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RESOLUTION OF THE TIME DEPENDENT Pn EQUATIONS
BY A GODUNOV TYPE SCHEME HAVING THE DIFFUSION LIMIT

Patricia Cargo
1

and Gérald Samba
1

Abstract. We consider the Pn model to approximate the time dependent transport equation in one
dimension of space. In a diffusive regime, the solution of this system is solution of a diffusion equation.
We are looking for a numerical scheme having the diffusion limit property: in a diffusive regime, it has
to give the solution of the limiting diffusion equation on a mesh at the diffusion scale. The numerical
scheme proposed is an extension of the Godunov type scheme proposed by Gosse to solve the P1 model
without absorption term. It requires the computation of the solution of the steady state Pn equations.
This is made by one Monte-Carlo simulation performed outside the time loop. Using formal expansions
with respect to a small parameter representing the inverse of the number of mean free path in each
cell, the resulting scheme is proved to have the diffusion limit. In order to avoid the CFL constraint
on the time step, we give an implicit version of the scheme which preserves the positivity of the zeroth
moment.
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Introduction

The Pn equations ([1], p. 225 of [9]) are a good tool to approximate the neutron transport equation. This
model is derived from the expansion of the neutron flux in the basis of spherical harmonics. In one dimension
(1D), this model is equivalent to the Sn+1 model [9], well-known to give positive solutions; moreover its solution
tends to the solution of the transport equation (see [14] for a theoretical proof) when n tends to +∞. In 2D,
the Pn model, also known as the spherical harmonics method, preserves the rotational invariance of the neutron
transport equation in contrast to the Sn+1 model suffering from ray effects [18]. The Pn model in 2D does
not preserve the positivity of the density on the contrary of the Sn+1 model: see [22] for a detailed study of
the regimes when this problem may occur. Nevertheless, in some applications, the rotational invariance of the
solution is more important than its positivity. The behaviour of the Pn model in the two extreme regimes of
diffusion and free streaming limit is also of interest. In the diffusive regime, it recovers the solution of the
diffusion equation, whatever n is [21]. In the free streaming limit, it recovers the solution of the transport
equation with the correct velocity in the limit of n going to +∞.

Recently, Brunner and McClarren [20] have proposed a finite volume approximation of the Pn model: since the
resulting system is hyperbolic and linear, they have considered an explicit Godunov scheme for the conservative
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part of the system, combined with an explicit centered treatment of the source term. The advantage of such
a method is to take into account exactly the structure of the waves involved. The main issue is the treatment of
the source terms: in the diffusive regime, the choice of a centered treatment does not give the discrete diffusion
limit [15] property. Indeed, the scheme does not recover the solution of the diffusion equation with a mesh
whose cell size is larger than the mean free path. In [21], they have explained this failure by the too large
magnitude of the diffusive terms involved by the scheme. To overcome this defect, they have suggested to
multiply these terms by an ad hoc factor which behaves differently, depending on the nature of the considered
regime (transparent/diffusive). By this way, the scheme yields a correct discretization of the diffusion equation,
but it suffers from parasite modes especially when extended to two dimensions.

At the same time, there has been a lot of work in the related field of radiative transfer to derive schemes
having the discrete diffusion limit property. Among all these studies [2,4,5], we focus on the work of Gosse and
Toscani [11,12] who have considered the Goldstein-Taylor model in 1D. This model is close to the P1 model
where the absorption would be neglected. They have proposed to treat the source term in such a way that the
resulting scheme preserves the steady solutions of the system (well-balanced property). The Riemann problem
associated with their formulation involves a stationary wave; the intermediate states are computed by solving
the steady equation. A Godunov type scheme based on the resolution of this Riemann problem at each interface
has thus been derived. They have shown that this scheme has also the diffusion limit.

Our main motivation is to discretize the Pn equations in 1D with some scheme having the discrete diffusion
limit property. The approach of Gosse seems to us more rigorous than the introduction of an ad hoc factor.
The aim of this work is to extend this new technique to the case of the Pn equations in 1D.

This paper is organized as follows. The first section is devoted to the description of the Pn equations. In
Section 2, we study the resolution of the P1 equations: a Gosse type scheme is proposed. It is proved that the
resulting scheme is positive and has the diffusion limit property. We describe also how to deal with a variable
size mesh and non constant coefficients (σa, σt). In Section 3, we extend the discretization obtained for the P1

equations to the Pn system. Both properties, positivity and diffusion limit, are proved for the derived scheme.
In Section 4, some numerical results are presented. The last section is devoted to the conclusion.

1. The Pn equations

In 1D slab geometry, by taking the moments of the transport equation:

∂ψ

∂t
+ μ

∂ψ

∂x
+ σtψ = (σt − σa)ψ̃, (1.1)

we obtain the Pn equations [1]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ψ0

∂t
+ B1

∂ψ1

∂x
+ σa ψ0 = 0

∂ψ�

∂t
+ B�+1

∂ψ�+1

∂x
+ A�−1

∂ψ�−1

∂x
+ σt ψ� = 0 � = 1...n

ψn+1 = 0.

(1.2)

The following notations are used:
• ψ(x, μ, t) is the neutron flux;
• x ∈ [A,B];
• μ ∈ [−1,+1] is the cosinus of the angle between the neutron direction and the x axis;
• σa is the absorption cross section and σt the total cross section. These coefficients are positive;

• ψ̃ =
1
2

∫ +1

−1

ψdμ;

• ψ� (x, t) =
∫ 1

−1

√
2�+ 1L�(μ)ψ(x, μ, t) dμ are the moments and L� the �th Legendre polynomial;
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• the constants A� and B� are defined by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A� =

√
(�+ 1)2

(2�+ 3) (2�+ 1)

B� =

√
�2

(2�+ 1) (2�− 1)
·

Let us note that the speed of the neutrons does not appear in the transport equation (1.1) because time has
been adimensioned.

We must now specify the boundary conditions:

• for the transport equation (1.1), they are given by:

{
ψ(A, μ, t) = gA(μ, t) for μ > 0
ψ(B, μ, t) = gB(μ, t) for μ < 0

where gA and gB are some given functions;
• for the Pn equations (1.2), the corresponding boundary conditions are:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�=n∑
�=0

√
2�+ 1
2

ψ� (A, t)L�(μi) = gA(μi, t) for μi > 0

�=n∑
�=0

√
2�+ 1
2

ψ� (B, t)L�(μi) = gB(μi, t) for μi < 0.

(1.3)

To approximate the transport equation, an alternative method is the Sn+1 method [7,8] called the discrete
ordinates method. It considers an approximation of ψ(x, μ, t) at n+1 values of μ. Let us denote μi these values

and ui an approximation of ψ(x, μi, t). To define ψ̃, we choose the quadrature formula: ψ̃ � 1
2

k=n+1∑
k=1

ωkuk which

leads to the Sn+1 equations:

∂ui

∂t
+ μi

∂ui

∂x
+ σtui = (σt − σa)

1
2

k=n+1∑
k=1

ωkuk i = 1...n + 1 (1.4)

with the boundary conditions: {
ui(A, t) = gA(μi, t) for μi > 0
ui(B, t) = gB(μi, t) for μi < 0. (1.5)

Let us note that this method is positive ui(x, t) ≥ 0, ∀i.
In the Sn+1 equations, we can choose {μi, ωi}i=1...n+1 as the values and the weights of the Legendre quadrature

formula of order n + 1. Thus, μi are the n + 1 roots of the (n + 1)th Legendre polynomial and the weights ωi

are defined by:

ωi =
−2

(n + 2)Ln+2(μi)L
′
n+1(μi)

·
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It can be proved [6] that if (ui)i=1...n+1 is solution of the Sn+1 equations with the previous choice of
{μi, ωi}i=1...n+1 and the boundary conditions (1.5), then

ψ� (x, t) =
i=n+1∑

i=1

ωi

√
2�+ 1L�(μi)ui(x, t) (1.6)

verify the Pn equations for � = 0, ..., n with the boundary conditions (1.3).
Reciprocally, if (ψ�)�=0,...,n are solutions of the Pn equations with the previous boundary conditions, then

ui(x, t) =
�=n∑
�=0

√
2�+ 1
2

ψ� (x, t)L�(μi) ∀i = 1...n + 1 (1.7)

are solutions of the Sn+1 equations with the already specified {μi, ωi}i=1...n+1 and the boundary conditions (1.5).
This equivalence between both Pn and Sn+1 models will be often used to ease calculations in the next sections.

In the following, we assume that n is odd so that none value of μk is zero. This is not restrictive, since the
Pn approximation with n even, is known to be less accurate: indeed, ψ is generally not continuous in x for
μ = 0 [6]. In consequence, a quadrature formula with μi = 0 may be inappropriate.

Let us conclude this section on the behaviour of the Pn model in the two extreme regimes of diffusion and
free streaming limit.

The diffusive regime is characterized by three features: the mean free path
1
σt

much smaller than the

dimension of the domain; σa much smaller than σt; the observation time much larger than the time of collision.
This regime may be obtained by the introduction of the following scaling in the transport equation [16,17,23]:

∂

∂t
�→ ε

∂

∂t
, σt �→ σt

ε
, σa �→ εσa

where the parameter ε represents the inverse of the number of mean free path in the domain.
This scaling can be applied to the Pn model and it can be shown [21] that when ε tends to zero, ψ0 tends to

the solution of the diffusion equation:

∂ψ0

∂t
− ∂

∂x

(
1

3σt

∂ψ0

∂x

)
+ σaψ0 = 0. (1.8)

This result has first been obtained formally; since, an exact convergence result has been derived in [8].
Let us now deal with the free streaming limit characterized by σt = σa = 0, μ = ±1 which corresponds to

the transport of a beam in the vacuum.

Proposition 1.1. ψ1 and ψ0 verify:

|ψ1(x, t)| ≤ ψ0(x, t)
√

3max
i

|μi|. (1.9)

Proof. We have ψ1(x, t) =
i=n+1∑

i=1

ωi

√
3μiui(x, t) from we deduce: |ψ1(x, t)| ≤

(
i=n+1∑

i=1

ωiui(x, t)

)√
3max

i
|μi|.

The inequality (1.9) follows. �
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Let us note that when n tends to +∞, the previous inequality tends to the flux limited property [19,23]:

|ψ1(x, t)| ≤ ψ0(x, t)
√

3.

This property implies the correct velocity for the propagation of the neutrons in the free streaming limit
(ψ1(x, t) = ±ψ0(x, t)

√
3 for μ = ±1).

2. Numerical solution of the P1 equations

The Pn equations (1.2) in the case n = 1 give the P1 model:
⎧⎪⎪⎨
⎪⎪⎩

∂ψ0

∂t
+

1√
3
∂ψ1

∂x
+ σa ψ0 = 0

∂ψ1

∂t
+

1√
3
∂ψ0

∂x
+ σt ψ1 = 0

(2.1)

with the neutron density ψ0(x, t) =
∫ 1

−1

ψ(x, μ, t)dμ and ψ1(x, t) =
∫ 1

−1

√
3μψ(x, μ, t)dμ. In addition, the closure

relation gives ψ2 = 0. This model is equivalent to the S2 equations:⎧⎪⎪⎨
⎪⎪⎩

∂u1

∂t
+

1√
3
∂u1

∂x
+ σtu1 =

1
2
(σt − σa)(u1 + u2)

∂u2

∂t
− 1√

3
∂u2

∂x
+ σtu2 =

1
2
(σt − σa)(u1 + u2).

(2.2)

This equivalence relies on the relations (1.6) and (1.7) which rewrite: ψ0 = u1 + u2, ψ1 = u1 − u2 and

u1 =
1
2
(ψ0 + ψ1), u2 =

1
2
(ψ0 − ψ1).

We consider a uniform mesh of size h to discretize the spatial domain [A,B]. The cells are defined by

Cj = [xj−1/2, xj+1/2] where xj+1/2 = xj +
h

2
, j ∈ [1, Nx].

In this section, we propose to approximate the P1 model following the ideas Gosse [11] has developed to
solve the Goldstein-Taylor model. Indeed both models are very close: the Goldstein-Taylor equations may be

obtained by taking σa = 0 and ±1 instead of ± 1√
3

as characteristic speeds in the P1 equations. Moreover, the

numerical scheme of Gosse et al. has interesting properties, more particularly a good behaviour in the diffusive
regime.

2.1. Derivation of a Gosse type scheme

2.1.1. Characterization of the Riemann solver for the S2 equations

Following the ideas of Gosse and Toscani [12], the terms on the right hand side of system (2.2) are modified
as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u1

∂t
+

1√
3
∂u1

∂x
= h

∑
j

(σt

2
(u2 − u1) − σa

2
(u1 + u2)

)
δ(x− xj−1/2)

∂u2

∂t
− 1√

3
∂u2

∂x
= h

∑
j

(σt

2
(u1 − u2) − σa

2
(u1 + u2)

)
δ(x− xj−1/2)

(2.3)

where δ(x− x0) stands for the Dirac mass in x = x0.
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Figure 1. Riemann problem with the standing wave.

x

(
(u1)l

(u2)l

)

(
(u1)l

(û2)

) (
(û1)
(u2)r

)

(
(u1)r

(u2)r

)

(
− 1√

3

) (
1√
3

)t

The Riemann problem associated with (2.3) involves a stationary contact discontinuity, which yields two
unknown states {û1, û2} (Fig. 1).

By analogy with [11,12], these states are computed by solving the steady equations:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

du∗1
dχ

= h
√

3
(σt

2
(u∗2 − u∗1) −

σa

2
(u∗1 + u∗2)

)
for χ ∈ [0, 1]

−du∗2
dχ

= h
√

3
(σt

2
(u∗1 − u∗2) −

σa

2
(u∗1 + u∗2)

) (2.4)

with the boundary conditions: {
u∗1(0) = (u1)l

u∗2(1) = (u2)r.
(2.5)

In order to solve an easier system, we introduce the corresponding moments {ψ∗
0 , ψ

∗
1} and we obtain:

⎧⎪⎨
⎪⎩

dψ∗
1

dχ
= −2βψ∗

0

dψ∗
0

dχ
= −2αψ∗

1

(2.6)

where we have set β = h
√

3
σa

2
and α = h

√
3
σt

2
. Let us remark that α and β are positive.

The boundary conditions of the above system are given by:{
ψ∗

0(0) + ψ∗
1(0) = (ψ0)l + (ψ1)l

ψ∗
0(1) − ψ∗

1(1) = (ψ0)r − (ψ1)r.

As the parameter β differs from zero, ψ∗
1 depends on χ. In addition, it satisfies: ψ∗

1 = − 1
2α

dψ∗
0

dχ
. The

introduction of this relation in the first equation of (2.6) leads to the following ordinary differential equation:

d2ψ∗
0

d2χ
= C2ψ∗

0 , C = 2
√
αβ
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whose solution is:
ψ∗

0(χ) = a exp(χC) + b exp(−χC) {a, b} ∈ R.

This statement and the second equation of (2.6) yield ψ∗
1(χ) = − C

2α
[a exp(χC) − b exp(−χC)].

We are now able to compute the solutions of the system (2.4):

⎧⎪⎪⎨
⎪⎪⎩

u∗1(χ) =
a

2

(
1 − C

2α

)
exp(χC) +

b

2

(
1 +

C

2α

)
exp(−χC)

u∗2(χ) =
a

2

(
1 +

C

2α

)
exp(χC) +

b

2

(
1 − C

2α

)
exp(−χC).

The boundary conditions (2.5) lead to a set of 2 equations with 2 unknowns {a, b} and we get:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a = 4α
(2α− C) exp(−C)(u1)l − (2α+ C)(u2)r

(2α− C)2 exp(−C) − (2α+ C)2 exp(C)

b = −4α
(2α+ C) exp(C)(u1)l − (2α− C)(u2)r

(2α− C)2 exp(−C) − (2α+ C)2 exp(C)
·

These identities give linear expressions of the unknown states {û1, û2} in terms of {(u1)l, (u2)r}:{
û1 = u∗1(1) = ã(u1)l + b̃(u2)r

û2 = u∗2(0) = b̃(u1)l + ã(u2)r
(2.7)

with: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ã =
2
√
αβ

2
√
αβ cosh(2

√
αβ) + (α+ β) sinh(2

√
αβ)

b̃ =
α− β

α+ β + 2
√
αβ coth(2

√
αβ)

·
(2.8)

Lemma 2.1. The coefficients
{
ã, b̃
}

satisfy the following properties:

⎧⎨
⎩

ã > 0
b̃ > 0
ã+ b̃ < 1.

Proof. Trivial because of the properties of the hyperbolic functions. �

This result means the unknown states {û1, û2} are positive and satisfy û1,2 < max((u1)l, (u2)r).

2.1.2. Explicit Gosse type schemes

If we apply the solver proposed in the last section to the cell Cj , with the notations given in Figure 2 for the
different states, we can derive a Godunov type scheme to discretize the S2 equations:⎧⎪⎪⎨

⎪⎪⎩
(u1)n+1

j = (u1)n
j +

Δt
h
√

3

(
(û1)n

j−1/2 − (u1)n
j

)
(u2)n+1

j = (u2)n
j +

Δt
h
√

3

(
(û2)n

j+1/2 − (u2)n
j

) (2.9)
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Figure 2. Riemann problem in the cell Cj .

xj−1/2 xj xj+1/2

(tn)

{
(û1)n

j−1/2,

(u2)n
j

} {
(u1)n

j , (u2)n
j

}
{
(u1)n

j ,

(û2)n
j+1/2

}
(tn+1)

with: {
(û1)n

j−1/2 = ã(u1)n
j−1 + b̃(u2)n

j

(û2)n
j+1/2 = b̃(u1)n

j + ã(u2)n
j+1

(2.10)

because of the relations (2.7).
The numerical scheme for the P1 equations is obtained using the last discretization (2.9) and the relations on

which the equivalence between both S2 and P1 systems relies (see Sect. 1). So the summation and the difference
of both schemes relative to the variables {u1, u2} yield an explicit discretization of the P1 model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ψ0)n+1
j = (ψ0)n

j − Δt
h
√

3
ã
(
(ψ1)n

j+1/2 − (ψ1)n
j−1/2

)
+

Δt
h
√

3
(ã+ b̃− 1)(ψ0)n

j

(ψ1)n+1
j = (ψ1)n

j − Δt
h
√

3
ã
(
(ψ0)n

j+1/2 − (ψ0)n
j−1/2

)
+

Δt
h
√

3
(ã− b̃− 1)(ψ1)n

j

(2.11)

where we have set: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ψ0)n
j+1/2 =

(ψ0)n
j + (ψ0)n

j+1

2
+

(ψ1)n
j − (ψ1)n

j+1

2

(ψ1)n
j+1/2 =

(ψ1)n
j + (ψ1)n

j+1

2
+

(ψ0)n
j − (ψ0)n

j+1

2
·

(2.12)

Because of the construction proposed, the scheme (2.11) is equivalent to the scheme (2.9).

Remark 2.2. Let us note that Buet and Cordier have derived the expressions (2.12) in [5] with the coefficient σa

set to zero.

Hence an explicit numerical scheme has been derived to solve both P1 and S2 equations. It satisfies the
following properties:

Proposition 2.3. Under the CFL condition
Δt
h
√

3
≤ 1:

• the explicit discretization (2.9)–(2.11) is L∞-stable;
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• at the discrete level, the scheme (2.11) satisfies the same property (1.9) as the P1 model at the PDE
level:

|(ψ1)n+1
j | ≤ (ψ0)n+1

j (∀j, ∀n)· (2.13)

Let us remark that the second inequality (2.13) implies that for all j: |(ψ1)n+1
j | ≤

√
3(ψ0)n+1

j , which is the
flux limited property.

Proof. To ease the proof, we use the S2 formulation of the discretization.
Assume both properties are true until time tn:

{ ||un
1 ||∞ ≤ A, ||un

2 ||∞ ≤ A
(u1)n

j ≥ 0, (u2)n
j ≥ 0 ∀j

where A is a constant independent of n and Δt.
The scheme (2.9) can be rewritten as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u1)n+1
j =

(
1 − Δt

h
√

3

)
(u1)n

j +
Δt
h
√

3
ã(u1)n

j−1 +
Δt
h
√

3
b̃(u2)n

j

(u2)n+1
j =

(
1 − Δt

h
√

3

)
(u2)n

j +
Δt
h
√

3
ã(u2)n

j+1 +
Δt
h
√

3
b̃(u1)n

j .

From Lemma 2.1 and the CFL condition
Δt
h
√

3
≤ 1, we deduce that (u1)n+1

j is a linear combination of{
(u1)n

j , (u1)n
j−1, (u2)n

j

}
with positive coefficients; the same results holds for (u2)n+1

j in terms of
{
(u2)n

j , (u2)n
j+1,

(u1)n
j

}
. Hence, the scheme is positive: (u1)n+1

j ≥ 0, (u2)n+1
j ≥ 0, ∀j. The inequality (2.13) follows.

Moreover, the following inequalities may be written:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u1)n+1
j ≤

[
1 − Δt

h
√

3
(1 − ã− b̃)

]
A ≤ A ∀j

(u2)n+1
j ≤

[
1 − Δt

h
√

3
(1 − ã− b̃)

]
A ≤ A ∀j

which proves the L∞-stability because of Lemma 2.1. �

2.1.3. Implicit Gosse type schemes

This section is devoted to present an implicit version of the above scheme, which will be used later because
of its unconditional stability.

We first consider the implicit Godunov type scheme:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u1)n+1
j = (u1)n

j +
Δt
h
√

3

(
(û1)n+1

j−1/2 − (u1)n+1
j

)

(u2)n+1
j = (u2)n

j +
Δt
h
√

3

(
(û2)n+1

j+1/2 − (u2)n+1
j

) (2.14)
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corresponding to the S2 equations. The definition of the quantities {(û1)n+1
j−1/2, (û2)n+1

j+1/2} is the canonical
extension of the relations (2.10): ⎧⎪⎨

⎪⎩
(û1)n+1

j−1/2 = ã(u1)n+1
j−1 + b̃(u2)n+1

j

(û2)n+1
j+1/2 = b̃(u1)n+1

j + ã(u2)n+1
j+1 .

(2.15)

Remark 2.4. Let us note that all the terms are treated implicitly in the scheme (2.14), not only the stiff
convection terms as in the scheme prescribed in [11] for the Goldstein-Taylor model.

As in the explicit case, we can derive the following implicit scheme for the P1 equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ψ0)n+1
j = (ψ0)n

j − Δt
h
√

3
ã
(
(ψ1)n+1

j+1/2 − (ψ1)n+1
j−1/2

)
+

Δt
h
√

3
(ã+ b̃− 1)(ψ0)n+1

j

(ψ1)n+1
j = (ψ1)n

j − Δt
h
√

3
ã
(
(ψ0)n+1

j+1/2 − (ψ0)n+1
j−1/2

)
+

Δt
h
√

3
(ã− b̃− 1)(ψ1)n+1

j

(2.16)

where
{
(ψ0)n+1

j+1/2, (ψ1)n+1
j+1/2

}
are defined by the extension of the explicit identities (2.12):⎧⎪⎪⎨

⎪⎪⎩
(ψ0)n+1

j+1/2 =
(ψ0)n+1

j + (ψ0)n+1
j+1

2
+

(ψ1)n+1
j − (ψ1)n+1

j+1

2

(ψ1)n+1
j+1/2 =

(ψ1)n+1
j + (ψ1)n+1

j+1

2
+

(ψ0)n+1
j − (ψ0)n+1

j+1

2
·

Proposition 2.5.

• The implicit discretization (2.14)–(2.16) is unconditionally L∞-stable.
• At the discrete level, the scheme (2.16) satisfies the same property (1.9) as the P1 model at the PDE

level:
|(ψ1)n+1

j | ≤ (ψ0)n+1
j (∀j, ∀n). (2.17)

Let us remark that the second inequality (2.17) implies that for all j: |(ψ1)n+1
j | ≤ √

3(ψ0)n+1
j , which is the

flux limited property.

Proof. Let us establish some properties on the discretization (2.14) of the S2 model. It can be rewritten as:⎧⎪⎪⎨
⎪⎪⎩

− Δt
h
√

3
ã(u1)n+1

j−1 +
(

1 +
Δt
h
√

3

)
(u1)n+1

j − Δt
h
√

3
b̃(u2)n+1

j = (u1)n
j

− Δt
h
√

3
b̃(u1)n+1

j +
(

1 +
Δt
h
√

3

)
(u2)n+1

j − Δt
h
√

3
ã(u2)n+1

j+1 = (u2)n
j .

(2.18)

This form leads to the resolution of a linear system to achieve the computation of
{
un+1

1 , un+1
2

}
. According to

the properties the coefficients {ã, b̃} satisfy (see Lem. 2.1), the matrix of this linear system is a M-matrix. This
property implies that the scheme (2.14) is positive which gives the inequality (2.17).

To show the L∞-stability, we assume the property is true until time tn:

||un
1 ||∞ ≤ A, ||un

2 ||∞ ≤ A.

Let us denote j0 the cell where
(ul)n+1

j0
= max

j

(
(u1)n+1

j , (u2)n+1
j

)
. (2.19)
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Assume l = 1. Then, we have:

(u1)n+1
j0

=

Δt
h
√

3
ã(u1)n+1

j0−1 + (u1)n
j0 +

Δt
h
√

3
b̃(u2)n+1

j0

1 +
Δt
h
√

3

·

Because of the definition (2.19) and Lemma 2.1, the following inequality may be derived:

(u1)n+1
j0

≤
Δt
h
√

3

1 +
Δt
h
√

3

(u1)n+1
j0

+
1

1 +
Δt
h
√

3

(u1)n
j0

from which we deduce:

(u1)n+1
j0

< (u1)n
j0

and:
||un+1

1 ||∞ ≤ (u1)n+1
j0

≤ ||un
1 ||∞ ≤ A

||un+1
2 ||∞ ≤ (u1)n+1

j0
≤ ||un

1 ||∞ ≤ A.

If (2.19) is realized by l = 2, in the same way as in the previous case, we can show:

||un+1
1 ||∞ ≤ (u2)n+1

j0
≤ ||un

2 ||∞ ≤ A

||un+1
2 ||∞ ≤ (u2)n+1

j0
≤ ||un

2 ||∞ ≤ A

which ends the proof. �

Let us conclude this section by some remarks on the matrix of the linear system (2.18) which may be useful
to solve this system:

• it is non symmetric;
• if {(u1)j , (u2)j} are stored by pairs, it is block tridiagonal;
• because 0 < b̃ < 1, the diagonal blocks are not singular. They are given by:

⎛
⎜⎜⎝

1 +
Δt
h
√

3
− Δt
h
√

3
b̃

− Δt
h
√

3
b̃ 1 +

Δt
h
√

3

⎞
⎟⎟⎠.

Hence, a convenient way to solve the linear system is to use the block Gauss Seidel iteration method: its
convergence is ensured by the above properties of the matrix.

2.2. Well-balanced property

According to [13], we recall the meaning of this property:

Definition 2.6. A numerical scheme is said well-balanced (WB) if it preserves at the discrete level the steady
states of the partial differential equations it discretizes.

Proposition 2.7. The explicit scheme (2.9)–(2.11) is well-balanced.
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Proof. Let us introduce {uex
1 , u

ex
2 } the exact solutions of the steady equations:

⎧⎪⎪⎨
⎪⎪⎩

1√
3

duex
1

dx
+ σtu

ex
1 =

1
2
(σt − σa)(uex

1 + uex
2 )

− 1√
3

duex
2

dx
+ σtu

ex
2 =

1
2
(σt − σa)(uex

1 + uex
2 )

with the boundary conditions: {
uex

1 (A) = gA(μ1)
uex

2 (B) = gB(μ2).

Assume that the initial states {(u1)0j , (u2)0j} in the cell Cj are a discretization of {uex
1 , u

ex
2 } at the center of

the cell. Assume now the WB property is satisfied until the discrete time level tn. Let us show it is true at the
time tn+1.

Since {uex
1 , u

ex
2 } are the exact solutions of the steady equations, they verify:

{
uex

1 (xj) = ãuex
1 (xj−1) + b̃uex

2 (xj)
uex

2 (xj) = b̃uex
1 (xj) + ãuex

2 (xj+1)
(2.20)

because of the relations (2.7) applied on both intervals [xj−1, xj ] and [xj , xj+1] respectively for both values
{uex

1 , u
ex
2 } respectively.

As the WB property is satisfied until the discrete time level tn, we also have: uex
1 (xj) = (u1)n

j and uex
2 (xj) =

(u2)n
j , ∀j. Hence, we deduce: {

(u1)n
j = ã(u1)n

j−1 + b̃(u2)n
j

(u2)n
j = b̃(u1)n

j + ã(u2)n
j+1

and: {
(û1)n

j−1/2 = (u1)n
j

(û2)n
j+1/2 = (u2)n

j

because of the identities (2.10). The scheme (2.9) is involved to obtain the desired property:

{
(u1)n+1

j = (u1)n
j

(u2)n+1
j = (u2)n

j .
�

Proposition 2.8. The implicit scheme (2.14)–(2.16) is well-balanced.

Proof. We make the same assumptions as in the explicit case: the initial states {(u1)0j , (u2)0j} are a discretization
of {uex

1 , u
ex
2 } at the center of the cell Cj ; the WB property is satisfied until the discrete time level tn. Let us

show it is true at the time tn+1.
The linear system involved by the implicit scheme has an unique solution since the corresponding matrix

of the linear system is a M-matrix (see previous section). So we just have to show that {uex
1 (xj), uex

2 (xj)}
is this unique solution. Let us introduce them in the scheme (2.14) and the relations (2.15). The recurrence
assumption leads to: {

uex
1 (xj) = ãuex

1 (xj−1) + b̃uex
2 (xj)

uex
2 (xj) = b̃uex

1 (xj) + ãuex
2 (xj+1)

which ends the proof because of the definition of {uex
1 , u

ex
2 } (see relation (2.20)). �
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2.3. Asymptotic preserving property

This section is devoted to the behaviour of the numerical schemes, derived in the last sections, in the diffusive
regime. To study this point, we introduce the following definition:

Definition 2.9. A numerical scheme is said to be asymptotic preserving (AP) or to have the diffusion limit if
it satisfies a consistent discretization of the limiting diffusion equation (1.8), when ε tends to zero.

The analysis of this property requires the introduction of the “discrete diffusive scaling”:

{
Δt �→ Δt

ε
, σt �→ σt

ε
, σa �→ εσa

}

into the numerical schemes. The parameter ε represents a characteristic value of the inverse of the number of
mean free path in all cells.

In this section, among the different schemes proposed, we only consider the implicit discretization (2.14)–
(2.16). Indeed, when the explicit scheme (2.9)–(2.11) is used to compute the diffusive regime, the CFL condition

becomes
Δt
εh
√

3
≤ 1, which is much too restrictive.

Proposition 2.10. The scheme (2.16) is AP. ψ0 at the order 0 satisfies the following consistent discretization
of the diffusion equation (1.8):

(ψ0)
n+1,(0)
j = (ψ0)

n,(0)
j +

Δt
3σth2

(
(ψ0)

n+1,(0)
j−1 − 2(ψ0)

n+1,(0)
j + (ψ0)

n+1,(0)
j+1

)
− Δtσa(ψ0)

n+1,(0)
j +O(h2). (2.21)

Proof. To study the diffusion limit, two main calculations have to be performed: the introduction of the “discrete
diffusive scaling” into the numerical scheme and the expansion of the numerical approximation of {ψ0, ψ1}. Let
us note:

(ψ0)
p
k =

l=+∞∑
l=0

(ψ0)
p,(l)
k εl; (ψ1)

p
k =

l=+∞∑
l=0

(ψ1)
p,(l)
k εl

where k stands for the space discretization and p the time discretization.
The “discrete diffusive scaling” is applied to the scheme (2.16):

⎧⎪⎪⎨
⎪⎪⎩

(ψ0)n+1
j = (ψ0)n

j − Δt
εh
√

3
ãε

(
(ψ1)n+1

j+1/2 − (ψ1)n+1
j−1/2

)
+

Δt
εh
√

3
(ãε + b̃ε − 1)(ψ0)n+1

j

(ψ1)n+1
j = (ψ1)n

j − Δt
εh
√

3
ãε

(
(ψ0)n+1

j+1/2 − (ψ0)n+1
j−1/2

)
+

Δt
εh
√

3
(ãε − b̃ε − 1)(ψ1)n+1

j

(2.22)

where {ãε, b̃ε} denote the natural extension of {ã, b̃} defined by the expressions (2.8):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ãε =
2
√
αεβε

2
√
αεβε cosh(2

√
αεβε) + (αε + βε) sinh(2

√
αεβε)

b̃ε =
αε − βε

αε + βε + 2
√
αεβε coth(2

√
αεβε)

with αε =
α

ε
and βε = βε. Let us note that αεβε remains constant, as the constant C, in spite of the scaling.
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These relations lead to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãε

ε
=

−8αC
4α2[exp(−C) − exp(C)] − 4αC[exp(−C) + exp(C)]ε+ C2[exp(−C) − exp(C)]ε2

ãε + b̃ε − 1
ε

=
4αC[exp(−C) + exp(C) − 2] + 2C2[exp(C) − exp(−C)]ε

4α2[exp(−C) − exp(C)] − 4αC[exp(−C) + exp(C)]ε+ C2[exp(−C) − exp(C)]ε2

ãε − b̃ε − 1
ε

= − 2α[exp(C) − exp(−C)] + C[exp(C) + exp(−C) − 2]ε

α[exp(C) − exp(−C)]ε+ C[exp(C) + exp(−C)]ε2 +
C2

4α
[exp(C) − exp(−C)]ε3

·

(2.23)

In the second equation of (2.22), the term
ãε

ε
being of order 0 in ε, there is only one term function of

1
ε
:

−2
εh
√

3
coming from

ãε − b̃ε − 1
εh
√

3
. This remark yields:

(ψ1)
n+1,(0)
j = 0 (∀j) =⇒ (ψ1)

n+1,(0)
j+1/2 =

(ψ0)
n+1,(0)
j − (ψ0)

n+1,(0)
j+1

2
(∀j).

Because of the last statement and the identities (2.23), the scheme (2.22) on (ψ0)n+1
j rewrites as follows:

(ψ0)
n+1,(0)
j = (ψ0)

n,(0)
j +

Δt
h
√

3

[
2C

α(exp(−C) − exp(C))

] [−(ψ0)
n+1,(0)
j+1 + 2(ψ0)

n+1,(0)
j − (ψ0)

n+1,(0)
j−1

2

]

+
Δt
h
√

3

[
C(exp(−C) + exp(C) − 2)
α(exp(−C) − exp(C))

]
(ψ0)

n+1,(0)
j

(2.24)
at the order 0 in ε.

Remember that α and C depend on h: α = h
√

3
σt

2
and C = h

√
3σtσa. The introduction of these definitions

in the relation satisfied by (ψ0)
n+1,(0)
j leads to an expression only depending on C. To obtain a result free of

this constant, let us make a Taylor expansion about h:

(ψ0)
n+1,(0)
j = (ψ0)

n,(0)
j +

Δt
3σt

(
(ψ0)

n+1,(0)
j+1 − 2(ψ0)

n+1,(0)
j + (ψ0)

n+1,(0)
j−1

h2

)(
1 − 1

2
σtσah

2 +O(h4)
)

−Δtσa

(
1 − 1

4
σtσah

2 +O(h4)
)

(ψ0)
n+1,(0)
j

which gives the relation (2.21) because
(ψ0)

n+1,(0)
j+1 − 2(ψ0)

n+1,(0)
j + (ψ0)

n+1,(0)
j−1

h2
= O(1). �

2.4. Extension to a non uniform mesh and non constant (σa, σt)

If σa and σt are not constant and the mesh is not uniform, one must replace the system (2.4) by the following
set of ordinary differential equations:

⎧⎪⎪⎨
⎪⎪⎩

du∗1
dχ

=
hj−1 + hj

2

√
3
(
σt(χ)

2
(u∗2 − u∗1) −

σa(χ)
2

(u∗1 + u∗2)
)

−du∗2
dχ

=
hj−1 + hj

2

√
3
(
σt(χ)

2
(u∗1 − u∗2) −

σa(χ)
2

(u∗1 + u∗2)
) (2.25)
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to derive a numerical WB scheme. The mesh size hj satisfies xj+1/2 = xj +
hj

2
and the coefficients σt,a(χ) are

defined by:

σt,a(χ) =

⎧⎪⎨
⎪⎩

(σt,a)j−1 for χ <
xj−1/2 − xj−1

xj − xj−1

(σt,a)j for χ >
xj−1/2 − xj−1

xj − xj−1
·

The resolution of (2.25) can be made by introducing the variables (ψ∗
0 , ψ

∗
1) once again. In this case, we obtain

a diffusion equation on ψ∗
0 with variable coefficients:

d
dχ

(−1
2α

dψ∗
0

dχ

)
+ 2βψ∗

0 = 0

which can easily be solved by classical techniques.

3. A numerical scheme for the Pn equations

For a sake of simplicity, let us consider the same uniform mesh as before.
Here, we extend the ideas developed in the last section to discretize the Pn system (1.2).

Let us note we sort the μk in the following way: k = 1 to k =
n + 1

2
refer to positive and increasing μk while

k =
n + 3

2
to k = n + 1 refer to negative and decreasing μk.

Moreover, remark that the μk are symmetric: μk = −μk+ n+1
2

for k ∈
{

1, ...,
n + 1

2

}
because the Ln+1

Legendre polynomial is even if n is odd.

3.1. Derivation of a Gosse type scheme

3.1.1. Characterization of the Riemann solver for the Sn+1 equations

According to the scheme derived for the P1 equations, the system Sn+1 (1.4) is replaced by the following one:

∂ui

∂t
+ μi

∂ui

∂x
= h

∑
j

(
(σt − σa)

1
2

k=n+1∑
k=1

ωkuk − σtui

)
δ(x− xj−1/2) i = 1...n + 1. (3.1)

As for the S2 equations, the Riemann problem associated with (3.1) involves a stationary contact discontinuity,

which yields
n + 1

2
unknown states (ûi)i/μi>0 at the right of this wave and

n + 1
2

unknown states (ûi)i/μi<0 on
its left: see Figure 3 for the example of the S4 equations.

These states are computed by solving the steady equations:

μi
du∗i
dχ

= h

(
(σt − σa)

1
2

k=n+1∑
k=1

ωku
∗
k − σtu

∗
i

)
for χ ∈ [0, 1] i = 1...n + 1 (3.2)

with the boundary conditions: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u∗i (0) = (ui)l for i ∈
{

1...
n + 1

2

}

u∗i (1) = (ui)r for i ∈
{

n + 3
2

...n + 1
}
.

(3.3)
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Figure 3. Riemann problem with the standing wave for the S4 equations.

x

⎛
⎜⎜⎝

(u1)l

(u2)l

(u3)l

(u4)l

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(u1)l

(u2)l

(u3)l

(û4)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(u1)l

(u2)l

(û3)
(û4)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(û1)
(û2)
(u3)r

(u4)r

⎞
⎟⎟⎠ ⎛

⎜⎜⎝
(u1)r

(û2)
(u3)r

(u4)r

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(u1)r

(u2)r

(u3)r

(u4)r

⎞
⎟⎟⎠

μ4

μ3 μ1

μ2

t

The unknown states are defined by:

ûi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u∗i (1) for i ∈
{

1...
n + 1

2

}

u∗i (0) for i ∈
{

n + 3
2

...n + 1
}
.

(3.4)

On the contrary of the S2 equations case, we are not able to give an analytical expression for these unknown
states, since the resolution of (3.2) is no longer trivial. Indeed, it would be equivalent to solve exactly the
stationary Sn+1 equations which has been done only in very restrictive cases to the best of our knowledge [6].

Since the system (3.2) is linear, we can give a linear formulation of the unknown states in terms of the initial
conditions of the Riemann problem:

ûi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i′= n+1
2∑

i′=1

ai,i′ (ui′)l +
i′=n+1∑
i′= n+3

2

bi,i′(ui′)r for i ∈
{

1...
n + 1

2

}

i′= n+1
2∑

i′=1

ci,i′ (ui′)l +
i′=n+1∑
i′= n+3

2

di,i′(ui′)r for i ∈
{

n + 3
2

...n + 1
}
.

(3.5)

Let us note that a Monte-Carlo algorithm is designed to compute the coefficients ai,i′ , bi,i′ , ci,i′ and di,i′ in
the Appendix A.

Lemma 3.1. The coefficients ai,i′ , bi,i′ , ci,i′ and di,i′ are non negative. Moreover, they verify:

i′= n+1
2∑

i′=1

ai,i′ +
i′=n+1∑
i′= n+3

2

bi,i′ ≤ 1 for i ∈
{

1...
n + 1

2

}
(3.6)
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and
i′= n+1

2∑
i′=1

ci,i′ +
i′=n+1∑
i′= n+3

2

di,i′ ≤ 1 for i ∈
{

n + 3
2

... n + 1
}
. (3.7)

Proof. For example, to prove that ai0,i′0 is non negative, we take (ui′)l = δ
i′0
i′ and (ui′)r = 0 for all i′, thus

we obtain u∗i0(1) = ai0,i′0 . We deduce that ai0,i′0 is non negative, because the solution of (3.2) with positive
boundary conditions is non negative.

Recall that u∗i (χ) is the solution of the steady Sn+1 equations (3.2) with the ad hoc boundary conditions.
Because of the maximum principle, we have:

u∗i (χ) ≤ max
(
(ui/i∈{1... n+1

2 })l, (ui/i∈{ n+3
2 ...n+1})r

)
∀χ ∈ [0, 1].

This inequality taken at χ = 0 and χ = 1 combined with the identities (3.5) leads to:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i′= n+1
2∑

i′=1

ai,i′(ui′)l +
i′=n+1∑
i′= n+3

2

bi,i′(ui′)r ≤ max
(
(ui/i∈{1... n+1

2 })l, (ui/i∈{ n+3
2 ...n+1})r

)
for i ∈

{
1...

n + 1
2

}

i′= n+1
2∑

i′=1

ci,i′(ui′)l +
i′=n+1∑
i′= n+3

2

di,i′ (ui′)r ≤ max
(
(ui/i∈{1... n+1

2 })l, (ui/i∈{n+3
2 ...n+1})r

)
for i ∈

{
n + 3

2
...n + 1

}

whatever the boundary conditions (ui/i∈{1... n+1
2 })l and (ui/i∈{ n+3

2 ...n+1})r are. So, we can choose a particular
value for each one: the choice (ui/i∈{1... n+1

2 })l = (ui/i∈{ n+3
2 ...n+1})r = 1 gives the result. �

3.1.2. Explicit Gosse type schemes

If we apply the above solver in the cell Cj , we obtain the following explicit Godunov type scheme to discretize
the Sn+1 equations:⎧⎪⎪⎨

⎪⎪⎩
(ui)n+1

j = (ui)n
j +

μiΔt
h

(
(ûi)n

j−1/2 − (ui)n
j

)
for i ∈

{
1...

n + 1
2

}

(ui)n+1
j = (ui)n

j − μiΔt
h

(
(ûi)n

j+1/2 − (ui)n
j

)
for i ∈

{
n + 3

2
...n + 1

} (3.8)

with: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ûi)n
j−1/2 =

i′= n+1
2∑

i′=1

ai,i′(ui′)n
j−1 +

i′=n+1∑
i′= n+3

2

bi,i′(ui′)n
j for i ∈

{
1...

n + 1
2

}

(ûi)n
j+1/2 =

i′= n+1
2∑

i′=1

ci,i′(ui′)n
j +

i′=n+1∑
i′= n+3

2

di,i′ (ui′)n
j+1 for i ∈

{
n + 3

2
...n + 1

}

because of the relations (3.5).
An explicit scheme for the Pn equations may be derived from the last scheme. The summation of the

identities (3.8) after they have been multiplied by ωi

√
2�+ 1L�(μi) leads to:

(ψl)n+1
j = (ψl)n

j +
Δt
h

⎛
⎝i= n+1

2∑
i=1

Γli

(
(ûi)n

j−1/2 − (ui)n
j

)
−

i=n+1∑
i= n+3

2

Γli

(
(ûi)n

j+1/2 − (ui)n
j

)⎞⎠ for l ∈ {0...n} (3.9)
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because of the relation:

(ψ�)j =
i=n+1∑

i=1

ωi

√
2�+ 1L�(μi) (ui)j

with the notation Γli = ωi

√
2�+ 1L�(μi)μi.

Now, we can replace (ui)j and (ûi)j±1/2 by the moments ψl thanks to the identity

(ui)j =
�=n∑
�=0

Mil(ψ�)j ,

where Mil =
√

2�+ 1
2

L�(μi). Hence, the explicit scheme relative to the Pn equations is obtained:

(ψl)n+1
j = (ψl)n

j +
Δt
h

k=n∑
k=0

[Alk(ψk)n
j−1 + (Blk − Clk)(ψk)n

j −Dlk(ψk)n
j+1] for l ∈ {0...n} (3.10)

with the notations Alk =
i= n+1

2∑
i=1

i′= n+1
2∑

i′=1

Γliai,i′Mi′k, Blk =
i= n+1

2∑
i=1

Γli

⎛
⎝i′=n+1∑

i′= n+3
2

bi,i′Mi′k −Mik

⎞
⎠,

Clk =
i=n+1∑
i= n+3

2

Γli

⎛
⎝i′= n+1

2∑
i′=1

ci,i′Mi′k −Mik

⎞
⎠ and Dlk =

i=n+1∑
i= n+3

2

i′=n+1∑
i′= n+3

2

Γlidi,i′Mi′k.

Because of the construction proposed, the scheme (3.10) is equivalent to the scheme (3.8).

Proposition 3.2. Under the CFL condition
Δt
h

max
k

|μk| ≤ 1:

• the explicit discretization (3.8)–(3.10) is L∞-stable;
• at the discrete level, the scheme (3.8) is positive as the Sn+1 model at the PDE level.

Let us remark that the positivity of the scheme (3.8) implies that for all j: |(ψ1)n+1
j | ≤

√
3max

i
|μi|(ψ0)n+1

j ,
which implies the flux limited property.

Proof. It is the same as the S2-P1 case. �
3.1.3. Implicit Gosse type schemes

In this section, we give an implicit version of the scheme (3.8) corresponding to the discretization of the Sn+1

equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 +

μiΔt
h

)
(ui)n+1

j − μiΔt
h

⎛
⎝i′=n+1

2∑
i′=1

ai,i′ (ui′)n+1
j−1 +

i′=n+1∑
i′= n+3

2

bi,i′(ui′)n+1
j

⎞
⎠ = (ui)n

j for i ∈
{

1...
n + 1

2

}

(
1 − μiΔt

h

)
(ui)n+1

j +
μiΔt
h

⎛
⎝i′=n+1

2∑
i′=1

ci,i′ (ui′)n+1
j +

i′=n+1∑
i′=n+3

2

di,i′ (ui′)n+1
j+1

⎞
⎠ = (ui)n

j for i ∈
{

n + 3
2

...n + 1
}
.

(3.11)
The implicit version of the scheme (3.10) is given by:

(ψl)n+1
j = (ψl)n

j +
Δt
h

k=n∑
k=0

[Alk(ψk)n+1
j−1 + (Blk − Clk)(ψk)n+1

j −Dlk(ψk)n+1
j+1 ] for l ∈ {0...n}. (3.12)
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Proposition 3.3.
• The implicit discretization (3.11)–(3.12) is unconditionally L∞-stable.
• At the discrete level, the scheme (3.11) is positive as the Sn+1 model at the PDE level.

Proof. The implicit scheme (3.11) leads to the resolution of a linear system to achieve the computation of (ui)n+1
j .

Because of the inequalities (3.6) and (3.7) and the non negativity of the coefficients ai,i′ , bi,i′ , ci,i′ and di,i′ , the
matrix of the linear system is a M-matrix. This property is used to prove the L∞-stability and the positivity
of the scheme (3.11) in the same way as in the S2 case. The unconditional stability of the scheme (3.12) is
deduced from the equivalence between both schemes (3.12) and (3.11). �

By construction, this scheme is equivalent to the scheme (3.11). Let us remark that the positivity of the
scheme (3.11) implies that for all j: |(ψ1)n+1

j | ≤ √
3max

i
|μi|(ψ0)n+1

j , which implies the flux limited property.

3.2. Well-balanced property

Proposition 3.4. The explicit and implicit discretizations proposed in Section 3.1 are well-balanced.

Proof. The well-balanced property of the explicit and implicit schemes (3.8)–(3.11) can be proved as for the S2

case, except that equations (2.20) must be replaced by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uex
i (xj) =

i′= n+1
2∑

i′=1

ai,i′(uex
i′ )(xj−1) +

i′=n+1∑
i′= n+3

2

bi,i′(uex
i′ )(xj) for i ∈

{
1...

n + 1
2

}

uex
i (xj) =

i′= n+1
2∑

i′=1

ci,i′(uex
i′ )(xj) +

i′=n+1∑
i′= n+3

2

di,i′(uex
i′ )(xj+1) for i ∈

{
n + 3

2
...n + 1

}
.

�

3.3. Asymptotic preserving property

For the same reasons as in the P1 case, we only consider the implicit scheme derived before.

Proposition 3.5. The implicit scheme (3.12) is AP. ψ0 at the order 0 verifies the same consistent discretiza-
tion (2.21) of the diffusion equation (1.8) as in the P1 case.

Proof. To study the diffusive regime, the discrete diffusive scaling is introduced in the implicit version of the
scheme (3.9) which gives for l = 0:

(ψ0)n+1
j = (ψ0)n

j +
Δt
εh

⎛
⎝−

i= n+1
2∑

i=1

μiωi(ui)n+1
j −

i=n+1∑
i= n+3

2

μiωi(ûi)n+1
j+1/2 +

i=n+1∑
i= n+3

2

μiωi(ui)n+1
j +

i= n+1
2∑

i=1

μiωi(ûi)n+1
j−1/2

⎞
⎠.

(3.13)

Let us denote (ψl)j±1/2(χ) =
i=n+1∑

i=1

ωi

√
2l+ 1Ll(μi)u∗i (χ) where u∗i (χ) stands for the solution of the steady

equations (3.2) at the interface xj±1/2 with the boundary conditions (3.3). Introducing the definition of the
unknown states (3.4), we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(ψ1)n+1
j+1/2(0) =

i= n+1
2∑

i=1

√
3μiωi(ui)n+1

j +
i=n+1∑
i= n+3

2

√
3μiωi(ûi)n+1

j+1/2

(ψ1)n+1
j−1/2(1) =

i=n+1∑
i= n+3

2

√
3μiωi(ui)n+1

j +
i= n+1

2∑
i=1

√
3μiωi(ûi)n+1

j−1/2.
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Thus, the scheme (3.13) can be rewritten as:

(ψ0)n+1
j = (ψ0)n

j +
Δt
εh
√

3

(
−(ψ1)n+1

j+1/2(0) + (ψ1)n+1
j−1/2(1)

)
. (3.14)

Then, by definition, (ψl)n+1
j±1/2(χ) is solution of the steady Pn equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B1

d(ψ1)n+1
j±1/2(χ)

dχ
= −εhσa(ψ0)n+1

j±1/2(χ)

B�+1

d(ψ�+1)n+1
j±1/2(χ)

dχ
+ A�−1

d(ψ�−1)n+1
j±1/2(χ)

dχ
= −hσt

ε
(ψ�)n+1

j±1/2(χ) � = 1...n.

(ψn+1)n+1
j±1/2(χ) = 0.

(3.15)

By taking the zeroth order terms in ε in the relation (3.14), we obtain the identity:

(ψ0)
n+1,(0)
j = (ψ0)

n,(0)
j +

Δt
h
√

3

(
−(ψ1)

n+1,(1)
j+1/2 (0) + (ψ1)

n+1,(1)
j−1/2 (1)

)
. (3.16)

The introduction of the ψ� expansion in the equations (3.15) and the identification of the ε−1 terms lead to
(ψ�)

n+1,(0)
j±1/2 (χ) = 0 for l > 0. Gathering terms of order ε0 gives:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B1

d(ψ1)
n+1,(0)
j±1/2 (χ)

dχ
= 0

B�+1

d(ψ�+1)
n+1,(0)
j±1/2 (χ)

dχ
+ A�−1

d(ψ�−1)
n+1,(0)
j±1/2 (χ)

dχ
= −hσt(ψ�)

n+1,(1)
j±1/2 (χ) � = 1...n.

(ψn+1)
n+1,(0)
j±1/2 (χ) = 0.

(3.17)

Since (ψ�)
n+1,(0)
j±1/2 (χ) = 0 for l > 0, the second equation of (3.17) leads to (ψ�)

n+1,(1)
j±1/2 (χ) = 0 for l > 1.

Hence, these both identities for l = 2 yield (ψ2)n+1
j±1/2(χ) = O(ε2) so that

(
(ψ0)n+1

j±1/2(χ), (ψ1)n+1
j±1/2(χ)

)
verify

the system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ε

d(ψ1)n+1
j±1/2(χ)

dχ
= −2β(ψ0)n+1

j±1/2(χ)

1
ε

d(ψ0)n+1
j±1/2(χ)

dχ
= −2

α

ε2
(ψ1)n+1

j±1/2(χ) +O(ε).

(3.18)

If we consider the ε−1 term in the second equation of (3.18) and the zeroth order term in the first equation
of this system, we obtain: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(ψ1)

n+1,(1)
j±1/2 (χ) = − 1

2α

d(ψ0)
n+1,(0)
j±1/2 (χ)

dχ
d2(ψ0)

n+1,(0)
j±1/2 (χ)

d2χ
= C2(ψ0)

n+1,(0)
j±1/2 (χ).

(3.19)

Let us now establish the boundary conditions for the second equation of the above system (3.19) at xj+1/2.
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The expansion of ui is introduced in the implicit scheme relative to the Sn+1 formulation:

⎧⎪⎪⎨
⎪⎪⎩

(ui)n+1
j = (ui)n

j +
μiΔt
εh

(
(ûi)n+1

j−1/2 − (ui)n+1
j

)
for i ∈

{
1...

n + 1
2

}

(ui)n+1
j = (ui)n

j − μiΔt
εh

(
(ûi)n+1

j+1/2 − (ui)n+1
j

)
for i ∈

{
n + 3

2
...n + 1

}
,

the ε−1 terms yield (∀j):
⎧⎪⎪⎨
⎪⎪⎩

(ûi)
n+1,(0)
j−1/2 = (ui)

n+1,(0)
j for i ∈

{
1...

n + 1
2

}

(ûi)
n+1,(0)
j+1/2 = (ui)

n+1,(0)
j for i ∈

{
n + 3

2
...n + 1

}

which implies:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ψ0)
n+1,(0)
j+1/2 (0) =

i= n+1
2∑

i=1

(ui)
n+1,(0)
j +

i=n+1∑
i= n+3

2

(ûi)
n+1,(0)
j+1/2 =

i= n+1
2∑

i=1

(ui)
n+1,(0)
j +

i=n+1∑
i= n+3

2

(ui)
n+1,(0)
j = (ψ0)

n+1,(0)
j

(ψ0)
n+1,(0)
j+1/2 (1) =

i= n+1
2∑

i=1

(ûi)
n+1,(0)
j+1/2 +

i=n+1∑
i= n+3

2

(ui)
n+1,(0)
j+1 =

i= n+1
2∑

i=1

(ui)
n+1,(0)
j+1 +

i=n+1∑
i= n+3

2

(ui)
n+1,(0)
j+1 = (ψ0)

n+1,(0)
j+1 .

Thus the boundary conditions for the second equation of (3.19) has been established in xj+1/2. The same
calculations can be performed at xj−1/2.

Let us now prove that the identity (3.16) combined with (3.19) and the above boundary conditions give the
relation (2.24) already obtained in the P1 case.

The first equation of (3.18) at zeroth order in ε leads to:

1
2
(ψ1)

n+1,(1)
j±1/2 (1) =

1
2
(ψ1)

n+1,(1)
j±1/2 (0) −

∫ 1

0

dχβ(ψ0)
n+1,(0)
j±1/2 (χ). (3.20)

Moreover the identity (3.16) may be rewritten as:

(ψ0)
n+1,(0)
j = (ψ0)

n,(0)
j +

Δt
h
√

3

(
−1

2
(ψ1)

n+1,(1)
j+1/2 (0) − 1

2
(ψ1)

n+1,(1)
j+1/2 (0) +

1
2
(ψ1)

n+1,(1)
j−1/2 (1) +

1
2
(ψ1)

n+1,(1)
j−1/2 (1)

)
.

This relation combined with the statement (3.20) gives:

(ψ0)
n+1,(0)
j = (ψ0)

n,(0)
j +

Δt
h
√

3

(
−(ψ̂1)

n+1,(1)
j+1/2 + (ψ̂1)

n+1,(1)
j−1/2 −

∫ 1

0

dχβ(ψ0)
n+1,(0)
j−1/2 (χ) −

∫ 1

0

dχβ(ψ0)
n+1,(0)
j+1/2 (χ)

)

where (ψ̂1)
n+1,(1)
j±1/2 =

1
2

(
(ψ1)

n+1,(1)
j±1/2 (0) + (ψ1)

n+1,(1)
j±1/2 (1)

)
.
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The expression of (ψ0)
n+1,(0)
j+1/2 is obtained by solving the second order differential equation (3.19) at xj+1/2

with the corresponding boundary conditions:

(ψ0)
n+1,(0)
j+1/2 (χ) =

(ψ0)
n+1,(0)
j+1 [exp(χC) − exp(−χC)] + (ψ0)

n+1,(0)
j [exp((1 − χ)C) − exp(−(1 − χ)C)]

exp(C) − exp(−C)
· (3.21)

Moreover, the derivative of the last relation yields:

1
2

⎡
⎣d(ψ0)

n+1,(0)
j+1/2

dχ
(0) +

d(ψ0)
n+1,(0)
j+1/2

dχ
(1)

⎤
⎦ =

2C + C exp(C) + C exp(−C)
2(exp(C) − exp(−C))

(
(ψ0)

n+1,(0)
j+1 − (ψ0)

n+1,(0)
j

)
.

This last statement combined with the first equation of (3.19) gives:

(ψ̂1)
n+1,(1)
j+1/2 =

1
2α

(
2C + C exp(C) + C exp(−C)

2(exp(C) − exp(−C))

)(
(ψ0)

n+1,(0)
j − (ψ0)

n+1,(0)
j+1

)
.

The expression of (ψ̂1)
n+1,(1)
j−1/2 can be obtained in the same way as (ψ̂1)

n+1,(1)
j+1/2 .

Hence, we get the following identity:

−(ψ̂1)
n+1,(1)
j+1/2 + (ψ̂1)

n+1,(1)
j−1/2 =

1
2α

(
2C + C exp(C) + C exp(−C)

2(exp(C) − exp(−C))

)(
(ψ0)

n+1,(0)
j−1 − 2(ψ0)

n+1,(0)
j + (ψ0)

n+1,(0)
j+1

)
.

From the relation (3.21), we have also:

∫ 1

0

dχ(ψ0)
n+1,(0)
j−1/2 (χ)+

∫ 1

0

dχ(ψ0)
n+1,(0)
j+1/2 (χ)=

−2 + exp(C) + exp(−C)
C(exp(C) − exp(−C))

(
(ψ0)

n+1,(0)
j−1 + 2(ψ0)

n+1,(0)
j + (ψ0)

n+1,(0)
j+1

)
.

Finally, after some easy calculation, we obtain:

(ψ0)
n+1,(0)
j = (ψ0)

n,(0)
j +

Δt
h
√

3

(
1
2α

)(
2C + C exp(C)+C exp(−C)

2(exp(C)−exp(−C))

)(
(ψ0)

n+1,(0)
j−1 − 2(ψ0)

n+1,(0)
j +(ψ0)

n+1,(0)
j+1

)

−β Δt
h
√

3

(−2 + exp(C) + exp(−C)
C(exp(C) − exp(−C))

)(
(ψ0)

n+1,(0)
j−1 + 2(ψ0)

n+1,(0)
j + (ψ0)

n+1,(0)
j+1

)

which gives the statement (2.24) already obtained to prove the asymptotic preserving property in the P1 case.
Thus, the end of this proof is exactly the same as the one established in the P1 case. �

4. Numerical results

4.1. Diffusive case

We solve the P1 equations obtained with the diffusive scaling:⎧⎪⎪⎨
⎪⎪⎩

∂ψ0

∂t
+

1
ε
√

3
∂ψ1

∂x
+ σaψ0 = 0

∂ψ1

∂t
+

1
ε
√

3
∂ψ0

∂x
+
σt

ε2
ψ1 = 0

(4.1)

with σa = 1, σt = 2, on the interval [A = 0,B = 1].
The boundary conditions are ψ0(0, t) + ψ1(0, t) = 1 and ψ0(1, t) − ψ1(1, t) = 1.
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Figure 4. Diffusive case – Gosse type scheme for the P1 equations: convergence to the steady
solution of the diffusion equation.

The initial conditions are given by: ψ0(x, 0) = f(x) + sin(πx) and ψ1(x, 0) = 0. The function f is defined

by: f(x) =
(

1 − exp(−c)
exp(c) − exp(−c)

)
exp(xc) +

(
exp(c) − 1

exp(c) − exp(−c)
)

exp(−xc).
When ε tends to zero, the density ψ0 is solution of the diffusion equation (1.8) with the following boundary

and initial conditions: ⎧⎨
⎩

ψ0(0, t) = ψ0(1, t) = 1

ψ0(x, 0) = f(x) + sin(πx).

In this case, ψ0 is given by:
ψ0(x, t) = f(x) + sin(πx) exp[−(π2D + σa)t] (4.2)

with c =
√

3σaσt and D =
1

3σt
. The steady state solution is f(x).

In the case of the Pn equations, when ε tends to zero, the density ψ0 tends to the same density (4.2). When
ε is not small enough, the solutions depend on n.

4.1.1. Steady state case

Due to the well-balanced property of the scheme, we expect the convergence of the discrete solution to the
exact solution f(x) whatever the mesh is.

On Figure 4, we observe the convergence to the steady solution of the diffusion equation when ε tends to 0:
for the time of observation T = 10, the solution ψ0 of the scaled P1 equations (4.1) discretized with the implicit
scheme (2.16) is compared to the analytical one on a crude mesh (Nx = 10), for various values of ε. The time
of observation has been set to get the stationary solution.
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Figure 5. Diffusive case – Gosse type scheme for the P3 equations: convergence to the steady
solution of the diffusion equation.

On Figure 5, we observe the convergence to the steady solution of the diffusion equation, for the time of
observation T = 10: the solution ψ0 of the scaled P3 equations discretized with the implicit scheme (3.11) is
compared to the exact solution on a crude mesh (Nx = 10), for various values of ε.

Let us note that the solutions of the P1 and P3 models for ε not small (see for example ε = 1) are different
because the medium is not diffusive enough for these values of ε but their limits are the same for ε tending to
zero.

4.1.2. Unsteady case

Now, the discrete solution ψ0 of the P1 equations discretized with the implicit scheme (2.16) is compared to
the exact solution (4.2) of the unsteady diffusion equation at various times T = 0.01, T = 0.1 and T = 1. ε is
set to 0.001 and Nx to 100 so that h

σt

ε
is equal to 20: this value is large enough to ensure that the asymptotic

analysis is valid. On Figure 6, we observe a very good agreement between the calculated solution and the exact
diffusion solution which confirms the results of the asymptotic analysis. The difference between both solutions
would be larger on a cruder mesh since the asymptotic solution of the P1 equations is solution of the discretized
diffusion equation and not its exact solution.

4.2. Plane source

This problem involves a purely scattering problem: σa = 0, σt = 1. The boundary conditions are: gA(μ, t) = 0
and gB(μ < 0, t) = 0 with A = −10, B = 10.
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Figure 6. Diffusive case – Gosse type scheme for the P1 equations: comparison of the solution
of the unsteady diffusion equation with the solution obtained by the implicit scheme.

4.2.1. P1 equations

The initial condition is a pulse of particles located at x = 0:{
ψ0(x, 0) = δ(x)
ψ1(x, 0) = 0.

In this case, the system of P1 equations (2.1) has an exact solution [3] (see Fig. 7):

ψ0(x, t) =
√

3
4
σt exp

(
−σtt

2

)
I0

(σt

2

√
t2 − 3x2

)
H(t−√

3|x|)

+
√

3
4
σt exp

(
−σtt

2

)
t√

t2 − 3x2
I1

(σt

2

√
t2 − 3x2

)
H(t−

√
3|x|)

+
√

3
2

exp
(
−σtt

2

)
δ(t−√

3|x|)

where H is the Heaviside function and I0, I1 are Bessel functions of the first and second kind.
We compare the discrete solution obtained with the explicit scheme and the exact solution. The mesh is

defined by Nx = 5001, the CFL constant is equal to 0.99, so that Δt = 0.006854. We observe a good agreement

between both solutions. The speed of the two opposite waves − 1√
3

and
1√
3

is well reproduced by the scheme

(Fig. 8).
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Figure 7. Plane source – exact solution of the P1 system at time T = 10.
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Figure 8. Plane source with P1 equations – comparison of the exact density and the one
obtained with the explicit scheme (2.11).

The use of the implicit scheme with Δt = 0.01 smears the solution at the position of the wave fronts, while
the accuracy of the solution is preserved (Fig. 9).
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Figure 9. Plane source with P1 equations – comparison of the exact solution and the ones
obtained with the explicit and implicit schemes (2.11)–(2.16).

4.2.2. Pn equations

The boundary and initial conditions are the same as previously.
We compare the solution obtained with the explicit scheme for the P5 equations and the one obtained with

a Sn diamond difference scheme [8,9] and n = 6 which can be considered as the reference one. Both solutions
have been computed on the same mesh Nx = 5001, at the same time T = 1. We observe a good agreement
between both solutions (Fig. 10). The P5 solution is composed of six Dirac peaks plus a smooth solution. These
peaks correspond to particles moving with the velocities μi (the μi are the six discrete ordinates) and having not
suffered a collision. The smooth part of the solution represents particles having suffered at least one collision.

At a later time, T = 10, the Dirac peaks have completely disappeared from the P5 calculated solution
(Fig. 11). We observe a good agreement between this solution and the transport reference one obtained on a
converged mesh (Nx = 10 001) with a Sn diamond difference scheme and n = 32. The P5 approximation is thus
sufficient to capture the transport solution at this time. This is not the case of the P1 equations whose exact
solution is far from the transport reference solution. We notice that the transport solution is free from singular
Dirac peaks.

5. Conclusion

In this paper, we have extended the method of Gosse, initially designed for the Goldstein-Taylor model, to
the Pn equations with absorption in 1D. The resulting Godunov scheme preserves the steady state solution
(well-balanced property). Moreover, it gives the solution of the diffusion equation in the diffusive case, on a
mesh resolving the diffusion scale much larger than the transport scale (diffusion limit property). This last
result was proved by making formal expansions of the solution with respect to a small parameter representing
the inverse of the number of mean free path in each cell. In the transparent scale, the scheme maintains the
finite speed of propagation of the hyperbolic system. To avoid the CFL constraint on the time step which can
be prohibitive in the diffusive case, the scheme has been made implicit. We have proved that the matrix of the
resulting linear system is a M-matrix which ensures the positivity of the solution. The coefficients of the matrix
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Figure 10. Plane source at T = 1 – comparison of the S6 diamond difference scheme solution
with the solution using P5 model solved by the explicit scheme (3.10).
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Figure 11. Plane source at T = 10 – transport reference solution, P1 exact solution and
solution using P5 model solved by the explicit scheme (3.10).
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have been precomputed by performing one Monte-Carlo steady state calculation at each interface of the mesh.
We have verified numerically that the asymptotic preserving property is satisfied.

To improve this work, we could propose an extension of the proposed Gosse type scheme to second order,
at least in space: the first order is too restrictive to compute sharp solutions, like in the plane source test for
example. We are also interested in solving bidimensional problems. In 2D, there is no equivalence between the
discrete ordinates equations and the Pn equations, whatever the choice of the angular directions. So, as the SPn

equations by direction are the one dimensional Pn equations (see Appendix B), a second extension of this work
could be the discretization of the SPn equations on Cartesian geometries. Indeed, we can propose to solve this
system by a splitting technique and the scheme (3.10). Finally, it would be interesting to study this approach
on unstructured meshes.

Acknowledgements. We would like to thank Rémi Sentis for fruitful discussions which have helped us to improve this
paper, Céline Baranger and the reviewers for reading this paper.

A. Resolution of the Riemann problem involved in the Pn scheme

The use of the explicit and implicit Gosse type schemes (3.8)–(3.11) requires the knowledge of the coefficients
ai,i′ , bi,i′ , ci,i′ and di,i′ . As we are unable to compute their analytical expression, we have to find another way
to calculate them.

Here, we are interested in the case where σa, σt do not change in time. So we propose to make a Monte-Carlo
simulation to evaluate them. Let us note that a good accuracy can be achieved with such a simulation. Indeed,
as it is made outside the time loop, we can use a large amount of particles.

To give a physical insight of this Monte-Carlo simulation, it is easier to introduce the currents ũi = ωi|μi|ui,
∀i ∈ {1...n + 1}. Let us express the identities (3.5) for these new variables:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũ∗i (1) =
i′= n+1

2∑
i′=1

ωi|μi|ai,i′
(ũi′)l

ωi′ |μi′ | +
i′=n+1∑
i′= n+3

2

ωi|μi|bi,i′ (ũi′)r

ωi′ |μi′ | for i ∈
{

1...
n + 1

2

}

ũ∗i (0) =
i′= n+1

2∑
i′=1

ωi|μi|ci,i′ (ũi′)l

ωi′ |μi′ | +
i′=n+1∑
i′= n+3

2

ωi|μi|di,i′
(ũi′)r

ωi′ |μi′ | for i ∈
{

n + 3
2

...n + 1
}
.

For example, to compute ai,i′0 for all i ∈
{

1...
n + 1

2

}
and ci,i′0 for all i ∈

{
n + 3

2
...n + 1

}
, we set (ũi′′)l = δ

i′0
i′′

and (ũi′′)r = 0, ∀i′′. Then, we have:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ũ∗i (1) =
ωi|μi|ai,i′0
ωi′0 |μi′0 |

for i ∈
{

1...
n + 1

2

}

ũ∗i (0) =
ωi|μi|ci,i′0
ωi′0 |μi′0 |

for i ∈
{

n + 3
2

...n + 1
}
.

To simulate the Sn+1 equations with the previous boundary conditions, a Monte-Carlo algorithm can be
prescribed:

• Step 1: sampling of the boundary condition.
One generates at the left of the interval [0, 1] a particle with the direction μi = μi′0 .• Step 2: sampling of the distance of collision.
We distinguish two events.

– The particle escapes with the probability Pesc.
Denote ξi the counter to estimate the particle leakage.
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Figure 12. Examples of tracks.

If μi < 0, the particle escapes at the left of the domain, one scores ξi + 1 �→ ξi and the particle is
killed. The mean of ξi is an estimator for ũi(0).
If μi > 0, the particle escapes at the right of the domain, one scores ξi + 1 �→ ξi and the particle is
killed. The mean of ξi is an estimator for ũi(1).
Let us note that the probability for the particle of not having a collision between χ and 0 is defined

by Pesc = exp
(
−σthχ

|μi|
)

if μi < 0 and Pesc = exp
(
−σth(1 − χ)

|μi|
)

if μi > 0.

– The particle suffers a collision with the probability 1 − Pesc.
Then, one computes the distance l of collision by sampling the probability Pcoll(l) on [0, 1− χ] or

[0, χ] according to the sign of μi. This probability satisfies: Pcoll(l) =
1

1 − Pesc

σth

|μi| exp
(
−σthl

|μi|
)
dl.

The particle is moved to χ = χ + sign(μ)l for its next collision. The particle is killed with the
probability

σa

σt
while it survives with the probability 1 − σa

σt
. The new direction of the particle is

then sampled using a discrete probability: the probability for the particle to get the direction μi′1

is
ωi′1
2

. We come back to Step 2 with the direction μi = μi′1 .

From the mean of ξi for all i, we deduce the coefficients ai,i′0 and ci,i′0 for all i. An example of three tracks
starting from the same direction i′0 is given in Figure 12.

Remark A.1. This procedure can be extended in a straightforward manner to a non uniform mesh and non
constant coefficients σa, σt.

Remark A.2. If (σa, σt) evolve in time, because of the cost of an accurate Monte-Carlo simulation, we would
prefer a deterministic method to approximate the solution of the stationary Sn+1 equations, at each interface
xj+1/2 of the mesh.

B. SPn equations

On the contrary of the bidimensional Pn equations, the SPn equations by direction are the one dimensional
Pn equations. These equations were first obtained [10] by considering, in 1D Pn equations, the odd moments
as vectors, the even moments remaining scalars. Then, the partial derivative ∂

∂x is replaced by the divergence
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operator in the equations for the even moments and by the gradient operator in the equations for the odd
moments.

For a sake of simplicity, we take the example of the SP3 equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ0

∂t
+ B1

�∇ · �ψ1 + σa ψ0 = 0

∂ �ψ1

∂t
+ B2

�∇ψ2 + A0
�∇ψ0 + σt

�ψ1 = �0

∂ψ2

∂t
+ B3

�∇ · �ψ3 +A1
�∇ · �ψ1 + σt ψ2 = 0

∂ �ψ3

∂t
+ A2

�∇ψ2 + σt
�ψ3 = �0

with �ψ1 = (ψx
1 , ψ

y
1 ) and �ψ3 = (ψx

3 , ψ
y
3).

For example, for the x direction, we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ0

∂t
+ B1

∂ψx
1

∂x
+ σa ψ0 = 0

∂ψx
1

∂t
+ B2

∂ψ2

∂x
+ A0

∂ψ0

∂x
+ σt ψ

x
1 = 0

∂ψ2

∂t
+ B3

∂ψx
3

∂x
+A1

∂ψx
1

∂x
+ σt ψ2 = 0

∂ψx
3

∂t
+ A2

∂ψ2

∂x
+ σt ψ

x
3 = 0.

We can see that we recover the one dimensional P3 equations. It is also true for the y direction.
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