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ASYMPTOTIC MODELS FOR SCATTERING FROM UNBOUNDED MEDIA
WITH HIGH CONDUCTIVITY

Houssem Haddar1 and Armin Lechleiter1

Abstract. We analyze the accuracy and well-posedness of generalized impedance boundary value
problems in the framework of scattering problems from unbounded highly absorbing media. We restrict
ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems).
Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe diffi-
culties in the analysis for the generalized impedance boundary conditions, since classical compactness
arguments are no longer possible. Our new analysis is based on the use of Rellich-type estimates and
boundedness of L2 solution operators. We also discuss some numerical experiments concerning these
boundary conditions.
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Introduction

Time harmonic wave scattering from rough layers is an important problem in science and engineering, as it
describes for instance scattering of electromagnetic waves from the ground when one models the earth as a rough
stratified medium. In such a model, the moisture of soil causes absorption of the electromagnetic wave inside
the ground, and thus naturally leads to a scattering problem for a rough absorbing layer. Since waves inside
the absorbing part of the medium decay exponentially with respect to the distance to the layer’s boundary, a
lot of research has been carried out how to replace the wave scattering problem inside the absorbing layer by
some easily handable absorbing boundary condition on the interface in between the absorbing layer and free
space [1,8,9,14,15]. The aim of such a boundary condition is to set up an approximate scattering problem merely
in the complement of the absorbing object, while still guaranteeing a reliable error bound on the solution of the
approximate problem. This error bound depends on what we call the order of the boundary condition as well as
on the magnitude of the absorption inside the layer. Indeed, we treat the magnitude of absorption as a parameter
and expand the wave field in a power series with respect to the inverse of this parameter. Approximate boundary
conditions are built after truncation of this series, the order of the conditions so obtained then corresponds to
the truncation index. Truncation at order 0 simply leads to a Dirichlet boundary condition, which is naturally
the formal limit condition as the absorption tends to infinity; truncation at order 1 leads to a (usual) impedance
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boundary condition. This is the reason why we call the condition arising from truncation at higher order
generalized impedance boundary condition (GIBC).

In this paper, we analyse GIBCs for rough absorbing layers up to order 3 and shall restrict ourselves to
the scalar problem (which corresponds in 2-D to the E-polarization of electromagnetic waves). While the
construction of such conditions is rather analogous to the case of a bounded absorbing inhomogeneity, the error
analysis is more complicated because classical compactness arguments fail due to the unboundedness of the
domain. The difficulties are already obvious when one considers merely existence and uniqueness of solution
for the approximate problems. For instance, for the case of a bounded obstacle, existence of solution for the
time harmonic exterior Dirichlet or impedance scattering problem is known for a long time [13]. For the rough
surface scattering problem with a Dirichlet boundary condition, corresponding results have only been achieved
during the last decade, firstly by using integral equation approach [4,5,16], and more recently, by using a
variational approach in [2,6]. For scattering from rough infinite layers we also refer to recent results in [11]. For
the variational theory on rough surface scattering, Rellich identities have been shown to be particularly useful
since they provide a priori bounds on a solution to the scattering problem, thereby establishing existence and
uniqueness of solution via an inf-sup condition.

When considering the Helmholtz equation involving a bounded scattering object, Rellich identities are a
well-known tool to obtain explicit a priori bounds on solutions, see, e.g., [7]. However, existence theory for
wave scattering problems for bounded objects does not necessarily require this technical tool since it can be
based on Fredholm theory. However, analysis of scattering from unbounded objects, where Rellich’s lemma on
compact embeddings fails, cannot (at least not in an “easy” way) be based on Fredholm theory. In consequence,
tools like Rellich identities that yield a priori estimates become crucial for existence theory.

Thus, it is not surprising that a priori bounds are also important for proving existence of solution to rough
layer scattering problems involving higher order impedance boundary conditions. Moreover, they permit to
construct a so-called bounded L2 solution operator. This operator maps Dirichlet boundary data on the rough
surface to the radiating solution of the Helmholtz equation taking this boundary data. We show that this
operator has a bounded extension from square integrable functions on the interface into the space of square
integrable functions in a layer of finite height above the interface.

The important role of this L2 solution operator in our analysis is to replace compactness arguments present
in earlier rigorous error analysis of generalized impedance boundary conditions. Since compact embeddings of
Sobolev spaces do not hold in our unbounded setting, we cannot use such types of compactness arguments which
are always present in earlier works on generalized impedance boundary conditions for bounded objects [9]. The
L2 solution operator does part of this job. The other part is mainly done by a Rellich identity for radiating
solutions of the Helmholtz equation over a rough layer. Through our Rellich identity we are able to prove
existence and uniqueness of solution to the rough layer scattering problem subject to generalized impedance
boundary conditions up to order 3. Further, we show optimal error bounds for solutions to the approximate
scattering problems involving our generalized impedance boundary conditions compared to the solution of the
original scattering problem in the absorbing layer.

The structure of this paper is as follows. The first section is dedicated to the presentation of the mathemat-
ical setting of the scattering problem from unbounded rough surfaces and the introduction of some notation.
Section 2 serves as a brief review of the main steps in deriving generalized impedance boundary conditions and
required extensions to the case of rough surfaces. Afterwards, we provide abstract existence theory for gener-
alized impedance boundary value problems on rough surfaces in Section 3, which has an interest in its own.
Section 4 contains asymptotic analysis of Neumann-to-Dirichlet GBICs up to order 2; for the corresponding
convergence result see Theorem 4.1. A more complicated condition of order 3 is analyzed in Section 5, leading to
an order-optimal convergence result in Theorem 5.4. In this section, we indicate in particular how a “stabilized”
condition can be treated in a similar way as standard impedance boundary conditions through our abstract
existence theory.
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Figure 1. The geometry of the rough layer/rough surface problems. The domain Ω = Ω+ ∪
Γ ∪ Ω− lies in between the two planes Γa = {xm = a} and Γ−a = {xm = −a}. In Ω,
the refractive index n2 varies; while n2 is Lipschitz continuous in Ω±, the index may jump
across Γ. The unit normal ν points out of Ω and on Γ we choose ν to point downwards. The
domain ΩR = {x ∈ Ω, |x̃| < R} is obtained from Ω by cut off in the lateral variables x̃.

1. Problem setting and notation

Let us start with a brief description of the geometrical setting and our notation, such that we can afterwards
present the problem mathematical setting in detail. Points in the Euclidean space Rm (m = 2, 3) are denoted
by x = (x1, x2, . . . , xm)� and sometimes it is convenient to write x = (x̃, xm)�, that is, x̃ are the first m − 1
coordinates of x ∈ Rm. By Rm

± := {x ∈ Rm, xm ≷ 0} we denote the upper and lower half space of Rm and the
plane in between R

m
± is Γ0 = {x ∈ R

m, xm = 0}. More generally, Γa = {x = (x1, x2, . . . , xm)� ∈ R
m, xm = a}

for a ∈ R. The half space above and below Γa is denoted by U±
a := {x ∈ Rm, xm ≷ a}. The domain

Ω := {x ∈ Rm, −a < xm < a} is partitioned into two parts Ω± := {x ∈ Ω, xn ≷ f(x̃)} by the interface
Γ := {x ∈ Rm, f(x̃) = xm}, given by a function f : Rm−1 → R, −a < f < a. By C�,1(Rm−1,R) we denote the
Banach space of �-times continuously differentiable real-valued functions such that all �th partial derivatives are
Lipschitz continuous. A norm on this space is given by

‖f‖ = sup
|α|≤�

∥∥∥∥∂|α|f
∂xα

∥∥∥∥
L∞(Ω)

+ sup
|α|=�,x �=y

∣∣∣ ∂�f
∂xα (x) − ∂�f

∂xα (y)
∣∣∣

|x− y| , � ∈ N0.

If f ∈ C�,1(Rm−1,R) we say that Γ is of class C�,1
b ,

Γ ∈ C�,1
b , � ∈ N0.

We always suppose that Γ ∈ C0,1
b is a Lipschitz surface; however, note that the asymptotic analysis of the GIBCs

will require much more smoothness of Γ. For simplicity, we also introduce ΩR := {x ∈ Ω, x2
1+ · · ·+x2

m−1 < R2}.
The exterior unit normal field to Ω and ΩR is called ν; on Γ we choose the unit normal field ν to point downwards
into Ω−. The boundary of ΩR is CR := ∂ΩR. We split CR = C+

R ∪ C−
R with C−

R := {x ∈ Γ−a, x
2
1 + · · · +

x2
m−1 < R2} and define MR := CR ∩ Ω. We refer to Figure 1 for a sketch of the geometry of the problem.
By [u]Γ we denote the jump of a function u across the interface Γ, that is, [u]Γ = u|+Γ − u|−Γ where u|±Γ is

the limit taken from Ω±. The inner product of L2(Γ) is denoted as 〈·, ·〉L2(Γ). Let us also remark that the
square root of the complex unit −i in the fourth quadrant is denoted by α = (1− i)/

√
2. All fields in this paper

are time harmonic, that is, their time dependence is exp(−iωt) for frequency ω > 0, and this dependence will
always be suppressed. The wave number k > 0 is defined as k = ω/c with c > 0 the speed of sound in vacuum.
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Now we turn to the mathematical formulation of the rough layer problem. We describe the medium of
propagation by a refractive index function n2, which is assumed to be a real valued function in Ω+ and of the
special form

n2 = 1 +
i

k2ε2
in Ω− for ε > 0.

The (small) parameter ε is proportional to 1/
√
kσ where σ denotes the conductivity of the lower medium and

represents the so-called skin depth. This parameter therefore controls the width of the region that is penetrable
by the incident wave. Concerning smoothness, we always require that n2 ∈ C0,1(Ω+,R) and for some statements
we even require more smoothness of n2

∣∣
Ω+

. Also, we always suppose that n2 ≥ c0 > 0 in Ω+. In the upper half

space U+
a we suppose n2 to equal a positive constant n2

+ ≥ c0 such that n2
∣∣
Γa

= n2
+, while, obviously, n2 equals

n2
− := 1 + i/(kε2) in U−

−a. Important for existence of solutions to rough layer scattering problems is the further
assumption that ∂n2/∂xm ≥ 0 in Ω+. All these assumptions are supposed to hold throughout the paper. We
remark that we could also deal with a refractive index whose real part varies in Ω−, but for simplicity do not
consider this case here. In contrast, no complications arise from treating a varying index in Ω+, and since this
case is of some importance for modelling coated conducting layers we decided to include it in the analysis.

The total field due to a local time harmonic source g supported in Ω+ satisfies the Helmholtz equation

Δu+ k2n2u = g in R
m, (1.1)

subject to the additional assumption that u and its normal derivative are continuous over the interface Γ where
the index of refraction n2 jumps, and a radiation condition in U±

±a. We note that the solution u to the above
problem will depend on ε and denote u = uε.

Let us now introduce the radiation condition imposed on uε. As shown in [2], the Fourier transform

F : L2(Rm−1) → L2(Rm−1), Fφ(ξ) = (2π)−(m−1)/2

∫
Rm−1

e−ix̃·ξφ(x̃) dx̃, ξ ∈ R
m−1,

for φ ∈ L2(Rm−1)∩L1(Rm−1), allows to explicitly compute a Dirichlet-to-Neumann operator, mapping Dirichlet
values φ on Γa to the Neumann boundary values of the unique radiating solution u in U+

a taking Dirichlet trace
values φ on Γa. Construction of this operator relies on the following representation formula for uε,

uε(x) = (2π)−(m−1)/2

∫
Rm−1

exp
(

i
(

(xm − a)
√
k2n2

+ − ξ2 + x̃ · ξ
))

F (u|Γa

)
(ξ) dξ, (1.2)

for x ∈ U+
a . Note that this representation is a superposition of upwards propagating plane waves. Computing

the normal derivative of the latter expression reveals that the Dirichlet-to-Neumann operator T+
n2

+
: H1/2(Γa) →

H−1/2(Γa) is given by

(T+
n2

+
φ)(x̃) = i(2π)−(m−1)/2

∫
Rm−1

√
k2n2

+ − ξ2 exp (ix̃ · ξ)Fφ(ξ) dξ

and it is shown in [2] that T+
n2

+
is bounded from H1/2(Γa) to H−1/2(Γa). A similar analysis shows that the

corresponding Dirichlet-to-Neumann operator T−
n2
−

on Γ−a is given by the very same expression (replacing of

course n2
+ by n2

−). This is due to the fact that the expansion of uε in U−
−a consists of downwards propagating
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evanescent waves. From the representation of T+
n2

+
as a Fourier multiplier we note that

Im
∫

Γa

uε,3 T+
n2

+
(uε,3) ds = Im

(
i
∫

Rm−1

√
k2 − ξ2

∣∣∣F(uε,3
∣∣
Γa

)
∣∣∣2 ds

)

=
∫
|ξ|<k

√
k2 − ξ2

∣∣∣F(uε,3
∣∣
Γa

)
∣∣∣2 ds ≥ 0 (1.3)

and a similar computation shows that −Re
∫
Γa
uε,3T+

n2
+
(uε,3) ds ≥ 0; again, the same inequalities holds for T−

n2
−
.

The two Dirichlet-to-Neumann operators allow to frame the wave scattering problem under investigation
variationally in the domain Ω. Due to the homogeneous jump conditions [u]Γ = [∂u/∂ν]Γ = 0 it makes sense to
seek a solution uε ∈ H1(Ω). Twice (formally) applying Green’s identity in Ω± shows that∫

Ω

(∇uε · ∇v − k2n2uε
)
v dx−

∫
Γa

v T+
n2

+
(uε) ds−

∫
Γ−a

v T−
n2
−
(uε) ds = −

∫
Ω

gv dx (1.4)

for all v ∈ H1(Ω). Existence of a unique solution uε ∈ H1(Ω) to this problem has been shown in [11].
We now introduce the Neumann-to-Dirichlet operator Dε on Γ which maps φ ∈ H−1/2(Γ) to the Dirichlet

boundary values vε on Γ of the unique solution to

Δvε +
(
k2 +

i
ε2

)
vε = g in Ω−,

∂vε

∂ν
= T−

n2
−
(vε) on Γ−a,

∂vε

∂ν
= −φ on Γ.

Due to absorption, the map Dε : φ �→ vε ∈ H1/2(Γ) is well defined and bounded. Of course, the restriction
uε|Ω+

solves

Δuε + k2uε = g in Ω+,
∂uε

∂ν
= T+

n2
+
(uε) on Γa, uε +Dε

(
∂uε

∂ν

)
= 0 on Γ. (1.5)

Roughly speaking, the idea of a generalized impedance boundary condition is now to construct a (formal)
expansion of Dε in terms of ε and to obtain explicitly computable boundary operators replacing Dε in (1.5).
These approximations to Dε will introduce a certain error which we will show to be bounded in terms of powers
of ε, the actual power depending on the truncation of the asymptotic development of Dε. To conclude this brief
outlook, as an approximation to the restriction uε|Ω+

we are going to study problems of the following form,

Δuε,p + k2n2uε,p = g in Ω+,
∂uε,p

∂ν
= T+

n2
+
(uε,p) on Γ,

together with

uε,p +Dε,p

(
∂uε,p

∂ν

)
= 0 on Γ

for certain Neumann-to-Dirichlet operators Dε,p of order p ∈ {0, 1, 2, 3}, which will be constructed and analyzed
in detail.

2. Formal construction of GIBCs

As a brief introduction to the construction of generalized impedance boundary conditions, we recall some
basic ideas, definitions and computations from [9]. The formal computation of these conditions for rough layers
is the same as for bounded absorbing inclusions and we can skip most of the computations. Assume that
Γ ∈ C1,1

b and let Ωδ
− := {x ∈ Ω−, dist(x,Γ) < δ} for δ > 0 small enough such that each point x ∈ Ωδ

− has
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a unique representation x = xΓ + qν, with xΓ ∈ Γ and q > 0. Recall that the unit normal ν on Γ was defined
to point into Ω−. The parameter δ is fixed from now on and we also fix a cut off function χ ∈ C∞(Ω−) such
that χ = 1 in Ωδ/2

− , χ = 0 in Ωδ
− as well as 0 ≤ χ ≤ 1, |∇χ| ≤ C and |Δχ| ≤ C in Ω−.

The starting point for the construction of generalized impedance boundary conditions is the assumption that
the exact solution uε of the scattering problem (1.4) with parameter ε > 0 can be written as

uε(x) = u0
+(x) + εu1

+(x) + ε2u2
+(x) + . . . , x ∈ Ω+, (2.1)

for functions u�
+ : Ω+ → C and

χuε(x) = u0
−(xΓ, q/ε) + εu1

−(xΓ, q/ε) + ε2u2
−(xΓ, q/ε) + . . . , x = xΓ + qν ∈ Ωδ

−, (2.2)

with functions u�
− : Γ × R+ → C such that limη→∞ u�

−(xΓ, η) = 0 for xΓ ∈ Γ. From this expansion we will in
the sequel construct boundary conditions which allow to truncate problem (1.4) at Γ, introducing an error that
can be controlled in powers of ε. Following [9], we set

ũε
−(xΓ, η) = u0

−(xΓ, η) + εu1
−(xΓ, η) + ε2u2

−(xΓ, η) + . . . , xΓ ∈ Γ, η > 0.

Since uε solves the Helmholtz equation, all functions u�
+ also need to satisfy this equation. Moreover, starting

from the Helmholtz equation (1.1) one can compute a differential equation for ũε− of the form

(
− ∂2

∂η2
− i
)
ũε
− =

8∑
�=1

ε�A�ũ
ε
− on Γ × R+,

where the A� are differential operators in (xΓ, η) independent of ε; see [9] for details. Substituting the latter
equation into (2.2) shows that

(
− ∂2

∂η2
− i
)
up
− =

8∑
�=1

A�u
p−�
− in Γ × R+, (2.3)

where up−�
− = 0 for p − � < 0. Let us think of this equation as a family of second order ordinary differential

equations in η with parameter xΓ. Coupling of (2.3) with the expansion (2.1) of uε in Ω+ yields a boundary
condition at η = 0 and together with the decay condition for u�− we can solve (2.3). In more detail, equating
terms in (2.1) and (2.2) which share the same powers of ε either offers the possibility of coupling the Dirichlet
traces,

up
+(xΓ) = up

−(xΓ, 0) for xΓ ∈ Γ, (2.4)
or coupling of the normal derivatives,

∂up−1
+

∂ν
(xΓ) =

∂up
−

∂η
(xΓ, 0) for xΓ ∈ Γ. (2.5)

We concentrate in this paper on the second option, which leads to Neumann-to-Dirichlet impedance boundary
conditions, and which is somewhat more natural due to the shift of the index. The first option (2.4) results in
Dirichlet-to-Neumann impedance boundary conditions which will not be considered here; we refer to [9] where
formulas for Dirichlet-to-Neumann impedance boundary conditions for bounded obstacles are provided. Those
boundary conditions can be analyzed in the rough surface context by the tools provided in the present paper.

The differential equations in η in (2.3) together with (2.5) and the decay condition up
−(xΓ, η) → 0 as η → ∞

can be explicitly solved in the form

up
−(xΓ, η) = P p

xΓ
(η)e−αη, η > 0, p ∈ N0,
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with a polynomial P p
xΓ

of degree p depending on ∂u�−/∂ν, � ∈ {0, 1, . . . , p−1}. There holds a recurrence relation
of order 8 for the P p

xΓ
, which we will however not give here, but only give the explicit form of the up

− for
p ∈ {0, 1, 2, 3}. Before citing the result of this computation in [9], equations (4.26)–(4.29), we remark that we
denote Gauss and mean curvature on Γ by G and H , respectively; we also assume familiarity of the reader
with standard surface differential operators such as the surface gradient ∇Γ and the surface Laplacian ΔΓ, see,
e.g., [13] for details. Using the abbreviation α = (1 − i)/

√
2 there holds

u0
−(xΓ, η) =0, (2.6)

u1
−(xΓ, η) = − 1

α

∂u0
+

∂ν
(xΓ)e−αη, (2.7)

u2
−(xΓ, η) =

(
− 1
α

∂u1
+

∂ν
(xΓ) +

H

α2

∂u0
+

∂ν
(xΓ) + η

H

α

∂u0
+

∂ν
(xΓ)

)
e−αη, (2.8)

u3
−(xΓ, η) =

[
− 1
α

∂u2
+

∂ν
(xΓ) +

H

α2

∂u1
+

∂ν
(xΓ) − 1

2α3
(3H2 −G+ k2)

∂u0
+

∂ν
(xΓ) (2.9)

− 1
2α3

ΔΓ

(
∂u0

+

∂ν

)
+ η

(
H

α

∂u1
+

∂ν
(xΓ) − 1

2α2
(ΔΓ + 3H2 −G+ k2)

∂u0
+

∂ν
(xΓ)

)

+ η2 1
2α

(G− 3H2)
∂u0

+

∂ν
(xΓ)

]
e−αη.

We are going to show in Lemma (4.2) that the functions up
+ are well defined in H1(Ω+) under some smoothness

assumptions on the data.
Now we can derive a first version of generalized impedance boundary conditions. For p ∈ {0, 1, 2} these will

be the ones for which we prove convergence of optimal order in Section 4. For p = 3, sophisticated further
manipulations of the impedance boundary condition are necessary to derive such convergence.

The basic idea behind an impedance boundary condition of order p is truncation of the expansion (2.1) of uε

at � = p,

ũε,p =
p∑

�=0

ε�u�
+ in Ω+. (2.10)

In view of (4.2) we get that ũε,p =
∑p

�=0 ε
�u�

−(·, 0) on Γ. Since u�
−(·, 0) is explicitly given in (2.6)–(2.9) in terms

of the normal derivatives ∂u�
+/∂ν, we can plug in these formulas into the last equation to obtain for � = 0 that

ũε,0 = 0 and for � = 1 that

ũε,1 + ε
1
α

∂u0
+

∂ν
(xΓ) = 0, that is, ũε,1 + ε

1
α

∂ũε,1

∂ν
(xΓ) = ε2

1
α

∂ũε,1

∂ν
·

Generally speaking, we find a tangential differential operator Dε,p acting on Γ such that

ũε,p +Dε,p

(
∂ũε,p

∂ν

)
= εp+1rε,p, p ∈ {0, 1, 2, 3}, (2.11)

for functions rε,p which are explicitly given in [9], equation (4.34) for p ∈ {0, 1, 2, 3} as

rε,0 = 0, rε,1 =
1
α

∂u1
+

∂ν
, rε,2 =

1
α

∂u2
+

∂ν
− iH

∂

∂ν

(
u1

+ + εu2
+

)
,

rε,3 =
1
α

∂u3
+

∂ν
− iH

∂

∂ν

(
u1

+ + εu2
+

)− 1
2
[
ΔΓ + 3H2 −G+ k2

]( ∂

∂ν
(u1

+ + εu2
+ + ε2u3

+)
)
. (2.12)
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The differential operators Dε,p are given by [9], equations (3.5)–(3.8)

Dε,0 = 0, Dε,1 =
ε

α
, Dε,2 =

ε

α
− iε2H, Dε,3 =

ε

α
− iε2H − ε3

α

2
(ΔΓ + 3H2 − G + k2). (2.13)

Neglecting the small right hand side in (2.11), we define an approximation uε,p, p = 0, 1, 2, of uε, solution
of (1.4), by

Δuε,p + k2n2uε,p = g in Ω+,
∂uε,p

∂ν
= T+

n2
+
(uε,p) on Γa,

uε,p +Dε,p

(
∂uε,p

∂ν

)
= 0 on Γ, for p = 0, 1, 2. (2.14)

Note that uε,3 will be defined via a different (refined) boundary value problem in Section 5. The function uε,p

solves a boundary value problem merely posed in Ω+. Well-posedness of this problem, as well as the approxima-
tion of uε|Ω+

by uε,p is subject of the following sections. However, at least morally we already note from (2.11)
that the condition of order p will introduce an error ‖uε,p − uε‖ which is O(εp+1).

3. Generalized impedance boundary value problems for rough structures

We start with some results on existence and uniqueness for Dirichlet scattering problems in Ω+, which are
then used to establish an L2 bound for the solution operator of the Dirichlet problem for a rough surface. This
bound is very helpful to develop a general existence theory for generalized impedance boundary value problems
on rough surfaces, which is the main result of this section.

The following Rellich identity [11], Section 7, is valid for any solution u in H2(Ω+) of the Helmholtz equation
Δu + k2n2u = g, subject to the boundary condition u = 0 on Γ and the radiation condition ∂u/∂ν = T+

n2
+
(u)

on Γa,

∫
Ω+

(
2
∣∣∣∣ ∂v∂xm

∣∣∣∣
2

+ k2(xm + a)
∂n2

∂xm
|v|2
)

dx+ 2a
∫

Γa

(
|∇v|2 − 2

∣∣∣∣∂v∂ν
∣∣∣∣
2

− k2n2|v|2
)

ds

−
∫

Γa

vT+
n2

+
(v) ds+

∫
Γ

(xm + a)
(
νm|∇v|2 − 2 Re

(
∂v

∂xm

∂v

∂ν

)
− νmk

2|v|2
)

ds

= −2
∫

Γ

(xm + a)Re
(
∂v

∂xm
g

)
dx−

∫
Ω+

gv dx. (3.1)

H2 regularity of a solution u ∈ H1(Ω+) is satisfied, e.g., if n2 ∈ C0,1(Ω+) and Γ ∈ C1,1
b .

In the following theorem, we consider right-hand sides in the space

H̃�(Ω+) :=
{
g ∈ H�(Ω+), g = g∗|Ω+

for some g∗ ∈ H�(Ω+ ∪ U+
a ) such that supp(g∗) ⊂ Ω+

}
.

Theorem 3.1. Assume that n2 ∈ C0,1(Ω+,R), ∂n2/∂xm ≤ 0 in Ω+ and that Γ ∈ C1,1
b . For g ∈ L2(Ω+) there

is unique radiating variational solution u ∈ H1(Ω+) of Δu+ k2n2u = g in Ω+ subject to the Dirichlet boundary
condition u = h on Γ, that is, u satisfies∫

Ω+

(∇u · ∇v − k2n2uv
)

dx−
∫

Γa

vT+
n2

+
(u) ds = −

∫
Ω+

gv dx (3.2)

for all v ∈ H1
0 (Ω+) := {v ∈ H1(Ω+), v = 0 on Γ} and the boundary condition u|Γ = h in the trace sense.
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(a) For h = 0 there holds ‖u‖H1(Ω+) + ‖∂u/∂ν‖L2(Γ) ≤ C‖g‖L2(Ω+).
(b) Let � ∈ N0, n2 ∈ C�,1(Ω+) and Γ ∈ C�+1,1

b . Under the smoothness assumptions g ∈ H̃�(Ω+) and
h ∈ H�+3/2(Γ), elliptic regularity results imply that ‖u‖H�+2(Ω+) ≤ C

(‖g‖H�(Ω+) + ‖h‖H�+3/2(Γ)

)
.

Proof. Let us abbreviate the variational formulation (3.2) as a(u, v) = − ∫
Ω+

gv dx for all v ∈ H1
0 (Ω+). The

existence statement for h = 0 is shown as in [11], Section 7. It is a consequence of an a priori bound ‖u‖H1(Ω) ≤
C‖g‖L2(Ω+) for any solution u ∈ H1

0 (Ω+) of (3.2) gained by the Rellich identity (3.1). See also [2] for the case
n2 ≡ 1. The regularity result for h = 0 in part (a) of the theorem is a direct consequence of the Rellich identity.
The existence result for arbitrary h is shown as in the standard proof for inhomogeneous elliptic boundary value
problems [12], Theorem 4.10. Therefore we note that the a priori bound ‖u‖H1(Ω) ≤ C‖g‖L2(Ω+) even implies an
a priori bound for a larger class of right-hand sides [2], Lemma 4.5. Denote by (H1

0 (Ω+))∗ the space of bounded
linear functionals on (H1

0 (Ω+))∗ with obvious norm, let G ∈ (H1
0 (Ω+))∗ and assume that u ∈ H1

0 (Ω+) solves
a(u, v) = G(v) for all v ∈ H1

0 (Ω+). Then ‖u‖H1(Ω) ≤ C‖G‖(H1
0(Ω+))∗ (with a different constant C compared to

the above L2 bound).
The regularity statement in the general case follows from the corresponding regularity result for bounded

domains [12], Theorem 4.18, and a technique already introduced in [11]. For sake of completeness we shall
hereafter sketch some details of the proof. By abuse of notation we do not distinguish between a solution
u ∈ H1(Ω+) of the Helmholtz equation satisfying ∂u/∂ν = T+

n2
+
(u) on Γa and its unique radiating extension to

Ω+ ∪ U+
a .

Consider the open cube Q = (−2, 2)m−1× (0, a) and set Qj := j+Q for j ∈ (3Z)m−1. The cubes Qj cover Ω:

Ω ⊂
⋃

j∈(3Z)m−1

Qj .

By Q2
j := j + 2Q we denote an even larger cube containing Qj . Set Ω̃+ = Ω+ ∪ U+

a . From the boundary
regularity result [12], Theorem 4.18, we obtain the following estimate in each cube Qj ,

‖u‖H�+2(Qj∩Ω+) ≤ Cj

(
‖u‖H1(Q2

j∩Ω̃+) + ‖u‖H�+3/2(Q2
j∩Γ) + ‖g‖H�(Q2

j∩Ω̃+)

)
.

The constants Cj depend on �, the local smoothness of the coefficient n2 and the local regularity of Γ. Hence,
the lemma’s assumptions Γ ∈ C�+1,1

b and n2 ∈ C�,1(Ω+) imply a uniform bound C for the numbers Cj . Now
we can exploit that the Qj cover Ω,

‖u‖H�+2(Ω+) ≤ C
∑

j∈(3Z)m−1

‖u‖H�+2(Q2
j∪Ω̃+)

≤ C

⎛
⎝ ∑

j∈(3Z)m−1

‖u‖H1(Q2
j∩Ω+) + ‖u‖H�+3/2(Q2

j∩Γ) + ‖g‖H�(Q2
j∩Ω+)

⎞
⎠

≤ C
(‖u‖H1({f(x̃)<xm<2a}) + ‖u‖H�+3/2(Γ) + ‖g‖H�(Ω+)

)
. (3.3)

This estimate allows to prove the stated regularity result by an induction argument. �
Our restriction to a real-valued refractive index n2 is motivated by our problem setting; reference [11] shows

that the last theorem holds as well for complex valued indices.
Several times in this text, for instance in the proof of Theorem 3.4, we rely on the boundedness of a weak

solution operator.

Corollary 3.2 (L2 solution operator). Assume that n2 ∈ C0,1(Ω+,R) and that Γ ∈ C0,1
b . For a weak solution

u ∈ H1(Ω+) of the Helmholtz equation Δu + k2n2u = 0 in Ω+ which takes boundary values h ∈ H1/2(Γ) and
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satisfies the radiation condition ∂u/∂ν = T+
n2

+
(u) on Γa, it holds that ‖u‖L2(Ω+) ≤ C‖h‖L2(Γ) for C independent

of u. Hence, the solution operator h �→ u has a bounded extension from L2(Γ) to L2(Ω+).

For bounded Lipschitz domains, this is a well known result [12], Theorem 4.25. Since subsequently we only
rely on a weak solution operator corresponding to Γ ∈ C1,1

b (see Lem. 3.3), we merely indicate the necessary
steps to transfer the proof of Corollary 3.2 from the bounded to the unbounded Lipschitz setting. One first
establishes a bound ‖∂u/∂ν‖L2(Γ) ≤ C‖u‖H1(Ω+) + C‖g‖L2(Ω+) for an H2 solution of Δu + k2n2u = g in Ω
such that u = 0 on Γ and ∂u/∂ν = T+

n2
+
(u) on Γa [12], Theorem 2.24. In our case this follows from the Rellich

identity (3.1). We note that for general second-order elliptic operators, it is a generalized Rellich identity which
is employed for this task [12], Lemma 4.22. Afterwards, careful approximation of Γ by a smooth surface shows
that this bound even holds for H1 solutions of the problem. The proof given in [12], Theorem 2.24, carries
over to our setting, with minor modifications. In the second step, one uses a duality argument (see the proof of
Lem. 3.3 below) to get the bound on u indicated in the corollary.

Lemma 3.3 (weak solution operator). Assume that n2 ∈ C0,1(Ω+,R) and that Γ ∈ C1,1
b . For a weak solution

u ∈ H1(Ω+) of the Helmholtz equation Δu + k2n2u = 0 in Ω+ which takes boundary values h ∈ H1/2(Γ)
and satisfies the radiation condition ∂u/∂ν = T+

n2
+
(u) on Γa, it holds that ‖u‖L2(Ω+) ≤ C‖h‖H−1/2(Γ) for C

independent of u. Hence, the solution operator h �→ u has a bounded extension from H−1/2(Γ) to L2(Ω+).

Proof. Due to Theorem 3.1 there is a unique weak solution u ∈ H1(Ω+) of the problem

Δu+ k2n2u = 0 in Ω+,
∂u

∂ν
= T+

n2
+
(u) on Γa, u = h on Γ,

for all h ∈ H1/2(Γ), and ‖u‖H1(Ω+) ≤ C‖h‖H1/2(Γ) for C independent of u. Moreover, Theorem 3.1 states that
for arbitrary g ∈ L2(Ω+) there is a unique solution w ∈ H1

0 (Ω+) of the problem

Δw + k2n2w = g in Ω+,
∂w

∂ν
= T+

n2
+
(u) on Γa, w = 0 on Γ,

with ‖w‖H1(Ω+) + ‖∂w/∂ν‖L2(Γ) ≤ C‖g‖L2(Ω+), again for C independent of w. Our regularity assumptions
are even enough to conclude that ‖w‖H2(Ω+) ≤ C‖g‖L2(Ω+). Choose a cut-off function ζ ∈ C∞

0 (R) such that
ζ(t) = 0 for t > 0, ζ(t) = 1 for t < −1 and 0 ≤ ζ ≤ 1. We set χR(x) = ζ(|x̃| −R − 1). Twice applying Green’s
first identity yields

0 = −
∫

Ω+

(Δu+ k2n2u)χRw dx =
∫

Ω+

(∇u · ∇(wχR) − k2n2uχRw
)

ds−
∫

∂Ω+

∂u

∂ν
χRw ds

= −
∫

Ω+

u
(
Δ(χRw) + k2n2χRw

)
ds+

∫
∂Ω+

u
∂(χRw)
∂ν

ds−
∫

∂Ω+

∂u

∂ν
χRw ds.

Since u ∈ H1(Ω+) and w ∈ H2(Ω+) Lebesgue’s dominated convergence theorem implies∫
Ω+

u
(
Δ(χRw) − k2n2χRw

)
ds R→∞→

∫
Ω+

u
(
Δw − k2n2w

)
ds,

and since ∂w/∂ν ∈ L2(∂Ω), ∫
∂Ω+

u
∂(χRw)
∂ν

ds R→∞→
∫

∂Ω+

u
∂w

∂ν
ds

as well. Obviously,
∫

∂Ω+
∂u/∂ν χRw ds =

∫
Γa
∂u/∂ν χRw ds. Moreover, ∂u/∂ν ∈ L2(Γa), which can either be

seen using elliptic regularity results as in the proof of Theorem 3.1, or by Fourier arguments as in [2], Lemma 2.2.
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Therefore, we also have ∫
∂Ω+

∂u

∂ν
χRw ds R→∞→

∫
∂Ω+

∂u

∂ν
w ds

and we conclude that

0 = −
∫

Ω+

u
(
Δw + k2n2w

)
ds+

∫
Γ

u
∂w

∂ν
ds−

∫
Γa

∂u

∂ν
w ds+

∫
Γa

u
∂w

∂ν
ds

= −
∫

Ω+

ug ds+
∫

Γ

h
∂w

∂ν
ds+ 2i Im

∫
Γa

u
∂w

∂ν
ds.

We set g = u, take the real part of the latter equation and obtain

‖u‖2
L2(Ω+) ≤ ‖h‖H−1/2(Γ)‖∂w/∂ν‖H1/2(Γ) ≤ C‖h‖H−1/2(Γ)‖w‖H2(Ω+) ≤ C‖h‖H−1/2(Γ)‖u‖L2(Ω+). �

Now we give an existence result for a generalized impedance boundary value problem of the form (2.14).
In fact, all impedance problems we encounter during our asymptotic analysis in the following sections can be
treated by the following theorem. As a general model, we consider the equation

Δuε + k2n2uε = g in Ω+,
∂uε

∂ν
= T+

n2
+
(uε) on Γa, uε +Dε

(
∂uε

∂ν

)
= h on Γ. (3.4)

If Dε is invertible in a suitable sense, we can state the variational formulation of this problem as follows: Find
uε ∈ H1(Ω+) such that∫

Ω+

(∇uε · ∇v − k2uεv
)

ds−
∫

Γa

v T+
n2

+
(uε) ds+

∫
Γ

vD−1
ε (uε) ds = −

∫
Ω+

gv dx+
∫

Γ

vD−1
ε h ds (3.5)

for all v ∈ H1(Ω+).

Theorem 3.4. Assume that n2 ∈ C0,1(Ω+,R) and that Γ ∈ C1,1
b . Assume further that Dε : L2(Γ) → L2(Γ)

satisfies

‖Dεφ‖L2(Γ) ≤ Cε‖φ‖L2(Γ), Re〈Dεφ, φ〉 ≥ Cε‖φ‖2
L2(Γ), and

Im〈Dεφ, φ〉 ≥ Cε‖φ‖2
L2(Γ) for all φ ∈ L2(Γ) and ε ∈ (0, ε0], (3.6)

where C is independent of ε ∈ (0, ε0]. For g ∈ L2(Ω+) and h ∈ L2(Γ) there is a unique solution of the variational
problem (5.9) which satisfies

‖uε‖H1(Ω+) + C1

√
ε

∥∥∥∥∂uε

∂ν

∥∥∥∥
L2(Γ)

≤ C2

(‖g‖L2(Ω) + ‖h‖L2(Γ)

)

for C1,2 independent of ε ∈ (0, ε0].

Proof. We consider first the case g = 0; the general case will again follow from this special situation. Plugging
in v = uε into the variational formulation (3.5), we find∫

Ω+

(
|∇uε|2 − k2n2|uε|2

)
dx−

∫
Γa

uε T+
n2

+
(uε) ds−

∫
Γ

uε
∂uε

∂ν
ds = 0. (3.7)

Taking the imaginary part of this equation, we obtain

Im
∫

Γa

uε T+
n2

+
(uε) ds+ Im

∫
Γ

uε
∂uε

∂ν
ds = 0.
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Moreover, exploiting the coercivity of ImDε from (3.6),

Im
∫

Γ

uε
∂uε

∂ν
ds = Im

∫
Γ

Dε

(
∂uε

∂ν

)
∂uε

∂ν
ds+ Im

∫
Γ

h
∂uε

∂ν
ds ≥ cε

∥∥∥∥∂uε

∂ν

∥∥∥∥
2

L2(Γ)

+ Im
∫

Γ

h
∂uε

∂ν
ds. (3.8)

Therefore, by Lemma 3.3 and the fact that Im
∫
Γa
uε T+

n2
+
(uε) ds ≥ 0,

ε

∥∥∥∥∂uε

∂ν

∥∥∥∥
L2(Γ)

≤ C‖h‖L2(Γ). (3.9)

Due to (3.6), Dε is bounded on L2(Γ) with bound Cε for ε ∈ (ε, ε0]. Exploiting the impedance boundary
condition in (3.4), we obtain

‖uε‖2
L2(Γ) ≤ 2‖Dε(∂uε/∂ν)‖2

L2(Γ) + 2‖h‖2
L2(Γ) ≤ Cε2‖∂uε/∂ν‖2

L2(Γ) + 2‖h‖2
L2(Γ) ≤ (Cε+ 2)‖h‖2

L2(Γ).

We take the real part of (3.5) where we set v = uε. Note that −Re
∫
Γa
uε T+

n2
+
(uε) ds ≥ 0 by the representation

of T+
n2

+
in (1.3). Hence, Lemma 3.3 and (3.9) yield

‖uε‖2
H1(Ω+) + cε

∥∥∥∥∂uε

∂ν

∥∥∥∥
2

L2(Γ)

≤ (1 + k2‖n2‖∞)‖uε‖2
L2(Ω+) + C‖h‖2

L2(Γ) ≤ C‖uε‖2
L2(Γ) + C‖h‖2

L2(Γ) ≤ C‖h‖2
L2(Γ),

where all constants are independent of ε. Hence, we conclude that

‖uε‖H1(Ω+) + c
√
ε

∥∥∥∥∂uε

∂ν

∥∥∥∥
L2(Γ)

≤ C‖h‖L2(Γ) (3.10)

for some constant C independent of ε.
Consider now the general case 0 �= g ∈ L2(Ω+) and let uε ∈ H1(Ω+) be a solution to (3.5). Let w ∈

H1(Ω+) be the variational solution of Δw + k2n2w = 0 in Ω+ subject to the homogeneous Dirichlet boundary
condition w|Γ = 0 and the radiation condition ∂w/∂ν = T+

n2
+
(w) on Γa. Recall that Theorem 3.1 states

that ‖w‖H1(Ω+) + ‖∂w/∂ν‖L2(Γ) ≤ C‖g‖L2(Ω+). The difference v = uε − w solves Δv + k2n2v = 0 in Ω+,
v + Dε(∂v/∂ν) = h −Dε(∂w/∂ν) and ∂v/∂ν = T+

n2
+
(v) on Γa, again in a variational sense. The boundedness

of Dε on L2(Γ) from (3.6) and (3.10) show that

‖v‖H1(Ω+) + c
√
ε

∥∥∥∥∂v∂ν
∥∥∥∥

L2(Γ)

≤ C
(‖h‖L2(Γ) + ‖Dε(∂w/∂ν)‖L2(Γ)

)
≤ C

(‖h‖L2(Γ) + C‖∂w/∂ν‖L2(Γ)

) ≤ C
(‖h‖L2(Γ) + C‖g‖L2(Ω+)

)
.

We conclude by the triangle inequality that

‖uε‖H1(Ω+) + c
√
ε

∥∥∥∥∂uε

∂ν

∥∥∥∥
L2(Γ)

≤ C
(‖h‖L2(Γ) + C‖g‖L2(Ω+)

)
,

which is a H1(Ω+) a priori bound for u and finishes the proof, since this a priori bound establishes existence and
uniqueness of solution by the well-known inf-sup theory for variational formulations, see, e.g., [10], Chapter 2,
or [2]. �
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We content ourselves here to consider right-hand sides h ∈ L2(Γ). Even if this is sufficient for our later
purposes, the natural regularity would be h ∈ H−1/2(Γ). In fact, one can also show existence of solution for
the generalized impedance boundary value problem with h ∈ H−1/2(Γ). We sketch the proof here for the case
g = 0, under the additional assumption that D−1

ε is bounded on H−1/2(Γ) by a constant μ(ε). Assume that uε

solves (3.5). Taking the imaginary part of (3.5) (with v = uε) and exploiting the coercivity properties of Dε we
arrive at

‖u‖2
L2(Γ) ≤ Im

∫
Γ

uD−1
ε (u) ds ≤ Im

∫
Γ

uD−1
ε (h) ds ≤ μ(ε)‖u‖H1/2(Γ)‖h‖H−1/2(Γ).

Taking now the real part of (3.5), we get

‖u‖2
H1(Ω+) ≤ C‖u‖2

L2(Ω+) + Cμ(ε)‖u‖H1/2(Γ)‖h‖H−1/2(Γ)

≤ C‖u‖2
L2(Γ) + Cμ(ε)‖u‖H1(Ω+)‖h‖H−1/2(Γ) ≤ Cμ(ε)‖u‖H1(Ω+)‖h‖H−1/2(Γ)

with C independent of ε. The problem with this a priori bound is that μ(ε) will, in general, fail to be bounded
as ε→ 0. This is already the case for the generalized impedance boundary condition of order 1 in (2.13), which
scales like ε. Since it is somewhat comfortable (but not ultimately necessary) to deal with uniform solution
bounds in the following asymptotic analysis, we prefer to consider impedance data h ∈ L2(Γ) subsequently.

To illustrate the value of the general existence result provided by Theorem 3.4, we apply it to generalized
impedance boundary value problems (2.14) of orders 1 and 2. As we already mentioned, the boundary condition
for order 3 needs an additional stabilization, constructed in Section 5, which is why we do not treat this case
now. Essentially, the problem with Dε,3, given in (2.13), is that this boundary operator violates the L2 ellipticity
assumption (3.6).

Corollary 3.5. Assume that n2 ∈ C0,1(Ω+,R), that Γ ∈ C1,1
b , and that g ∈ L2(Ω+).

(a) The solution uε,2 of (2.14) exists in H1(Ω+) for all ε > 0 and satisfies ‖uε,1‖H1(Ω+) ≤ C‖g‖L2(Ω+) with
C independent of ε ∈ (0, ε0] for arbitrary ε0.

(b) There is ε0 > 0 such that the solution uε,2 of (2.14) exists in H1(Ω+) for all ε ∈ (0, ε0] and satisfies
the bound ‖uε,1‖H1(Ω+) ≤ C‖g‖L2(Ω+) with C independent of ε ∈ (0, ε0].

Proof. In both cases, existence and uniqueness of uε,p follows from Theorem 3.4 if we verify assumption (3.6).
(a) The impedance boundary condition for p = 1 is uε,1 +(ε/α)(∂uε,1/∂ν) = 0 on Γ. The boundary operator

D1,ε = ε/α = ε(1 + i)/
√

2 clearly satisfies (3.6).
(b) For p = 2, uε,2 + (ε/α− iHε2)(∂uε,2/∂ν) = 0 on Γ. Choose ε0 such that |Hε| < 1/(2

√
2) for ε ∈ (0, ε0].

Then D2,ε = ε/
√

2 + iε(1/
√

2 −Hε) satisfies

Re
∫

Γ

φD2,εφds =
ε√
2
‖φ‖2

L2(Γ), Im
∫

Γ

φD2,εφds = ε

∫
Γ

(
1√
2
−Hε

)
|φ|2 ds ≥ ε

2
√

2
‖φ‖2

L2(Γ),

for φ ∈ L2(Γ) and 0 < ε ≤ ε0. Hence, D2,ε satisfies (3.6). �

4. Asymptotic analysis and error estimates for GIBCs

Our aim in this section is to provide the basic tools for the convergence analysis of GIBCs leading to proofs
of convergence of uε,p to uε with optimal order p+ 1 for p ∈ {0, 1, 2}. Since the case p = 3 requires additional
manipulations, we postpone the analysis of this case to the next Section 5. Note, however, that some of the
technical lemmas contained in this present section will also be used in Section 5 to treat the case p = 3. Our
main theorem in this section is the following.
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Theorem 4.1. Let p ∈ {0, 1, 2}, g ∈ H̃p(Ω+), n2 ∈ Cp,1(Ω+,R) and Γ ∈ Cp+1,1
b . There are constants ε0 > 0

and C(p) > 0, independent of ε ∈ (0, ε0], such that

‖uε − uε,p‖H1(Ω+) ≤ C(p)εp+1, 0 < ε ≤ ε0. (4.1)

The proof of this theorem requires some preparation. In the following lemma, we show that the functions up
+

of the asymptotic expansion (2.1) are well defined in H1(Ω+) for p ∈ N0 if the right hand side g of the Helmholtz
equation (1.1) is smooth enough.

Lemma 4.2. Set g0 = g ∈ L2(Ω+) and g� = 0 for � = 1, 2, . . . , and let p ∈ N. For g ∈ H̃p−1(Ω+),
n2 ∈ Cp−1,1(Ω+,R) and Γ ∈ Cp,1

b , the functions u�
+ are well defined in H1(Ω+) for � = 0, 1, . . . , p through the

recursion

Δu�
+ + k2n2u�

+ = g� in Ω+,
∂u�

+

∂ν
= T+

n2
+
(u�

+) on Γa, u�
+ = u�

−(·, 0) on Γ, (4.2)

where u�
−(·, 0) is determined from

(
− ∂2

∂η2
− i
)
u�
− =

8∑
�=1

A�u
�−l
− in Γ × R+, lim

η→∞ u�
−(xΓ, η) = 0 on Γ,

together with the coupling condition (2.5), that is,

∂u�−1
+

∂ν
(xΓ) =

∂u�−
∂η

(xΓ, 0), for xΓ ∈ Γ.

Proof. For � = 0 we know from (2.6) that u0
−(·, 0) = 0. Hence, u0

+ solves a homogeneous Dirichlet problem
for the Helmholtz equation with right hand side g0 = g. From Theorem 3.1 we conclude that u0

+ ∈ H2(Ω+)
for g ∈ L2(Ω+); thus the normal derivative ∂u0

+/∂ν belongs to H1/2(Γ) and the bounds ‖∂u0
+/∂ν‖H1/2(Ω+) ≤

C‖u0
+‖H2(Ω+) ≤ C‖g‖L2(Ω+) hold.

More generally, for g ∈ H̃p−1(Ω+) and n2 ∈ Cp−1,1(Ω+,R) and Γ ∈ Cp,1
b as well as Γ smooth enough we

have that u0
+ ∈ Hp+1(Ω+); thus the normal derivative ∂u0

+/∂ν belongs to Hp−1/2(Γ) and the bounds

‖∂u0
+/∂ν‖Hp−1/2(Γ) ≤ C‖u0

+‖Hp+1(Ω+) ≤ C(p)‖g‖Hp−1(Ω+)

hold for p = 1, 2, . . .
In consequence, the Dirichlet trace u1

−(·, 0) given in (2.7) is well defined in Hp−1/2(Γ) for g in Hp(Ω+) and
we can solve the Dirichlet problem (4.2) in Hp(Ω+) according to Theorem 3.1, with ‖∂u1

+/∂ν‖Hp−3/2(Γ) ≤
C‖∂u1

+/∂ν‖Hp(Γ) ≤ C‖g‖Hp−1(Ω+), as long as p − 1 > 0. Existence of u�
+ for � = 2, . . . , p follows from

an induction argument. Existence and boundedness of up
+ in H1(Ω+) and ∂up

+/∂ν ∈ H1/2(Γ) requires g ∈
H̃p−1(Ω+), as well as n2 ∈ Cp−1,1(Ω+) and Γ of class Cp,1

b . �

The proof of Theorem 4.1 is broken into two main steps, since we are not able to show (4.1) directly, but
rather introduce ũε,3 (see (2.10)) as an intermediate term and prove that

‖uε − uε,p‖H1(Ω+) ≤ ‖uε − ũε,p‖H1(Ω+) + ‖ũε,p − uε,p‖H1(Ω+) ≤ Cεp+1. (4.3)

To treat the two differences which appear in the last equation, let us first introduce a sequel of technical lemmas.
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Lemma 4.3. Let Γ ∈ C0,1
b . Then there is a constant C > 0 such that

‖u‖2
L2(Γ) ≤ C

(
‖∇u‖L2(Ω±)‖u‖L2(Ω±) + ‖u‖2

L2(Ω±)

)
for all u ∈ H1(Ω±).

Proof. Estimates of this kind are well known from earlier works on generalized impedance boundary conditions,
however, since Ω± is unbounded we briefly sketch the proof for the domain Ω+.

For u ∈ C∞(Ω+) ∩H1(Ω+), the fundamental theorem of calculus implies

|u(x̃, h)|2 − |u(x̃, f(x̃))|2 = 2
∫ h

f(x̃)

u(x̃, xm)
∂u(x̃, s)
∂xm

ds.

If we define the segment Sx̃ := {y = (x̃, s), f(x̃) < s < h}, then

|u(x̃, f(x̃))|2 ≤ 2‖u(x̃, ·)‖L2(Sx̃)

∥∥∥∥∂u(x̃, ·)
∂xm

∥∥∥∥
L2(Sx̃)

+ |u(x̃, h)|2.

Integration with respect to h yields

|h− f(x̃)| |u(x̃, f(x̃))|2 ≤ 2|h− f(x̃)| ‖u(x̃, ·)‖L2(Sx̃)

∥∥∥∥∂u(x̃, ·)
∂xm

∥∥∥∥
L2(Sx̃)

+ ‖u(x̃, h)‖2
L2(Sx̃).

We integrate with respect to x̃,

∫
Rm−1

|u(x̃, f(x̃))|2 dx̃ ≤ 2‖u‖L2(Ω+)

∥∥∥∥ ∂u

∂xm

∥∥∥∥
L2(Ω+)

+ sup
x̃∈Rm−1

|h− f(x̃)|−1 ‖u‖2
L2(Ω+),

which gives the claim of the lemma, since ‖u‖2
L2(Γ) ≤ C

∫
Rm−1 |u(x̃, f(x̃))|2 dx̃ and since C∞(Ω+) ∩H1(Ω+) is

dense in H1(Ω+). �

Lemma 4.4. Assume that n2 ∈ C0,1(Ω+,R), Γ ∈ C0,1
b , and that vε ∈ H1(Ω) satisfies

Δvε + k2n2vε = 0 in Ω,
∂vε

∂ν
= T+

n2
+
(vε) on Γa for ε ∈ (0, ε0]

together with the a priori estimate∣∣∣∣
∫

Ω

(|∇vε|2 − k2n2|vε|2) dx−
∫

Γa

vε T+
n2

+
(vε) ds

∣∣∣∣ ≤ C
(
εs+1/2‖vε‖L2(Γ) + εs‖vε‖L2(Ω−)

)
(4.4)

for C, s > 0 independent of ε and vε. Then

‖vε‖H1(Ω) ≤ Cεs+1, ‖vε‖L2(Ω−) ≤ Cεs+2, and ‖vε‖L2(Γ) ≤ Cεs+3/2

for ε ∈ (0, ε0].

Proof. Suppose that λε = ‖vε‖L2(Ω)/ε
s+1 is unbounded as ε→ 0. We set wε = vε/‖vε‖L2(Ω) and note that (4.4)

implies∣∣∣∣
∫

Ω

(|∇wε|2 − k2n2|wε|2) dx−
∫

Γa

wε T+
n2

+
(wε) ds

∣∣∣∣ ≤ C

λε

(
ε−1/2‖wε‖L2(Γ) + ε−1‖wε‖L2(Ω−)

)
. (4.5)
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As C/λε is bounded as ε → 0, the last inequality implies an estimate for the absolute value of the imaginary
part of the left hand side. Moreover, as −k2 Im(n2) ≤ 0 and − Im

∫
Γa
wε T+

n2
+
(wε) ds ≤ 0 as well, we obtain

k2

∫
Ω−

|wε|2 dx ≤ C

λε

(
ε3/2‖wε‖L2(Γ) + ε‖wε‖L2(Ω−)

)
.

By Lemma 4.3,

‖wε‖3/2
L2(Ω−) ≤ Cε3/2

(
‖∇wε‖1/2

L2(Ω−) + ‖wε‖1/2
L2(Ω−)

)
‖wε‖1/2

L2(Ω−) + Cε‖wε‖L2(Ω−),

and

‖wε‖L2(Ω−) ≤ Cε3/2‖∇wε‖1/2
L2(Ω−) + Cε‖wε‖1/2

L2(Ω−) ≤ Cε3/2‖∇wε‖1/2
L2(Ω−) + Cε3/2 +

1
2
‖wε‖3/2

L2(Ω−),

where we used Young’s inequality in the last step. We conclude that

‖wε‖3/2
L2(Ω−) ≤ Cε3/2

(
1 + ‖∇wε‖1/2

L2(Ω−)

)
. (4.6)

Since −Re
∫
Γa
wε T+

n2
+
(wε) ds > 0, the corresponding estimate for the real part of (4.5) yields

∫
Ω

|∇wε|2 dx ≤ k2

∫
Ω

Re(n2)|wε|2 dx+
C

λε

(
ε−1/2‖wε‖L2(Γ) + ε−1‖wε‖L2(Ω−)

)
≤ C + C

(
ε−1/2‖wε‖L2(Γ) + ε−1‖wε‖L2(Ω−)

)
. (4.7)

The term ε−1/2‖wε‖L2(Γ) can be estimated by Lemma 4.3,

ε−1/2‖wε‖L2(Γ) ≤ 2ε−1/2‖wε‖L2(Ω−) + 2ε−1/2‖wε‖1/2
L2(Ω−)‖∇wε‖1/2

L2(Ω−),

which we plug into (4.7) to obtain

∫
Ω

|∇wε|2 dx ≤ C + Cε−1‖wε‖L2(Ω−)

(
1 + ‖∇uε‖1/2

L2(Ω−)

)
for ε ∈ (ε, ε0]. (4.8)

By means of (4.6),

ε−1‖wε‖L2(Ω−) ≤ C
(
1 + ‖∇uε‖1/3

L2(Ω−)

)
. (4.9)

Hence, using the latter bound in (4.8) we obtain ‖∇wε‖2
L2(Ω) ≤ C(1 + ‖∇wε‖2/3

L2(Ω−)), which shows that
‖∇wε‖2

L2(Ω) is uniformly bounded in ε ∈ (0, ε0]. From (4.6) we conclude that ε−1‖wε‖L2(Ω−) is bounded
as well. Lemma 4.3 implies that ε−1‖wε‖2

L2(Γ) is bounded for ε ∈ (0, ε0]. Then, however, we conclude from
Lemma 3.3 that ε−1‖wε‖2

L2(Ω+) is bounded for ε ∈ (0, ε0]. Using (4.9) we see that ε−1‖wε‖2
L2(Ω−) is bounded

as well. However, the conclusion that ε−1‖wε‖2
L2(Ω) is bounded for ε ∈ (0, ε0] is a contradiction since by con-

struction ‖wε‖2
L2(Ω) = 1. Hence, the bound ‖vε‖L2(Ω) ≤ Cεs+1 holds for ε ∈ (0, ε0]. The three estimates stated

in the lemma now follow from the above inequalities precisely as in the proof of [9], Lemma 5.3. �

Now we proceed with an estimate for the first difference ‖uε − ũε,p‖H1(Ω+) appearing in (4.3).
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Theorem 4.5. Let p ∈ N0 and assume that g ∈ H̃p(Ω+), n2 ∈ Cp,1(Ω+,R) and Γ ∈ Cp+1,1
b . Then there is

ε0 > 0 and a constant C(p) independent of ε such that

‖uε − ũε,p‖H1(Ω+) ≤ C(p)εp+1 for ε ∈ (0, ε0].

Proof. We recall the definition of ũε,p in (2.10), the cut off function χ and the coordinates x = (xΓ, ν) in Ω−,
both introduced in Section 2, and define

ũε,p
χ (x) =

⎧⎪⎨
⎪⎩

p∑
�=0

ε�u�
+(x), x ∈ Ω+,

χ(x)
∑p

�=0 ε
�u�

−(xΓ, q/ε), x ∈ Ω−,

p ∈ N0. (4.10)

We will first prove an estimate for the difference ‖uε − ũε,p
χ ‖H1(Ω), where ũε,p

χ has been defined in (4.10). Since
ũε,p

χ = ũε,p in Ω+, the estimate stated in the theorem will follow.
In the proof of [9], Lemma 5.1, the authors show that the error eε,p := uε − ũε,p

χ satisfies the following
transmission problem,

Δeε,p + k2n2eε,p = 0 in Ω+,
∂eε,p

∂ν
= T+

n2
+
(eε,p) on Γa,

[u]Γ = 0,
[
∂u

∂ν

]
Γ

= εp ∂u
p
+

∂ν

∣∣∣∣
Γ

, Δeε,p + k2n2eε,p = gε,p in Ω−, (4.11)

where

gε,p(x) = −εp−1χ

8∑
�=1

�−1∑
j=0

εpA�−j−1u
k+j+1−�
− (xΓ, q/ε) + 2∇χ ·

p∑
�=0

ε�∇u�
− + Δχ

p∑
�=0

ε�∇u�
−,

for x = xΓ + qν ∈ Ω−. The computations leading to the form of gε,p are literally the same as in [9]. Also, the
proof that ‖gε,p‖L2(Ω−) ≤ Cεp−1/2 can be achieved as in that reference. The variational formulation for eε,p

in (4.11), obtained with the help of Green’s first identity, is

∫
Ω

(∇eε,p · ∇v − k2n2eε,pv
)

dx−
∫

Γa

v T+
n2

+
(eε,p) ds = εp

∫
Γ

∂up
+

∂ν
v ds−

∫
Ω−

gε,pv ds

for all v ∈ H1(Ω). Plugging in v = eε,p we find that

∣∣∣∣
∫

Ω

(
|∇eε,p|2 − k2n2|eε,p|2

)
dx−

∫
Γa

v T+
n2

+
(eε,p) ds

∣∣∣∣ ≤ εp

∥∥∥∥∂u
p
+

∂ν

∥∥∥∥
L2(Γ)

‖eε,p‖L2(Γ)

+ ‖gε,p‖L2(Ω−)‖eε,p‖L2(Ω−) ≤ Cεp‖eε,p‖L2(Γ) + Cεp−1/2‖eε,p‖L2(Ω−)

due to Lemma 4.2. From this estimate, we conclude by Lemma 4.4 that ‖eε,p‖H1(Ω) ≤ Cεp+1/2, ‖eε,p‖L2(Ω−) ≤
Cεp+3/2 and ‖eε,p‖L2(Γ) ≤ Cεp+1 for p ∈ N0. Therefore we can finally estimate

‖uε − ũε,p‖H1(Ω+) = ‖uε − ũε,p+1 + εp+1up+1
+ ‖H1(Ω+) = ‖uε − ũε,p+1

χ + εp+1up+1
+ ‖H1(Ω+)

≤ ‖uε − ũε,p+1
χ ‖H1(Ω+) + εp+1‖up+1

+ ‖H1(Ω+) ≤ Cεp+3/2 + Cεp+1.

For the latter bound we exploited Lemma 4.2 stating that up+1 is well defined in H1(Ω+) for data g ∈ H̃p(Ω+),
n2 ∈ Cp,1(Ω+) and Γ ∈ Cp+1,1

b . �
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Now we finish this section with the proof of the main theorem, Theorem 4.1, showing the convergence
uε,p → uε in H1(Ω+) of optimal order p+ 1 for p = 0, 1, 2.

Proof of Theorem 4.1. In view of (4.3) we only need to show that ‖ũε,p − uε,p‖H1(Ω+) ≤ Cεp+1. By (2.11) and
Lemma 4.2, the difference eε,p = ũε,p − uε,p ∈ H1(Ω+) solves

Δeε,p + k2n2eε,p = 0 in Ω+,
∂eε,p

∂ν
= T+

n2
+
(eε,p) on Γa, and eε,p +Dε,p

(
∂eε,p

∂ν

)
= εp+1rε,p on Γ,

where rε,p is given by (2.12). By Lemma 4.2 we observe that ‖rε,p‖H1/2(Γ) ≤ C(p) for p = 0, 1, 2. Now,
Theorem 3.5 yields the claim of Theorem 4.1. �

5. Stabilized GIBC of order 3

Let us now start to investigate the Neumann-to-Dirichlet impedance boundary condition of order 3, with
the aim to prove an analogous convergence result as in Theorem 4.1 for p = 3. As we saw in Section 2, formal
expansion yields the following candidate for a Neumann-to-Dirichlet impedance condition of order 3,

uε +
ε
√

2
2

(
(1 + i) −

√
2iεH − (1 − i)

ε2

2
(3H2 −G+ k2 + ΔΓ)

)
∂uε

∂ν
= 0 on Γ. (5.1)

The difficulty with this boundary condition is that the operator applied to the normal derivative is a tangential
differential operator of order 2. In contrast, the exact Neumann-to-Dirichlet operator is a pseudodifferential
operator of order −1, mapping H−1/2(Γ) continuously into H1/2(Γ). Also, the boundary condition in (5.1) vio-
lates the L2 coercivity assumption (3.6), since Im

∫
Γ u

ε (∂uε/∂ν) ds is indefinite. Our subsequent modifications
of (5.1), inspired by the analysis of a corresponding problem in a bounded setting [9], yield a condition of order 3
that satisfies (3.6). Note that these modifications are not crucial for the analysis of the bounded setting [9]. In
contrast, they seem to be crucial in our unbounded context, since the compactness arguments for the analysis
of (5.1) for a bounded obstacle from [9] certainly do not apply for our problem.

First considering all real terms of the boundary operator in (5.1), we formally compute that

ε
√

2
2

(
1 − ε2

2
(3H2 −G+ k2 + ΔΓ)

)
=
ε
√

2
2

(
1 − ε2

2
(3H2 −G+ k2) − ε2

2
(1 − ε2ΔΓ)−1ΔΓ

)
+ O(ε4),

since ΔΓ − (I − ε2ΔΓ)−1ΔΓ = −ε2Δ2
Γ(I − ε2ΔΓ)−1. We note that 1− ε2ΔΓ is bounded and coercive on H1(Γ),

hence invertible due to Lax-Milgram’s theorem, and that the term on the right constitutes a tangential differ-
ential operator on Γ of order 0. Next, we use a Padé approximation to change the sign of the surface Laplacian
appearing in the complex terms of (5.1). Using that (1 − ε2ΔΓ)(1 + ε2ΔΓ) = 1 − ε4Δ2

Γ, we find

ε
√

2
2

(
1 − ε

√
2H +

ε2

2
(3H2 −G+ k2 + ΔΓ)

)
=
ε
√

2
2

(
1
2
− ε

√
2H +

ε2

2
(3H2 −G+ k2) +

1
2

+
ε2

2
ΔΓ

)

=
ε
√

2
2

(
1
2
− ε

√
2H +

ε2

2
(3H2 −G+ k2) +

1
2
(
1 − ε2ΔΓ

)−1
)

+ O(ε4).
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Therefore we define a modified boundary operator D̂ε,3 for a generalized impedance boundary condition of
order 3 as follows,

D̂ε,3φ =
ε
√

2
2

(
1 − ε2

2
(3H2 −G+ k2) − ε2

2
(1 − ε2ΔΓ)−1ΔΓ

)
φ

+
iε
√

2
2

(
1
2
− ε

√
2H +

ε2

2
(3H2 −G+ k2) +

1
2
(
I − ε2ΔΓ

)−1
)
φ.

Using this operator, we define uε,3 via the following boundary value problem

Δuε,3 + k2n2uε,3 = g in Ω+,
∂uε,3

∂ν
= T+

n2
+
(uε,3) on Γa, u

ε,3 + D̂ε,3(∂uε,3/∂ν) = 0 on Γ. (5.2)

Three important properties of D̂ε,3 are collected in the next lemma, namely boundedness and coercivity
on L2(Γ), which results of in invertibility of D̂ε,3 on L2(Γ).

Lemma 5.1. There are constants ε0 > 0 and C independent of ε > 0 such that

‖D̂ε,3φ‖L2(Γ) ≤ Cε‖φ‖L2(Γ), Re〈D̂ε,3φ, φ〉 ≥ Cε‖φ‖2
L2(Γ), and

Im〈D̂ε,3φ, φ〉 ≥ Cε‖φ‖2
L2(Γ) for all φ ∈ L2(Γ) and ε ∈ (0, ε0]. (5.3)

Proof. We start with some preparations. First, the identity (I−ε2ΔΓ)(1−ε2ΔΓ)−1φ = φ for φ ∈ L2(Γ) implies
by one partial integration that∫

Γ

(
ε2∇Γ((1 − ε2ΔΓ)−1φ) · ∇Γψ + ((1 − ε2ΔΓ)−1φ)ψ

)
ds =

∫
Γ

(1 − ε2ΔΓ)−1φψ ds (5.4)

for all ψ ∈ H1(Γ). Setting ψ = (1 − ε2ΔΓ)−1φ and taking the complex conjugate of (5.4) we obtain

〈(I − ε2ΔΓ)−1φ, φ〉 = ‖(I − ε2ΔΓ)−1φ‖2
L2(Γ) + ε2‖∇Γ(I − ε2ΔΓ)−1φ‖2

L2(Γ) (5.5)

as well as setting ψ = ΔΓ(1 − ε2ΔΓ)−1 results by further integrations by parts in

− 〈ΔΓ(I − ε2ΔΓ)−1φ, φ〉 = ‖∇Γ(I − ε2ΔΓ)−1φ‖2
L2(Γ) + ε2‖ΔΓ(I − ε2ΔΓ)−1φ‖2

L2(Γ). (5.6)

The Cauchy-Schwarz inequality applied to (5.4) shows that ‖(I − ε2ΔΓ)−1φ‖2
L2(Γ) ≤ ‖φ‖2

L2(Γ). Therefore (5.5)
implies

ε2‖∇Γ(I − ε2ΔΓ)−1φ‖2
L2(Γ) ≤ ‖φ‖2

L2(Γ). (5.7)

The identity −ε2ΔΓ(I − ε2ΔΓ)−1 = I − (I − ε2ΔΓ)−1 and (5.5) finally shows that −ε2〈ΔΓ(I − ε2ΔΓ)−1φ, φ〉 ≤
‖φ‖2

L2(Γ) as well, and hence (5.6) yields ε4‖ΔΓ(I − ε2ΔΓ)−1φ‖2
L2(Γ) ≤ ‖φ‖2

L2(Γ).

A brief look at the definition of D̂ε,3 shows that we can write

D̂ε,3 = ε
(
aε −

√
2ε2/4 (1 − ε2ΔΓ)−1ΔΓ

)
+ iε

(
bε +

1
2
(
I − ε2ΔΓ

)−1
)

and that we observe that there is ε0 > 0 such that the coefficients aε and bε on Γ are bounded between two
constants 0 < c0 < C uniformly in ε ∈ (0, ε0]. Consequently,

〈D̂ε,3φ, ψ〉 = ε〈aεφ, ψ〉 −
√

2ε3

4
〈(1 − ε2ΔΓ)−1ΔΓφ, ψ〉 + iε〈bεφ, ψ〉 − iε

2
〈(I − ε2ΔΓ

)−1
φ, ψ〉
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for all ψ ∈ L2(Γ) and for ψ = φ we can estimate real and imaginary part of this expression from below due
to our above computations, c0‖φ‖2

L2(Γ) ≤ Re〈D̂ε,3φ, φ〉 and c0‖φ‖2
L2(Γ) ≤ Im〈D̂ε,3φ, φ〉. For an upper bound

on L2(Γ), we set ψ = D̂ε,3φ, which yields by the Cauchy-Schwarz inequality

‖D̂ε,3φ‖L2(Γ) ≤ Cε‖φ‖L2(Γ) + Cε3‖(I − ε2ΔΓ)−1ΔΓφ‖L2(Γ) + Cε‖(I − ε2ΔΓ)−1φ‖L2(Γ) ≤ Cε‖φ‖L2(Γ). �

Remark 5.2. If Γ ∈ C�,1
b for any � ∈ N, then D̂ε,3 is bounded on Hs(Γ) for arbitrary s ∈ R. Indeed, then the

curvatures H and G are smooth functions on Γ and Δs
Γ(aεφ) = ãεΔs

Γφ for a smooth function ãε that is bounded
by some constant independent of ε. Analogously, Δs

Γ(bεφ) = b̃εΔs
Γφ. Further, Δs

Γ(1−ε2ΔΓ)−1 = (1−ε2ΔΓ)−1Δs
Γ

and therefore

〈Δs
ΓD̂ε,3φ,Δs

Γψ〉 = ε〈ãεΔs
Γφ,Δ

s
Γψ〉 −

√
2ε3

4
〈(1 − ε2ΔΓ)−1Δs+1

Γ φ,Δs
Γψ〉

+ iε〈b̃εΔs
Γφ,Δ

s
Γψ〉 −

iε
2
〈(I − ε2ΔΓ

)−1
Δs

Γφ,Δ
s
Γψ〉.

Taking ψ = D̂ε,3φ we find ‖Δs
ΓD̂ε,3φ‖L2(Γ) ≤ Cε‖Δs

Γφ‖L2(Γ) for φ ∈ H2s(Γ) with C independent of ε. We
conclude by interpolation in the scale of Sobolev spaces between L2(Γ) and H2s(Γ) and a duality argument.

In combination with the abstract existence result from Theorem 3.4, the last lemma easily shows existence
of a solution uε,3 ∈ H1(Ω+) to the generalized impedance boundary value problem

Δu + k2u = g in Ω+,
∂u

∂ν
= T+

n2
+
(u) on Γa, u+ D̂ε,3

(
∂u

∂ν

)
= h on Γ. (5.8)

Before stating this existence result in the following corollary, we note that the variational form of the problem
reads ∫

Ω+

(∇u · ∇v − k2uv
)

ds−
∫

Γa

v T+
n2

+
(u) ds+

∫
Γ

vD̂−1
ε,3(u) ds = −

∫
Ω+

gv dx+
∫

Γ

vD̂−1
ε,3h ds (5.9)

for all v ∈ H1(Ω+). Note that D̂−1
ε,3 is indeed boundedly invertible on L2(Γ) for ε in some interval (0, ε0] due to

its coercivity.

Corollary 5.3. For g ∈ L2(Ω+) and h ∈ L2(Γ) there is a unique solution uε,3 ∈ H1(Ω+) of the variational
problem (5.9) which satisfies

‖uε,3‖H1(Ω+) + C1

√
ε

∥∥∥∥∂uε,3

∂ν

∥∥∥∥
L2(Γ)

≤ C2

(‖g‖L2(Ω+) + ‖h‖L2(Γ)

)

for C1,2 independent of ε ∈ (0, ε0].

Now we prove our main result of this section, which proves order optimal error estimate for the approximation
error ‖uε − uε,3‖H1(Ω+). Of course, we use several of the technical lemmas contained in the previous Section 4.
The error estimate given here requires severe smoothness assumptions on the data g, n2 and Γ and we state
those assumptions explicitly.

Theorem 5.4. Assume that g ∈ H̃7(Ω+), n2 ∈ C7,1(Ω+,R) and that Γ ∈ C8,1
b . Then there are constants ε0 > 0

and C > 0 independent of ε ∈ (0, ε0] such that

‖uε − uε,3‖H1(Ω+) ≤ Cε4. (5.10)



ASYMPTOTIC MODELS FOR SCATTERING FROM UNBOUNDED MEDIA WITH HIGH CONDUCTIVITY 1315

Proof. As in (4.3) we split the quantity we need to estimate in two parts,

‖uε − uε,3‖H1(Ω+) ≤ ‖uε − ũε,3‖H1(Ω+) + ‖ũε,3 − uε,3‖H1(Ω+).

The first part has been already treated in Lemma 4.5. For the second part, we note that eε,3 := ũε,3 − uε,3

solves

Δeε,3 + k2n2eε,3 = 0 in Ω+,
∂eε,3

∂ν
= T+

n2
+
(eε,3) on Γa, and eε,3 + D̂ε,3

(
∂eε,k

∂ν

)
= ε4r̂ε,3 on Γ.

The right hand side r̂ε,3 is different from rε,3 given in (2.12), since r̂ε,3 relies on the modified boundary opera-
tor D̂ε,3 instead of Dε,3. More precisely,

ε4r̂ε,3 = ε4rε,3 +
(
D̂ε,3 −Dε,3

)(∂ũε,3

∂ν

)
·

From the definition (2.12) and Lemma 4.2 it follows that ‖rε,3‖L2(Γ) is bounded by some constant independent
of ε. However, the difference D̂ε,3 −Dε,3 is, modulo constants independent of ε, sum of the two terms

ε2ΔΓ − ε2(I − ε2ΔΓ)−1ΔΓ = −ε4Δ2
Γ(I − ε2ΔΓ)−1

and
1 + ε2ΔΓ − (1 − ε2ΔΓ)−1 = ε4Δ2

Γ(1 − ε2ΔΓ)−1.

Thus, to show that ‖(D̂ε,3 −Dε,3)(∂ũε,3/∂ν)‖L2(Γ) ≤ C for C independent of ε, we need to prove that

‖Δ2
Γ(1 − ε2ΔΓ)−1(∂ũε,3/∂ν)‖L2(Γ) = ‖(1 − ε2ΔΓ)−1Δ2

Γ(∂ũε,3/∂ν)‖L2(Γ)

is bounded independent of ε. In the proof of Lemma 5.1 we showed that ‖(I−εΔΓ)−1φ‖L2(Γ) ≤ ‖φ‖L2(Γ). There-
fore it is sufficient to show that ‖Δ2

Γ(∂ũε,3/∂ν)‖L2(Γ) is bounded independent of ε, that is, ‖∂ũε,3/∂ν‖H4(Γ) < C.
Lemma 4.2 shows that such a bound is guaranteed if g, n2 and Γ are smooth enough; for our purpose,
g ∈ H̃7(Ω+), n2 ∈ C7,1

b (Ω+) and Γ ∈ C8,1
b are sufficient. If all data is smooth enough, an application of

Theorem 3.4 finishes the proof. �

6. Numerical experiments

This section is dedicated to the presentation of some numerical results that underline the usefulness of the
derived GIBCs, especially the interest in the condition of order 3. Our experiments are restricted to the 2-D
case. Since we treated rough surface scattering problems by variational methods, we opted for the use of finite
element methods to compute the numerical solution using the FreeFem++ library (http://www.freefem.org/
ff++). The major difficulty linked to the use of volumic methods is the truncation of the computational domain.
One possible approach is the use of Dirichlet-to-Neumann maps introduced in the second section of this paper.
The second possibility, adopted here, is the use of so-called perfectly matched absorbing layers (PML) (see
Fig. 2). We refer to [3] for a description of this method in the context of rough surface scattering problems.
However, the available approximation theory so far only considers horizontal truncation of the computational
domain – little is known on stability and approximation of a fully discrete problem posed on a bounded domain.
Therefore, the numerical results presented in the following intend to only give first numerical validations and
also hints on numerical difficulties that need to be addressed in future works.

Following [3], we used a PML which covers the three exterior sides of the computational domain. Again,
there is no theory validating this choice; the PML method can only be justified if an infinite horizontal layer
is used above the rough surface. However, the option we used gave better results than, e.g., simply imposing

http://www.freefem.org/ff++
http://www.freefem.org/ff++
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PML

Computational domain

Γ

Source

Figure 2. The numerical experiments settings.
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Figure 3. Left: surface profile: f(t) = 3.5+0.2 cos(t− 3)+0.4 exp(−(t− 3)2). Right: relative
L2 error versus ε (log-log scale) for GIBCs of order 0, 1, 2 and 3.

Dirichlet boundary conditions at the vertical cut-off. The choice of the width of the computational domain in
the horizontal direction is certainly a key point for the accuracy of the approximate solutions. This is evident
from the slow decay (proportional to |x1|−3/2) of the fundamental solution of the Helmholtz equation in a half
space with Dirichlet boundary conditions.

The two examples shown in Figures 3 and 4 correspond to a computational domain which is 100 λ large in
horizontal direction, where λ = 2π/k (= 1 in our cases). When approximating the absorbing medium scattering
problem (1.4) we work on a domain that is 5 λ thick. The PML width is λ and we use an (optimized) linear
profile for the absorption coefficient going from 1 at the inner boundary of the PML to σ0 = 5.75 + 3i at the
outer boundary (see [3]). The numerical examples are computed using P2 finite elements. A reference solution
is computed using a fine mesh of the two layered medium.

We observe in both experiments that the use of higher order GIBCs significantly improves the accuracy of
the approximate model. For all GIBCs, the error decreases with respect to ε. However, we failed in obtaining
confirmation of convergence rates predicted by our theory. This seems to be mainly due to the numerical error
induced by lateral bounds of the computational domain. Finer meshes for the computation of the reference
solutions did not change the results considerably. We observed that the residual error due to this truncation
cannot be made smaller than 1%, which would also explain why the three curves (for GIBCs) meet for small ε.
We therefore think that the design of an efficient method to bound the computational domain constitutes
one important step before going deeper in the numerical validation of these approximate boundary conditions.
Addressing this issue is far beyond the scope of the present work.
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Figure 4. Left: surface profile: f(t) = 3.5 + 0.2 cos(1.3t − 3) − 0.4 exp(−(t − 3)2). Right:
relative L2 error versus ε (log-log scale) for GIBCs of order 0, 1, 2 and 3.

We end this discussion by noticing that when comparing the two examples, one observes that better results
are obtained for rough surfaces with less sharp variations, which is somehow a predictable behavior since more
regularity is needed for higher order GIBCs. Also, the difference between the conditions of order 1 and 2 is not
too large, which is in accordance with theory, since the surface oscillation in our examples is small compared to
the wavelength.
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