ EK} has exactly one
element and then σ ⊂ ∂Ω (boundary face) or Tσ has exactly two elements (inner face); the sets of inner
and boundary faces are denoted by En,int and En,ext respectively;

(iii) Pn = {xK}K∈Tn is a family of points of Ω indexed by Tn (the cell centers) s.t. xK ∈ K and K is
star-shaped with respect to xK . For all K ∈ Tn and for all σ ∈ EK we denote by dK,σ the Euclidean
distance between xK and the hyperplane supporting σ, and suppose that there exist 0 < �1 < +∞ and
0 < �2 < +∞ independent of n s.t.

min
K∈Tn, σ∈EK

dK,σ

diam(K)
≥ �1, min

σ∈En,int, Tσ={K,L}

min(dK,σ, dL,σ)
max(dK,σ , dL,σ)

≥ �2. (2.2)

Figure 1(a) presents an example of admissible mesh in two space dimensions. Definition 2.1 also establishes
refinement procedure to obtain admissible mesh families from an initial coarse grid. By items (ii) and (iii),
and since mσ dK,σ

d is the measure of the convex hull �K,σ of xK and σ (see Fig. 1(b)), the following geometric
relation holds:

∀K ∈ Tn,
∑

σ∈EK

mσ dK,σ = dmK . (2.3)

The size of the discretization is defined by hDn

def= supK∈Tn
diam(K). For all K ∈ Tn and σ ∈ EK , we denote

by nK,σ the unit vector normal to σ outward to K. For allK ∈ Tn, we set ΛK
def= 1

mK

∫
K

Λ(x) dx. The Euclidean

norm of a vector x ∈ R
n will be denoted by |x| def=

√
x·x, while, for a matrice A ∈ R

n,n, |A| will denote the norm
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(a) Admissible mesh

K

σ

�K,σ

xK

(b) Pyramid convex hull of xK and σ

Figure 1. Example of admissible mesh and pyramid convex hull of xK and σ for d = 2.

induced by the scalar product of R
n , i.e., |A| def= supx∈Rd

|Ax|
|x| . The vector space of bounded linear operators

from E to F will be denoted by L(E;F ).
In what follows, when referring to a generic element Dn of an admissible family of discretizations {Dn}n∈N,

the subscript n will be omitted to alleviate the notation whenever no ambiguity arises. The space of piecewise
constant functions on T is defined as

HT (Ω) def= {v ∈ L2(Ω) | v|K ∈ P
0(K), ∀K ∈ T }.

For all v ∈ HT and for all K ∈ T , vK will denote the (constant) value of v on K, i.e., v|K(x) = vK for all
x ∈ K. In order to endow HT with a discrete H1 norm, let, for all σ ∈ E , Iσ ∈ L(HT (Ω); P0(σ)) denote a trace
reconstruction operator s.t., for all v ∈ HT (Ω), Iσv = 0 if σ ∈ Eext. We are now ready to define

||v||T ,I
def=

(∑
K∈T

∑
σ∈EK

mσ

dK,σ
|Iσv − vK |2

)1/2

.

Remark 2.2. Let γσ ∈ L(HT (Ω); P0(σ)) be s.t.

∀v ∈ HT (Ω),

⎧⎨⎩
γσv − vK

dK,σ
+
γσv − vL

dL,σ
= 0 if σ ∈ Eint with Tσ = {K,L},

γσv = 0 if σ ∈ Eext.

Then, for all Iσ ∈ L(HT (Ω); P0(σ)) s.t., for all v ∈ HT (Ω), Iσv = 0 if σ ∈ Eext,

∀v ∈ HT (Ω), ‖v‖T ,γ ≤ ‖v‖T ,I . (2.4)

Set, for σ ∈ Eint with Tσ = {K,L}, gσ(y) def= mσ

dK,σ
|y − vK |2 + mσ

dL,σ
|y − vL|2. Inequality (2.4) is obtained by

noticing that γσv minimizes gσ and that ‖v‖2
T ,γ =

∑
σ∈Eint

gσ(γσv) +
∑

σ∈Eext,Tσ={K}
mσ

dK,σ
|vK |2.

In view of Remark 2.2 and of the special nature of γσ, the abridged notation ‖·‖T will be used for ‖·‖T ,γ

whenever possible. For all K ∈ T and for all σ ∈ EK , let FK,σ ∈ L(HT (Ω); P0(σ)) be a numerical flux function
meant to approximate the diffusive flux flowing out K through σ. For all (u, v) ∈ [HT (Ω)]2, define the bilinear
form

aT (u, v) def=
∑
K∈T

∑
σ∈EK

FK,σ(u)(Iσv − vK).
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In what follows, we shall consider discretizations of (2.1) of the form

Find u ∈ HT (Ω) s.t. aT (u, v) =
∫

Ω

fv for all v ∈ HT (Ω). (2.5)

2.2. Convergence analysis

We introduce the discrete gradient reconstruction ∇̃D ∈ L(HT (Ω); [HT (Ω)]d) s.t., for all K ∈ T and all
v ∈ HT (Ω),

∇̃Dv|K =
1

mK

∑
σ∈EK

mσ(Iσv − vK)nK,σ. (2.6)

For all v ∈ HT and for all K ∈ T , (∇̃Dv)K will denote the (constant) value of ∇̃Dv on K, i.e., ∇̃Dv|K(x) =
(∇̃Dv)K for all x ∈ K. Equation (2.3) together with Cauchy-Schwarz inequality yield

‖∇̃Dv‖[L2(Ω)]d ≤
√
d‖v‖T ,I ∀v ∈ HT (Ω). (2.7)

The next result can proved following [24], Section 5.1.2 (indeed, the discrete norms considered are equivalent
under the mesh regularity assumptions of Def. 2.1):

Lemma 2.1 (discrete Sobolev embeddings). Let D be an element of a family of discretizations matching
Definition 2.1. Let q ∈ [1,+∞) if d = 2, and q ∈ [1, 2d/(d− 2)] if d > 2. Then, there exists C1 > 0 depending
on Ω, q, �1 and �2 but not on n s.t.

‖u‖Lq(Ω) ≤ C1‖u‖T ∀u ∈ HT (Ω).

Owing to Remark 2.2, the following theorem can easily be deduced from (2.7) using techniques of [24],
Lemmata 5.6–5.7:

Lemma 2.2 (discrete Rellich theorem). Let {Dn}n∈N be a sequence of admissible discretizations matching
Definition 2.1 and s.t. hDn → 0 as n → ∞, and let {vn}n∈N be a sequence of HTn(Ω) s.t. there exists C > 0
with ‖vn‖Tn,I ≤ C for all n ∈ N. Then, there exist a subsequence of {vn}n∈N and a function ṽ ∈ H1

0 (Ω) s.t., as
n→ ∞, (i) vn → ṽ in Lq(Ω) for all q ∈ [1, 2d/(d− 2)) (and weakly in L2d/(d−2)(Ω) if d > 2); (ii) {∇̃Dnvn}n∈N

weakly converges to ∇ṽ in [L2(Ω)]d.

The assumptions yielding convergence of the finite volume scheme are gathered in the following

Assumption 2.1. Let {Dn}n∈N be a family of discretizations matching Definition 2.1 and s.t. hDn → 0 as
n→ ∞. We suppose that
(P1) D is a dense subspace of H1

0 (Ω) s.t. D ⊂ C0(Ω) ∩ C2(PΩ), where C2(PΩ) is the set of functions whose
restriction to Ωi, i = 1 . . .NΩ, is C2(Ωi) and C0(Ω) denotes the space of continuous functions which vanish
on ∂Ω. For all ϕ ∈ D, we denote by ϕTn the element of HTn(Ω) s.t., for all K ∈ Tn, ϕTn |K = ϕ(xK);

(P2) aTn is uniformly coercive, i.e., there is γ1 > 0 independent of n s.t.

∀v ∈ HTn(Ω), aTn(v, v) ≥ γ1‖v‖2
Tn,I ;

(P3) the numerical fluxes are weakly consistent on D, i.e., for all ϕ ∈ D,

εDn(ϕ) def=

( ∑
K∈Tn

∑
σ∈EK

dK,σ

mσ
|FK,σ(ϕTn) − mσ〈Λ∇ϕ〉K ·nK,σ|2

) 1
2

→ 0 as n→ ∞, (2.8)

where, for all K ∈ T and for all Φ ∈ L1(K), we have set 〈Φ〉K def=
∫

K Φ(x) dx/mK . For vectorial
functions, the notation has to be intended component-wise.
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Remark 2.3. Owing to (2.3), Property (P3) holds for strongly consistent numerical fluxes, for which there is
C2 independent of n s.t., for all ϕ ∈ D,

∀K ∈ Tn, ∀σ ∈ EK , |FK,σ(ϕTn) − mσ〈Λ∇ϕ〉K ·nK,σ| ≤ C2 mσ hDn . (2.9)

Indeed, owing to (2.3), (2.9) implies εDn(ϕ) ≤ C2

√
dmΩhDn , whence (P3).

Remark 2.4. Finite Volume methods are usually conservative, i.e., for all v ∈ HTn(Ω) and all σ ∈ En,int with
Tσ = {K,L}, FK,σ(v) + FL,σ(v) = 0. This property is not required to prove Theorem 2.1 below. However, it is
usually needed in the proof of (P2) or even in the definition of the numerical fluxes. When conservativity holds,
problem (2.5) is equivalent to the (more classical) FV formulation:

Find u ∈ HT (Ω) s.t. −
∑

σ∈EK

FK,σ(u) =
∫

K

f(x) dx for all K ∈ T ,

and the bilinear form aT does not depend on the choice of the trace operators {Iσ}σ∈E .

Proposition 2.1 (asymptotic stability of the interpolator). Under Assumption 2.1, for all ϕ ∈ D,

‖ϕT ‖T ,I ≤ 1
γ1

(
εD(ϕ) + β0

√
d|ϕ|H1(Ω)

)
.

Proof. Let ϕ ∈ D. Owing to (2.6), for all v ∈ HT (Ω), the following integration by parts formula holds:

∑
K∈Tn

∑
σ∈EK

mσ〈Λ∇ϕ〉K ·nK,σ(Iσv − vK) =
∑

K∈Tn

∫
K

Λ(x)∇ϕ(x)·
(

1
mK

∑
σ∈EK

mσ nK,σ(Iσv − vK)

)
dx

=
∑

K∈Tn

∫
K

Λ(x)∇ϕ(x)·(∇̃Dv)K dx =
∫

Ω

Λ(x)∇ϕ(x)·∇̃Dv(x) dx.

(2.10)
The above result together with (P2), Cauchy-Schwarz inequality and (2.7) yield

γ1‖ϕT ‖2
T ,I ≤ aT (ϕT , ϕT ) =

∑
K∈T

∑
σ∈EK

√
dK,σ

mσ
[FK,σ(ϕT ) − mσ〈Λ∇ϕ〉K ·nK,σ]

√
mσ

dK,σ
(IσϕT − ϕK)

+
∫

Ω

Λ(x)∇ϕ(x)·∇̃DϕT (x) dx

≤ εD(ϕ)‖ϕT ‖T ,I + β0|ϕ|H1(Ω)‖∇̃ϕT ‖[L2(Ω)]d ≤
(
εD(ϕ) + β0

√
d|ϕ|H1(Ω)

)
‖ϕT ‖T ,I . �

Lemma 2.3 (well-posedness). Assume that Assumption 2.1 holds. Then, problem (2.5) is well-posed for each
n ∈ N, and the solutions un ∈ HDn(Ω) satisfy the stability estimate

‖un‖Tn,I ≤ C1

γ1
‖f‖Lr(Ω). (2.11)

Proof. The solvability of problem (2.5) stems from (P2), which guarantees the inversibility of the corresponding
linear system for each n. Using (P2), Hölder’s inequality, Lemma 2.1 and Remark 2.2, it is inferred from the
integrability assumptions on f that

γ1‖un‖2
Tn,I ≤ aTn(un, un) =

∫
Ω

fu dx ≤ ‖f‖Lr(Ω)‖un‖Lr′(Ω) ≤ C1‖f‖Lr(Ω)‖un‖Tn,I ,

where we have set r′ def= r
r−1 . �
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Theorem 2.1 (convergence). Let {Dn}n∈N be a family of discretizations matching Assumption 2.1 and s.t.
hDn → 0 as n → ∞. Then, as n → ∞, the sequence of discrete solutions of problem (2.5), say {un}n∈N,
converges to the solution u of (2.1) in Lq(Ω) for all q ∈ [1, 2d/(d− 2)) (and weakly in L2d/(d−2)(Ω) if d > 2).

Proof. Owing to the stability estimate (2.11) together with Lemma 2.2, there is ũ ∈ H1
0 (Ω) s.t., up to a

subsequence, (i) {un}n∈N converges to ũ in Lq(Ω) for all q ∈ [1, 2d/(d − 2)) (and weakly in L2d/(d−2)(Ω) if
d > 2) and (ii) {∇̃Dnun}n∈N weakly converges to ∇ũ in [L2(Ω)]d. It only remains to prove that ũ = u. Let
ϕ ∈ D. Owing to (2.7) together with (P2),

‖∇̃Dn(un − ϕTn)‖2
[L2(Ω)]d ≤ d‖un − ϕTn‖2

Tn,I ≤ d

γ1
aTn(un − ϕTn , un − ϕTn) =

d

γ1
(T1 + T2) , (2.12)

where T1
def=

∫
Ω f(x)(un − ϕTn)(x) dx and T2

def= aTn(ϕTn , ϕTn − un). Clearly, by the integrability assumptions
on f and the weak convergence of {un}n∈N to ũ in Lq(Ω) for all q < +∞ if d = 2 and for q = 2d

d−2 if d > 2,

T1 →
∫

Ω

f(x)(ũ− ϕ)(x) dx as n→ ∞. (2.13)

Owing to (2.10),

aTn(ϕTn , un) =
∑

K∈Tn

∑
σ∈EK

[√
dK,σ

mσ
FK,σ(ϕTn) − mσ〈Λ∇ϕ〉K ·nK,σ

]√
mσ

dK,σ
(γσun − un,K)

+
∫

Ω

Λ(x)∇ϕ(x)·∇̃Dnun(x) dx def= T2,1 + T2,2.

Using Cauchy-Schwarz inequality we conclude that T2,1 ≤ εDn(ϕ)‖un‖Tn,I . Thanks to Lemma 2.3, ‖un‖Tn,I

is bounded uniformly with respect to n. Thus, by property (P3), T2,1 → 0 as n → ∞. Also, using the weak
convergence of {∇̃Dnun}n∈N, we conclude that T2,2 →

∫
Ω Λ(x)∇ϕ(x)·∇ũ(x) dx as n→ ∞. Let us now consider

the remaining terms in T2. By Proposition 2.1, ‖ϕTn‖Tn,I is uniformly bounded with respect to n; since ϕTn

obviously converges to ϕ, it is then easy, using Lemma 2.2, to see that ∇̃DnϕTn weakly converges to ∇ϕ. Pro-
ceeding in a similar way as for aTn(ϕTn , un), we can thus prove that aTn(ϕTn , ϕTn) →

∫
Ω

Λ(x)∇ϕ(x)·∇ϕ(x) dx
as n→ ∞. Therefore,

T2 →
∫

Ω

Λ(x)∇ϕ(x)·∇(ϕ− ũ)(x) dx as n→ ∞. (2.14)

Plugging (2.13) and (2.14) into the right hand side of (2.12) and using the weak convergence of ∇̃Dn(un − ϕTn),
we conclude that, for all ϕ ∈ D,

‖∇(ũ− ϕ)‖2
[L2(Ω)]d ≤ d

γ1

(∫
Ω

f(x)(ũ − ϕ)(x) dx+
∫

Ω

Λ(x)∇ϕ(x)·∇(ϕ− ũ)(x) dx
)
.

By virtue of (P1), we can apply this inequality to a sequence {ϕm}m∈N ∈ D which tends to u in H1
0 (Ω) and let

m→ ∞; since u solves problem (2.1), we obtain

‖∇(ũ− u)‖2
[L2(Ω)]d ≤ d

γ1

[∫
Ω

f(x)(ũ(x) − u(x)) dx−
∫

Ω

Λ(x)∇u(x)·∇(ũ − u)(x) dx
]

= 0,

i.e., ũ = u. Due to the uniqueness of the solution of (2.1), we deduce that the entire sequence {un}n∈N converges
to u in Lq(Ω) for all q ∈ [1, 2d/(d− 2)) (and weakly in L2d/(d−2)(Ω) if d > 2). Observe that the order in which
the limits for n → ∞ and m → ∞ are taken cannot be exchanged, the sequence {‖(ϕm)Tn‖Tn,I}m∈N being
possibly unbounded. This concludes the proof. �
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2.3. A strongly convergent gradient reconstruction

In practical applications, it is often desirable to dispose of a gradient reconstruction which strongly converges
to the gradient of the continuous solution (whereas ∇̃D only provides a weakly convergent approximation of
this gradient). Such a reconstruction can be obtained using the same formula as in the Mixed Finite Volume
method of Droniou and Eymard [19].

Let σ ∈ E be a mesh face, and denote by xσ its barycenter. For all v ∈ HT (Ω), define ∇Dv ∈ [HT (Ω)]d s.t.,
for all K ∈ T ,

∇Dv(x)|K =
1

mK
Λ−1

K

∑
σ∈EK

FK,σ(v)(xσ − xK). (2.15)

For all v ∈ HT and for all K ∈ T , (∇Dv)K will denote the (constant) value of ∇Dv on K, i.e., ∇Dv|K(x) =
(∇Dv)K for all x ∈ K. The following geometrical relation holds:

∀ξ ∈ R
d , ∀K ∈ T ,

∑
σ∈EK

mσ ξ·nK,σ(xσ − xK) = mK ξ. (2.16)

Lemma 2.4 (consistency). Let {Dn}n∈N denote a family of discretizations matching Assumption 2.1 and s.t.
hDn → 0 as n→ ∞. Then, for all ϕ ∈ D,

lim
n→∞

‖∇DnϕTn −∇ϕ‖2
[L2(Ω)]d = 0.

Proof. For all n ∈ N, for all K ∈ Tn, formula (2.16) applied to ξ = 〈Λ∇ϕ〉K yields, for all K ∈ T ,

Λ−1
K 〈Λ∇ϕ〉K =

1
mK

Λ−1
K

∑
σ∈EK

mσ〈Λ∇ϕ〉K ·nK,σ(xσ − xK).

Let TK,σ(ϕT ) def= FK,σ(ϕT ) − mσ〈Λ∇ϕ〉K ·nK,σ. Using Cauchy-Schwarz inequality we get, for all K ∈ T and
for all y ∈ K,

|(∇DnϕTn)K −∇ϕ(y)| =

∣∣∣∣∣ 1
mK

Λ−1
K

∑
σ∈EK

TK,σ(ϕT )(xσ − xK) +
1

mK
Λ−1

K

∫
K

Λ(x)(∇ϕ(x) −∇ϕ(y)) dx

∣∣∣∣∣
≤ 1
α0 mK

[ ∑
σ∈EK

√
dK,σ

mσ
|TK,σ(ϕTn)| |xσ − xK |√

dK,σ

√
mσ + C3β0 mK diam(K)

]

≤ 1
α0 mK

(∑
σ∈EK

dK,σ

mσ
|TK,σ(ϕTn)|2

) 1
2
(∑

σ∈EK

|xσ − xK |2
dK,σ

mσ

) 1
2

+
C3β0

α0
diam(K),

where C3
def= supx∈Ωi, i=1...NΩ

|ϕ′′(x)|. As a consequence, using (2.2) together with (2.3),∫
K

∣∣(∇DnϕTn)K −∇ϕ(y)
∣∣2 dy ≤ 2

(α0�1)2
∑

σ∈EK

dK,σ

mσ
|TK,σ(ϕTn)|2 × 1

mK

∑
σ∈EK

mσ dK,σ

+ 2
(
C3β0

α0

)2

mK diam(K)2

≤ 2d
(α0�1)2

∑
σ∈EK

dK,σ

mσ
|TK,σ(ϕTn)|2 + 2

(
C3β0

α0

)2

mK h2
Dn
.
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Finally, summing over K ∈ Tn,

‖∇DnϕTn −∇ϕ‖2
[L2(Ω)]d ≤ 2d

(α0�1)2
ε2Dn

(ϕ) + 2
(
C3β0

α0

)2

mΩ h
2
Dn
.

Use (P3) to conclude. �

The convergence of the gradient reconstruction (2.15) requires the following:

Assumption 2.2. Assume that there is C4 > 0 s.t.

∀n ∈ N, ∀v ∈ HTn(Ω),
∑

K∈Tn

∑
σ∈EK

dK,σ

mσ
|FK,σ(v)|2 ≤ C4‖v‖2

Tn,I . (2.17)

Remark 2.5. Assumption 2.2 is readily verified on Λ-orthogonal meshes and two point fluxes. A mesh is said
to be Λ-orthogonal if, for all σ ∈ E , there exists xσ ∈ σ s.t., for all K ∈ Tσ, Λ−1

K (xσ −xK) is orthogonal to σ. For
Λ-orthogonal meshes, we can define two-points consistent fluxes in the sense of (2.9) as FK,σ(v) = mσ tσ

(γσv−vK)
dK,σ

,
where the reals {tσ}σ∈E are given by⎧⎨⎩

dK,σ

ΛKnK,σ·nK,σ
+

dL,σ

ΛLnL,σ·nL,σ
=
dK,σ + dL,σ

tσ
if σ ∈ Eint with Tσ = {K,L}

tσ = ΛKnK,σ·nK,σ if σ ∈ Eext with Tσ = {K}.

Since for all σ ∈ E , tσ ≤ β0, (2.17) holds with C4 = β2
0 . Inequality (2.17) can be interpreted as a stability

requirement on the numerical fluxes. In particular, for the G-method of Section 3, Assumption 2.2 is proved
for general meshes in Lemma 3.5 below.

Proposition 2.2 (stability of the gradient reconstruction). Let {Dn}n∈N denote a family of discretizations
matching Definition 2.1. Let Assumption 2.2 hold. Then,

∀v ∈ HT (Ω), ‖∇Dv‖[L2(Ω)]d ≤
√
dC4

α0�1
‖v‖T ,I .

Proof. Let v ∈ HT (Ω). Cauchy-Schwarz inequality yields

‖∇Dv‖2
[L2(Ω)]d =

∑
K∈T

mK

∣∣∣∣∣ 1
mK

Λ−1
K

∑
σ∈EK

FK,σ(v)(xσ − xK)

∣∣∣∣∣
2

≤ 1
α2

0

∑
K∈T

(∑
σ∈EK

dK,σ

mσ
|FK,σ(v)|2 ×

∑
σ∈EK

mσ diam(K)2

dK,σ mK

)
·

Owing to (2.3) together with (2.2),
∑

σ∈EK

mσ diam(K)2

dK,σ mK
≤ d

�2
1
. Conclude using Assumption 2.2. �

Theorem 2.2 (strong convergence of the discrete gradient reconstruction). Let u be the solution to (2.1). Let
{Dn}n∈N be a family of meshes matching Definition 2.1 and s.t. hDn → 0 as n → ∞, and denote by un the
solution of problem (2.5) on Dn. Finally, let Assumptions 2.1 and 2.2 hold. Then, the sequence {∇Dnun}n∈N

strongly converges to ∇u in [L2(Ω)]d.

Proof. Thanks to Theorem 2.1 together with Lemma 2.2, (i) the sequence of weak solutions {un}n∈N converges
to u in Lq(Ω), for all q ∈ [1, 2d/(d− 2)) and (ii) the sequence {∇̃Dnun}n∈N weakly converges to ∇u in [L2(Ω)]d.
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Let ϕ ∈ D. For all n ∈ N,∫
Ω

|∇Dnun −∇u|2 ≤ 3
(∫

Ω

|∇Dnun −∇DnϕTn |2 +
∫

Ω

|∇DnϕTn −∇ϕ|2 +
∫

Ω

|∇ϕ(x) −∇u|2
)
.

Let Ti, i = 1 . . . 3 denote the addends in the right hand side. Owing to Proposition 2.2 together with (P2) we
have

T1 ≤ dC4

(α0�1)2γ1
aTn(un − ϕTn , un − ϕTn).

Using the same arguments as in the proof of Theorem 2.1, we infer that

lim sup
n→∞

T1 ≤ dC4

(α0�1)2γ1

(∫
Ω

f(u− ϕ) +
∫

Ω

Λ∇ϕ·(∇ϕ−∇u)
)
.

Moreover, owing to Lemma 2.4, limn→∞ T2 = 0 and thus

lim sup
n→∞

∫
Ω

|∇Dnu−∇u|2 ≤ 3
dC4

(α0�1)2γ1

(∫
Ω

f(u− ϕ) +
∫

Ω

Λ∇ϕ·(∇ϕ−∇u)
)

+ 3
(∫

Ω

|∇ϕ−∇u|2
)
.

Finally, since D is dense in H1
0 (Ω), we conclude by letting ϕ tend to u in H1

0 (Ω) as in the proof of Theorem 2.1.
�

3. The G method

In this section we introduce a family of FV methods generalizing the MPFA L method of [3,5] and show that
it fits in the abstract analysis framework of Section 2.

3.1. Construction of group gradients

The following definition collects the additional requirements on the discretization family {Dn}n∈N for the
G-method to be applicable.

Definition 3.1. Let {Dn}n∈N be a family of meshes matching Definition 2.1. We further suppose that:
(i) Vn is a family of points (the vertices or nodes), s.t., for all K ∈ Tn, for all UK ⊆ EK satisfying

card(UK) ≥ d, we have
⋂

σ∈UK
σ = ∅ or

⋂
σ∈UK

σ = s ∈ Vn. For all s ∈ Vn, we let Es
def= {σ ∈ E | s ∈ σ}

and Ts
def= {K ∈ T | s ∈ K}, and we assume that each σ contains at least one vertex (this could be false in

dimension d = 3 if, for example, σ is only a portion of a planar face of a cell);
(ii) the number of faces sharing one node remains bounded as the mesh is refined, i.e., there exists �3 s.t.

sup
n∈N

max
s∈Vn

card(Es) ≤ �3;

(iii) G̃ is the finite family of face groups defined as follows:

G̃ def= {G ⊂ EK ∩ Es, K ∈ Ts, s ∈ Vn, card(G) = d}.

For each G ∈ G̃, we let TG
def= {K ∈ T |G ∩ EK �= ∅}. We also arbitrarily select a cell, which we denote by KG,

s.t. G ⊂ EKG (see Fig. 2).

Remark 3.1. In many cases, a given group G is contained in a unique EK but, in some cases (especially if
the discretization has non-convex cells), there can be multiple possible choices for KG. In [3,5] the cell KG is
referred to as the primary cell.
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σ

σσ

σ

KG

KG KG

KG

Figure 2. Groups containing a face σ and corresponding primary cells KG for d = 2.

Let v ∈ HT (Ω), G ∈ G̃, σ ∈ G and K ∈ Tσ. In order to define a discrete flux FK,σ(v) through σ, we construct
a group gradient (∇Dv)

G,σ
K ∈ R

d. The full gradient used in the definition of FK,σ(v) will then be obtained as a
convex combination of the group gradients corresponding to the groups G ∈ G s.t. σ ∈ G (see Eq. (3.6) below).
Let us detail the procedure to obtain the group gradient (∇Dv)

G,σ
K . First, for all σ ∈ E , Tσ = {K,L}, we require

that the values vK , vL and the gradient reconstruction (∇Dv)
G,σ
K , (∇Dv)

G,σ
L yield the same value trace on σ,

i.e.,
vK + (∇Dv)

G,σ
K ·(x − xK) = vL + (∇Dv)

G,σ
L ·(x− xL) ∀x ∈ σ.

For a boundary face σ, we require that the value obtained at its barycenter xσ be zero. Second, we require the
conservativity of the resulting fluxes, i.e.,

ΛK(∇Dv)
G,σ
K ·nK,σ + ΛL(∇Dv)

G,σ
L ·nL,σ = 0.

The above set of equations are not sufficient to uniquely define the group gradients (and thus to estimate them,
which is fundamental in the study of the numerical method). We therefore add another constraint, giving
a particular role to the cell KG selected for the group G, namely we require that (∇Dv)

G,σ
KG

do not depend
on σ ∈ G, and we denote by (∇Dv)G

KG
the common value of this group gradient for all σ ∈ G. The discrete

gradients are thus defined, as the solution of the following local problems: For all G ∈ G̃ and all σ ∈ G ∩ Eint,
with Tσ = {KG, L}, {

vKG + (∇Dv)G
KG

·(x− xKG) = vL + (∇Dv)
G,σ
L ·(x− xL) ∀x ∈ σ,

ΛKG(∇Dv)G
KG

·nKG,σ + ΛL(∇Dv)
G,σ
L ·nL,σ = 0,

(3.1)

and for all σ ∈ G ∩ Eext,
vKG + (∇Dv)G

KG
·(xσ − xKG) = 0. (3.2)

Lemma 3.1. For each group G ∈ G, the gradient reconstruction (∇Dv)G
KG

defined by (3.1) and (3.2) can be
obtained solving a linear system of the form

AGXG = BG(v), (3.3)
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where AG ∈ R
d,d is defined row-wise by

AG =

⎛⎜⎝
(

ΛLnL,σ·nL,σ

dL,σ
(xL − xKG) + ΛKGnKG,σ + ΛLnL,σ

)t

σ∈G∩Eint(
ΛKG

nKG,σ ·nKG,σ

dKG,σ
(xσ−xKG)

)t

σ∈G∩Eext

⎞⎟⎠ ,

and BG(v) ∈ R
d is defined as

BG(v) =

⎛⎜⎜⎝
(

ΛLnL,σ·nL,σ

dL,σ
(vL − vKG)

)
σ∈G∩Eint(

ΛKGnKG,σ·nKG,σ

dKG,σ
(−vKG)

)
σ∈G∩Eext

⎞⎟⎟⎠ .

Proof. Let v ∈ HT (Ω), G ∈ G, σ ∈ G ∩ Eint with Tσ = {KG, L}. Observe that, if v def= (∇Dv)G
KG

−(∇Dv)
G,σ
L �=0,

the first equation of (3.1) is the equation of an hyperplane of R
d orthogonal to v; satisfying this equation for all

x ∈ σ is equivalent to imposing that σ is contained in this hyperplane, and thus that v and nKG,σ are colinear
(this is of course also true if v = 0). As a consequence, taking yσ ∈ σ, the first equation in (3.1) is equivalent
to the following linear system (in which λG

σ ∈ R is an additional unknown):{
(∇Dv)G

KG
− (∇Dv)

G,σ
L = λG

σ nKG,σ,

vKG − vL + (∇Dv)
G,σ
L ·xL − (∇Dv)G

KG
·xKG = −λG

σ nKG,σ·yσ.

Since, by point (iii) in Definition 2.1, (yσ − xL)·nKG,σ = −dL,σ > 0, solving for λG
σ we obtain{

λG
σ = −RL,σ(v)

dL,σ
,

(∇Dv)
G,σ
L = (∇Dv)G

KG
− RL,σ(v)

dL,σ
nL,σ,

with RL,σ(v) def= vL − vKG − (∇Dv)G
KG

·(xL − xKG). Using these expressions, the second equation of (3.1) can
be rewritten as[

ΛKGnKG,σ + ΛLnL,σ +
ΛLnL,σ·nL,σ

dL,σ
(xL − xKG)

]
·(∇Dv)G

KG
=

ΛLnL,σ·nL,σ

dL,σ
(vL − vKG).

The linear system (3.1)–(3.2) is thus equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∇Dv)
G,σ
L = (∇Dv)G

KG
− RL,σ(v)

dL,σ
nL,σ , ∀σ ∈ G ∩ Eint , Tσ = {KG, L},[

ΛLnL,σ·nL,σ

dL,σ
(xL − xKG) + ΛKGnKG,σ + ΛLnL,σ

]
·(∇Dv)G

KG

=
ΛLnL,σ·nL,σ

dL,σ
(vL − vKG) , ∀σ ∈ G ∩ Eint , Tσ = {KG, L},

ΛKGnKG,σ·nKG,σ

dKG,σ
(∇Dv)G

KG
·(xσ − xKG) =

ΛKGnKG,σ·nKG,σ

dKG,σ
(−vKG), ∀σ ∈ G ∩ Eext.

(3.4)

�
We introduce the set of groups s.t. the matrix AG is invertible, that is to say

G def=
{
G ∈ G̃ |AG is invertible

}
.
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KG1

nKG1 ,σ1

nKG1 ,σ2

(a) G1 ∈ Gσ

KG2L

nKG2 ,σ1

nKG2 ,σ2

(b) G2 /∈ Gσ

Figure 3. Two examples of face groups of G̃ respectively belonging and not belonging to Gσ.

We infer from the expression provided in Lemma 3.1 that the invertibility of the matrices {AG}G∈G̃ depends on
both the mesh and the permeability tensor. As a result, on a given mesh, the matrix associated to one group
G ∈ G̃ may or may not be invertible depending on the values of Λ on the cells of TG. For all σ ∈ E , define the
set of groups containing σ as

Gσ
def= {G ∈ G |σ ∈ G}.

In order to construct the fluxes FK,σ, K ∈ Tσ, at least one group G ∈ G containing σ must be available. As a
consequence, throughout the rest of this work, we shall assume that:

Assumption 3.1. For all σ ∈ E, Gσ is non-empty.

In practical applications, Assumption 3.1 can be verified in a preliminary step. Should exist σ ∈ G̃ for which
no group G containing σ yields an invertible matrix AG, recovery strategies can be devised. One possibility
is, e.g., to proceed as in Eymard et al. [24] and locally hybridize the method by introducing a face unknown.
Another possibility is to move the cell centers {xK}K∈Tσ still matching point (iii) in Definition 2.1. It has to
be noticed, however, that this second strategy affects all faces σ′ ∈ EK , K ∈ Tσ. In both cases, the convergence
of the method can be proved following the abstract analysis framework of Section 2.

Figure 3 shows two examples of groups respectively belonging and not belonging to G (in the case where Λ is
constant). Indeed, since ΛKG2

= ΛL, the terms ΛKG2
nKG2 ,σi and ΛLnL,σi cancel out in each line of AG2 and,

since the cell L on the other side of σ1 and σ2 is the same, both lines of AG2 are colinear to xL − xKG2
, and

the matrix is singular. The non-convexity of cells can be a cause to the singularity of some AG (but this does
not block the use of the G method since, even in this case, the non-emptiness of all Gσ often holds).

Finally, we define in the following two lemmata the space playing the role of D in Assumption 2.1, we state
its density and we establish the consistency on this space of the group gradients (this will give (P3)).

Lemma 3.2 (density of a space of test-functions). Let Q be the space of functions ϕ : Ω → R s.t.
(i) (ϕ is continuous and piecewise regular) ϕ ∈ C0(Ω) and, for all i = 1, . . . , NΩ, ϕ ∈ C2(Ωi);
(ii) (the tangential derivatives of ϕ are continuous through the interfaces of PΩ) for all i, j = 1, . . . , NΩ, for

all vector t parallel to ∂Ωi ∩ ∂Ωj, (∇ϕ)|Ωi
·t = (∇ϕ)|Ωj

·t, where (∇ϕ)|Ωi
refers to the value of ∇ϕ on ∂Ωi

computed from the values on Ωi;
(iii) (the flux of ∇ϕ directed by Λn is continuous through the interfaces of PΩ) for all i, j = 1, . . . , NΩ s.t.

∂Ωi ∩ ∂Ωj has dimension d − 1, (Λ∇ϕ)|Ωi
·ni + (Λ∇ϕ)|Ωj

·nj = 0 on ∂Ωi ∩ ∂Ωj, where ni is the outer normal
to Ωi.

Then, Q is dense in H1
0 (Ω).

Proof. See Appendix. �
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Lemma 3.3 (consistency of the group gradients). Let D be an element of a family of discretizations satisfying
Assumption 2.1. For all ϕ ∈ Q, there exists a real C5 > 0 which only depends on �1, �2, Λ and ϕ s.t., for all
G ∈ G, all σ ∈ G and all K ∈ Tσ,

|(∇DϕT )G,σ
K −∇ϕ(xK)| ≤ C5 (1 + |A−1

G |) max
K∈TG

diam(K).

Proof. See Appendix B. �

3.2. Numerical fluxes

In this section we introduce the numerical fluxes computed from the group gradients of Section 3.1. We
choose a set of weights {θG

σ }σ∈E,G∈Gσ s.t.

For all σ ∈ E , for all G ∈ Gσ, 0 ≤ θG
σ ≤ 1 and, for all σ ∈ E ,

∑
G∈Gσ

θG
σ = 1. (3.5)

The numerical fluxes are then defined as follows: For all K ∈ T , for all σ ∈ EK ,

FK,σ(u) def=
∑

G∈Gσ

θG
σ F

G
K,σ(u), FG

K,σ(u) def= mσ ΛK(∇Du)G,σ
K ·nK,σ. (3.6)

Since the subfluxes FG
K,σ are conservative (second equation in (3.1)), the whole fluxes FK,σ are also conservative.

Specific methods are obtained from (3.6) by defining a suitable criterion to compute the family of weights
{θG

σ }σ∈E,G∈Gσ .

3.3. The L method

The MPFA L method can be obtained as follows. For all σ ∈ E and for each s ∈ V ∩ σ we choose one
group Gσ,s ⊂ Es according to the criterion of [3] for which θ

Gσ,s
σ = 1/card({s ∈ V | s ∈ σ}). The other groups

containing s do not contribute to the flux through σ. This choice was originally intended to improve the
monotonicity of the method on parallelogram meshes.

3.4. The G method

The alternative choice used in the numerical examples of Section 4 is designed so as to enhance the coercivity
of the method. For each group G ∈ G, define the vector space HTG

def= R
card(TG) and denote the components of

a generic v ∈ HTG by {vK}K∈TG . The space HTG is endowed with the semi-norm

‖u‖2
TG

def=
∑

K∈TG

∑
σ∈EK∩G

mσ

dK,σ
(γσu− uK)2.

For all (u, v) ∈ [HTG ]2 set aTG(u, v) =
∑

K∈TG

∑
σ∈EK∩G F

G
K,σ(u)(γσv − vK). For each G ∈ G define

γ2
def= inf

{u∈HTG
, ‖u‖TG

=1}
aTG(u, u).

The computation of the parameter γ2 requires to evaluate the eigenvalues of a local matrix of R
d,d associated

with the bilinear form aTG , and its cost is negligible. Indeed, by conservativity of the subfluxes,

aTG(u, u) =
∑
σ∈G

∑
K∈Tσ

FG
K,σ(u)(γσu− uK)

=
∑

σ∈G∩Eint,Tσ={KG,L}
FG

KG,σ(u)(uL − uKG) +
∑

σ∈G∩Eext,Tσ={KG}
FG

KG,σ(u)(γσu− uKG).
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For all σ ∈ Eint with Tσ = {KG, L}, it holds uL − uKG = dKG,σ+dL,σ

dKG,σ
(γσu− uKG). Let

dσ
def=

{
dKG,σ + dL,σ ∀σ ∈ Eint with Tσ = {KG, L},
dKG,σ ∀σ ∈ Eext.

We infer that

aTG(u, u) =
∑
σ∈G

dσ

dKG,σ
FG

KG,σ(u)(γσu− uKG).

Now, by (3.3), FG
KG,σ(u) depends linearly on {uL − uKG}L∈TG\{KG} (and on uKG if σ ∈ Eext). Therefore, we

can write

FG
KG,σ(u) =

∑
σ′∈G

aG
σ,σ′

dσ′

dKG,σ′
(γσ′u− uKG),

for a suitable family of reals {aG
σ,σ′}σ,σ′∈G×G. As a consequence,

aTG(u, u) =
∑

(σ,σ′) ∈G×G

dσ

dKG,σ

dσ′

dKG,σ′
aG

σ,σ′(γσ′u− uKG)(γσu− uKG). (3.7)

Denote by XG(u) the vector of size d defined by the family
{√

dσ mσ

dKG,σ
(γσu− uKG)

}
σ∈G

and by AG the matrix

of size d defined by the family of reals
{√

dσdσ′
mσ mσ′

aG
σ,σ′

}
σ,σ′∈G×G

. Expression (3.7) can be rewritten as

aTG(u, u) = (AGXG(u))·XG(u) =
(
AG + (AG)t

2
XG(u)

)
·XG(u), (3.8)

where (AG)t denotes transpose of AG. From (3.8), we deduce that γ2 is the smallest eigenvalue of the matrix
AG+(AG)t

2 (indeed, the Euclidean norm of the vector XG(u) is exactly equal to ‖u‖TG). For a given ε > 0, let{
gε(x) = ε2

ε−x if x < 0,
gε(x) = x+ ε otherwise,

and, for all G ∈ G, define βG = gε(γ2). The weights are defined as

θG
σ =

βG∑
G′∈Gσ

βG′ ∀G ∈ G, ∀σ ∈ G.

Therefore, for a given G ∈ G, the larger γ2, the more the subfluxes {FG
K,σ}K∈TG, σ∈EK∩G will contribute to the

global fluxes {FK,σ}K∈T , σ∈EK∩G.

3.5. Convergence

Property (P2) is a crucial ingredient for the analysis of Section 2.2, since it allows to prove the existence
and uniqueness of a discrete solution as well as to obtain a stability estimate on the discrete solution for use
in Theorem 2.2. Unfortunately, proving (P2) for completely general meshes and diffusion tensors is usually
not possible for nonsymmetric schemes like the G method. In this section we propose a computable sufficient
criterion to check that (P2) holds. This criterion is not optimal in the sense that coercivity may hold even if the
assumptions of Lemma 3.4 are violated. For a given discretization and diffusion tensor, this assumption can be
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checked numerically by computing the eigenvalues of a small linear system of size card(Es) ≤ �3 for each vertex
s ∈ V . Let s ∈ V , and set HTs

def= {uK ∈ R, K ∈ Ts}. The space HTs is endowed with the semi-norm

‖u‖2
Ts

def=
∑

K∈Ts

∑
σ∈Es∩EK

mσ

dK,σ
(γσu− uK)2.

Denote by aTs the bilinear form defined as follows: For all u, v ∈ HTs ,

aTs(u, v)
def=

∑
G∈G,G⊂Es

∑
K∈TG

∑
σ∈EK∩G

θG
σ F

G
K,σ(u)(γσv − vK).

Lemma 3.4. Let there be a positive constant γ3 s.t.

min
s∈V

inf
{v∈HTs | ‖v‖Ts =1}

aTs(v, v) ≥ γ3. (3.9)

Then, for all u ∈ HT , aT (u, u) ≥ γ3‖u‖2
T .

Proof. For all u ∈ HT and s ∈ V , let us
def= (uK)K∈Ts ∈ HTs . Since any given group G only belongs to one

particular Es, it is easy to see that aT (u, u) =
∑

s∈V aTs(us, us), and thus that aT (u, u) ≥ γ3

∑
s∈V ||us||2Ts

.
The assertion then follows from ∑

s∈V
‖us‖2

Ts
≥ ‖u‖2

T ,

which is straightforward since, for all K ∈ T and for all σ ∈ EK , card({s ∈ V |σ ∈ Es}) ≥ 1. �

Theorem 3.1 (convergence). Let {Dn}n∈N be a family of meshes matching Definitions 2.1 and 3.1 and s.t.
hDn → 0 as n → ∞. Suppose, furthermore, that (3.9) holds with γ3 not depending on n ∈ N and that there
exists γ4 < +∞ s.t.

∀n ∈ N , ∀σ ∈ En ,
∑

G∈Gσ

θG
σ |A−1

G | ≤ γ4. (3.10)

Then, as n → ∞, the sequence {un}n∈N of discrete solutions of problem (2.5) with numerical fluxes defined
by (3.6) converges to the solution u of (2.1) in Lq(Ω) for all q ∈ [1, 2d/(d− 2)) (and weakly in L2d/(d−2)(Ω) if
d > 2).

Proof. It suffices to verify the requirements listed in Assumption 2.1. According to Lemma 3.2, the choice D = Q
meets (P1). The property (P2) holds (with Iσ = γσ) under (3.9), by Lemma 3.4. Finally, the consistency of the
fluxes (P3) can be obtained by proving the strong consistency (see Rem. 2.3). Indeed, for all n ∈ N, K ∈ Tn

and σ ∈ EK , (3.6), (3.5), Lemma 3.3 and (3.10) yield∣∣∣∣FK,σ(ϕTn) − 1
mK

∫
K

Λ(x)∇ϕ(x)·mσ nK,σ

∣∣∣∣ ≤ |FK,σ(ϕTn) − ΛK∇ϕ(xK)mσ nK,σ|

+
∣∣∣∣ 1
mK

∫
K

Λ(x)(∇ϕ(x) −∇ϕ(xK))·mσ nK,σ

∣∣∣∣
≤mσβ0

∑
G∈Gσ

θG
σ

∣∣∣(∇DnϕTn)G,σ
K −∇ϕ(xK )

∣∣∣
+ mσβ0 sup

x∈K
|∇ϕ(x) −∇ϕ(xK)|

≤ (C5γ4 + C3)mσβ0hDn ,

where C3 = supx∈PΩ
|ϕ′′(x)|. �
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3.6. Convergence of the gradient reconstruction

In order to prove the convergence of the gradient reconstruction (2.15), Assumption 2.2 must be verified; this
can be achieved by adding a rather benign assumption on the mesh families.

Assumption 3.2. {Dn}n∈N is a mesh family matching Definition 2.1 and there exists a non-negative constant �4

independent of n s.t.

max
K∈Tn

max
σ∈EK

diam(K)d−1

mσ
≤ �4.

This assumption and (2.2) allow to uniformly bound the cardinals of Gσ. Indeed, since each cell K is star-
shaped with respect to xK we have, for all σ ∈ EK and all x ∈ σ, (x−xK )·nK,σ = dK,σ ≥ �1diam(K) and thus,
by Stokes’ formula,

dmK =
∫

K

div(x− xK) dx =
∑

σ∈EK

∫
σ

(x − xK)·nK,σ

≥ �1diam(K)
∑

σ∈EK

mσ ≥ �1

�4
diam(K)dcard(EK).

As mK ≤ ωddiam(K)d, ωd being the volume of the unit ball in R
d, this shows that card(EK) ≤ dωd�4

�1
; but, if

Tσ = {K,L}, Gσ is contained in the set of families of d faces chosen in EK or EL, and there thus exists C6 only
depending on �4, �1 s.t.

max
σ∈En

card(Gσ) ≤ C6. (3.11)

Lemma 3.5. Let {Dn}n∈N be a family of discretizations matching Definition 2.1 and 3.1 and assume that
Assumption 3.2 and (3.10) hold. Then, Assumption 2.2 holds.

Proof. For simplicity of notation, the subscript n will be suppressed throughout the proof, which holds for a
generic element of the mesh family {Dn}n∈N. Let v ∈ HT (Ω).

(i) For G ∈ G, we estimate |(∇Dv)G
KG

|. Since (∇Dv)G
KG

solves (3.3), and recalling that γσv = 0 for all
σ ∈ Eext,

|(∇Dv)G
KG

|2 ≤ |A−1
G |2β2

0

⎡⎣ ∑
σ∈G∩Eint,Tσ={KG,L}

(vL − vKG)2

d2
L,σ

+
∑

σ∈G∩Eext

(γσv − vKG)2

d2
KG,σ

⎤⎦ ·

Observe that, for all σ ∈ Eint, denoting Tσ = {K,L} we have vL−vK

dK,σ+dL,σ
= γσv−vK

dK,σ
. As a consequence, by (2.2),

(vL − vK)2

d2
L,σ

≤ (γσv − vK)2

d2
K,σ

(
1 +

1
�2

)2

(3.12)

and

mKG |(∇Dv)G
KG

|2 ≤ |A−1
G |2β2

0

(
1 +

1
�2

)2 ∑
σ∈G

mKG

d2
KG,σ

(γσv − vKG)2· (3.13)

(ii) For G ∈ G, σ ∈ G ∩ Eint with Tσ = {KG, L}, we estimate |(∇Dv)
G,σ
L |. Owing to (3.4),

|(∇Dv)
G,σ
L |2 ≤ 2

[
|(∇Dv)G

KG
|2
(

1 +
|xL − xKG |

dL,σ

)2

+
|vL − vKG |2

d2
L,σ

]
· (3.14)
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Using (2.2) and observing that |xL − xKG | ≤ diam(L) + diam(KG), we have that

|xL − xKG |
dL,σ

≤ 1
�1

(
1 +

1
�2

)
· (3.15)

Then, from (3.14) together with (3.13), (3.15) and (3.12), we deduce that there exists C7 > 0 which solely
depends on β0, �1 and �2 s.t.

mL |(∇Dv)
G,σ
L |2 ≤ C7(1 + |A−1

G |2) mL

mKG

∑
σ′∈G

mKG

d2
KG,σ′

(γσ′v − vKG)2. (3.16)

(iii) Stability. The fact that K is star-shaped with respect to xK and the definition of dK,σ show that K
contains the ball centered at xK and with radius infσ∈EK dK,σ; we deduce from (2.2) that C8diam(K)d ≤ mK ≤
C9diam(K)d (with C8 and C9 only depending on �1) and thus that, if K and L are two neighboring grid cells,
there exists C10 > 0 only depending on �2 and �1 s.t. mL

mK
≤ C10. Hence, thanks to (3.13) and (3.16), there

exists a real C11 > 0 solely depending on �1, �2 and β0 s.t.

∀σ ∈ G , ∀K ∈ Tσ, mK |(∇Dv)
G,σ
K |2 ≤ C11(1 + |A−1

G |2)
∑

σ′∈G

mKG

d2
KG,σ′

(γσ′v − vKG)2. (3.17)

Furthermore, observe that, for all σ′ ∈ G, KG belongs to Tσ′ , so that

mKG

d2
KG,σ′

(γσ′v − vKG)2 ≤
∑

K∈Tσ′

mK

d2
K,σ′

(γσ′v − vK)2. (3.18)

We infer from (2.3) and the Definition (3.6) of the fluxes that

T
def=

∑
K∈T

∑
σ∈EK

dK,σ

mσ
|FK,σ(v)|2 =

∑
K∈T

∑
σ∈EK

dK,σ

mσ

∣∣∣∣∣mσ ΛK

∑
G∈Gσ

θG
σ (∇Dv)

G,σ
K ·nK,σ

∣∣∣∣∣
2

≤ dβ2
0

∑
K∈T

∑
σ∈EK

mK

∣∣∣∣∣ ∑
G∈Gσ

θG
σ (∇Dv)

G,σ
K ·nK,σ

∣∣∣∣∣
2

.

Equation (3.10) gives in particular θG
σ |A−1

G | ≤ γ4 and thus, by Cauchy-Schwarz inequality, (3.11) and (3.17), we
deduce

T ≤ dβ2
0

∑
K∈T

∑
σ∈EK

mK

∑
G∈Gσ

(θG
σ )2

∣∣∣(∇Dv)
G,σ
K

∣∣∣2 × card(Gσ)

≤ dβ2
0C6C11(1 + γ2

4)
∑
K∈T

∑
σ∈EK

∑
G∈Gσ

∑
σ′∈G

mKG

d2
KG,σ′

(γσ′v − vKG)2.

We then permute some sums and use the fact that each Tσ has one or two elements to obtain C12 only depending
on �1, �2, β0 and γ4 s.t.

T ≤ C12

∑
σ∈E

∑
K∈Tσ

(∑
G∈Gσ

∑
σ′∈G

mKG

d2
KG,σ′

(γσ′v − vKG)2
)

≤ 2C12

∑
σ∈E

∑
G∈Gσ

∑
σ′∈G

mKG

d2
KG,σ′

(γσ′v − vKG)2 = 2C12

∑
G∈G

∑
σ∈G

∑
σ′∈G

mKG

d2
KG,σ′

(γσ′v − vKG)2.
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Table 1. Convergence results on the test of Section 4.1.

nunkw nnmat erfl order erl2 order umin umax
56 480 3.34 e−01 – 1.87 e−02 – 4.79 e−02 9.47 e−01
224 2080 1.67 e−01 1.00 e+00 4.85 e−03 1.95 e+00 1.27 e−02 9.89 e−01
896 8640 8.34 e−02 1.00 e+00 1.14 e−03 2.09 e+00 3.30 e−03 9.97 e−01
3584 35 200 4.17 e−02 1.00 e+00 2.75 e−04 2.05 e+00 8.33 e−04 9.99 e−01

But each group G has cardinal d and thus, by (3.18),

T ≤ 2C12d
∑
G∈G

∑
σ′∈G

mKG

d2
KG,σ′

(γσ′v − vKG)2 = 2C12d
∑
σ′∈E

∑
G∈Gσ′

mKG

d2
KG,σ′

(γσ′v − vKG)2

≤ 2C12d
∑
σ′∈E

⎛⎝ ∑
K∈Tσ′

mK

d2
K,σ′

(γσ′v − vK)2 × card(Gσ′ )

⎞⎠ .

Assumption 3.2, equation (2.2) and mK ≤ C9diam(K)d imply that mK

d2
K,σ′

≤ C9�4
�1

mσ′
dK,σ′

and we thus infer

∑
K∈T

∑
σ∈EK

dK,σ

mσ
|FK,σ(v)|2 ≤ 2C12dC6

C9�4

�1
‖v‖2

T ,

which concludes the proof. �
The following result is a direct consequence of Theorem 2.2 together with Lemma 3.5.

Theorem 3.2. Let u be the solution to (2.1). Let {Dn}n∈N be a family of meshes matching Definitions 2.1
and 3.1 and s.t. hDn → 0 as n → ∞ and denote by un the solution of (2.5) with numerical fluxes defined
by (3.6) on Dn. Then, if (P2), (3.10) and Assumption 3.2 hold, the sequence {∇Dnun}n∈N converges to ∇u in
[L2(Ω)]d.

4. Numerical tests

4.1. Convergence rates

In order to numerically evaluate the convergence rate of the method described in Section 3.4, we considered
the following exact solution:

u = sin(πx) sin(πy), Λ = diag(1, 1).
The corresponding discrete Dirichlet problem with f = 2π2 sin(πx) sin(πy) was solved on a family of conformal
shape regular triangular meshes. The following indicators have been considered: l2err, the L2 error; erfl, the
error on the fluxes defined as

erfl
def=

( ∑
K∈Tn

∑
σ∈EK

dK,σ

mσ

∣∣∣∣FK,σ(u) − mσ

∫
K Λ(x)∇u(x) dx

mK
·nK,σ

∣∣∣∣2
) 1

2

. (4.1)

Formula (4.1) is inspired by the expression of the consistency error (2.8); nzmat, the number of nonzero matrix
entries; umin, the minimum of the discrete solution; umax, the maximum of the discrete solution. The number
of degrees of freedom is denoted by nunkw. The results are summarized in Table 1. The G-method yields first
order convergence in terms of erfl, while second order convergence was observed for erl2. These results are
consistent with the ones obtained with a classical two-point method on Λ-orthogonal meshes. Here and in the
following subsection, the parameter ε introduced in Section 3.4 was take equal to 0.1.
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(a) Basin mesh. The actual aspect ratio is 10:1 (x:y). (b) Randomly perturbed quadrangular mesh.

Figure 4. Mesh families.

4.2. Anisotropic heterogeneous problems

The objective of this section is to assess the performance of the method described in Section 3.4 on challenging
diffusion problems combining mild or strong anisotropy, heterogeneity and distorted or skewed meshes. For the
sake of completeness, a comparison is provided against (i) the method of [24], Section 2.2, referred to as Success;
(ii) the MPFA O method of [1] and (iii) the MPFA L method of [3,5], also described in Section 3.3. In the first
test case (see Figs. 5 and 6 for the numerical results), we consider the Dirichlet problem associated with the
following exact solution featuring anisotropic permeability:

u = sin(πx) sin(πy), Λ = diag(0.1, 1).

In the second test case (see Fig. 7 for the numerical results), we consider the Dirichlet problem associated with
the following exact solution featuring heterogeneous anisotropic permeability:

u =

⎧⎨⎩sin(bπx) sin(cπy) if x ≤ δ,

sin(bπδ) sin(cπy) + πb
a1

a2
cos(bπδ) sin(cπy)(x− δ) otherwise

and

Λ =

{
diag(a1, b1) if x ≤ δ,

diag(a2, b2) otherwise,

where b = 1
1.7 , c = 1.9, a1 = 1, b1 = 10, a2 = 5, b2 = 1, δ = 0.5. Both tests have been run on (i) a family

of Corner Point Geometry basin meshes with erosion (see Fig. 4(a)) and (ii) a family of randomly distorted
quadrangular meshes of (0, 10)× (0, 1) (see Fig. 4(b)).

In addition to the indicators of the previous section, the number of preconditioned GMRes iterations nit was
also considered. Blown up methods with respect to one indicator are not plotted to keep the scale readable. The
linear systems have been solved with a direct solver for the indicators l2err, umin, umax and ergrad, whereas
the GMRes algorithm from PETSc [11–13] with Hypre BoomerAMG preconditioner (see www.llnl.gov/CASC/
hypre) has been used for nit. The stopping criterion required the preconditioned residual norm to be smaller
than 10−7. As expected, while sometimes displaying better accuracy, the Success scheme of [24], Section 2.2,
has much denser matrices.

www.llnl.gov/CASC/hypre
www.llnl.gov/CASC/hypre
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Figure 5. Numerical results for test case 1 on the basin mesh family.
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Figure 6. Numerical results for test case 1 on the randomly perturbed mesh family.
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Figure 7. Numerical results for test case 2 on the basin mesh family.
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A. Proof of Lemma 3.2

The proof is trivial if Λ ∈ C(Ω) since, in this case, C∞
c (Ω) is contained in Q. The difficulty comes from

the possible discontinuities of Λ through the interfaces of PΩ, in which case item (iii) of Lemma 3.2 is not easy
to obtain and might impose discontinuity of ∇ϕ through these interfaces. The proof is made in several steps,
following the idea of [18]: we first eliminate the singularities (vertices if d = 2, vertices and edges if d = 3, etc.) of
the boundaries of the open sets {Ωi}1≤i≤NΩ by showing that we only need approximate functions which vanish
around these singularities; then we reason on each Ωi, approximating a given function by functions having
the same value on the boundary and vanishing derivatives in the direction Λn; gluing these approximations
together, we obtain a function in Q which is close to the initial given function.

(i) Elimination of the singularities of {Ωi}1≤i≤NΩ . First of all we notice that, since C∞
c (Ω) is dense in H1

0 (Ω),
the result of the lemma follows if we prove that functions in Q approximate, in H1

0 (Ω), any ψ ∈ C∞
c (Ω).

Let S be the set of singularities of ∪NΩ
i=1∂Ωi (i.e. affine parts of dimension d − 2 or less: the vertices in

dimension d = 2, the vertices and edges if d = 3, etc.); it is known that S has a 2-capacity equal to 0 and we
can therefore find a sequence of functions γn ∈ C∞

c (Rd; [0, 1]) s.t. γn → 0 in H1(Rn) as n → ∞ and, for all
n ∈ N, γn ≡ 1 on a neighborhood of S. If ψ ∈ C∞

c (Ω) and ψn = (1 − γn)ψ ∈ C∞
c (Ω), then ψn → ψ in H1

0 (Ω)
and, for all n, ψn ≡ 0 on a neighborhood of S. Hence, denoting by C∞

c,S(Ω) the set of functions in C∞
c (Ω) which

vanish on neighborhoods of S, the proof of the lemma is complete if we can approximate, in H1
0 (Ω), elements

of C∞
c,S(Ω) by elements of Q.

(ii) Reduction to a Ωi. Let ψ ∈ C∞
c,S(Ω) and assume that, for all 1 ≤ i ≤ NΩ, there exists a sequence

ϕi
n ∈ C2(Ωi) which converges to ψ in H1(Ωi) as n → ∞ and s.t., for all n ∈ N, ϕi

n = ψ and (Λ∇ϕi
n)|Ωi

·ni = 0
on ∂Ωi. Define then ϕn : Ω → R as the function equal to ϕi

n on Ωi for all i = 1, . . . , NΩ; since ϕi
n = ϕj

n = ψ
on ∂Ωi ∩ ∂Ωj, ϕn is well defined and continuous on Ω, it is C2 on each Ωi, it vanishes on ∂Ω (on which ψ = 0)
and the tangential derivatives of ϕn are continuous through the interfaces of PΩ (for all t parallel to ∂Ωi ∩ ∂Ωj ,
the values of (∇ϕn)|Ωi

·t and (∇ϕn)|Ωj
·t on ∂Ωi ∩ ∂Ωj can be computed using only the values of ϕi

n = ϕj
n = ψ

on ∂Ωi ∩ ∂Ωj , and are therefore equal). The continuity of ϕn across the boundary of Ωi for each i moreover
ensures that ∇ϕn has no singularity on these boundaries and it is therefore simply the function equal to ∇ϕi

n

on Ωi for all i; hence, ϕn → ψ in H1
0 (Ω). Finally, the fluxes Λ∇ϕn·n are clearly continuous through the

interfaces of PΩ since they vanish on either side of each such interface ∂Ωi ∩ ∂Ωj.
To conclude the proof, it remains to find the convenient approximations {ϕi

n}n≥1 of ψ ∈ C∞
c,S(Ω) on Ωi.

(iii) Approximation on Ωi. Let ψ ∈ C∞
c,S(Ω) and let O be an open set containing S s.t. ψ ≡ 0 on a

neighborhood of O. Let (Fl)1≤l≤r be the faces of Ωi (i.e. the affine parts of ∂Ωi of dimension d − 1); for all
1 ≤ l ≤ r, we denote by nl the unit normal to Fl pointing inside Ωi and we define the C2 function fl : R×Fl → R

d

by
∀t ∈ R , ∀y ∈ Fl , fl(t, y) = y + tΛ(y)nl. (A.1)

If (t, y) ∈ R×Fl and (t′, y′) ∈ R×Fl are s.t. fl(t, y) = fl(t′, y′) then, since (y− y′)·nl = 0, one has tΛ(y)nl·nl =
t′Λ(y′)nl·nl and thus

y − y′ = tΛ(y)nl·nl

(
Λ(y′)nl

Λ(y′)nl·nl
− Λ(y)nl

Λ(y)nl·nl

)
· (A.2)

Letting ε > 0 be smaller than the inverse of the Lipschitz constant of y → β0
Λ(y)nl

Λ(y)nl·nl
(which is well-defined since

Λ(y)nl·nl > α0 for all y), (A.2) can happen with y �= y′ only if |t| ≥ ε. Hence, fl is one-to-one on (−ε, ε)×Fl. We
also notice that Λ(y)nl is uniformly transverse to the hyperplane Hl containing Fl (this is again Λ(y)nl ·nl ≥ α0)
and thus that, upon reducing ε, the Jacobian matrix of fl at any (t, y) ∈ (−ε, ε)× Fl is invertible.

Let Vl be an open neighborhood of Fl\O in Fl s.t. dist(Vl, S) > 0; the preceding reasoning shows that
fl is a C2-diffeomorphism from (−ε, ε) × Vl to fl((−ε, ε) × Vl), an open set in R

d containing in particular
fl({0} × Fl\O) = Fl\O. Since Λ(y)nl points inside Ωi (one more time, Λ(y)nl·nl > 0) and dist(Vl, S) > 0,
upon reducing again ε if needed, we also see that Ul

def= fl([0, ε[×Vl) is contained in Ωi and is a neighborhood
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Fl

supp(γl
n) ∩ Ωi

Ωi

O

Lines t ∈ [0, ε[→ y + tΛ(y)nl

Ul

Vl

Figure 8. Various sets appearing in the proof of Lemma 3.2.

of Fl\O in Ωi (see Fig. 8 for a representation of some sets appearing in this proof). Moreover, for all x ∈ Ul,
if x = fl(t, y) for (t, y) ∈ [0, ε[×Vl then dist(x,Hl) = (x − y)·nl = tΛ(y)nl·nl and thus 0 ≤ t ≤ 1

α0
dist(x,Hl).

This shows that

∀x ∈ Ul , if (t, y) = (fl|[0,ε[×Vl
)−1(x) then |x− y| ≤ β0

α0
dist(x,Hl). (A.3)

Let us define ψl on Ul s.t.

ψl(fl(t, y)) = ψ(y) for all (t, y) ∈ [0, ε[×Vl. (A.4)

ψl belongs to C2(Ul) and ψl = ψ on Vl (because fl(0, y) = y); derivating (A.4) with respect to t, taking t = 0
and using (A.1) we also have

0 =
d
dt

(ψl(fl(t, y)))|t=0 = ∇ψl(y)·Λ(y)nl = Λ(y)∇ψl(y)·nl for all y ∈ Vl. (A.5)

As ψ vanishes on a neighborhood of O, there exists a neighborhood Nl of Vl∩O in Vl s.t. ψ = 0 on Nl; (A.4) then
implies ψl = 0 on fl([0, ε[×Nl) which is, fl being a diffeomorphism, a neighborhood in Ul of fl({0}×(Vl∩O)) =
Vl ∩ O; to sum up,

ψl = 0 on a neighborhood of Vl ∩O in Ul. (A.6)

For 1 ≤ l ≤ r, we take a sequence γl
n ∈ C∞

c (Rd; [0, 1]) s.t., for all n ∈ N, γl
n ≡ 1 on a neighborhood of Fl\O and

γl
n ≡ 0 on {x ∈ R

d , dist(x, Fl\O) ≥ 1/n} and ||∇γl
n||L∞(Rd) ≤ C13n, (A.7)

with C13 not depending on n. If n is large, supp(γl
n) ∩ Ωi is a compact subset of Ul and γl

nψl can therefore be
extended to Ωi by 0 outside Ul without loosing smoothness; we then define ϕn =

∑r
l=1 γ

l
nψl +(1−

∑r
l=1 γ

l
n)ψ ∈

C2(Ωi). Since ψl = ψ on Vl and, for n large enough, γl
n vanishes on ∂Ωi outside Vl, we have ϕn = ψ on ∂Ωi

for such n. Still considering large n, on a neighborhood of Fl\O in Ωi we have γl
n = 1 and γk

n = 0 if k �= l and
therefore, on such a neighborhood, ϕn = ψl; (A.5) thus shows that Λ∇ϕn·n = 0 on ∪r

l=1Fl\O = ∂Ωi\O; since
all the γl

nψl and ψ vanish on a neighborhood of ∂Ωi ∩O in Ωi (see (A.6)), we obviously also have Λ∇ϕn·n = 0
on ∂Ωi ∩ O, and thus on the whole boundary of Ωi. It remains to prove that ϕn → ψ in H1(Ωi) as n → ∞;
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in order to achieve this, we write ϕn − ψ =
∑r

l=1 γ
l
n(ψl − ψ) and use (A.3), (A.4) and the smoothness of ψ

to see that, if dist(x, Fl\O) ≤ 1/n, then |ψl(x) − ψ(x)| ≤ C14/n with C14 not depending on n or x (because
x = fl(t, y) with y ∈ Vl s.t. |x− y| ≤ β0/(α0n)); we infer from (A.7) that

||γl
n(ψl − ψ)||L2(Ωi) ≤

C14

n
meas(Ωi)1/2

and
||∇(γl

n(ψl − ψ))||L2(Ωi) ≤ C13C14meas(Ωi ∩ supp(γl
n))1/2 + ||∇(ψl − ψ)||L2(Ωi∩supp(γl

n)).

Since meas(Ωi ∩ supp(γl
n)) → 0 as n→ ∞, this concludes the proof that ϕn → ψ in H1(Ωi).

Remark A.1. The proof shows that Λ need not be C2 on the whole of each Ωi, only on the affine parts of ∂Ωi

(and the reader can check that the rest of the paper only requires the C1 regularity of Λ on each Ωi).

B. Proof of Lemma 3.3

Proposition B.1. Let D be a generic element of a family of discretizations satisfying Assumption 2.1. Let
ϕ ∈ Q, σ ∈ Eint with Tσ = {K,L} and yσ ∈ σ. Then ∇ϕ(xK ) −∇ϕ(xL) can be decomposed as follows:

∇ϕ(xK ) −∇ϕ(xL) = μσnK,σ + τσtσ, (B.1)

where |tσ| = 1, tσ·nK,σ = 0 and the reals μσ, τσ verify

|τσ| ≤ C15 [diam(L) + diam(K)] , (B.2)

μσ = −WK(xL)
dL,σ

+ τσ
tσ·(yσ − xL)

dL,σ
+
WK(yσ) −WL(yσ)

dL,σ
, (B.3)

with
WK(x) def= ϕ(x) − ϕ(xK) −∇ϕ(xK)·(x − xK) (B.4)

and C15
def= max(|ϕ′′|L∞(K), |ϕ′′|L∞(L)).

Proof. The vector tσ is obviously the normed orthogonal projection of ∇ϕ(xK) − ∇ϕ(xL) on the hyperplane
parallel to σ, and the reals μσ, τσ are given by the formulæ

μσ = (∇ϕ(xK) −∇ϕ(xL))·nK,σ, τσ = (∇ϕ(xK) −∇ϕ(xL))·tσ.

Since

−WK(xL) +WK(yσ) −WL(yσ) = −ϕ(xL) + ϕ(xK) + ∇ϕ(xK)·(xL − xK)
+ϕ(yσ) − ϕ(xK) −∇ϕ(xK )·(yσ − xK)
−ϕ(yσ) + ϕ(xL) + ∇ϕ(xL)·(yσ − xL)

= ∇ϕ(xK )·(xL − yσ) + ∇ϕ(xL)·(yσ − xL)
= (∇ϕ(xK ) −∇ϕ(xL))·(xL − yσ),

we can use (B.1) and the fact that (xL − yσ) · nK,σ = dL,σ to re-write μσ under the form

μσ = −WK(xL)
dL,σ

+ τσ
tσ·(yσ − xL)

dL,σ
+
WK(yσ) −WL(yσ)

dL,σ
·
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The face σ is completely contained either in one element of the partition PΩ or in an interface of this
partition; using then either the regularity of ϕ inside each element of the partition or the continuity of its
tangential derivatives through the interfaces of PΩ, we can re-write τσ under the form

τσ = (∇ϕ(xK ) −∇ϕ(yσ))·tσ + (∇ϕ(yσ) −∇ϕ(xL))·tσ

and the proof is complete since ϕ is C2 on K and L. �
Proposition B.2 (flux “quasi-continuity”). Let D be a generic element of a family of discretizations satisfying
Assumption 2.1 and ϕ ∈ Q. For all G ∈ G, ∇ϕ(xKG ) is the solution of a linear system of equations of the form

AGYG = BG(ϕT ) + CG(ϕ),

where ϕT ∈ HT (Ω) is defined by the family {ϕ(xK)}K∈T , AG and BG(ϕT ) are the matrices defined in Lemma 3.1
and the vector CG(ϕ) verifies

|CG(ϕ)| ≤ C1 max
K∈TG

diam(K) (B.5)

with C1 > 0 which only depends on �1, �2, Λ and ϕ.

Proof. For a cell K, let WK be the function defined by (B.4). Since ϕ is C2 regular on the closure of each
element of PΩ and since each cell is completely contained in one of these elements, there exists C16 > 0 only
depending on ϕ s.t., for all K ∈ T ,

|WK(x)| ≤ C16diam(K)2 for all x ∈ K. (B.6)

For all σ ∈ Eint with Tσ = {K,L} and yσ ∈ σ, we apply Proposition B.1 to decompose ∇ϕ(xK )−∇ϕ(xL) (note
that the WK(xL) appearing in (B.3) is in general not of order 2 with respect to the size of the mesh, since
xL �∈ K and ϕ is not regular across the boundary of some cells). Since ϕ ∈ Q, we can also write

1
mσ

∫
σ

(Λ∇ϕ)|K(x)·nK,σ dx+
1

mσ

∫
σ

(Λ∇ϕ)|L(x)·nL,σ dx = 0 (B.7)

and, ∇ϕ and Λ being C1 on the closure of each control volume, we deduce from (B.7) that the real ζσ(ϕ) =
ΛK∇ϕ(xK)·nK,σ + ΛL∇ϕ(xL)·nL,σ verifies

|ζσ(ϕ)| ≤ C17(diam(K) + diam(L)), (B.8)

where C17 > 0 depends only on ϕ,Λ.

Let us now consider G ∈ G, σ ∈ G ∩ Eint and use these preliminary remarks with K = KG and L s.t.
Tσ = {KG, L}. By definition of ζσ(ϕ) and (B.1),

(ΛLnL,σ + ΛKGnKG,σ)·∇ϕ(xKG) = ΛLnL,σ·∇ϕ(xKG) − ΛLnL,σ·∇ϕ(xL) + ζσ(ϕ)
= −ΛLnL,σ·nL,σμσ + τσΛLnL,σ·tσ + ζσ(ϕ).

Equation (B.3) and the definition of WKG(xL) then show

(ΛLnL,σ + ΛKGnKG,σ)·∇ϕ(xKG ) =
ΛLnL,σ·nL,σ

dL,σ
(ϕ(xL) − ϕ(xKG)) − ΛLnL,σ·nL,σ

dL,σ
∇ϕ(xKG )·(xL − xKG)

+ ζσ(ϕ) − ΛLnL,σ·nL,σ

dL,σ
(τσtσ·(yσ − xL) +WKG(yσ) −WL(yσ))

+ τσΛLnL,σ·tσ
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and therefore(
ΛLnL,σ + ΛKGnKG,σ +

ΛLnL,σ·nL,σ

dL,σ
(xL − xKG)

)
·∇ϕ(xKG ) =

ΛLnL,σ·nL,σ

dL,σ
(ϕ(xL) − ϕ(xKG)) + cσ(ϕ)

with cσ(ϕ) = ζσ(ϕ) − ΛLnL,σ·nL,σ

dL,σ
(τσtσ·(yσ − xL) +WKG(yσ) −WL(yσ)) + ΛLnL,σ·tστσ. If σ ∈ G ∩ Eext, using

the definition of WKG(xσ), we have

ΛKGnKG,σ·nKG,σ

dKG,σ
∇ϕ(xKG)·(xσ − xKG) =

ΛKGnKG,σ·nKG,σ

dKG,σ
(−ϕ(xKG)) + cσ(ϕ)

with cσ(ϕ) = −ΛKG
nKG,σ ·nKG,σ

dKG,σ
WKG(xσ).

We deduce that ∇ϕ(xKG ) is the solution of the linear system of equations

AGYG = BG(ϕT ) + CG(ϕ),

where CG(ϕ) is the vector of R
d defined by {cσ(ϕ)}σ∈G. Thanks to (B.8), (B.2) and (B.6), there exists C18 > 0

which only depends on �1, �2, Λ and ϕ s.t., for all σ ∈ G with Tσ = {KG, L}, |cσ(ϕ)| ≤ C18(diam(L) +
diam(KG)). The proof is complete. �

We are now in a position to prove Lemma 3.3. Let WK the function defined by (B.4) and recall that (B.6)
holds. Since (∇DϕT )G

KG
is the solution of the linear system (3.3) with v = ϕT , we can deduce from Propo-

sition B.2 that ∇ϕ(xKG ) − (∇DϕT )G
KG

is the solution of the linear system AGZG = CG(ϕ) where the vector
CG(ϕ) satisfies (B.5). We obtain

|∇ϕ(xKG ) − (∇DϕT )G
KG

| ≤ C1|A−1
G | max

K∈TG

diam(K). (B.9)

For all σ ∈ G ∩ Eint with Tσ = {KG, L}, thanks to (3.4) with v = ϕT , we have

(∇DϕT )G,σ
L = (∇DϕT )G

KG
− RL,σ(ϕT )

dL,σ
nL,σ,

where RL,σ(ϕT ) = ϕ(xL)− ϕ(xKG)− (∇DϕT )G
KG

·(xL − xKG). Thanks to Proposition B.1, we can deduce that

∇ϕ(xL) − (∇DϕT )G,σ
L = ∇ϕ(xKG ) + μσnL,σ − τσtσ − (∇DϕT )G

KG
+
RL,σ(ϕT )
dL,σ

nL,σ

= ∇ϕ(xKG ) − (∇DϕT )G
KG

+
RL,σ(ϕT ) −WKG(xL)

dL,σ
nL,σ

+
(
τσ

tσ·(yσ − xL)
dL,σ

+
WKG(yσ) −WL(yσ)

dL,σ

)
nL,σ − τσtσ

= ∇ϕ(xKG ) − (∇DϕT )G
KG

+ (∇ϕ(xKG ) − (∇DϕT )G
KG

)· (xL − xKG)
dL,σ

nL,σ

+
(
τσ

tσ·(yσ − xL)
dL,σ

+
WKG(yσ) −WL(yσ)

dL,σ

)
nL,σ − τσtσ.

Using then (B.9), (B.6) and (2.2), we can deduce that there exists a real C19 > 0 which only depends on �1, �2,
Λ and ϕ s.t.

|∇ϕ(xL) − (∇DϕT )G,σ
L | ≤ C19(1 + |A−1

G |) max
K∈TG

diam(K),

and the proof is complete.
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[24] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general

non-conforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. (2009) doi:
10.1093/imanum/drn084.
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