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A STOCHASTIC PHASE-FIELD MODEL DETERMINED
FROM MOLECULAR DYNAMICS

Erik von Schwerin
1

and Anders Szepessy
2

Abstract. The dynamics of dendritic growth of a crystal in an undercooled melt is determined by
macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of
the solid-liquid interface width. Its modelling is useful for instance in processing techniques based
on casting. The phase-field method is widely used to study evolution of such microstructural phase
transformations on a continuum level; it couples the energy equation to a phenomenological Allen-
Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid
and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of
dendritic side branching. This work presents a method to determine stochastic phase-field models
from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a pre-
cise quantitative atomistic definition of the phase-field variable, based on the local potential energy;
(2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dy-
namics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the
coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of
the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the
approximation error of observables in this ensemble average.
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1. Introduction to phase-field models

The phase-field model for a liquid–solid phase transformation is an Allen-Cahn/Ginzburg-Landau equation
coupled to the energy equation

k0∂tφ = div(k1∇φ) − k2

(
f ′(φ) + k3g

′(φ)(T − TM )
)︸ ︷︷ ︸

∂φF(φ,T )

+ noise

∂t

(
cvT + k4g(φ)

)
= div(k5∇T ) (1.1)

with a double well potential f having local minima at ±1, smoothed step function g, temperature T , melting
temperature TM , specific heat cv and latent heat k4g(φ), cf. [4,24]; the unknown variables to determine are
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φ and T while the other quantities are given data. Using the phase-field variable φ : R
3 × [0,∞) → [−1, 1],

the solid and liquid phases are interpreted as the domains {x ∈ R
3 : φ(x) > 0} and {x ∈ R

3 : φ(x) < 0}
respectively. To have such an implicit definition of the phases, as in the level set method, is a computational
advantage compared to a sharp interface model, where the necessary direct tracking of the interface introduce
computational drawbacks. This phenomenological phase-field model, with free energy potentials F motivated
by thermodynamics, has therefore become a popular and effective computational method to solve problems
with complicated structures of dendrite and eutectic growth, cf. [1,4]. The evolution of the phase interface
depends on the orientation of the solid crystal; this is modeled by an anisotropic matrix k1. Added noise to
system (1.1) is also important, e.g. to model nucleation phenomena, when a crystal initiates in an under-cooled
liquid and starts to grow, and to obtain sidebranching dendrites [15]. The phase-field model has mathematical
wellposedness [5] and convergence to sharp interface results [26]. The sharp interface limit is a consistency
issue showing that, when the ratio of the diffusion term and the reaction term becomes small in the phase-field
equation, the phase-field solution tends to the solution with the sharp interface of a Stefan problem. We have the
situation of an almost sharp interface here since we formulate the phase-field equation in a bounded microscopic
scale x, which is related to the macroscopic scale y by x = ε−1y with a small parameter ε� 1, and

∂2
xφ

f(φ)
= ε2

∂2
yφ

f(φ)
·

The aim of this work is to present a computational method to determine the data for the phase-field equa-
tion (1.1), including the noise term, from more fundamental molecular dynamics. We call the phase-field
equation (1.1) a macroscopic model, since its variables varies on a large (macroscopic) scale; the molecular
dynamics model is called a microscopic model here, since the particle positions variables X : [0,∞) → R

3N of
N � 1 particles vary on a small (microscopic) scale. Phase changes can be modeled on an atomistic level by
molecular dynamics or kinetic Monte Carlo methods (i.e. stochastic interacting particle models on a lattice as
in the Ising model). To derive stochastic differential equations approximating kinetic Monte Carlo dynamics is
a classical problem, studied e.g. in [7,20,28]. The work [16] derived coarse-grained stochastic differential equa-
tions from a kinetic Monte Carlo method with a technique related to the study here on molecular dynamics.
Molecular dynamics is in some sense more attractive than kinetic Monte Carlo dynamics as a starting point
for coarse-graining, since fewer parameters need to be set (none with ab initio molecular dynamics). Assuming
that the reaction term in the Allen-Cahn equation takes a given form, for example with the common choice

f(φ) = (1 − φ2)2,

g(φ) =
15
16

(
1
5
φ5 − 2

3
φ3 + φ

)
+

1
2
, (1.2)

the scalar parameters k2, k3, k4, scalar functions k0 = k0(∇φ), k5 = k5(φ), and matrix function k1 = k1(∇φ)
in the phase-field model have been determined from atomistic molecular simulations, using the Gibbs-Thomson
condition for the temperature of a moving solid-liquid interface as a function of curvature, normal velocity,
latent heat, melting temperature, the excess interface free energy, and a kinetic coefficient, cf. the review
articles [2,12]: the excess interface free energy can be determined from molecular dynamics by introducing a
“cleaving” potential to reversibly transform a solid and a liquid system to a solid-liquid system, or from position
fluctuations related to interfacial stiffness; the kinetic coefficient can be determined from molecular dynamics
by setting the temperature and measuring the induced velocity of an interface, or by studying the fluctuation
of the number of “solid” particles. An alternative choice of phase-field functions (1.2) in [1] uses a steeper step
function g to easily derive consistency with sharp interface models.
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This work presents a different method to determine data for a stochastic phase-field equation by coarse-
graining appropriate molecular dynamics – the new ingredient here is a method to determine the noise and also
the actual functions in the right hand side of the phase-field equation, and not only the parameters ki. This is
made in three steps in Sections 2 to 4:

(1) a precise quantitative atomistic definition of the phase-field variablem(x,X), based on the local potential
energy of particle positions X ;

(2) derivation of its coarse-grained for dynamics model φ(x, t) ≈ m
(
X(t)

)
, from microscopic Smoluchowski

molecular dynamics (i.e. Brownian dynamics) of the particle positions X ; and
(3) numerical computation of the coarse-grained model functions.

We call the approximation φ(x, t) ≈ m
(
x,X(t)

)
coarse-graining, since the microscopic molecular description m :

R
3×R

3N → R is of much higher dimension 3N+3 � 3 than the macroscopic approximation φ : R
3×[0,∞) → R.

One may ask if the Smoluchowski (i.e. the over damped Langevin) dynamics is a good choice as the microscopic
molecular dynamics model – our answer is that the Smoluchowski dynamics sample Gibbs ensemble averages, it
generates a coarse-grained model which is a stochastic reaction-diffusion equation of the phase-field type (1.1),
and Gibbs ensemble averages of the atomistic phase-field is well approximated by the coarse-grained model (in
some sense optimally as explained in Sect. 4).

To determine the drift in the stochastic phase-field equation we use the setting of a traveling wave: the
shape of the traveling wave, computed from molecular dynamics, determines the reaction term balancing the
diffusion; since the total drift becomes zero, the reaction and diffusion terms in the phase-field equation are
then determined up to a multiplicative constant – this multiplicative constant is chosen to match equilibrium
fluctuations of the phase-field. The diffusion coefficient for the noise in the stochastic phase-field is determined
from an optimization problem, where the diffusion is chosen to minimize the error of observables in the Gibbs
ensemble.

This alternative method to determine the phase-field model from atomistic simulations comes with some new
ideas, e.g. handling the noise, but it would need further verification and comparison by others to reach similar
maturity as the established methods in [2] for atomistic verification of phase-field parameters.

We present computational results for an example based on Lennard-Jones type molecular dynamics in an
equilibrium simulation with constant number of particles, volume, and temperature and with periodic boundary
conditions; we compute both the noise function and the free energy function at the melting temperature,
i.e. F(φ, TM ), for some orientations of the solid-liquid interface with respect to the crystal. To determine
the free energy function above and below the melting temperature is also important; that requires a different
molecular dynamics simulation in a non periodic setting following a moving interface; see Remark 5.1. Other
relevant extensions for the future would be to include constant pressure and hybrid simulations, see Remarks 5.1
and 5.2.

2. Quantitative atomistic definition of the phase-field variable

The aim is to give a unique definition of the phase-field variable, so that it can be determined precisely from
atomistic simulations. The usual interpretation is to measure interatomic distances or to use radial distribution
functions (cf. Fig. 4) to measure where the phase is solid and where it is liquid, which then implicitly defines
the phase-field variable [4]. Here we instead use the energy equation for a quantitative and explicit definition
of the phase-field variable. The macroscopic energy equation with a phase transformation and heat conduction is

∂t(cvT +m) = div(k∇T ) (2.1)

where m corresponds to the latent heat release. In (1.1) the latent heat determines the parameter k2, since φ is
defined to jump from 1 to −1 in the phase transformation. We will instead use this latent heat to directly define
the phase-field function, and not only the parameter k2. The latent heat is the change in enthalpy of a phase
transformation at constant pressure, see [18,19,22]. We will study molecular dynamics at constant volume,
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Figure 1. Schematic picture of m(T ) for a pure liquid (top curve) and a pure solid (bottom
curve) and the latent heat as the jump in m at a phase transition.

instead of pressure; then the latent heat is the change in the potential energy. The total energy, cvT +m, can
be defined from molecular dynamics of N particles with position Xi, velocity vi, and mass μ in a potential V ,

cvT +m =
N∑

i=1

μ
|vi|2
2

+ V (X1, . . . , XN), (2.2)

see [11,13]. We assume for simplicity that the potential is defined from pair interactions

V (X) =
1
2

N∑
i=1

∑
j �=i

Φ(Xi −Xj), (2.3)

where Φ : R
3 → R is a molecular dynamics pair potential, e.g. a Lennard-Jones potential

Φ(x) = z1

(
σ

|x|

)12

− z2

(
σ

|x|

)6

;

in this work we use the exponential-6 pair potential (modelling Argon at high pressure), which is almost the
same as the Lennard-Jones potential, see [29]. In the macroscopic setting the jump of m in a phase change is
called the latent heat, which depends on the thermodynamic variables kept constant: with constant N,T , and
volume it is called the internal energy and with constant pressure instead of volume it is called enthalpy. Here
we study the ensemble with constant volume; Remark 5.1 comments on the constant pressure ensemble, which
is more common in applications. For a molecular system in equilibrium with constant volume, the mean of the
kinetic energy,

∑
i μ|vi|2/2, is N times the temperature. It is therefore natural to let the phase-field variable

be determined by the potential energy V (X), which typically has a jump at the melting temperature that we
identify with the latent heat; see Figure 1. In a point-wise setting the potential energy can be represented by
the distribution

1
2

N∑
i=1

∑
j �=i

Φ(Xi −Xj)δ(x −Xi)

where δ is the point mass at the origin [13]. We seek an averaged variant and we will study a microscopic phase
change model where the interface is almost planar in the microscopic scale with normal in the x1 direction.
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Therefore we take a smooth average and define the phase-field variable by

m(X,x) :=
1
2

N∑
i=1

∑
j �=i

Φ(Xi −Xj)︸ ︷︷ ︸
mi(X)

η(x −Xi) (2.4)

where η : R
3 → (0,∞) is a smooth approximation of the point (delta) mass, with scale εi > 0 in the xi direction,

η(x) :=
3∏

i=1

e−|xi|2/(2ε2i )

(2πε2i )1/2
· (2.5)

Smooth averages have been used in molecular dynamics for fluid dynamics, cf. [11], and for the vortex blob
method and the smoothed particle hydrodynamics approximation of moving particles in fluid dynamics, cf. [3,21].
Sections 3 and 4 present a molecular dynamics model for the potential energy (2.4).

We assume our molecular system is in local equilibrium, meaning that we want to determine Gibbs ensemble
averages of the defined phase-field variable∫

R3N g
(
m(X,x)

)
e−V (X)/(kBT ) dX∫

R3N e−V (X)/(kBT ) dX
(2.6)

for any function g : R → R, where the temperature, T , may depend on x in the macroscopic scale and kB is the
Boltzmann constant. In the next section we determine a coarse-grained model that approximates such Gibbs
averages.

3. An atomistic Smoluchowski dynamics model

The standard method to simulate molecular dynamics in the microcanonical ensemble of constant volume,
energy, and number of particles is to write Newton’s laws for the particles, cf. [9,25]. Since we are only
interested in the Gibbs equilibrium averages (2.6), not depending explicitly on time, an alternative is instead
to use Smoluchowski dynamics at constant temperature, T , with the Ito differential equations

dXt
i = −∂XiV (Xt)dt+

√
2γ dW t

i (3.1)

where Wi are independent Brownian motions, Xt
i := Xi(t) is the position of the ith particle at time t and

γ := kBT . Here, the important property of the Smoluchowski dynamics is that its invariant measure is the
Gibbs measure

e−V (X)/γ dX∫
R3N e−V (X)/γ dX

=: G(X)dX, (3.2)

under appropriate assumptions on V , cf. [6].
The Smoluchowski equation is the zero relaxation time limit (i.e. τ → 0+) of Langevin’s equation (cf. [14,

17,23,25])

dXs
i = vs

i ds,

Mdvs
i = −∂XiV (Xs) ds− vs

i

τ
ds+

√
2γ
τ

dŴ s
i , (3.3)

in the faster time scale s = t/τ , where M is the mass and Ŵi are independent Brownian motions, and the
standard Hamiltonian molecular dynamics corresponds to vanishing dissipation and fluctuation (by taking
τ = ∞) in the Langevin dynamics.
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Figure 2. A configuration of a Smoluchowski dynamics two-phase system. The left part is
solid and the right part liquid. The computational cell has periodic boundary conditions in all
three directions so that the cell represents part of a layered structure of alternating infinite slabs
of solid and liquid. Here the solid-liquid interface is in the {100} plane of the face centered
cubic crystal in the solid. The color of the particles represents the phase-field computed as
discrete time averages approximating 1

t2−t1

∫ t2
t1
m(x1;Xt) dt; see Figure 3(a).

Our microscopic model of a phase change is then the Smoluchowski dynamics model (3.1) with the phase-field
variablem in (2.4) coupled to the macroscopic energy equation (2.1). The temperature varies on the macroscopic
scale, due to the energy equation, so that T is almost constant on the microscopic scale of a molecular dynamics
simulation and makes its Gibbs equilibrium density proportional to e−V (X)/(kBT (x)) reasonable. The reason we
use Smoluchowski dynamics is that:

• it samples the Gibbs ensemble averages (2.6) time asymptotically; and
• it is a dynamics that generates a coarse-grained equation of the same qualitative type as the phase-field

equation (1.1), namely a stochastic reaction-diffusion partial differential equation.

Figures 2–4 show the phase-field, the density and the radial distribution functions for a phase transition in
equilibrium, at the melting temperature using the exponential-6 pair potential [29,30] and the Smoluchowski
dynamics (3.1). Since the Smoluchowski dynamics samples the Gibbs ensemble, these figures would be the same
for any other molecular dynamics method sampling this Gibbs ensemble, as e.g. the Langevin dynamics (3.3)
with any positive relaxation time τ .

4. Coarse-grained phase-field dynamics

We want to determine a mean drift function a(m̄) and a diffusion function b(m̄) so that the coarse-grained
approximation m̄t, solving the coarse-grained equation

dm̄t = a(m̄t)dt+
M∑

k=1

bk(m̄t)dW̃ t
k, (4.1)

optimally approximates the Gibbs ensemble averages (2.6), of the phase-field m(Xt, ·) defined in (2.4) with Xt

solving the Smoluchowski dynamics (3.1). The Brownian motions W̃k, k = 1, . . . ,M , are mutually independent
and also independent of all Wi. To obtain an optimal approximation, we seek the minimal error of the Gibbs
ensemble average

min
a,b

lim
T →∞

T −1

∫ T

0

E
[
g
(
m(XT , ·)

)]
− E
[
g(m̄T )

]
dT (4.2)
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Figure 3. Figure (a) shows a phase-field computed as a discrete time average approximating
1

t2−t1

∫ t2
t1
m(x1;Xt) dt, where Xt follows the Smoluchowski dynamics. The spatial averages

are taken over the entire width of the computational cell in planes parallel to the interfaces,
while remaining localised, with ε1 = 1, in the direction normal to the interfaces. The thick
curve shows the phase-field over one period in the layered structure; as a consequence of the
periodic boundary conditions the computational cell contains two interfaces. Figure (b) shows
the corresponding computed density using the particle density instead of the potential energy;
see Remark 4.2.

for any given function g : R → R, with the same initial value m̄0 = m(X0, ·). Such minimizing functions,
a and b, lead (by ergodicity) to our objective – to approximate the Gibbs average defined in (2.6)

lim
T →∞

T −1

∫ T

0

E
[
g
(
m(XT , ·)

)]
dT =

∫
R3N g

(
m(X,x)

)
e−V (X)/(kBT ) dX∫

R3N e−V (X)/(kBT ) dX
·

We perform this optimal control way of coarse-graining in three steps, described below. Note that there may
be other microscopic dynamics with different coarse-graining functions that lead to smaller approximation
error – our optimality concerns coarse-grained drift and diffusion functions a and b for the given microscopic
Smoluchowski dynamics (3.1).

The first idea in the coarse-graining procedure, in Section 4.1, is that Ito’s formula and the Smoluchowski
dynamics (3.1) determine functions α and β, depending on the microscopic state X , so that

dm(Xt, ·) = α(Xt)dt+
N∑

j=1

βj(Xt)dW t
j . (4.3)

The next step, in Section 4.2, is to estimate the error, using the Kolmogorov equations for m̄ and (4.3),
similar to [16,27], which leads to

E
[
g
(
m(XT , ·)

)
− g(m̄T )

]
= E

[ ∫ T

0

〈ū′, α− a〉 +

〈
ū′′,

N∑
j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk

〉
dt

]
,

where 〈ū′, ·〉 is the L2(R3) scalar product (corresponding to the variable x ∈ R
3) with ū′, which is the Gateaux

derivative (i.e. functional derivative) of the functional E[g(m̄T ) | m̄t = n] with respect to n; and similarly 〈ū′′, ·〉
is the L2(R3 × R

3) scalar product with the second Gateaux derivative ū′′ of the functional E[g(m̄T ) | m̄t = n]
with respect to n. The notation bk ⊗ bk(x, x′) := bk(x)bk(x′) is the tensor product.
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Figure 4. The radial distribution function, g(r), computed from several configurations, sep-
arated in time, in the process of setting up one of the two-phase systems. The solid curve
shows g(r) computed as an average over all particles in the computational cell used while pre-
simulating the solid and the liquid part, in (a) and (b) respectively. The dashed curves show
g(r) computed as an average over particles in two slices of the computational cell of the two-
phase system; (a) shows g(r) obtained from a slice inside the solid phase, and (b) shows g(r)
from a slice inside the liquid phase. The radial distribution functions show good agreement
between the single phase systems and the corresponding solid and liquid subdomains away from
the interface.

The final step, in Section 4.3, is to use molecular dynamics simulations for a planar interface two phase
problem and compute averages in cross sections parallel to the interface, where ū′, ū′′, a, and

∑
k bk ⊗ bk are

m̄-independent, to evaluate approximations to the functions a and
∑

k bk ⊗ bk by

a = lim
T →∞

1
T E

[∫ T

0

αdt

]
,

∑
k

bk ⊗ bk = lim
T →∞

1
T E

[∫ T

0

N∑
j=1

βj ⊗ βjdt

]
.

(4.4)

Ergodicity implies that the approximations can be written as the Gibbs ensemble averages

a(x) =
∫

R3N

α(x;X)G(X)dX∑
k

bk ⊗ bk(x, y) =
∫

R3N

βj ⊗ βj(x, y;X)G(X)dX,
(4.5)

with the Gibbs density G defined in (3.2).
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4.1. The Ito formula for the phase-field

The Ito formula (cf. [10]) implies

dm(Xt, x) =
N∑

j=1

(−∂Xjm∂XjV + γ∂XjXjm)︸ ︷︷ ︸
α(Xt)

dt+
N∑

j=1

√
2γ∂Xjm︸ ︷︷ ︸
βj(Xt)

dWj . (4.6)

The definition in (2.4),
m(Xt, x) =

∑
i

mi(X)η(x−Xt
i ),

yields
∂Xjm =

∑
i

∂Xjmiη(x−Xi) +mj∂Xjη(x−Xj).

In (4.6) we will use (2.5) to evaluate the last derivative as

∂Xjη(x −Xj) = −∂xη(x−Xj), in dt terms,

∂Xjη(x −Xj) = −η(x−Xj)

(
(x−Xj)1

ε21
,
(x −Xj)2

ε22
,
(x−Xj)3

ε23

)
, in dWj terms,

in order to avoid spatial derivatives on the diffusion coefficient, while including them in the drift. Since

mi =
1
2

∑
k �=i

Φ(Xi −Xk)

and
V (X) =

1
2

∑
i

∑
j �=i

Φ(Xi −Xj)

there holds

∂Xjmi =
1
2

∑
k �=i

Φ′(Xi −Xk)δij −
1
2
Φ′(Xi −Xj)(1 − δij),

∂XjV (X) =
∑
k �=j

Φ′(Xj −Xk),

where

δij :=

{
1 i = j,

0 i �= j,

is the Kronecker symbol. The second derivatives are

∂XjXjm =
∑

i

∂XjXjmiη(x −Xi) − 2∂Xjmj∂xη(x−Xj) +mj∂xxη(x−Xj),

with
∂XjXjmi =

1
2

∑
k �=i

Φ′′(Xi −Xk)δij +
1
2
Φ′′(Xi −Xj)(1 − δij)



636 E. VON SCHWERIN AND A. SZEPESSY

and all terms in (4.6) are now expressed in terms of Φ, its gradient Φ′ and Hessian Φ′′. We note that the drift,
α, has the form

α = ∂xxA2 + ∂xA1 +A0 :=

= γ∂xxm(Xt, x) + ∂x

(
N∑

i=1

n1i(Xt)η(x −Xt
i )

)
+

N∑
i=1

n0i(Xt)η(x−Xt
i ) (4.7)

of conservative and non conservative reaction terms. Similarly the diffusion, βj , takes the form

N∑
i=1

n3ji(Xt)η(x−Xt
i ) + n4j(Xt)η(x −Xt

j)(x−Xt
j).

4.2. The error representation

The conditioned expected value
ū(n, t) := E[g(m̄T ) | m̄t = n] (4.8)

satisfies the Kolmogorov equation (cf. [16,27])

∂tu+ 〈ū′, a〉 +

〈
ū′′,

M∑
k=1

bk ⊗ bk

〉
= 0,

ū(·, T ) = g. (4.9)

Let mt := m(Xt, ·). The final condition in (4.9) and the definition (4.8) show that

E

[
g
(
m(XT , ·)

)
− g(m̄T )

]
= E[ū(mT , T )] − ū(m0, 0) = E

[ ∫ T

0

dū(mt, t)

]
.

Use the Ito formula and (4.6) to evaluate dū(mt, t) and then Kolmogorov’s equation (4.9) to replace ∂tū in this
right hand side to obtain the error representation

E
[
g
(
m(XT , ·)

)
− g(m̄T )

]
= E

[ ∫ T

0

〈ū′, α〉 +

〈
ū′′,

N∑
j=1

βj ⊗ βj

〉
+ ∂tū dt

]

= E

[ ∫ T

0

〈ū′, α− a〉 +

〈
ū′′,

N∑
j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk

〉
dt

]
.

Remark 4.1 (energy fluctuation). If we integrate the noise term over all x1, i.e. take ε1 very large, and
let g(m) = m2, then the error we are studying E

[
g
(
m(XT , ·)

)
− g(m̄T )

]
is the usual fluctuation of energy

E[V 2 − E[V ]2] (proportional to the specific heat [14]), provided we set m̄ = E[V ].

4.3. Computation of averages in cross sections

The optimal choice of the function b ⊗ b is to minimize E[
∫ T
0
〈ū′′, β ⊗ β − b ⊗ b〉dt], which seems hard to

determine exactly, since ū′′
(
m(Xt, ·), t

)
depends on Xt. However, the function ū′′

(
m(Xt, ·), t

)
depends only on

the coarse-grained m(Xt, ·) and not directly on Xt and not on t for T → ∞. A possible approximation is to
neglect the fluctuations of m(Xt, ·) and set m(Xt, x) = m̄(x) in the ε-neighbourhood of x and write

E

[ ∫ T

0

〈ū′′
(
m(Xt, x), t

)
, β ⊗ β(x) − b⊗ b

(
m̄(x)

)
〉dt
]
≈
〈
ū′′
(
m̄(x), T

)
,E

[ ∫ T

0

β ⊗ β(x) − b⊗ b
(
m̄(x)

)
dt

]〉



A STOCHASTIC PHASE-FIELD MODEL DETERMINED FROM MOLECULAR DYNAMICS 637

which leads to the minimizing condition

lim
T →∞

T −1
E

[∫ T

0

β ⊗ β(x) − b⊗ b
(
m̄(x)

)
dt

]
= 0,

and means that the diffusion matrix d(x, x′) := b⊗ b
(
m̄(·, x)

)
is

d(x, x′) = lim
T →∞

1
T E

[ ∫ T

0

N∑
j=1

βj(x) ⊗ βj(x′)dt

]
, (4.10)

and similarly the drift a(x) := a(m̄(·, x)) is

a(x) = lim
T →∞

1
T E

[∫ T

0

α(x)dt

]
. (4.11)

In other words, it is useful to think of an expansion of ū′ in α − a and determine a by the leading order
conditions (4.11) and (4.10).

We expect the spatial averages of the microscopic variables to vary on a much smaller scale in the x1 direction
normal to the phase front than in its orthogonal directions; consequently we use an average function η in (2.4)
with higher resolution in the x1 direction, so that 0 < ε1 � ε2 = ε3. In a microscopic simulation the molecular
dynamics (3.1) has a small spatial volume, so that ε2 is much larger than the size of the simulation box.
Consequently we may first think of α and β depending only on the x1 coordinate.

In practice, diffusion d can only be determined for a discrete set of points

{(x1(1), x2(1), x3(1)), . . . , (x1(M), x2(M), x3(M))} =: XM

and XM × XM , respectively, related to the scales εi. The diffusion coefficient b, as a function of x, is then
obtained as the square root of the M ×M matrix d. We expect that x1 → T −1

E[
∫ T
0 mtdt] is monotone in the

interface, for fixed (x2, x3), so that its inverse function, denoted by m−1, is well defined. Then the coarse-grained
drift and the diffusion can be obtained as functions of m̄ by

d(m̄) := d
(
m−1(m̄)

)
,

and similarly for a. The Gibbs ensemble average and (4.6), (3.2) show that the drift vanishes

a =
∫

R3N

α(X)G(X)dX

=
∫

R3N

N∑
j=1

(−∂Xjm∂XjV + γ∂XjXjm)G(X)dX

=
∫

R3N

N∑
j=1

(
γ∂Xjm∂XjG(X) + γ∂XjXjmG(X)

)
dX

=
∫

R3N

N∑
j=1

(
− γ∂XjXjmG(X) + γ∂XjXjmG(X)

)
dX

= 0.



638 E. VON SCHWERIN AND A. SZEPESSY

That is, in an equilibrium system the total drift vanishes and consists of two balancing terms. We will use the
setting of a traveling wave of m to determine the drift, which we define as the diffusion-reaction operator

a = σ
(
T∂xxm̄−A0(m̄)

)
.

The (somewhat ad hoc) motivation for this diffusion-reaction form is that the phase-field model (1.1) has such
form and that the atomistic phase-field yields a drift α(X) with a diffusion and a reaction term (with two and
zero spatial derivatives, respectively). We avoid a possible convection term with one spacial derivative, since a
macroscopic velocity field is inappropriate for the model (1.1). We write the diffusion term simply as σ∂xxm̄
and do not attempt to determine the functions in a general diffusion term σ1∂x(σ2∂xm̄). We find the reaction
term A0 and the mobility factor σ in two steps: first the traveling wave m(x) = m(X,x), computed from
molecular dynamics, is used to approximate m̄(x) and the reaction term is determined by imposing

A0(x) = T∂xxm(x),

and letting A0(m̄) := A0

(
m−1(m̄)

)
. Then the positive function σ(m̄) is chosen to match the variance of the

potential energy (as liquid and as solid phase) – we have

dm̄ = σ
(
T∂xxm̄−A0(m̄)

)
dt+

∑
k

b dW̃k (4.12)

and define the spacial average

M :=
∫

U

m̄dx

to obtain (from integration, linearization, and periodic boundary conditions) the Ornstein-Uhlenbeck process

dM = −σ(m̄)A′
0(m̄)Mdt+

∫
U

∑
k

b(m̄) dW̃kdx.

The function σ(m̄) can be determined (for the liquid and solid state) by equating the variance of M and
the variance of the spatial average of the atomistic phase-field

∫
U m(x;X)dx. Figure 5(b) shows that the

potential k2f , defined by k2f
′(m̄) = A0(m̄), is convex in a neighborhood of the equilibrium points (where

A′
0(m̄) = 0), so that A′

0(m̄) > 0 and the invariant distribution of M is a normal distribution with mean zero
and variance proportional to 1/(σA′

0).

Remark 4.2 (density dynamics). A similar derivation with Ito’s formula shows that the density, ρ(x) :=∑
i η(x−Xi), satisfies

dρ = γ∂xxρ dt− ∂x

N∑
i=1

η(x−Xi)
(
− V ′(X) dt+

√
2γ dWi

)
.

The expression for the coarse-grained values (4.4) implies that the drift for the density satisfies

γ∂xx

∫
R3N

∑
i

η(x −Xi)G(X)dX︸ ︷︷ ︸
=:ρ̄

−∂x

∫
R3N

N∑
i=1

η(x−Xi)
(
− V ′(X)

)
G(X)︸ ︷︷ ︸

γ∂XG(X)

dX

= γ∂xxρ̄− γ∂xx

∫
R3N

N∑
i=1

η(x−Xi)G(X)dX = 0

which leads to a stochastic reaction diffusion equation of the same qualitative form as for the phase-field m̄.
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Figure 5. Figure (a) shows an example of a computed reaction term −A0(x) over the periodic
computational cell containing two interfaces. Inverting the computed phase-field function inside
the interfaces and integrating with respect to m gives the double-well type potentials shown
in (b) for two different orientations of the solid-liquid interface with respect to the face centered
cubic crystal structure in the solid; in Orientation 1, O1, the interface is along the {100} plane
in the crystal and in Orientation 2, O2, it is along the {111} plane. The two curves with
the same orientation correspond to the two phase transitions in the computational domain,
explained in Figure 3. Note that the potentials are indeed qualitative similar to the function
φ → k2(1−φ2)2 in (1.2) if we rescale to have the equilibrium points in m = ±1 and we restrict
the domain to φ ∈ [−1, 1] where the phase-field has it values.

4.4. Computed coarse-grained phase-field

Figure 5(a) shows the computed reaction term A0 for one particular orientation of the solid crystal with
respect to the phase interface. By inverting the computed function x1 → T −1

E[
∫ T
0
mtdt] locally in the domain

of monotonicity at the interface and integrating A0(x(m)) with respect to m we obtain the expected double
well shape of the potential k2f(m); Figure 5(b) shows the computed reaction function k2f(m) for two different
orientations of the solid crystal with respect to the phase interface, i.e. both the coefficient k2 and the function f
in (1.2) are determined together. We want to write the coarse-grained equation (4.12) for m̄ in the same form
as (1.1). That allows orientation dependent factors in the diffusion term, the time derivative and the noise
term but not in the reaction term. Therefore we will now factor out the orientation dependence in the reaction
term in (4.12). Let qi := A0(Oi)/A0(O1) be the quotient of the two reaction terms, which is the orientation
dependent factor in the reaction term (and by (4.13) determines the orientation dependence in k1). Also the
time scale may depend on the crystal orientation since the relaxation time τ may differ for the two orientations;
we have s = t/τ , so let ri := τ(Oi)/τ(O1). Rescale the time in the computation with orientation Oi, to be the
same as for orientation O1, to obtain

dm̄i = riqi
(
γq−1

i ∂2
xm̄i +A0(m̄i;O1)

)
dt+ r

1/2
i

∑
k

b̄k(m̄i;Oi)dW̃ t
k

which can be written in the same form as (1.1)

(riqi)−1dm̄ =
(
γq−1

i ∂2
xm̄+A0(m̄;O1)

)
dt+ r

−1/2
i q−1

i

∑
k

b̄(m̄;Oi)dW̃ t
k (4.13)
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Figure 6. Computed values of the diffusion matrix using the same configurations from the
O2-simulation that gave the reaction term in Figure 5(a).

where k0 = (riqi)−1, k1 = γq−1
i , γ = kBT and the reaction term A0(m̄;O1) is independent of the orientation.

Figure 6 shows the computed diffusion coefficients for the noise with the O2 orientation.

5. The computational method

This section describes the numerical implementation for computing the drift and diffusion functions, defining
the coarse-grained phase-field dynamics (4.1), from two-phase Smoluchowski dynamics simulations at constant
volume and temperature. The procedure computes time averaged quantities like the time averaged potential
energy phase-field

lim
T →∞

T −1
E

[ ∫ T

0

mtdt

]
and the corresponding coarse-grained drift and diffusion coefficient functions (4.11) and (4.10). A more detailed
description of the numerical method and the computational results is in [29].

5.1. Discrete Smoluchowski system simulated at constant volume

The discrete time approximations X̄n of Xtn were computed using the explicit Euler-Maruyama scheme

X̄n = X̄n−1 − ∂XV (X̄n−1) Δtn +
√

2kBT ΔWn, (5.1)

where Δtn = tn−tn−1 is a time increment and ΔWn = W (tn)−W (tn−1) is an increment in the 3N -dimensional
Wiener process. Each run was performed using constant time step size.

The particles are contained in a computational cell, shaped like a rectangular box, of fixed dimensions and
the boundary conditions are periodic in all directions. Hence the volume, V , and the number of particles, N ,
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are fixed. In standard Hamiltonian molecular dynamics the temperature is determined by the kinetic energy
due to velocity fluctuations; in Smoluchowski dynamics the temperature, T , enters directly in the dynamics.
The temperature parameter is held fixed, which can be viewed as a kind of thermostat built into the dynamics
simulating the canonical ensemble with constant number of particles, volume, and temperature. Since the
volume of the computational cell is constant the overall density of the system remains constant over time, which
allows for stationary two-phase configurations where part of the domain is solid and part is liquid.

The initial configurations for the Smoluchowski dynamics simulations were set up to obtain a two-phase
system at temperature T = 2.90 with approximately equal volumes of solid and liquid and with stationary
interfaces; see Figure 2. Simulation O1 used 64 131 particles in a computational cell of dimensions 93.17 ×
23.29 × 23.29, while simulation O2 used 78 911 particles in a cell of dimensions 100.86 × 24.71 × 24.96. The
values above are given in reduced Lennard-Jones units.

An effect of the finite size of the computational cell is that periodic boundary conditions may interact with
the solid and affect the results; here the computational cell was chosen to match the FCC structure in a
specific orientation with respect to the box and thus stabilised the structure and orientation. It is important to
know that the density in the FCC part (and hence the box cross section) is consistent with constant pressure
simulations close to the melting point. A related question is whether the length of the computational box is
large enough for properties around the interfaces in the infinitely layered structure to be good approximations
of those near an interface between a solid and liquid on the macroscopic scale.

5.2. Computation of the coarse-grained model functions

The drift and diffusion coefficient functions in the stochastic differential equation (4.1) for the coarse-grained
phase-field are defined in terms of the time averaged expected values (4.11) and (4.10) on the form

1
T E

[∫ T

0

ψ(·;Xt)
∣∣∣∣ X0 = X0

]
,

where the initial configuration X0 is a configuration of a stationary two-phase system. By setting up X0 and
simulating discrete sample trajectories using the Euler-Maruyama method (5.1), a sequence of configurations
{X̄k}K

k=1 approximating the sequence {Xtk}K
k=1 for some times 0 < t1 < . . . < tK = T is obtained. In a post

processing step a set of configurations S ⊆ {X̄k}K
k=1 is selected and averages

AS (ψ) =
∑
X∈S

ψ(·;X )wX ,

consistently weighted with weights wX , are computed as approximations of the corresponding expected values
in the continuous time model. It is usually more efficient not to include every configuration in the averages;
see [29].

As described in Section 4.3, the averages are functions of the coordinate direction x1, normal to the planar
interface, since the mollifier in the definition (2.4) of the microscale phase-field, m, is chosen to take uniform
averages in the planes parallel to the interface. The mollifier used in the computations is

η(x) = η(x1) = c exp

⎛⎝−1
2

(
x1

ε

)2
⎞⎠1|x1|<Rc

, (5.2)

where c is a normalising constant, ε is a smoothing parameter, and Rc is a cut-off. The smoothing parameter
is on the order of typical nearest neighbour distances, ε = 1, and Rc = 6ε which gives η(Rc) ≈ 1.5 × 10−8η(0).

An explicit derivation of expressions for the drift and the diffusion is given in the appendix of [29]. Separating
the drift in terms containing two, one, and zero derivatives of the mollifier, the right hand side of (4.11) is
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approximated by

kBT
∂2

∂x2
1

AS (m) +
∂

∂x1
AS (a1) + AS (a0),

where

a1(x;X ) =
N∑

j=1

(kBT −mj(X ))[Fj(X )]1η(x−Xj) (5.3)

and

a0(x;X ) = −
N∑

j=1

(
kBT∂Xj · Fj(X ) +

1
2
||Fj(X )||2

)
η(x −Xj) −

1
2

N∑
j=1

N∑
i�=j,i=1

fij(X ) · Fj(X )η(x−Xi). (5.4)

Here Fj is the total force acting on particle j, [Fj(X )]1 is the x1-component of the force, and fij are the
contributions from individual pairs,

Fj(X ) = −∂XjV (X ) =
N∑

i�=j,i=1

Φ′(||Xi −Xj||)
Xi −Xj

||Xi −Xj ||
=

N∑
i�=j,i=1

fij(X ).

The right hand side in equation (4.10), for the coarse-grained diffusion, is approximated by

B(·, ·) = AS

⎛⎝2kBT

N∑
j=1

(
pj(·, ·;X) + qj(·, ·;X)

)⎞⎠, (5.5)

where

pj(x, y;X ) =
(
mj(X )
ε2

)2 [
x−Xj

]
1

[
y −Xj

]
1
η(x−Xj)η(y −Xj)

− mj(X )
2ε2

[x−Xj ]1η(x −Xj)
(

[Fj(X )]1η(y −Xj) +
N∑

i�=j,i=1

[fij(X )]1η(y −Xi)
)

− mj(X )
2ε2

[y −Xj]1η(y −Xj)
(

[Fj(X )]1η(x −Xj) +
N∑

i�=j,i=1

[fij(X )]1η(x−Xi)
)

and

qj(x, y;X ) =
1
4

(
Fj(X )η(x −Xj) +

N∑
i�=j,i=1

fij(X )η(x −Xi)
)
·
(
Fj(X )η(y −Xj) +

N∑
i�=j,i=1

fij(X )η(y −Xi)
)
.

The functions AS (ψ) are computed in a discrete set of pointsDK = {xi
1}K

i=1 along the x1 axis of the molecular
dynamics domain. This makes the computed components, AS (m), AS (a1), and AS (a0), of the drift coefficient
function K-vectors and the computed B a K-by-K matrix. The individual diffusion coefficient functions bj are

obtained by taking the square root of the computed diffusion matrix, B = B
1/2

(B
1/2

)T, and letting the j-th
column of B

1/2
define bj .
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With one Wiener process W̃j in the coarse-grained stochastic differential equation (4.1) per evaluation point,
K = M , the component vectors, bj , of the diffusion in the coarse-grained equation can be defined as the column
vectors of the matrix B, to obtain

M∑
j=1

bjb
T

j ≈ B.

If two grid points, x1 and y1, are further apart than twice the sum of the cut-off in the potential and the cut-off
in the mollifier, then pj(x, y; ·) and qj(x, y; ·) are zero; hence a natural ordering x1

1 < x2
1 < . . . < xK

1 of the grid
points makes B a band matrix. Using the square root of B is a way that preserves the connection between grid
points and diffusion functions and hence the dominating terms in a tabulated vector bj are those of nearby grid
points.

Remark 5.1 (extensions). We have computed coarse-grained approximations for a pair potential molecular
equilibrium system in the canonical ensemble (with constant number of particles, volume and temperature)
using periodic boundary conditions.

In macroscopic phase transitions the system often has constant pressure instead of volume. Therefore it is
interesting to extend the work to molecular systems with constant pressure, by controlling the pressure, cf. [9].
At constant pressure, the enthalpy, which is the sum of the internal energy and the pressure times the volume,
pv, takes the role the internal energy has at constant volume, so that at constant pressure the potential V here
is essentially replaced by V + pv and a varying computational volume with pressure boundary conditions.

It would also be interesting to simulate a molecular system above or below the melting temperature. The
situation with a stationary phase transition at the melting temperature then changes to a moving interface.
To follow a traveling wave leads to molecular dynamics with non periodic boundary conditions. To simulate
molecular dynamics in any situation different from the case with periodic boundary conditions is non standard
and much remains to understand, cf. [8]. Our setting with a phase transition in a Lennard-Jones type system
would be suitable for learning about other boundary conditions: on one side the system is crystallized, with
a certain orientation, and on the opposite side the system is liquid. In a coordinate system, moving with the
propagation speed v of the traveling wave, the molecular system has a stationary phase interface, as at the
melting temperature. The translated Smoluchowski dynamics

dXt = −
(
∂XV (Xt) − v

)
dt+ (2T )1/2dW t

could then be used to find the correct propagation speed v, as the speed where the translated molecular dynamics
has a stationary phase transition. The velocity v could be used to validate the method. The other new ingredient
here is to handle particles leaving the domain through the two surfaces with normals in the direction of the
wave propagation. The remaining identification of the traveling wave and the coarse-graining then becomes the
same as for the case at the melting temperature.

Remark 5.2 (hybrid method). There may be cases when the phase-field method cannot resolve a local phe-
nomenon in a small domain D. A more accurate solution could then be to couple the phase-field method to
a molecular dynamics simulation in the domain D. Since the coarse-grained potential energy is identified as
the phase-field in the domain outside D, the natural condition for the phase-field at the boundary ∂D is to set
the phase-field variable equal to the coarse-grained potential energy determined from molecular dynamics in D.
Then the molecular dynamics periodic boundary conditions have to be replaced with some conditions coupled
to the macroscopic phase-field and temperature.
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Remark 5.3 (variances). Note that the approximation error E
[
g
(
m(XT , ·)

)
− g(m̄T )

]
becomes proportional

to the variances

E

[ ∫ T

0

〈α− a, α− a〉dt
]
,

E

[ ∫ T

0

〈
N∑

j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk,

N∑
j=1

βj ⊗ βj −
M∑

k=1

bk ⊗ bk

〉
dt

]
.

The first variations ∂ū′
(
m(Xt, ·), t

)
/∂α and ∂ū′′

(
m(Xt, ·), t

)
/∂βj determine the factors of proportionality.

6. Conclusions

This report presents a method to computationally determine a phase-field equation, related to previous work
on atomistic simulations following traveling waves, cf. [12]. The new ingredient here is that the whole reaction
function (not only a parameter) and the noise function are determined, for a special case of a stationary wave
corresponding to a simulation at the melting temperature.

The method to determine the stochastic phase-field model has three steps:

• a precise quantitative atomistic definition of the phase-field variable m : R
3N × R

3 → R, based on a
given molecular dynamics potential energy V : R

3N → R in (2.4);
• derivation of a macroscopic coarse-grained dynamics, i.e. the phase-field model (4.13)

(rq)−1dm̄ =
(
kBTq

−1∂2
xm̄+A0(m̄)

)
dt+ r−1/2q−1

∑
k

b̄k(m̄)dW̃ t
k,

for m̄(x, t) approximating m(Xt, x) in (4.1)–(4.4), using the microscopic Smoluchowski molecular
dynamics

dXt
i = −∂XiV (Xt)dt+

√
2kBT dW t

i ,

for particle positions X : [0,∞) → R
3N and standard Brownian motions W̃k and Wi;

• numerical molecular dynamics computation to evaluate m and b̄ in the phase transition by ensemble
averages based on (4.4); the phase-field variable m then determines the functions Ā0 and q from a
traveling wave: the shape of the traveling wave, computed from molecular dynamics, determines the
reaction term balancing the diffusion (since the total drift becomes zero in our case of a stationary wave),
the reaction and diffusion terms in the phase-field equation are then determined up to a multiplicative
constant – this multiplicative constant is chosen to match equilibrium fluctuations of the phase-field;
the diffusion coefficient b̄ is determined from an optimization problem, where the diffusion is chosen to
minimize the error of observables in the Gibbs ensemble.

The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing
coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble
average.

The quotient of reaction terms q = qi := A0(Oi)/A0(O1) depends on the crystal orientation Oi relative to
the phase interface and the reaction term Ā0 forms a double well potential shown in Figure 5. The diffusion
coefficient b̄ is determined from the square root of the diffusion matrix of the noise in Figure 6. The function
r = ri is the quotient of relaxation times: the time scale τ used Smoluchowski dynamics may depend on
the crystal orientation, since the relaxation time τ may differ for two orientations Oi, and we define
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ri := τ(Oi)/τ(O1) for the reference orientation O1. Langevin dynamics

dXs
i = vs

i ds,

Mdvs
i = −∂XiV (Xs) ds− vs

i

τ
ds+

√
2γ
τ

dŴ s
i ,

defines the relaxation time. The relaxation time τ is related to the shear viscosity η by τ(Oi)/τ(O1) =
η(O1)/η(Oi). The function r can therefore be determined similarly as the function m(x), replacing the
Smoluchowski dynamics with Langevin dynamics (or Hamiltonian dynamics corresponding to τ = ∞) and
using a standard molecular dynamics expression for the viscosity, cf. [9].

The computational results with a Lennard-Jones type molecular potential shows that the determined phase-
field equation has the right qualitative behavior, with a double well potential and orientation dependent coeffi-
cients. Further numerical studies would be needed to validate the method for realistic materials.
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