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PROBABILISTIC INTERPRETATION AND RANDOM WALK
ON SPHERES ALGORITHMS FOR THE POISSON-BOLTZMANN EQUATION
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Abstract. Motivated by the development of efficient Monte Carlo methods for PDE models in molec-
ular dynamics, we establish a new probabilistic interpretation of a family of divergence form operators
with discontinuous coefficients at the interface of two open subsets of Rd. This family of operators
includes the case of the linearized Poisson-Boltzmann equation used to compute the electrostatic free
energy of a molecule. More precisely, we explicitly construct a Markov process whose infinitesimal
generator belongs to this family, as the solution of a SDE including a non standard local time term
related to the interface of discontinuity. We then prove an extended Feynman-Kac formula for the
Poisson-Boltzmann equation. This formula allows us to justify various probabilistic numerical meth-
ods to approximate the free energy of a molecule. We analyse the convergence rate of these simulation
procedures and numerically compare them on idealized molecules models.
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1. Introduction

This paper deals with two closely related questions. First, we establish a novel probabilistic interpretation
of divergence-form operators in Rd, d ≥ 1, of the form

L = ∇ · (ε(x)∇), (1.1)

where ε is a piecewise constant function from Rd to (0,+∞) with a smooth discontinuity manifold Γ. Second,
we derive from this probabilistic interpretation numerical Monte Carlo methods for the linearized Poisson-
Boltzmann equation in molecular dynamics [2,3] (which is actually a Poisson equation in the classical PDE
terminology):

−∇ · (ε(x)∇u(x)) + κ2(x)u(x) = f(x), x ∈ R3, (1.2)
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2 IMATH, Université du sud Toulon-Var, France. maire@univ-tln.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2010

http://dx.doi.org/10.1051/m2an/2010050
http://www.esaim-m2an.org
http://www.edpsciences.org


998 M. BOSSY ET AL.

where

ε(x) =

{
εint > 0 if x ∈ Ωint,

εext > 0 if x ∈ Ωext,
κ(x) =

{
0 if x ∈ Ωint,

κ̄ > 0 if x ∈ Ωext,
(1.3)

Ωint and Ωext being two open subsets of R3; Ωint is bounded with boundary Γ, Ωint ∩ Ωext = ∅, and
Ωint ∪ Ωext = R3 (see Fig. 1). We also define ε(x) = εint and κ(x) = 0 for all x ∈ Γ, although the precise
value of these functions on Γ has no influence on the results of this paper. The source term is

f :=
N∑

i=1

qiδxi , (1.4)

where δx denotes the Dirac unit measure at x ∈ R3, xi ∈ Ωint and qi ∈ R for all i ∈ {1, . . . , N}. This Poisson-
Boltzmann equation describes the electrostatic potential around a biomolecular assembly, composed of N atoms
at position xi and with charges qi. The set Ωint is the interior of the molecule, that is, the union of finitely
many spheres representing the atoms of the molecules. The set Ωext is the exterior of the molecule.

It is well known that general divergence form operators define symmetric Dirichlet forms. The connection
between symmetric Dirichlet forms and Dirichlet Markov processes is well developed [8]. In general, such
processes can be decomposed into a local martingale and a zero-quadratic variation part with possibly infinite
variation. They can also be decomposed into the sum of two processes which are semimartingales w.r.t. two
different filtrations (see, e.g., [30]). Both decompositions involve processes which are only implicitly defined,
which makes impossible to derive from them Monte Carlo approximations of u(x) (discretization schemes for
general Dirichlet processes have recently been developed in [18] but their numerical efficiency is questionable).

In the one dimensional case (d = 1), one can develop other probabilistic interpretations which are suitable
to Monte Carlo simulations, for example in terms of stochastic differential equations (SDEs) involving the local
time of the solution: in the case where ε(x) = εint if x < 0 and ε(x) = εext if x ≥ 0, such a SDE writes

dXt =
√

2ε(Xt)dBt +
εext − εint

2εext
dL0

t (X), (1.5)

where L0
t (X) stands for the local time at point 0 of the continuous semimartingale X (see e.g. Protter [26],

Sect. IV.7, for a definition). For existence and uniqueness of a solution to this SDE, see, e.g., Portenko [24,25]
and Le Gall [14]. Numerical approximations of the process (Xt) have been developed and analyzed by Lejay [15],
Lejay and Martinez [17], Martinez [21], Martinez and Talay [22].

In the multidimensional case (d > 1), the situation is not so well understood. Our goal here is to construct
a Markov process whose generator is L and which can easily be simulated on a computer. We take advantage
of the particular structure of ε(x).

The paper is organized as follows. Section 2 is devoted to the probabilistic interpretation of the opera-
tor (1.1). After giving some notation (Sect. 2.1), we define the adequate martingale problem for the operator L
in Section 2.2. In Section 2.3, the SDE corresponding to the operator L is defined and a weak solution X
is constructed. Next, we extend Itô’s formula to the process to X and to functions having a discontinuous
normal gradient on Γ in Section 2.4. The relationship between X and solutions of the martingale problem of
Section 2.2 is then established in Section 2.5. Next, well-posedness of the martingale problem and the strong
Markov property for X are proved in Section 2.6. Finally, in Section 2.7, Feynman-Kac’s formula is extended
to the solution of PDEs involving the operator (1.1). Section 3 is devoted to the probabilistic interpretation of
Poisson-Boltzmann equation (Sect. 3.1), and to the description of Monte Carlo resolution algorithms, based on
various discretizations of the process X , which extend the algorithm proposed by Mascagni and Simonov [23]
(Sect. 3.2). These algorithms, described in Section 3.3, are based on walk on spheres techniques inside and
outside the molecule, and either on explicit computations extending the ones of [23], or on neutron transport
type approximations when the particle lies on the set of discontinuity Γ. Section 4 is devoted to the error
analysis of the algorithms, first in the case where Ωint is a single sphere (Sect. 4.1), and next in the general case
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Figure 1. Definition of Ωint, Ωext, Γ, ε(x) and κ(x).

(Sect. 4.2). Finally, Section 5 presents numerical results in the case of one and two atoms. In particular, we
show that our new methods improve significantly the methods in [23], and that the neutron transport method
offers a better trade-off between error and computational time than the other methods.

1.1. Notation

Throughout this paper, we use the following functional spaces.
• For all open subset of Rd, the set Ck(D) (resp. Ck

b (D), resp. Ck
c (D)) is the set of k times continuously

differentiable functions on D (respectively with bounded derivatives of all order between 0 and k, or
with compact support in D).

• If the set D has a C1 boundary Γ but is not open, the sets Ck(D), Ck
b (D) and Ck

c (D) are defined as the

sets Ck(
◦
D), Ck

b (
◦
D) and Ck

c (
◦
D), respectively, with the additional property that derivatives of all order

up to k can be continuously extended to Γ ∩D.
• C(D), Cb(D) and Cc(D) denote the sets C0(D), C0

b (D) and C0
c (D), respectively.

• For p ∈ [1,∞] and k ≥ 1, the set W k,p(D) (resp. W k,p
loc (D)) is the set of functions admitting derivatives

in the sense of the distributions in Lp(D) (respectively Lp
loc(D)) up to order k.

• We respectively denote the sets W k,2(D) and W k,2
loc (D) by Hk(D) and Hk

loc(D).
Moreover, for all differentiable function φ, J(φ) denotes the Jacobian matrix of φ, the standard Euclidean scalar
product between u, v ∈ Rd is denoted by u · v, and the Euclidean norm of u by ‖u‖.

2. Probabilistic interpretation of divergence form operators

with a piecewise constant coefficient

In this section we construct a stochastic Markov process whose infinitesimal generator is the divergence form
operator (1.1), we extend several stochastic calculus tools to this process, and we connect this process to elliptic
PDEs driven by the operator (1.1).

We assume that the dimension d ≥ 1 is arbitrary. We also assume that Ωint is a bounded open simply
connected set with boundary Γ := ∂Ωint

3, and that Ωext = Rd \ (Ωint ∪ Γ). Unless explicitly mentioned, the
compact manifold Γ is assumed to be of class C3.

3The assumption that Ωint is simply connected can easily be relaxed. We restrict to the simply connected case for simplicity,
and because this case is relevant in Molecular Dynamics.
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Figure 2. Definition of π(x) and n(π(x)).

2.1. A particular family of homeomorphisms in a neighbourhood of Γ

Since the boundary Γ is smooth, one can construct a mapping π of class C2
b from a neighborhood N of Γ

to Γ such that

|x− π(x)| = d(x,Γ), ∀x ∈ N ,

where d(x,Γ) denotes the distance between x and the set Γ. For all x ∈ Γ, let n(x) denote the unit vector
normal to Γ at x and pointing in the direction of Ωext (see Fig. 2). Finally, for all x ∈ N , set

ρ(x) := (x − π(x)) · n(π(x));

thus ρ(x) is the signed distance to Γ (positive in Ωext, negative in Ωint) and is of class C2
b (N ) (actually, it is

even C3
b (N ) by (2.1) below). We still denote by ρ a C2

b (Rd) extension of this function to the whole Euclidean
space. It is well-known that

∇ρ(x) = n(π(x)), ∀x ∈ N (2.1)

(see e.g. [9], p. 355). Note that, reducing N if necessary, we can always assume that π is C2
b (N ).

Our construction of a stochastic process admitting (1.1) as generator makes use of the following family local
straightenings of Γ.

Proposition 2.1. There exists a family of bounded open subsets of N , {U1, . . . ,UM−1} such that Γ ⊂ ∪M−1
i=1 Ui,

and a family of functions {ψ1, . . . , ψM−1} such that, for all 1 ≤ i ≤ M − 1, ψi = (ψ1
i , . . . , ψ

d
i ) is a C2

b

diffeomorphism from Ui to ψi(Ui), admitting a C2
b extension on Ui and satisfying for all x ∈ Ui

ψ1
i (x) = ρ(x), (2.2)

∇ψk
i (x) · n ◦ π(x) = 0, ∀k ∈ {2, 3, . . . , d}, (2.3)

∂ψ−1
i

∂x1
(ψi(x)) = n ◦ π(x). (2.4)

Note that, by (2.2), ψi(Ui ∩ Γ) ⊂ {0} × Rd−1, which justifies the term “local straightening”. Before proving
this result, we introduce a modification of these functions used repeatedly in the sequel. Define the function
F : Rd → Rd by

F (x1, . . . , xd) :=
(

x1

ε#(x1)
, x2, . . . , xd

)
, ∀x ∈ Rd, (2.5)
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where ε# : R → R is given by

ε#(x) :=

{
εint if x ≤ 0
εext if x > 0.

(2.6)

Then, for all 1 ≤ i ≤ d, we define the homeomorphism

ψ̄i(x) = F ◦ ψi(x), ∀x ∈ Ui, (2.7)

and Vi = ψ̄i(Ui). Note that ψ̄1
i is continuous but not C1 on Γ, and ψ̄2

i , . . . , ψ̄
d
i are C1. Finally, let UM = VM be

an open subset of Rd such that Γ ∩ UM = ∅ and ∪M
i=1Ui = Rd, and set ψ̄M (x) := x on UM .

Proof. As a C3 submanifold of Rd, Γ can be locally represented as the graph of a C3 function. More precisely,
for each x ∈ Γ, there exists a neighborhood Ux ⊂ Rd of x, an index j(x) ∈ {1, . . . , d} and a C3

b (Rd−1) function ϕx

such that for all y ∈ Γ ∩ Ux, yj(x) = ϕx(y(j(x))), where x(j) = (x1, . . . , xj−1, xj+1, . . . , xd) for all 1 ≤ j ≤ d.
Without loss of generality, we can assume that Ux ⊂ N and that π(Ux) ⊂ Ux for all x ∈ Γ (it suffices to replace
the set Ux by U ′

x = {x ∈ N : π(x) ∈ Ux ∩ Γ}).
Since Γ is compact, there exists x1, . . . , xM−1 in Γ such that Γ ⊂ ∪M−1

i=1 Ui, where Ui = Uxi . For all 1 ≤ i ≤
M − 1, let ji := j(xi), ϕi := ϕxi and define

ψi(x) :=
(
ρ(x), π(ji)(x)

)
=
(
ρ(x), π1(x), . . . , πji−1(x), πji+1(x), . . . , πd(x)

)
, ∀x ∈ Ui. (2.8)

Now,
x = π(x) + ρ(x)n ◦ π(x), ∀x ∈ N . (2.9)

Therefore, since π ∈ C2
b (N ) and

ϕi

(
π1(x), . . . , πji−1(x), πji+1(x), . . . , πd(x)

)
= πji (x), ∀x ∈ Ui,

one can check that ψi is a C2 diffeomorphism from Ui to ψi(Ui) with inverse map

(ψi)−1(y1, . . . , yd) = ϕ̃i(y2, . . . , yd) + y1n (ϕ̃i(y2, . . . , yd)) ,

where ϕ̃i(y′) = (y′1, . . . , y
′
ji−1, ϕi(y′), y′ji

, . . . , y′d−1) for all y′ ∈ Rd−1. This immediately implies (2.4). More-
over, (2.8) defines ψi as a C2

b function on Ui.
Therefore, it only remains to check (2.3). This is clearly a consequence of the formula

Jπ(x) n ◦ π(x) = 0, ∀x ∈ N , (2.10)

which can be proved as follows. Observe first that, by (2.1), J(n◦π)(x) n◦π(x) = ∇2ρ(x)∇ρ(x), where ∇2ρ(x)
denotes the Hessian matrix of ρ at x. The i-th coordinate of this vector is

d∑
j=1

∂2ρ

∂xi∂xj
(x)

∂ρ

∂xj
(x) =

1
2
∂

∂xi
(‖∇ρ(x)‖2) = 0,

which entails J(n ◦ π)(x) n ◦ π(x) = 0. It then follows from (2.9) and (2.1) that

Jπ(x) n ◦ π(x) = n ◦ π(x) − J(ρ n ◦ π)(x) n ◦ π(x) = −ρ(x)J(n ◦ π)(x) n ◦ π(x) = 0,

which ends the proof of Proposition 2.1. �
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2.2. A martingale problem

When the coefficients of an elliptic operator are locally bounded functions, the probabilistic interpretation
of elliptic and parabolic PDEs driven by this operator relies on the Stroock and Varadhan martingale problem
(see [36]): one needs to prove the existence and uniqueness of the family of probability measures solving this
problem, and that this solution enjoys the strong Markov property. Here, due to the discontinuity of ε(x),
expanding the derivative in the definition of the operator L would formally lead to some of the coefficients equal
to measures. This leads us to modify the statement of the classical martingale problem. The proof of existence
and uniqueness of the solution needs also specific arguments: see our comments below.

In our context a relevant martingale problem is as follows. Let (C,B, (Bt, t ≥ 0)) be the set C of continuous
functions w from [0,+∞) to Rd endowed with the Borel cylindrical σ-field B and the canonical filtration
(Bt, t ≥ 0).

Definition 2.2.
(a) A family of probability measures (Px)x∈Rd on (C,B) solves the martingale problem for the operator L

if, for all x ∈ Rd, one has
Px{w ∈ C : w(0) = x} = 1, (2.11)

and, for all ϕ satisfying

ϕ ∈ C0
b (Rd) ∩ C2

b (Rd \ Γ), (2.12)

ε∇ϕ · (n ◦ π) ∈ C0
b (N ), (2.13)

one has

the process Mϕ
t (w) := ϕ(w(t)) − ϕ(w(0)) −

∫ t

0

Lϕ(w(s))ds is a Px − (Bt) martingale. (2.14)

(b) The martingale problem is well-posed if there exists a unique family of probability measure (Px)x∈Rd

which solves the martingale problem for the operator L.

Remark 2.3. The equality (2.13) means that

εint∇intϕ(x) · n(x) = εext∇extϕ(x) · n(x), ∀x ∈ Γ, (2.15)

where
∇intϕ(x) := lim

y∈Ωint, y→x
∇ϕ(y) and ∇extϕ(x) := lim

y∈Ωext, y→x
∇ϕ(y), ∀x ∈ Γ.

Note that these two functions are well defined under assumption (2.12). Note also that the transmission
property (2.15) has strong links with the operator L, as it is satisfied by the solutions of linear elliptic PDEs
involving the operator L under very general conditions [12].

For SDEs associated to elliptic operators L with locally bounded coefficients, the set of test functions ϕ
can be chosen as the class of C∞

b functions, or the class of continuous bounded functions ϕ such that Lϕ is
continuous and bounded (see, e.g., [7,10,11,28,36]). In our case, one of the difficulties in solving the martingale
problem is that the function Lϕ cannot be continuous except for very specific ϕ. However, if ϕ satisfies the
condition (2.12), it is clear that Lϕ is well-defined and continuous on Rd \ Γ. Now, from Green’s identity, for
all ψ ∈ C1

0 (Rd), we have∫
Rd

ψLϕ = −
∫

Ωext

ε∇ψ · ∇ϕ−
∫

Ωint

ε∇ψ · ∇ϕ

= εext

∫
Ωext

ψΔϕ+ εint

∫
Ωint

ψΔϕ+
∮

Γ

εintψ∇intϕ · n−
∮

Γ

εextψ∇extϕ · n. (2.16)
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Thus, if ϕ satisfies condition (2.15), we have

‖ψLϕ‖L1(Rd) ≤ C‖ψ‖L1(Rd),

for a constant C which only depends on ϕ. This means that Lϕ, defined in the sense of the distributions, is
L∞(Rd) with norm less than C. This observation is crucial in the sequel.

We now proceed to the proof of the existence of a solution to the martingale problem. To this end we
construct a weak solution to a stochastic differential equation with weighted local time at the boundary Γ.

2.3. Existence of a weak solution to a SDE with weighted local time at Γ

For all x in Rd consider the SDE⎧⎨
⎩Xt = x+

∫ t

0

√
2ε(Xθ)dBθ +

εext − εint

2εext

∫ t

0

n(Xθ)dL0
θ(Y ),

Yt = ρ(Xt).
(2.17)

Here, L0(Y ) stands for the local time at point 0 of the continuous semimartingale Y . Notice that the integral∫ t

0
n(Xθ)dL0

θ(Y ) is well defined since the Stieljes measure dL0
θ(Y ) increases only when Xθ belongs to Γ.

In this subsection we exhibit a weak solution to (2.17), which means that there exist a filtered probability
space equipped with a probability measure Px, a standard d-dimensional Brownian motion (Bt, t ≥ 0) and a
continuous process (Xt, t ≥ 0) on this space such that (2.17) holds true for all t > 0, Px-a.s. We emphasize
that (2.17) is not a classical stochastic differential equation for two reasons: first, the diffusion coefficient is
discontinuous; second, the dynamics of (Xt) is driven by the weighted local time of the auxiliary process (Yt).
In particular, the process (Xt) is not at all a straightforward extension of the classical one dimensional skew
Brownian motion.

Theorem 2.4. Assume that Γ is a compact C3 submanifold of Rd. Then there exists a weak solution to the
SDE (2.17).

Proof. To simplify the notation we limit ourselves to the dimension d = 2. The generalization to an arbitrary
dimension d ≥ 1 is straightforward.

Let B be a 2-dimensional Brownian motion on a given filtered probability space (Ω,F , (Ft)t≥0,P), and let W
be an independent one-dimensional Brownian motion on the same space. Recall definitions (2.6) and (2.7) of
ε# and ψ̄i.

• Fix 1 ≤ i ≤M − 1, z ∈ Vi and consider the following SDE with initial condition z:

dξ1t =

√
2

ε#(ξ1t )
dWt, (2.18)

dξ2t =
√

2ε#(ξ1t )∇ψ̄2
i ((ψ̄i)−1(ξt)) · dBt, (2.19)

where ξt := (ξ1t , ξ2t ). Note that the function ∇ψ̄2
i ◦ (ψ̄i)−1 is only defined on Vi, but, since it is actually

C1
b on this closed set, it may be extended on R2 as a C1

b (R2) function. We still denote by ∇ψ̄2
i ◦ (ψ̄i)−1

such an extension. Then, the SDE (2.18)–(2.19) is well-defined on R2. Note that the specific choice of
this extension is arbitrary and plays no role in our proof.

Although the diffusion coefficient is discontinuous, strong existence and pathwise uniqueness are
known for the one-dimensional SDE (2.18) (cf. e.g. [11]). Moreover, the diffusion coefficients of (2.19)
have a discontinuous dependency in ξ1t but a Lipschitz dependency in ξ2t . Therefore the SDE (2.19) also
has a unique strong solution (see, e.g., [36], Thm. 5.1.1).
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• In the case where i = M , for all z ∈ VM = UM , we consider the following SDE with initial condition z:

dξt =
√

2ε̂(ξt)dBt, (2.20)

where ε̂ ∈ C∞
b (R2) and ε̂(x) = ε(x) for all x ∈ UM . Strong existence and pathwise uniqueness obviously

hold true for this SDE.
We can now start the construction of a weak solution to (2.17). Given the initial condition x, let

i1 := min
{
i ∈ {1, . . . ,M} : d(x,Uc

i ) = max
1≤j≤M

d(x,Uc
j )
}
, (2.21)

be the smallest integer i such that the distance between x and Uc
i is maximal. Let Z(1) be the solution

of (2.18)–(2.19) with i = i1 if i1 ≤M − 1 or of (2.20) if i1 = M , such that Z(1)
0 = ψ̄i1(x). Consider the stopping

time4

τ1 := inf{t ≥ 0 : Z(1)
t �∈ Vi1} ∧ 1.

Then set
Xt := (ψ̄i1)

−1(Z(1)
t ), ∀t ≤ τ1.

The process X is then constructed inductively as follows: assume that it has been constructed until the
time τk with k ≥ 1, and define the random variable

ik+1 := min
{
i ∈ {1, . . . ,M} : d(Xτk

,Uc
i ) = max

1≤j≤M
d(Xτk

,Uc
j )
}
.

Let Z(k+1) be the solution of (2.18)–(2.19) with i = ik+1 if ik+1 ≤ M − 1 or of (2.20) if ik+1 = M , with
initial condition Z(k+1)

τk = ψ̄ik+1(Xτk
) at time τk. Define

τk+1 := inf{t ≥ τk : Z(ik+1)
t �∈ Vik+1} ∧ (τk + 1),

and
Xt := (ψ̄ik+1)

−1(Z(k+1)
t ), ∀τk ≤ t ≤ τk+1.

Suppose that we have proven that the increasing sequence τk almost surely converges to +∞ (see Lem. 2.5
below). Then the process X is a.s. well defined on all finite time interval.

Now, since Xt = (ψ̄ik
)−1(Z(k)

t ) = F−1 ◦ (ψik
)−1(Z(k)

t ) for all τk−1 ≤ t ≤ τk, applying first Itô’s formula to
(ψik

)−1 and next Itô-Tanaka’s formula to F−1 we have

dXt =
√

2ε(Xt)dB̂t +
εext − εint

2εext
n(Xt)dL0

t (Yt) + ε(Xt)
∞∑

k=1

�{τk−1≤t<τk}�{ik 	=M}

(
∂2(ψik

)−1

∂x2
1

(ψik
(Xt))

+
∂2(ψik

)−1

∂x2
2

(ψik
(Xt))|∇ψ2

ik
(Xt)|2

)
dt (2.22)

for all t ≥ 0, where Yt := ρ(Xt), with the convention that τ0 = 0.
The second term of the right-hand side is a consequence of (2.4). The two-dimensional process B̂ in the first

term of the right-hand side of (2.22) is defined as follows: B̂0 = 0 and, for any k ≥ 1 and for τk−1 ≤ t ≤ τk,

B̂t = B̂τk−1 + �{ik≤M−1}

∫ t

τk−1

J((ψik
)−1)(Z(k)

s )
(

dWs

∇ψ2
ik

((ψik
)−1(Z(k)

s )) · dBs

)
+ �{ik=M}(Bt −Bτk−1).

4By definition τ1 ≤ 1 a.s.: this bound avoids us, here and in the sequel, to distinguish the cases τ1 is finite or infinite, which
simplifies details in the proofs of Lemma 2.5 and Theorem 2.12.
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It follows easily from the equality J(ψ−1
m )(ψm(x))J(ψm)(x) = Id for all x ∈ Um and 1 ≤ m ≤ M − 1 that, for

all k ≥ 1 and τk−1 ≤ t < τk,

dB̂t = dBt + �{ik≤M−1}
(
− n(π(Xt))

(
n(π(Xt)) · dBt

)
+ n(π(Xt))dWt

)
,

which implies that B̂ is a standard Brownian motion in R2 by Lévy’s theorem ([11], Thm. 3.3.16).
Finally, since ε(·) is bounded away from zero and the last drift term of the SDE (2.22) is bounded, it classically

follows from Girsanov’s theorem that, for all 0 ≤ t ≤ T , there exists a Q-Brownian motion B̃, where Q is a
probability measure on FT equivalent to P, such that X solves up to time T equation (2.17) driven by the
Brownian motion B̃. This ends the construction of a weak solution to (2.17). �

In the preceding proof we have admitted the following lemma.

Lemma 2.5. The increasing sequence τk almost surely converges to +∞.

Proof. Here again, we will assume that d = 2 for simplicity. The argument obviously extends to higher
dimensions.

For any i ∈ {1, . . . ,M} and any x ∈ ∂Ui, supj 	=i d(x,Uc
j ) is positive and continuous with respect to x ∈ ∂Ui.

Since Ui is bounded for 1 ≤ i ≤ M − 1 and ∂UM ⊂ ⋃n−1
i=1 Ui, the set ∂Ui is compact for any i ∈ {1, . . . ,M}.

Hence,

ρ := inf
1≤i≤M

inf
x∈∂Ui

sup
j 	=i

d(x,Uc
j ) > 0.

Then, it is clear from the definition of ik and τk that either τk = τk−1 +1 or ‖Xτk
−Xτk−1‖ ≥ ρ. The idea of this

proof is to prove that, almost surely, τk −τk−1 ≥ T infinitely often w.r.t. k ≥ 1 for T small enough. Without the
local time and drift terms and if the diffusion coefficient were constant in (2.22), this event would be implied by
the event

{
supt∈[τk−1,τk−1+T ] |Bt − Bτk−1 | ≤ ρ′ infinitely often

}
for some ρ′ > 0, which has probability one by

Borel-Cantelli’s lemma and the strong Markov property of the Brownian motion. In our case, we use a similar
argument, but with a more involved justification.

In order to get rid of the local time term, we use the sequence of processes (Z(k))k defined in the proof of
Theorem 2.4. If T < 1, the event {τk − τk−1 ≥ T } is implied by the event

{
sup

0≤t≤T

∣∣Z(k)
τk−1+t − Z(k)

τk−1

∣∣ ≤ ρ′
}

(2.23)

for some ρ′ > 0 depending on ρ and on max1≤i≤M maxx∈Vi J(ψ̄i)−1(x).
Now, Z(k) solves (2.18)–(2.19) for i = ik if ik ≤ M − 1, or (2.20) if ik = M . In both cases, the event (2.23)

is implied by the event

Ak :=
3⋂

j=1

{
sup

0≤t≤T

∣∣∣∣∣
∫ τk−1+t

τk−1

H(k),j
s dW̃ j

s

∣∣∣∣∣ ≤ ρ′′
}

for ρ′′ > 0 depending only on ρ′, where W̃ = (W̃ 1, W̃ 2, W̃ 3) is the 3-dimensional Brownian motion (Wt, B
1
t ,

B2
t )t≥0 and

∀t ≥ 0, H
(k)
t = (H(k),1

t , H
(k),2
t , H

(k),3
t ) = �{τk−1≤t<τk}

√
2ε(Xt)

×
[(

1/ε(Xt),
∂ψ̄2

ik

∂x1
(Xt),

∂ψ̄2
ik

∂x2
(Xt)

)
�{ik≤M−1} + (0, 1, 1)�{ik=M}

]
.
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The processes (H(k)
t )t≥0 are Ft-adapted and a.s. uniformly bounded by, say, H̄ . Therefore, for any B ∈ Fτk−1

and j = 1, 2, 3, the process (∫ τk−1+t

τk−1

�BH
(k),j
s dW̃ j

s , t ≥ 0

)

is a (Fτk−1+t)t≥0 martingale, and by Doob’s inequality,

ρ′′2P(Ac
k ∩B) ≤

3∑
j=1

E

⎡
⎣ sup

0≤t≤T

(∫ τk−1+t

τk−1

�BH
(k),j
s dW̃ j

s

)2
⎤
⎦ ≤ 12H̄TP(B).

Choosing B = {P(Ac
k | Fτk−1) > 12H̄T/ρ′′2} in the previous inequality, we obtain that, for all k ≥ 1,

P(Ac
k | Fτk−1) ≤ 12H̄T/ρ′′2 a.s. This constant can be made smaller than 1 by taking T small enough.

Since moreover Ak ∈ Fτk
for all k ≥ 1, this implies that, for all m < n,

P

( ⋂
m≤k≤n

Ac
k

)
= E

(
�
⋂

m≤k≤n−1 Ac
k
P(Ac

n | Fτn−1)
)
≤ . . . ≤

(
12H̄T
ρ′′2

)n−m+1

,

and thus

lim
n→+∞ P

( ⋂
m≤k≤n

Ac
k

)
= 0, ∀m ≥ 1.

This entails that the events Ak a.s. occur infinitely often. Therefore, we found T > 0 such that the events
{τk − τk−1 ≥ T } a.s. occur infinitely often, which ends the proof of Lemma 2.5. �

The previous proof can be extended to prove the next result.

Lemma 2.6. For any weak solution X of (2.17), we define inductively the sequence (τk)k≥1 by

τk+1 := inf{t ≥ ik : Xt �∈ Uik+1} ∧ (τk + 1),

where the random integers (ik)k≥1 are defined as in the proof of Theorem 2.4. Then, the sequence (τk)k≥1

converges to +∞ almost surely.

In order to prove that the probability law of the process X solves the martingale problem of Definition 2.2
we need to establish a version of the classical Itô’s formula which is adapted to our needs.

2.4. A generalized Itô-Meyer formula

As mentioned in Remark 2.3, the solution u of the Poisson-Boltzmann equation (1.2) (and more generally, the
solutions of linear elliptic PDEs involving the operator L) has discontinuous normal gradient on Γ. Therefore,
one cannot apply Itô’s formula to u(Xt). In the one-dimensional case, this could be done thanks to Itô-Meyer’s
formula ([26], Thm. IV.70). The main result of this section extends this formula to higher dimensions and to
functions satisfying the transmission property (2.15).

We start with the following lemma.

Lemma 2.7. Let X be a weak solution of (2.17). Let ũ be a function in W 2,∞
loc (Rd) ∩ C2(Rd \ Γ). Then, a.s.

for all t ≥ 0,

ũ(Xt) = ũ(X0) +
∫ t

0

∇ũ(Xs).dXs +
∫ t

0

Lũ(Xs)�{Xs 	∈Γ}ds. (2.24)
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Proof. Note first that, by classical localization techniques, it is enough to prove this result for ũ with compact
support. Note also that ũ ∈ W 2,∞(Rd) implies that ũ ∈ C1(Rd). We consider a sequence (ũn)n≥1 of functions
in C2(Rd) (obtained for example by convolution) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

limn→0 ‖ũn − ũ‖L∞(Rd) = 0,
limn→0 ‖∇ũn −∇ũ‖L∞(Rd) = 0,
limn→∞ ∇2ũn(x) = ∇2ũ(x), ∀x ∈ Rd \ Γ,
supn≥1 ‖∇2ũn‖L∞(Rd) <∞,

(2.25)

where ∇2ũ stands for the Hessian matrix of ũ.
Applying Itô’s formula to ũn(Xt) yields

ũn(Xt) = ũn(X0) +
∫ t

0

∇ũn(Xs).dXs +
∫ t

0

ε(Xs)Δũn(Xs)ds.

We need to prove the a.s. convergence, when n→ +∞, of each terms in the previous equation.
Since L0

t (Y ) has finite variation, it follows from (2.25) that

lim
n→∞

∫ t

0

∇ũn(Xs) · n(π(Xs))dL0
s(Y ) =

∫ t

0

∇ũ(Xs) · n(π(Xs))dL0
s(Y ) a.s.

and

E

∣∣∣∣
∫ t

0

√
2ε(Xs)

(∇ũn(Xs) −∇ũ(Xs)
) · dBs

∣∣∣∣
2

≤ C‖∇ũn −∇ũ‖2
L∞(Rd)t,

which implies the a.s. convergence of a sub-sequence of
∫ t

0

√
2ε(Xs)∇ũn(Xs) ·dBs to

∫ t

0

√
2ε(Xs)∇ũ(Xs) ·dBs.

For the second-order term, (2.25) and Lebesgue’s dominated convergence theorem imply that

lim
n→∞

∫ t

0

�{Xs 	∈Γ}ε(Xs)Δũn(Xs)ds =
∫ t

0

�{Xs 	∈Γ}ε(Xs)Δũ(Xs)ds =
∫ t

0

�{Xs 	∈Γ}Lũ(Xs)ds a.s.

Finally, using the occupation time formula (see, e.g., [27]), we have that for all n ≥ 1, a.s.

∣∣∣∣
∫ t

0

�{Xs∈Γ}ε(Xs)Δũn(Xs)ds
∣∣∣∣ =

1
2

∣∣∣∣
∫ t

0

�{Ys=0}Δũn(Xs)d〈Y, Y 〉s
∣∣∣∣

≤ C

∫ t

0

�{Ys=0}d〈Y, Y 〉s

= C

∫ ∞

−∞
�a=0L

a
t (Y )da

= 0.

This ends the proof of Lemma 2.7. �

Theorem 2.8. Assume that Γ is a compact C3 submanifold of Rd. Let u be a function on Rd such that there
exists a function f ∈W 2,∞

loc (Rd) ∩ C2(Rd \ Γ) satisfying

û(x) := u(x) − f(x)[ρ(x)]+ ∈ W 2,∞
loc (Rd) ∩C2(Rd \ Γ). (2.26)
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(Recall that ρ has been extended as a C2
b (Rd) function.) As in Remark 2.3, we set

∇intu(y) :=

{
limx∈Ωint, x→y ∇u(x) if y ∈ Γ
∇u(y) otherwise.

(2.27)

All weak solution to (2.17) satisfies: a.s. for all t ≥ 0,

u(Xt) = u(X0) +
∫ t

0

√
2ε(Xs)∇intu(Xs) · dBs +

∫ t

0

Lu(Xs)�{Xs 	∈Γ}ds

+
1
2

∫ t

0

(
f(Xs) +

εext − εint

εext
∇intu(Xs) · n(Xs)

)
dL0

s(Y ), (2.28)

where Yt := ρ(Xt).

Proof. Note first that ∇intu is well defined since u(x) = û(x) + f(x)[ρ(x)]+ and û and f are C1(Rd) by
assumption. Note also that the last term of the right-hand side of (2.28) is well-defined since the local time
L0

s(Y ) only increases when Xs belongs to Γ.
By Itô’s formula, Y is a semimartingale such that, almost surely, for all t ≥ 0,

Yt = Y0 +
∫ t

0

∇ρ(Xs) · dXs +
∫ t

0

ε(Xs)Δρ(Xs)ds.

Then, it follows from Itô-Tanaka’s formula (see, e.g., [27]) that

[Yt]+ = [Y0]+ +
∫ t

0

�{Ys>0}∇ρ(Xs) · dXs +
∫ t

0

�{Ys>0}ε(Xs)Δρ(Xs)ds+
1
2
L0

t (Y ).

This yields

〈X i, [Y ]+〉t = 2
∫ t

0

ε(Xs)�{Ys>0}
∂ρ

∂xi
(Xs)ds, ∀t ≥ 0, a.s.

Applying Lemma 2.7 to f , we obtain the decomposition of the semimartingale f(Xt). Applying Itô’s formula
to the product f(Xt)[Yt]+ we obtain

f(Xt)[Yt]+ = f(X0)[Y0]+ +
∫ t

0

[Ys]+∇f(Xs) · dXs +
∫ t

0

f(Xs)�{Ys>0}∇ρ(Xs) · dXs +
1
2

∫ t

0

f(Xs)dL0
s(Y )

+
∫ t

0

[
ε(Xs)�{Ys>0}f(Xs)Δρ(Xs) + 2ε(Xs)�{Ys>0}∇f(Xs) · ∇ρ(Xs) + �{Ys 	=0}[Ys]+Lf(Xs)

]
ds.

(2.29)

Now,
∇intu(x) = ∇û(x) + ∇f(x)[ρ(x)]+ + f(x)�{ρ(x)>0}∇ρ(x)

and

Δu(x) = Δû(x) + �{ρ(x)>0}f(x)Δρ(x) + 2�{ρ(x)>0}∇f(x) · ∇ρ(x) + Δf(x)[ρ(x)]+ ∀x ∈ Rd \ Γ.

To end the proof of Theorem 2.8, it then remains to combine (2.29) and Lemma 2.7 applied to û(Xt), and to
remind that ∇ρ(x) = n(π(x)) when x ∈ N . �



MONTE CARLO ALGORITHMS FOR POISSON-BOLTZMANN EQUATION 1009

Corollary 2.9. Let u satisfy (2.12) and (2.13). Then, almost surely, for all t ≥ 0,

u(Xt) = u(X0) +
∫ t

0

�{Xs 	∈Γ}
√

2ε(Xs)∇u(Xs) · dBs +
∫ t

0

�{Xs 	∈Γ}Lu(Xs)ds. (2.30)

Proof. Assume first, in addition to the assumptions of Corollary 2.9, that

∇intu(x) · n(x) ∈ C2(Γ) (2.31)

and u ◦ (ψ̄i)−1 ∈ C1(Vi), ∀1 ≤ i ≤M. (2.32)

Note that, since u ∈ C2
b (Rd \ Γ), ∇intu is well defined on Γ. Note also that, by (2.4), for all i ≤M − 1,

∂

∂x1
(u ◦ (ψ̄i)−1)(ψ̄i(x)) = ε(x)∇u(x) · n ◦ π(x), ∀x ∈ Ui, (2.33)

which shows that (2.32) actually implies (2.13).
By assumption (2.31), the function

f(x) =
(
εint

εext
− 1

)
∇intu(π(x)) · n(π(x)), ∀x ∈ N ,

can be extended to a C2(Rd) function, and the function û of (2.26) is continuous and of class C2
b (Rd \ Γ). For

all 1 ≤ i ≤M , define

vi(x) := û ◦ ψ−1
i (x) = u ◦ ψ−1

i (x) − f ◦ ψ−1
i (x)[ρ ◦ ψ−1

i (x)]+, ∀x ∈ ψi(Ui),

where the function ψi is defined in Proposition 2.1, and fix 1 ≤ i ≤M − 1. We deduce from (2.10) that, as f(x)
only depends on π(x), ∇f(x) · n ◦ π(x) = 0 for all x ∈ N . Therefore, it follows from (2.4) and from the fact
that ρ ◦ ψ−1

i (x) = x1 that

∂vi

∂x1
(ψi(x)) = ∇u(x) · n ◦ π(x) − f(x)�{x∈Ωext}, ∀x ∈ Ui \ Γ.

Since u satisfies (2.13), this function can be extended continuously to Ui. Furthermore, for 2 ≤ j ≤ d, by
definition of the function F in (2.5),

∂vi

∂xj
(ψi(x)) =

∂

∂xj
(u ◦ (ψ̄i)−1)(ψ̄i(x)) − ∂

∂xj
(f ◦ ψ−1

i )(ψi(x))[ρ(x)]+, ∀x ∈ Ui \ Γ.

Again, by (2.32), this defines a continuous function on Ui. Thus vi ∈ C1(ψi(Ui)) for all 1 ≤ i ≤ M − 1, and
the same result is trivial for i = M . Since ψi is a C2

b diffeomorphism on Ui, we finally deduce that û ∈ C1
b (Rd).

As Jû is differentiable with bounded derivatives almost everywhere in Rd, we have û ∈ W 2,∞(Rd). Thus,
Theorem 2.8 applies, and (2.28) yields

u(Xt) = u(X0) +
∫ t

0

√
2ε(Xs)∇intu(Xs) · dBs +

∫ t

0

�{Xs 	∈Γ}Lu(Xs)ds, a.s. ∀t ≥ 0. (2.34)

The rest of the proof is devoted to the extension of (2.34) to any function u satisfying only (2.12) and (2.13).
First, let us show that it suffices to prove this only for u with compact support in Ui for some 1 ≤ i ≤ M . For
this, remind from the proof of Proposition 2.1 that the set Ui for 1 ≤ i ≤ M − 1 can be assumed to be of the
form {x ∈ N : π(x) ∈ Ui ∩ Γ}. Let (χi)1≤i≤M−1 be a C3 partition of unity corresponding to the covering of Γ
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by ∪M−1
i=1 Ui ∩ Γ: for all 1 ≤ i ≤ M − 1, χi ∈ C3(Γ) with compact support in Ui ∩ Γ and

∑M−1
i=1 χi(x) = 1 for

all x ∈ Γ. Fix also χ ∈ C∞(Rd) with support having empty intersection with Γ and such that χ(x) = 1 for all
x ∈ UM . Now, for any u satisfying (2.12) and (2.13), define

ui = (1 − χ) χi ◦ π u, 1 ≤ i ≤M − 1

and

uM = χ u.

Then, for all 1 ≤ i ≤ M , ui has compact support in Ui and satisfies (2.12) and (2.13), and
∑M

i=1 ui = u. Since
the equation (2.34) is linear in u, it suffices to prove it for each ui.

So let u ∈ Cc(Ui) satisfy (2.12) and (2.13). The case i = M is trivial, so we assume that i ≤M − 1. We are
going to construct a sequence of functions (u(n))n≥1 satisfying (2.12), (2.13), (2.31) and (2.32) such that one
can pass to the limit in (2.34). As in the proof of Theorem 2.4, we assume for simplicity that d = 2. The proof
straightforwardly adapts to higher dimensions.

The function ũ = u ◦ (ψ̄i)−1 is continuous with compact support in Vi. Let us extend it to R2 by 0 out of Vi.
Then, this function is of class C2

b ((R \ {0}) × R), and it follows from (2.33) that ∂ũ/∂x1 is continuous on R2.
It also follows from elementary computations that Lu = (L̃ũ) ◦ ψ̄i, where

L̃ũ(x) =
2∑

j=1

∇ · (ε∇ψ̄j
i ) ◦ (ψ̄i)−1(x)

∂ũ

∂xi
(x) +

2∑
j,k=1

ε#(x1)∇ψ̄j
i ◦ (ψ̄i)−1(x) · ∇ψ̄k

i ◦ (ψ̄i)−1(x)
∂2ũ

∂xi∂xj
(x),

where ε# has been defined in (2.6). In the previous relation, the functions (ψ̄i)−1 and Jψ̄i may be extended
arbitrarily to R2 since ũ(x) = 0 for all x �∈ Vi.

Now, on Ui, ∇ · (ε∇ψ̄1
i ) = ∇ · (n ◦ π) is continuous, and ∇ · (ε∇ψ̄2

i ) = εΔψ̄2
i +∇ε · ∇ψ̄2

i , where the last term
is a priori only defined in the sense of distributions. However, ∇ψ̄2

i · (n ◦ π) = 0 by (2.3), so that ∇ε · ∇ψ̄2
i is

actually 0 (to be fully rigorous, one should introduce a regularization of ε(x) of the form εp(ρ(x)), so that its
gradient is proportional to n ◦ π(x) and let p go to +∞ in the relation ∇(εp ◦ ρ) · ∇ψ̄2

i = 0). Hence,

L̃ũ(x) =∇ · (n ◦ π) ◦ (ψ̄i)−1(x)
∂ũ

∂x1
(x) + ε#(x1)Δψ̄2

i ◦ (ψ̄i)−1(x)
∂ũ

∂x2
(x)

+
1

ε#(x1)
∂2ũ

∂x2
1

(x) + ε#(x1)‖∇ψ̄2
i ◦ (ψ̄i)−1(x)‖2 ∂

2ũ

∂x2
2

(x). (2.35)

Now, set ζh(x) := h−2ζ(x/h) where ζ(x) is a C∞ non-negative function with compact support in R2 and
with L1 norm equal to 1. Set ũ(n)(x) := ũ ∗ ζ1/n and u(n) = ũ(n) ◦ ψ̄i for all n ≥ 1. The function u(n) obviously
satisfies (2.12) and (2.32). Since moreover

∇intu(n)(x) · n(x) = (∇ũ(n)(ψ̄i(x)))′J intψ̄i(x)n(x) =
1
εint

∂ũ(n)

∂x1
(ψ̄(x)), ∀x ∈ Γ,

u(n) also satisfies (2.31). Therefore, (2.34) holds for u(n).
Since ũ is continuous, ũ(n) converges to ũ in L∞(Rd) when n → +∞. Similarly, since ∇ũ and ∇2ũ are

continuous and bounded on (R \ {0}) × R, L̃ũ(n) (resp. ∇ũ(n)) converges to L̃ũ (resp. ∇ũ) in the bounded
pointwise sense in (R \ {0}) × R. Since ψ̄i is continuous, we have proved that u(n) (resp. Lu(n) and ∇u(n))
converges in L∞(R2) (resp. in the bounded pointwise sense in R2 \ Γ) to u (resp. Lu and ∇u). Moreover,
by (2.16), the functions Lu(n) are uniformly bounded in L∞(R2).
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As a consequence, u(n)(Xt)−u(n)(X0) converges a.s. for all t ≥ 0 to u(Xt)−u(X0). Similarly, by Lebesgue’s
theorem,

∫ t

0 �{Xs 	∈Γ}Lu(n)(Xs)ds converges a.s. for all t ≥ 0 to
∫ t

0 �{Xs 	∈Γ}Lu(Xs)ds. Now, define the processes

M
(n)
t =

∫ t

0

√
2ε(Xs)∇intu(n)(Xs) · dBs and Mt =

∫ t

0

�{Xs 	∈Γ}
√

2ε(Xs)∇u(Xs) · dBs.

The process M (n) −M is a L2 martingale, whose quadratic variation is given by

〈M (n) −M〉t = 2
∫ t

0

�{Xs∈Γ}ε(Xs)‖∇intu(n)(Xs)‖2ds+ 2
∫ t

0

�{Xs 	∈Γ}ε(Xs)‖∇u(n)(Xs) −∇u(Xs)‖2ds.

The first term of the right hand side is a.s. zero for all t ≥ 0 using the occupation time formula similarly as in
the end of the proof of Lemma 2.7. By Lebesgue’s theorem again, the second term of the right hand side a.s.
converges to 0 for all t ≥ 0, and is uniformly bounded on finite time intervals. Therefore, by Doob’s inequality,
for all T > 0 and η > 0,

P

(
sup

t∈[0,T ]

|M (n)
t −Mt| ≥ η

)
≤ C

E(〈M (n) −M〉T )
η2

·

Hence, by Lebesgue’s theorem again, M (n)
t converges to Mt in probability for the L∞([0, T ]) norm. Conse-

quently, (2.30) follows from (2.34) by letting n go to infinity, which completes the proof of Corollary 2.9. �

2.5. Equivalence between the martingale problem of Definition 2.2 and weak solutions

The aim of the next section is to prove the uniqueness of the solution to the martingale problem of Defi-
nition 2.2. A key step is to show that solving this problem is equivalent to exhibiting a weak solution. One
implication in this equivalence is an immediate consequence of Corollary 2.9.

Theorem 2.10. Assume that Γ is a compact C3 submanifold of Rd. Then, for any x ∈ Rd, the law Px of the
process X constructed in the proof of Theorem 2.4 started at x, satisfies (2.11)–(2.14).

In order to show that a solution to the above martingale problem provides the existence of a weak solution
to (2.17), we need the following lemma.

Lemma 2.11. Fix P a probability measure on (C,Bt) satisfying (2.14). Define i1 as in (2.21) and let

τ1 = inf{t ≥ 0 : w(t) �∈ Ui1} ∧ 1.

Then, one can construct on the space (C, (Bt),P) a Brownian motion B on the time interval [0, τ1] such that
the canonical process (w(t)) is P-a.s. solution to (2.17) for this Brownian motion on the time interval [0, τ1].

Proof. Note that nothing is assumed on the law of w(0) under P. In particular, the integer

i1 := min
{
i ∈ {1, . . . ,M} : d(w(0),Uc

i ) = max
1≤j≤M

d(w(0),Uc
j )
}

may be random.
Fix 1 ≤ i ≤ M and assume first that i1 = i P-a.s. As in the proof of Theorem 2.4, assume that d = 2

for simplicity. Let us extend arbitrarily the functions ∇ · (n ◦ π) ◦ (ψ̄i)−1, Δψ̄2
i ◦ (ψ̄i)−1 and ∇ψ̄2

i ◦ (ψ̄i)−1

out of Vi as bounded functions. Then, we may extend the definition of L̃ϕ̃ to any C2(R2) function ϕ̃ by the
formula (2.35) where the coefficients are replaced by their extensions. Now, for any ϕ̃ ∈ C2(R2), and for
any function χ ∈ C2

c (Vi), the function defined by χ(ψ̄i(x))ϕ̃(ψ̄i(x)) for all x ∈ R2 (with the convention that
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this quantity is 0 if x �∈ Ui) satisfies (2.12) and (2.13). Therefore, (2.14) holds for this function, or, equivalently,
setting Zt = ψ̄i(w(t ∧ τ1)),

ϕ̃(Zt∧τ1) − ϕ̃(Z0) −
∫ t∧τ1

0

L̃ϕ̃(Zs)ds

is a P-martingale, where τ1 := inf{t ≥ 0 : Zt ∈ ∂Vi} ∧ 1.
The operator L̃ is a second-order differential operator with Borel bounded coefficients, so it satisfies the

assumptions of the classical martingale problems theory. In particular, using standard techniques (see the proof
of Thm. 20.1 in Chap. V of [29] and particularly equation (20.5)), a two-dimensional Brownian motion W can
be constructed on (C,Bt,P) on the time interval [0, τ1] such that (Zt) solves the (classical) SDE

dZ1
t =

√
2

ε#(Z1
t )

dW 1
t + Δρ ◦ (ψ̄i)−1(Zt)dt, (2.36)

dZ2
t =

√
2ε#(Z1

t )‖∇ψ̄2
i ◦ (ψ̄i)−1(Zt)‖dW 2

t + ε#(Z1
t )Δψ̄2

i ◦ (ψ̄i)−1(Zt)dt, (2.37)

on [0, τ1]. (It is not necessary to enlarge the probability space (C,B,P) since the diffusion matrix is uniformly
non-degenerate.) Thus, by Itô’s formula, there exists a (P,Bt)-Brownian motion B on [0, τ1], explicitly expressed
in terms of Zt and Wt, such that ψ̄−1(Zt) = w(t) solves (2.17), as required.

Now, take an arbitrary P satisfying the assumptions of Lemma 2.11, under which i1 is not necessarily a.s.
constant. For all 1 ≤ i ≤M such that P(i1 = i) > 0, the previous construction can be applied to the probability
measure Pi = P(· | i1 = i), giving a Pi-Brownian motion B(i) on [0, τ1], on the space C. Setting B(j)

t = 0 for all
t ≥ 0 if P(i1 = j) = 0, we can define the process

Bt(w) =
M∑
i=1

�{i1(w)=i}Bi
t(w).

It is then easy to check from Lévy’s theorem that this is a P-Brownian motion on [0, τ1]. Moreover, it obviously
satisfies the statement of Lemma 2.11. �

Theorem 2.12. Assume that Γ is a compact C3 submanifold of Rd. If Px is a probability measure on (C,B)
satisfying (2.11)–(2.14) for some x ∈ Rd, then there exists a Px − (Bt) Brownian motion B on C such that the
canonical process (w(t), t ≥ 0) solves (2.17) Px-a.s. In particular, w(0) = x Px-a.s.

Proof. Let us define on the space (C, (Bt)t≥0,B) sequences of random integers (ik)k≥1 and of stopping times
(τk)k≥1 similarly as in the proof of Theorem 2.4, by substituting (w(t)) to (Xt).

For all k ≥ 1 and for all A ∈ B, define

P(k)(A) = Px ◦ θ−1
τk

(A) = Px{w ∈ C : w(k) ∈ A},

where w(k)(t) = w ◦ θτk(w)(t) = w(t+ τk(w)) for all t ≥ 0. For all k ≥ 1, P(k) is a probability measure on (C,B).
Moreover, for all t ≥ s ≥ 0, A ∈ Bs, and ϕ satisfying (2.12) and (2.13), defining A′ = {w ∈ C : w(k) ∈ A}, we
have

E(k) [(Mϕ
t −Mϕ

s )�A] = E

[(
Mϕ

t (w(k)) −Mϕ
s (w(k))

)
�A(w(k))

]
= E

[
(Mϕ

τk+t −Mϕ
τk+s)�A′

]
= 0.

Hence, P(k) satisfies (2.14) and Lemma 2.11 applies. This provides a (C,Bt,P
(k))-Brownian motion (B(k)

t ,
0 ≤ t ≤ τ1).
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The Brownian motionB of Theorem 2.12 can be constructed as follows: observe first that τ∞ :=supk≥1 τk(w)=
+∞ for all w ∈ C, since otherwise, w would admit no left limit at time τ∞. Now, for all t ≥ 0 and w ∈ C, define

Bt(w) =
+∞∑
k=0

B
(k+1)
t∧τk+1(w)−t∧τk(w)(w

(k)), (2.38)

where τ0 = 0. The fact that the process w P-a.s. solves (2.17) driven by the process B on each time interval
[τk, τk+1), k ≥ 0, follows from the definition of P(k). Hence, it only remains to check that B is a Px-Brownian
motion.

For all k ≥ 0, let

M
(k)
t = B

(k+1)
t∧τk+1(w)−t∧τk(w)(w

(k))

and define the time-shifted σ-field

G(k) =
{
{w ∈ C : w(k) ∈ B} : B ∈ B

}
. (2.39)

First, let us prove that B is a (Bt) martingale. Fix t ≥ s ≥ 0. For all A ∈ Bτk+s,

E

[(
M

(k)
τk+t −M

(k)
τk+s

)
�A

]
= E

[(
M

(k)
τk+t −M

(k)
τk+s

)
P[A | G(k)]

]
= E(k)

[(
B

(k+1)
t∧τ1

−B
(k+1)
s∧τ1

)
A′
]

= 0,

where A′ is the random variable on C defined by P(A | G(k))(w) = A′(w(k)) a.s. Therefore, for all 0 ≤ s ≤ t,

E

[
M

(k)
τk+t | Bτk+s

]
= M

(k)
τk+s a.s.

From this can be classically deduced that, for all a.s. finite stopping times T ≥ S ≥ τk,

E

[
M

(k)
T | BS

]
= M

(k)
S a.s.

Finally, observing that M (k)
t = 0 if t ≤ τk, for any a.s. finite stopping times 0 ≤ S ≤ T ,

E

[
M

(k)
T | BS

]
= E

[
E

[
M

(k)
T∨τk

| BS∨τk

]
| BS

]
= E

[
M

(k)
S∨τk

| BS

]
= M

(k)
S .

Therefore M (k) is a (Bt) martingale for all k ≥ 0. The fact that (Bt, t ≥ 0) is a (Bt) martingale then follows.
Using similar computations, one can also deduce from the fact that 〈B(k)〉t = (t ∧ τ1) Id, where Id is the

d-dimensional identity matrix, that

(M (k)
t )TM

(k)
t − (t ∧ τk+1 − τk)+ Id

is a (Bt) martingale for all k ≥ 1, where uT denotes the transpose of the vector u ∈ Rd. Moreover, for all
0 ≤ i < j and 0 ≤ s ≤ t, since M (i) is constant after time τi+1 and M (j) is 0 before time τi+1,

E[(M (i)
t )TM

(j)
t | Bs] = E

[
(M (i)

τi+1∨s)
T E

[
M

(j)
t | Bτi+1∨s

]
| Bs

]
= E

[
(M (i)

τi+1∨s)
TM (j)

s | Bs

]
= (M (i)

s )TM (j)
s .
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Combining the above results, we obtain that for all k ≥ 1 and 0 ≤ s ≤ t,

E[BT
t∧τk

Bt∧τk
| Bs] =

k−1∑
i=0

[
(M (i)

s )TM (i)
s + (t ∧ τi+1 − τi)+Id − (s ∧ τi+1 − τi)+Id

]
+ 2

∑
0≤i<j≤k−1

(M (i)
s )TM (j)

s

= BT
s∧τk

Bs∧τk
+ (t ∧ τk − s ∧ τk)Id.

In other words, 〈B〉t = t Id for all t ≥ 0, which concludes the proof by Lévy’s theorem. �

2.6. Uniqueness and strong Markov property of the solution of the martingale problem
of Definition 2.2

We now are in a position to prove the uniqueness of the solution of the martingale problem of Definition 2.2
(or, equivalently, the uniqueness in the sense of probability law of the weak solution to the SDE (2.17)). We
start with the following observation.

Remark 2.13. In the proof of Theorem 2.12, the construction of the Brownian motion B uses the martingale
property (2.14) for countably many functions. More precisely, fix 1 ≤ i ≤ M and let (U (p)

i )p≥1 be a sequence
of compact subsets of Ui such that �U(p)

i

converges to �Ui everywhere in Rd and such that all x ∈ U (p)
i if

d(x,Uc
i ) > 1/p and |x| ≤ p. Then, the Theorem 20.1 in [29] which we use in the proof of Theorem 2.12 only

requires that (2.14) holds for a function satisfying (2.12) and (2.13), with compact support in Ui and equal to
ψ̄j

i (x) in U (p)
i , and similarly for the function ψ̄j

i (x)ψ̄
k
i (x), for all p ≥ 1, j, k ∈ {1, . . . , d} and i ∈ {1, . . . ,M}.

This observation will be useful in the proof of the following result.

Theorem 2.14. Assume that Γ is a compact C3 submanifold of Rd. Then, the martingale problem (2.11)–(2.14)
is well-posed, there is a unique weak solution to the SDE (2.17) in the sense of the probability law, and the family
of solutions constructed in Theorem 2.12 is strong Markov.

Proof. Let P1
x and P2

x be two probability measures on (C,B) satisfying (2.11) and (2.14). Using the notation
of the proof of Theorem 2.12, one can construct on (C,B, (Bt)) the sequences (ik)k≥1 and (τk)k≥1, a (P1

x,Bt)
Brownian motion B1, a (P2

x,Bt) Brownian motion B2, such that P1
x-a.s. (respectively, P2

x-a.s.) the canonical
process w on C solves the SDE (2.17) driven by B1 (respectively, B2).

The integer i1 only depends on x. Therefore, assuming for simplicity that d = 2 and using the notation
of the proof of Lemma 2.11, under Pk

x (k = 1 or 2), on the event {i1 = i} for 1 ≤ i ≤ M − 1, ψ̄i1(w(t))
solves (2.36)–(2.37) on the time interval [0, τ1], where W j

t =
∫ t∧τ1

0
∇ψ̄j

i ◦ (ψ̄i1)−1(ξt) · dBk
t for j = 1, 2. From

these expressions, we deduce from (2.1) and (2.3) that W 1 and W 2 are independent Brownian motions on the
time interval [0, τ1]. Now, using Girsanov’s theorem, one can construct from P1

x|Fτ1
(resp. P2

x|Fτ1
) an equivalent

probability measure Q1 (resp. Q2) on Fτ1 under which, on the event {i1 = i}, ψ̄i1(w(t)) solves

dZ1
t =

√
2

ε#(Z1
t )

dW̃ 1
t ,

dZ2
t =

√
2ε#(Z1

t )‖∇ψ̄2
i ◦ (ψ̄i)−1(Zt)‖2dW̃ 2

t ,

on the time interval [0, τ1], where (W̃ 1
t , W̃

2
t ) is a Q1-Brownian motion (resp. a Q2-Brownian motion) on the time

interval [0, τ1]. Now, similarly as in the proof of Theorem 2.4, since the first equation is closed and the diffusion
coefficient of the second equation has a Lipschitz dependence w.r.t. Z2

t , there is pathwise uniqueness for this
SDE. Hence, Q1 = Q2, which implies by the Girsanov theorem that P1

x|Bτ1
= P2

x|Bτ1
(see [29], Thm. (27.1)).

In particular, the laws of w(τ1(w)), and thus those of i2, are the same under P1
x and P2

x. Therefore, proceeding
as before, P1

x ◦ θ−1
τ1

|Bτ1
= P2

x ◦ θ−1
τ1

|Bτ1
or, equivalently, P1

x|G(1)∩Bτ2
= P2

x|G(1)∩Bτ2
, where G(k) is defined in (2.39).
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By induction, we obtain that
P1

x|G(k−1)∩Bτk
= P2

x|G(k−1)∩Bτk
∀k ≥ 1,

with the convention that G(0) = B.
The well-posedness of the martingale problem then results from the equality

σ
( ⋃

k≥1

(G(k−1) ∩ Bτk
)
)

= B, (2.40)

which can be proved as follows: for all Borel subset A of Rd and all t ≥ 0, the continuity of the paths of w
implies that

{w(t) ∈ A} ∩ {t ≤ τ2} = {w(t) ∈ A, t ≤ τ1}⋃
lim

n→∞

⋃
m≥1

({
τ1 ∈ [t−m/2n, t− (m− 1)/2n

)}⋂{
w(1)((m− 1)/2n) ∈ A, τ2 − τ1 ≥ (m− 1)/2n

})
.

The first event of the right-hand side belongs to G(0) ∩ Bτ1 = Bτ1 , and for all n,m ≥ 1, the event {τ1 ∈
[t−m/2n, t− (m− 1)/2n)} belongs to Bτ1 and the event {w(1)((m− 1)/2n) ∈ A, τ2 − τ1 ≥ (m− 1)/2n} belongs
to G(1) ∩ Bτ2 . Hence,

{w(t) ∈ A} ∩ {t ≤ τ2} ∈ σ
(
Bτ1 ∪ (G(1) ∩ Bτ2)

)
.

Similarly, we have that, for all k ≥ 1,

{w(t) ∈ A} ∩ {t ≤ τk} ∈ σ
( k⋃

l=1

(G(l−1) ∩ Bτl
)
)

and hence, using the fact that τ∞(w) = +∞ for all w ∈ C,

{w(t) ∈ A} ∈ σ
( ⋃

k≥1

(G(k−1) ∩ Bτk
)
)
.

A similar construction can be done for any finite dimensional cylindrical measurable set on C, which ends the
proof of the uniqueness in law for the SDE (2.17).

As in the case of classical martingale problems for elliptic operators with bounded coefficients, the strong
Markov property follows from the well-posedness of the martingale problem. The proof of Theorem 4.5.1 of [10]
adapts straightforwardly to our case. Note that this proof makes use of Remark 2.13, as explained in the proof
of Theorem 5.4.20 and in Remark 5.4.12 of [11]. �

The strong Markov property allows us to prove the following path property of the weak solution X which we
will use to establish the Feynman-Kac formula in Section 2.7.

Proposition 2.15. Assume that Γ is a C3 compact submanifold of Rd and let K be a compact set. Then, the
time spent in Rd \K by the weak solution to (2.17) is a.s. infinite. We also have

lim sup
t→+∞

|Xt| = +∞ a.s., (2.41)

and, if d ≥ 3,
lim

t→+∞ |Xt| = +∞ a.s.
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Proof. Let us first prove that (2.41) holds for any dimension d. Fix x ∈ Rd. The classical Aronson’s estimates [1]
entails that the law of Xt when X0 = x has a density p(t, x, y) with respect to Lebesgue’s measure which satisfies

1
Ctd/2

exp(−C|y − x|2/t) ≤ p(t, x, y) ≤ M

td/2
exp(−|x− y|/Ct), ∀t ≥ 0, x, y ∈ Rd.

(The study of Aronson’s estimates in the context of stochastic processes can be found for example in [35].)
From this easily follows that

lim
t→+∞ Px(|Xt| ≤ n) = 0, ∀n ≥ 1.

Introducing an increasing sequence (tm)m≥1 converging to +∞ and satisfying

Px(|Xtm | ≤ n) ≤ 2−m, ∀m ≥ 1,

Borel-Cantelli’s lemma yields
P(∀T > 0, ∃t > T s.t. |Xt| > n) = 1.

Since this holds for all n ≥ 1, (2.41) is proved.
This implies in particular that for all n ≥ 1,

τn := inf{t ≥ 0 : |Xt| = n}
is a.s. finite if n ≥ |x|. Since Xt has (scaled by

√
2εext) Brownian paths in Ωext, the strong Markov property of

Theorem 2.14 yields

lim
n→+∞ Px(∃t ∈ [0, 1] : Xτn+t ∈ K) ≤ lim

n→+∞ P

(
∃t ∈ [0, 1] : |Wt| ≤ r/

√
2εext | |W0| = n/

√
2εext

)
= 0,

where r > 0 is such that K ⊂ B(0, r) and Γ ⊂ B(0, r), and W is a d-dimensional Brownian motion. A similar
use of Borel-Cantelli’s lemma as above implies that the time spent by Xt out of K is a.s. infinite.

Finally, for all m ≥ 1, define
Lm := sup{t ≥ 0 : |Xt| ≤ m},

which is infinite iff lim inf |Xt| ≤ m. The strong Markov property applied at time τn yields

Px(Lm = ∞) = Ex(PXτn
(Lm = ∞)) ≤ Ex(PXτn

(τm <∞)), ∀m ≥ 1.

Assuming m large enough for Γ ⊂ B(0,m) and using again that Xt has scaled Brownian paths in Ωext, one has

Px(Lm = ∞) ≤ P

(
∃t ≥ 0 : |Wt| = m/

√
2εext | |W0| = n/

√
2εext

)
.

Since the r.h.s. converges to 0 when n→ +∞ if d ≥ 3 (cf. e.g. [28], Cor. (18.3), Chap. I), we have

Px(Lm = ∞) = 0, ∀m ≥ 1,

which ends the proof of Proposition 2.15. �

2.7. An extended Feynman-Kac formula

In this section we establish a probabilistic interpretation of linear elliptic PDEs driven by a divergence form
operator (1.1) by means of the weak solution to the SDE (2.17).

Let D be an open (possibly unbounded) connected domain in Rd and consider the PDE{
−∇ · (ε∇u)(x) + λ(x)u(x) = g(x) for x ∈ D

u(x) = h(x) for x ∈ ∂D.
(2.42)

This PDE is similar to the Poisson-Boltzmann equation (1.2), except that the source term is not singular.
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We introduce the following assumptions:

(H1): The boundary ∂D of D satisfies an exterior sphere condition at every boundary point.
(H2): The function h is bounded and continuous on ∂D.
(H3): The function g has compact support in Rd and belongs to C∞

b (Ωext ∪ Γ) and C∞
b (Ωint ∪ Γ).

(H4): The function λ is bounded, non-negative in Rd, belongs to C∞
b (Ωext ∪ Γ) and C∞

b (Ωint ∪ Γ), and
λ(x) ≥ λ > 0 for x out of a compact set.

Remark 2.16. Note that Assumptions (H3) and (H4) do not require the functions g and λ to be continuous
on Rd. They can be discontinuous on Γ, but their restrictions to Ωint and Ωext can be extended to Γ in a C∞

b

way. In particular, the function κ(x) of the Poisson-Boltzmann equation (1.2) satisfies (H4).

We first need existence, uniqueness and regularity results for (2.42).

Theorem 2.17. Assume that Γ is a C∞ compact submanifold of Rd. Under Assumptions (H1)–(H4), (2.42)
admits a unique solution u in H1(D), which belongs to C0

b (D) ∩C2(D \ Γ) and such that u|D∩Γ ∈ C∞(Γ ∩D).
Moreover, letting f be a C2 function in D such that

∀x ∈ N , f(x) =
(
εint

εext
− 1

)
∇intu(π(x)) · n(π(x)), (2.43)

the function û defined in (2.26) belongs to C2(D \ Γ) ∩W 2,∞
loc (D).

Note that this result presumably holds true under weaker regularity conditions on Γ. For example, Theo-
rem. 16.2 of Chapter 3 of [12] gives a C1 regularity of u in Ωint and Ωext up to the boundary Γ, provided that Γ
is C2. This suggests that one could hope to have a C2 regularity for u in Ωint and Ωext up to Γ provided that
Γ is C3, and this would be enough to entail the conclusions of Theorem 2.17. However, we could not find such
a result in [12] or elsewhere. Therefore, we choose for sake of completeness to give a full proof of Theorem 2.17
in Appendix A, based on classical energy computations for the PDEs obtained by the local straightenings we
defined in Section 2.1.

We then have the following extension of Feynman-Kac’s formula.

Theorem 2.18. Under the same assumptions as in Theorem 2.17, let τ be the first exit time of Xt from D,
and Px the law of the solution (Xt, t ≥ 0) of the SDE (2.17) with initial condition X0 = x ∈ Rd. Then, for all
x ∈ D, the random variable ∫ τ

0

|g(Xt)| exp
(
−
∫ t

0

λ(Xs)ds
)

dt (2.44)

has finite expectation under Px and

u(x) = Ex

[
h(Xτ ) exp

(
−
∫ τ

0

λ(Xt)dt
)

+
∫ τ

0

g(Xt) exp
(
−
∫ t

0

λ(Xs)ds
)

dt
]
. (2.45)

Proof. In a first step, let us assume that g ≥ 0.
Fix any bounded open set D′ with C∞ boundary such that D′ ⊂ D and d(D′, ∂D) > 0, and let v(x) =

χ(d(x,D′))u(x), where χ ∈ C∞
b (R), χ(y) = 1 for y ≤ 0 and χ(y) = 0 for y ≥ d(D′, ∂D)/2. In particular, v has

compact support in D, is C2 in Ωext∪Ωint and satisfies v(x) = u(x) for any x ∈ D′. Applying Theorem 2.8 to v,
taking as function f the function χ(d(x,D′))f(x), where f is defined in (2.43), we obtain that, for all t ≤ τ ′

where τ ′ is the first exit time of Xt from D′,

u(Xt) = u(X0) +
∫ t

0

√
2ε(Xs)∇intu(Xs) · dBs +

∫ t

0

ε(Xs)Δu(Xs)�{Xs 	∈Γ}ds.
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Therefore, applying Itô’s formula to Ut exp(Vt), where Ut = u(Xt) and Vt =
∫ t

0 λ(Xs)ds, we have for all t ≤ τ ′,

u(Xt)e−
∫

t
0 λ(Xs)ds = u(X0) +

∫ t

0

√
2ε(Xs)∇intu(Xs)e−

∫
s
0 λ(Xθ)dθ · dBs

+
∫ t

0

(ε(Xs)Δu(Xs) − λ(Xt)u(Xt))e−
∫

s
0 λ(Xθ)dθ

�{Xs 	∈Γ}ds.

In the preceding equation, we used the fact that
∫ t

0 λ(Xs)ds =
∫ t

0 λ(Xs)�{Xs 	∈Γ}ds a.s. for all t ≥ 0, which can
be proved using the occupation time formula as in the proof of Lemma 2.7.

Now, τ ′ <∞ a.s. by Proposition 2.15. Therefore, taking expectation with respect to Ex, using the u is strong
solution to (2.42) in D \ Γ and that ∇intu is bounded in D′, we get

u(x) = Ex

[
u(Xτ ′)e−

∫
τ′
0 λ(Xt)dt

]
+ Ex

[∫ τ ′

0

g(Xt)e−
∫

t
0 λ(Xs)dsdt

]
. (2.46)

By the monotone convergence theorem,

Ex

[∫ τ ′

0

g(Xt)e−
∫ t
0 λ(Xs)dsdt

]
−→ Ex

[∫ τ

0

g(Xt)e−
∫ t
0 λ(Xs)dsdt

]
∈ [0,+∞]

when D′ converges to D. Moreover, since u is bounded and continuous in D, by Lebesgue’s theorem,

Ex

[
�{τ<∞}u(Xτ ′)e−

∫ τ′
0 λ(Xt)dt

]
−→ Ex

[
�{τ<∞}h(Xτ )e−

∫ τ
0 λ(Xt)dt

]
when D′ converges to D.

By Proposition 2.15 again, a.s. on the event {τ = +∞}, Xt necessarily spends an infinite time in the region
where λ(·) ≥ λ while staying inside D. Therefore,

∫ τ

0
λ(Xt)dt = +∞ a.s. on {τ = ∞}, and hence, by Lebesgue’s

theorem again,
Ex

[
�{τ=∞}u(Xτ ′)e−

∫ τ′
0 λ(Xt)dt

]
−→ 0

when D′ converges to D.
Finally, all the terms in the left and right hand sides of (2.46) converge to a limit as D′ → D, and the limit

of each term except the last one is finite. Therefore,

Ex

[∫ τ

0

g(Xt)e−
∫ t
0 λ(Xs)dsdt

]
<∞,

ending the proof of Theorem 2.18 when g ≥ 0.
For arbitrary g, we first use the previous result for a function g̃ ≥ |g| satisfying the assumptions of Theo-

rem 2.18. We deduce that the random variable (2.44) has finite expectation. Next we make the same compu-
tation as before to obtain (2.46). Letting D′ → D, the convergence of the second term follows from Lebesgue’s
theorem. �

3. Probabilistic interpretation of Poisson-Boltzmann PDE

and Monte Carlo algorithms

The goal of this section is to apply the above theoretical results to the linearized Poisson-Boltzmann equa-
tion (1.2), in order to obtain probabilistic interpretations of its solution which are well-suited for Monte Carlo
approximation methods.
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The numerical resolution of the PDE (1.2) by Monte Carlo methods is relevant in the biomolecular context
for at least three reasons:

• In biology, this PDE is solved to compute the electrostatic free energy of the molecule, which is (pro-
portional to)

∑N
j=1 qj(u− u0)(xj), where

u0(x) =
1

4πεint

N∑
l=1

qj
|x− xl| ∀x ∈ Ωint. (3.1)

Therefore, the computation of the free energy only requires to compute u0 at the N points xj .
• The problem is in dimension 3, and then Monte Carlo methods become competitive in comparison with

deterministic methods.
• We take profit of the geometry of the molecule (that is, a union of spheres) to use efficient simulation

methods of Brownian paths (see Sect. 3.2).

In all the sequel, X denotes the solution of the SDE (2.17) and the dimension d of the space is 3.

3.1. Probabilistic interpretations

The PDE (1.2) fulfills all the assumptions of Theorem 2.17, except for the regularity of the source term f
in (1.4). We get rid of this problem as follows: u0 defined in (3.1) is an explicit solution of

εintΔu0(x) = −f(x), ∀x ∈ Ωint.

Let χ be a C∞ function with compact support in Ωint such that χ(x) = 1 for x in a neighborhood of {x1, . . . , xN}.
Then, the function v(x) = u(x) − χ(x)u0(x) solves the PDE

−∇ · (ε(x)∇v(x)) + κ2(x)v(x) = εintu0(x)Δχ(x) + εint∇u0(x) · ∇χ(x) (3.2)

in R3. In other words, v satisfies the same PDE as u except that the singular source term is replaced by a C∞

source term with compact support. In particular, Theorem 2.17 applies to PDE (3.2), which provides our first
probabilistic interpretation of the solution of Poisson-Boltzmann’s equation. Note also that u(x)−u0(x) admits
a finite limit when x→ xi for all 1 ≤ i ≤ N .

Proposition 3.1. For any χ ∈ C∞
c (Ωint) such that χ(x) = 1 for x in a neighborhood of {x1, . . . , xN}, the

unique solution u of (1.2) in H1(R3) satisfies

u(x) = χ(x)u0(x) + Ex

[∫ +∞

0

g(Xt) exp
(
−
∫ t

0

κ2(Xs)ds
)

dt
]

(3.3)

for all x ∈ R3 \ {x1, . . . , xN}, where Px is the law of the solution (Xt, t ≥ 0) of (2.17) such that X0 = x, and

g(x) = εintu0(x)Δχ(x) + εint∇u0(x) · ∇χ(x).

A Monte Carlo method based on the formula (3.3) requires to discretize the process X and to compute a
discretization of the integral in (3.3). The process X has (scaled) Brownian paths in Ωint an Ωext. The only
discretization difficulty occurs when a path hits Γ. Very efficient simulation methods of Brownian paths are
known, among which walk on spheres algorithms. These methods are efficient to simulate the time and position
of exit from a domain. Here we need more, since the function g is non-zero in Ωint.

Therefore, it is desirable to have a probabilistic interpretation that requires only a local information on the
paths near Γ. The next probabilistic interpretation that we propose enjoys this property.
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Theorem 3.2. Assume that Γ is a C∞ compact submanifold of Rd. Fix h > 0 and define Ωh
int = {x ∈ Ωint :

−ρ(x) = d(x,Γ) ≥ h}, where d(x,Γ) denotes the distance between x and the set Γ. For all x ∈ R3, let Px denote
the law of the solution (Xt, t ≥ 0) of (2.17) such that X0 = x, and define inductively the sequences of successive
visit times of Ωh

int and Ωext

τk = inf{t ≥ τ ′k−1 : Xt ∈ Ωh
int}

and τ ′k = inf{t ≥ τk : Xt ∈ Γ}

for k ≥ 1, where τ ′0 = 0. If h is small enough to have xj ∈ Ωh
int for all j ∈ {1, . . . , N}, then for all x ∈

R3 \ {x1, . . . , xN},

u(x) = Ex

[
+∞∑
k=1

(
u0(Xτk

) − u0(Xτ ′
k
)
)

exp
(
−
∫ τk

0

κ2(Xt)dt
)]

. (3.4)

Before proving this result, let us comment it. First, the formula (3.4) is exact for all (sufficiently small) h.
Therefore, once a discretization method has been chosen for the process X , one can choose the most convenient
value of h to estimate the r.h.s. of (3.4).

Second, due to the definition of κ in (1.3), the r.h.s. of (3.4) only depends on the successive positions of Xτk

and Xτ ′
k

and on the time spent in Ωext by the process X .
Third, the successive positions of Xτk

and Xτ ′
k

belong to the small strip {x ∈ R3 : −h ≤ ρ(x) ≤ 0}. This
means that a careful discretization of the process is only needed in this small strip.

Fourth, the formula (3.4) is a non-standard probabilistic interpretation of the solution of an elliptic PDE,
which can be easily generalized to other PDEs, and may provide new efficient numerical resolution methods.

Finally, all the algorithms proposed in Section 3.2 are well defined as soon as the normal at the boundary
of Γ is defined. The numerical study in Section 5.2 (partly) confirms the convergence of the methods, even if
the assumption that Γ is of class C∞ fails.

Proof. Since Δ(u−u0) = 0 in Ωint, it follows from Theorem 2.18 (or, more simply, from the martingale property
of harmonic functions of the Brownian motion) that, for all x ∈ Ωh

int \ {x1, . . . , xN}, τ1 = 0 and

u(x) = Ex[u(Xτ ′
1
) − u0(Xτ ′

1
)] + u0(x). (3.5)

Similarly, it follows from Theorem 2.18 that, for all x ∈ R3 \ Ωh
int,

u(x) = Ex

[
u(Xτ1) exp

(
−
∫ τ1

0

κ2(Xt)dt
)]

. (3.6)

Note that, if τ1 = +∞, then the exponential in the previous expectation is zero. The previous equality holds in
particular if x ∈ Γ. Thus, applying the strong Markov property ofX (Thm. 2.14) and combining (3.5) and (3.6),
we get

u(x) = u0(x) − Ex[u0(Xτ ′
1
)] + Ex

[
u(Xτ2) exp

(
−
∫ τ2

0

κ2(Xt)dt
)]

, ∀x ∈ Ωh
int \ {x1, . . . , xN}. (3.7)

Note that, in the previous formula, the time integral between 0 and τ2 is equal to the integral between τ ′1 and τ2
since κ(x) = 0 for all x ∈ Ωint.
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Applying first (3.6) if x ∈ R3 \ Ωh
int and next (3.7) recursively, we deduce from the strong Markov property

that, for all x ∈ R3 \ {x1, . . . , xN},

u(x) = Ex

[(
u0(Xτ1) − u0(Xτ ′

1
)
)
e−

∫ τ1
0 κ2(Xt)dt + u(Xτ2)e

− ∫ τ2
0 κ2(Xt)dt

]

= Ex

[
m∑

i=1

(
u0(Xτi) − u0(Xτ ′

i
)
)
e−

∫ τi
0 κ2(Xt)dt

]
+ Ex

[
u(Xτm+1)e

− ∫ τm+1
0 κ2(Xt)dt

]
. (3.8)

By Proposition 2.15, |Xt| → +∞ a.s. as t → +∞. Since the process X is continuous, this implies that, a.s.,
τm = +∞ for m large enough. Since u is bounded (Thm. 2.17) and κ(x) = κ̄ > 0 for all x ∈ Ωext, the last term
of the r.h.s. of (3.8) converges to 0 by Lebesgue’s theorem. Letting m → +∞ thus yields (3.4). Note also that
the number of non-zero terms in the sum in the r.h.s. of (3.4) is a.s. finite. �

3.2. The Monte Carlo method proposed by Mascagni and Simonov and its extensions

The Monte Carlo approximation of u(x) and the associated discretization scheme of Xt that we describe
here have been originally proposed by Mascagni and Simonov in [23] to approximate the solution of Poisson-
Boltzmann’s equation [34]. In this algorithm, after having hit Γ, the process jumps randomly and symmetrically
with respect to Γ (see below). Our goal is to propose various extensions of this algorithm with asymmetric jumps,
and to analyse their performances (see Sect. 3.3). Note that other Monte Carlo approximations for this problem
have been considered, among which the so-called “jump on spheres” method introduced by Simonov [33]. Since
this algorithm is also based on a (nearly) symmetric jump approximation, for the sake of simplicity we choose
to concentrate on the original Mascagni and Simonov’s algorithm and its non-symmetric extensions.

Note that, in [23], the authors have not related their method to the solution of the SDE (2.17) and the
probabilistic interpretation (3.4) of the PDE. Hence, our results justify their algorithm and allows us to propose
some improvements.

The process X has (scaled) Brownian paths in Ωint and Ωext, until it reaches Γ. We first describe the Walk
on Spheres algorithm for the simulation of the path of X inside Ωext and its variant, the Uncentered Walk on
Spheres algorithm, used when X is in Ωint.

Next, we detail the simulation procedure at the boundary Γ. The original method is detailed in Section 3.2.3.

3.2.1. The Walk on Spheres (WOS) algorithm

The Walk on Spheres (WOS) algorithm [31] provides an efficient simulation method of Brownian paths in a
domain D. Given a position y0 ∈ D of a Brownian path, the next position is obtained as follows:

• construct the largest open sphere S0 = S(y0, r0) in D with center y0;
• the first point y1 of exit from S0 of a Brownian motion started from y0 has the uniform law on ∂S0;
• if needed, the law of the first exit time can also be obtained as a random variable t0 independent of y1

whose law has Laplace transform (cf. [4])

E(exp(−λt0)) =
r0
√

2λ
sinh(r0

√
2λ)

∀λ ≥ 0.

Applying this inductively, we can construct a sequence of positions of a Brownian path in D and times between
each positions (yn, tn)n≥0 (see Fig. 3). Note also that the sequence of positions (yn)n≥0 of the Brownian path can
be exactly simulated (which means that the only source of error in the simulation comes from the imperfection
of the random number generator).

Note that, by the Feynman-Kac formula, for all C2 function v such that 1
2Δv − λv = 0 in D,

v(y0) = E(v(y1) exp(−λt0)) = E(v(y1))
r0
√

2λ
sinh(r0

√
2λ)

· (3.9)
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Figure 3. The WOS algorithm.

In this formula, the quantity r0
√

2λ/ sinh(r0
√

2λ) may be interpreted as a probability of survival of the Brownian
particle at the first step of the WOS algorithm. In other words, the parameter λ may be interpreted as a rate
of killing the Brownian particle.

Except in very special situations, the WOS algorithm a.s. never hits ∂D after a finite number of steps.
However, since in dimension 3 the norm of the Brownian motion a.s. goes to +∞ when time goes to infinity,
the sequence (yn)n≥0 either converges to some point in ∂D or its norm converges to +∞ (if D is unbounded).
In the first case, the common way to end the algorithm consists in introducing a small parameter ε > 0 and
stopping the WOS at the first step n such that d(yn, ∂D) ≤ ε. One then approximates the exit position as the
closest point of ∂D from yn. In the case when |yn| → +∞, the algorithm a.s. stops after a finite number of
steps if the killing parameter λ is positive. This leads to the following algorithm.

WOS algorithm in the domain D.
Set k = 0. Given y0 ∈ D, λ ≥ 0, and ε > 0

(1) Let S(yk, rk) be the largest open sphere included in D centered at yk.
(2) Sample yk+1 according to the uniform distribution on ∂Sk.
(3) Kill the particle with probability 1 − rk

√
2λ/ sinh(rk

√
2λ), and goto END if killed.

(4) IF d(yk+1, ∂D) ≤ ε, THEN set exit(y0) as the closest point of ∂D from yk+1 and goto END.
ELSE, set k = k + 1 and return to Step (1).
END.

Denoting by Sk the event for which the particle survives at the kth step of the previous algorithm and
applying the strong Markov property inductively, we have

u(y0) = E(u(y1)�S1) = . . . = E(u(yk)�Sk
)
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for all k ≥ 0. Therefore, denoting by Ne the (random) number of steps in the algorithm,

u(y0) = E(u(yNe)�SNe
) = E(u(exit(y0))�SNe

) +O(ε) (3.10)

under the assumption that the gradient of u is uniformly bounded on D. Note that the expected number of
steps in the WOS algorithm generally grows as | log ε| [31]. Therefore, in practice, one can choose ε of a smaller
order of magnitude as the desired global accuracy without increasing much the computational cost.

3.2.2. The Uncentered Walk on Spheres (UWOS) algorithm

In the case where the domain D is a finite union of spheres, the WOS can be modified in such a way that a
path a.s. hits ∂D after a finite number of steps, which provides an exact simulation technique of the first exit
point. This algorithm is based on the observation that the density w.r.t. the uniform measure on ∂S(c, R) of
the first exit point of a Brownian motion from S(c, R) started from x ∈ S(c, R), is the Poisson kernel

R2 − |y − c|2
4πR|y − x|3 ·

Expressed in the spherical coordinates (r, θ, ϕ) centered at c and such that x has coordinates (r, 0, 0) where
r = |x− c|, the exit point has coordinates (R, θ, ϕ), where θ has the uniform law on [0, 2π] and ϕ is independent
of θ with cumulative distribution function

FR,r(α) := P(ϕ ≤ α) =
R2 − r2

2Rr

(
R

R− r
− R√

R2 − 2Rr cosα+ r2

)

which is explicitly invertible.
Then, the following modification of the WOS algorithm allows one to simulate exactly the exit point of

D = S(c1, r1) ∪ . . . ∪ S(cn, rn) after an a.s. finite number of steps.

Uncentered WOS (UWOS) algorithm.
Set k = 0. Given y0 ∈ D,

(1) Choose i ∈ {1, . . . , n} such that yk ∈ S(ci, ri).
(2) Simulate yk+1 = (ri, θ, ϕ) where θ is uniform on [0, 2π] and ϕ is independent of θ with

cumulative distribution function Fri,|yk−ci|, in the spherical coordinates centered at ci
such that yk = (|yk − ci|, 0, 0).

(3) IF yk+1 ∈ ∂D, THEN set exit(y0) = yk+1 and goto END.
ELSE, set k = k + 1 and return to Step (1).
END.

If needed, the Laplace transform of the law of the exit time can also be computed, but it is not independent
of the exit position, which leads to complications. However, in our case, the previous version of the UWOS
algorithm will be sufficient.

3.2.3. Discretization of Xt at the boundary

The UWOS algorithm can be used to simulate exactly the paths of X in Ωint until it hits Γ, and the WOS
algorithm to simulate the paths of X in Ωext until it reaches Γ, with a constant rate of killing.

The last ingredient of the algorithm is the discretization procedure to move from a point on Γ to a point in
Ωint ∪ Ωext.

The method proposed by Mascagni and Simonov [23] is the following: let x ∈ Γ and h > 0. Recall that n(x)
denotes the unit vector normal to Γ at x pointing towards Ωext. The new position of the discretized process
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started from x ∈ Γ is

p(x) =

⎧⎪⎨
⎪⎩
x+ hn(x) with probability

εext

εint + εext

x− hn(x) with probability
εint

εint + εext
·

(3.11)

This construction is deduced from the following observation: let u be the solution of (1.2); Taylor expansions
and the transmission condition (2.15) lead to

u(x) =
εint

εint + εext
u(x− hn(x)) +

εext

εint + εext
u(x+ hn(x)) +O(h2) = E[u(p(x))] +O(h2)

when the second-order exterior and interior normal derivatives of ui and ue on Γ are bounded (which holds true
if Γ is C∞, as proved in Thm. 2.17).

In view of the probabilistic interpretation of u in Theorem 3.2, this leads to the algorithm below. Because
of the definition of p(x) in (3.11), we call it the Symmetric Normal Jump algorithm.

Symmetric Normal Jump (SNJ) algorithm.
Given x0 ∈ Ωint,
Set k = 0 and score = 0.

(1) IF xk ∈ Ωint,
(a) THEN use the UWOS algorithm to simulate exit(xk) and set score = score− u0(exit(xk)),
(b) ELSE use the WOS algorithm with λ = κ̄2/2εext to simulate exit(xk).

IF the particle has been killed, THEN goto END.
(2) Let xk+1 = p(exit(xk)) as in (3.11).
(3) IF xk+1 ∈ Ωint, THEN set score = score + u0(xk+1).
(4) Set k = k + 1 and return to Step (1).

END.

Let {score1, . . . , scoreM} be the scores obtained by M independent runs of the SNJ algorithm. The Monte
Carlo estimation of u(x0) − u0(x0) is then obtained as

u(x0) − u0(x0) ≈ 1
M

M∑
j=1

scorej .

Note that this algorithm can be extended to a general Ωint (not necessarily a union of spheres) by replacing
the UWOS algorithm in Step (2a) by the WOS algorithm in Ωint.

We denote by ūSNJ
h (x0) the expectation of the score obtained by the SNJ algorithm when the initial position

of the particle is x0.

3.3. Extensions of the SNJ algorithm

The WOS and UWOS algorithms described in Section 3.2 are exact (up to the error due to the parameter ε).
However, the discretization of Xt on Γ is not. We propose the following improvements of this step of the
algorithm.

3.3.1. Asymmetric Normal Jump (ANJ) algorithm

Our first extension is an asymmetric version of the SNJ algorithm. The asymmetry parameter α > 0 is
chosen by the user.
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ANJ(α) algorithm.
This algorithm is the SNJ algorithm where the random variable p(x) in Step (2) is mod-
ified as

p(x) =

⎧⎪⎨
⎪⎩
x+ αhn(x) with probability

εext
εext + αεint

x− hn(x) with probability
αεint

εext + αεint
for all x ∈ Γ.

The choice of the probability εext/(εext + αεint) comes from the expansion

(εext + αεint)u(x) = εextu(x+ αhn(x)) + αεintu(x− hn(x)) +O(h2),

valid when the second-order interior and exterior normal derivatives of u on Γ are bounded.
As will appear in the error and performance analysis of Section 4 and in the numerical results of Section 5, the

interest of this method is that, when α > 1, the particle is moved further away from Γ than in the SNJ algorithm
when it jumps in Ωext, which increases the probability that the particle is killed. Therefore, this method reduces
the computational cost, but has a larger bias. The trade-off is numerically analyzed in Section 5.

We denote by ūANJ(α)
h (x0) the expectation of the score obtained by the ANJ algorithm with parameter α > 0

when the initial position of the particle is x0.

3.3.2. Unbiased Asymmetric Normal Jump (UANJ) algorithm

The following improved algorithm is due to the geometric specificity of the problem: Ωint is an union of
spheres.

In the case where Ωint is a single sphere in Section 4.1, this improvement removes all the bias of the algorithm
(except for the bias coming from the parameter ε), as proved in Section 4.1.1. For this reason, we call this
algorithm the Unbiased ANJ (or UANJ) algorithm.

Assume that Ωint = S(0, R), for R > 0, and fix x ∈ Γ. Define

τh,α := inf{t ≥ 0 : |Xt| = R− h or |Xt| = R+ αh}

and let

τext
h,α :=

∫ τh,α

0

�{Xt∈Ωext}dt

be the amount of time spent by the process X in Ωext on the time interval [0, τh,α]. The joint distribution
of |Xτh,α

| and exp(−κ̄2τext
h,α) is independent of the initial position x on ∂B(0, R) and is explicitly known (see

below). This leads to the following algorithm.

UANJ(α) algorithm.
This algorithm is the SNJ algorithm where Step (2) is replaced by

(2) (a) With probability Px(|Xτh,α
| = R− h) defined below in (3.12),

let xk+1 = p(exit(xk)) = exit(xk) − hn(exit(xk)).
Then, kill the particle with probability 1−Ex(exp(−κ̄2τexth,α) | |Xτh,α

| = R− h) defined
in (3.13).

(b) Otherwise, let xk+1 = p(exit(xk)) = exit(xk) + αhn(exit(xk)).
Then, kill the particle with probability 1−Ex(exp(−κ̄2τexth,α) | |Xτh,α

| = R+αh) defined
in (3.14).

(c) IF the particle is killed, THEN goto END.

Note that this algorithm can be extended to the case of an arbitrary number of spheres S(ci, ri), . . . , S(cn, rn)
by applying the same rule when xk ∈ ∂S(ci, ri), but replacing R by ri.
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We denote by ūUANJ(α)
h (x0) the expectation of the score given by this algorithm when the initial position of

the particle is x0.
Even if we prove below that the only bias in the previous algorithm comes from the parameter ε in the case

of a single sphere, this does not necessarily holds true in the case where Ωint is the union of several spheres.

The joint distribution of the random variables |Xτh,α
| and exp(−κ̄2τext

h,α) are explicited as follows. First, we
deduce from Itô-Meyer’s formula that Yt = |Xt| −R solves the one-dimensional SDE

dYt =
√

2ε#(Yt)dWt +
2ε#(Yt)
Yt +R

dt+
εext − εint

2εext
dL0

t (Y ),

where ε# is defined in (2.6) and

Wt =
∫ t

0

Xs

|Xs|dBs

is a standard Brownian motion. Therefore, thanks to Theorem 2.18 with d = 1, v(y) = Py(Yτh,α
= R − h)

satisfies

(ε#v′)′(y) +
2ε#(y)
y +R

v′(y) = 0

with v(−h) = 1 and v(αh) = 0. It then follows from elementary computations that, for all x ∈ Γ,

Px(|Xτh,α
| = R− h) = P(Yτh,α

= R − h | Y0 = 0) =
αεint

(
1 − h

R

)
αεint + εext + (εext − εint)αh

R

· (3.12)

Note that this probability depends on h, but its first-order expansion when h→ 0 agrees with the corresponding
probability of the ANJ(α) algorithm.

Using Feynman-Kac’s formula again, v(y) = E(exp(−κ̄2τext
h,α)�{Yτh,α

=−h} | Y0 = y) solves

(ε#v′)′(y) +
2ε#(y)
y +R

v′(y) = κ#(y)2v(y)

with boundary conditions v(−h) = 1 and v(αh) = 0, where κ#(y) = 0 if y < 0 and κ#(y) = κ̄ if y ≥ 0. The
solution of this differential equation is

v(y) =

⎧⎪⎪⎨
⎪⎪⎩
ay + b

y +R
if y ≤ 0

c cosh(μexty) + d sinh(μexty)
y + R

if y > 0,

where μext = κ̄/
√
εext and the constants a, b, c, d satisfy

b = c, εint(aR− b) = εext(dμextR− c),

b− ah = R− h, c cosh(μextαh) = −d sinh(μextαh).

This system of equations can be solved explicitly: for all x ∈ Γ,

Ex

(
e−κ̄2τext

h,α

∣∣∣ |Xτh,α
| = R− h

)
=

b

R P(Yτh,α
= R− h | Y0 = 0)

=
αεint + εext + (εext − εint)αh

R

αεint + εext
μextαh

tanh(μextαh) + (εext − εint)αh
R

· (3.13)
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Similarly, for all x ∈ Γ,

Ex

(
e−κ̄2τext

h,α

∣∣∣ |Xτh,α
| = R+ αh

)
=

εext + αεint + (εext − εint)αh
R

εext cosh(μextαh) + εint
sinh(μextαh)

μexth
+ (εext − εint)

sinh(μextαh)
μextR

· (3.14)

3.3.3. Neutron Transport Jump (NTJ) algorithm

All the previous algorithms have the property that, at times where the particle reaches Γ, one samples
the next position in the normal direction to Γ. However, it is natural to take into account possible lateral
displacements when the particle jumps from Γ. This is typically the case in neutron transport approximations
of diffusion processes, which naturally suggest a new way to move the particle from Γ. This idea has been
introduced in [16]. Define

Thuh(x, v) = − v
h
∇xuh(x, v) + κ2uh(x, v) +

1
3h2ε(x)

(
1
4π

∫
S2

uh(x, v′)dv′ − uh(x, v)
)
, (3.15)

the neutron transport operator with absorption boundary conditions (no incoming neutrons) in D × S2 where
D is a bounded open domain of R3. When ε(x) is smooth enough, the solution uh ∈ C(R6) of the equation

Thuh = f,

for f smooth enough, converges in L∞(D × S2) to the solution u of the Poisson equation

−∇ · (ε(x)∇u) + κ2u = f

in D with Dirichlet boundary conditions (see [6], Chap. 21).
In our case, the function ε(x) is discontinuous, but one can still define the approximation, even though so

far this procedure has no theoretical justification. The neutron transport approximation leads to two possible
approximations procedures: a global one, which consists in replacing the diffusion process by a transport process
in the domainD, and a local one, which uses the transport approximation only at the interface Γ, and an efficient
Brownian path simulation elsewhere.

As suggested by (3.15), we construct the local approximation as follows. Assume that X0 = x ∈ Γ, fix a
parameter ĥ > 0 and sample a random vector v uniformly on the unit sphere S2 and an independent exponential
random variable E with parameter 1. Then, the next position of the particle is

p(x) =

{
x+ 3εintĥEv if v · n(x) < 0

(
with probability 1

2

)
,

x+ 3εextĥEv otherwise.

This corresponds to a velocity v/ĥ and a collision time T equal to 3Eĥ2εint inside Ωint and 3Eĥ2εext outside.
Note that, for n(x) to be well-defined, we need (and implicitly assume) Γ to be a C1 submanifold of R3. If Γ
is only piecewise C1 (for example when Ωint is the union of several spheres), then one needs to specify p(x) at
the points x where Γ is not C1. However, in the numerical tests we did in Section 5 the simulated positions of
the particle never hit this set of points (which has Lebesgue measure 0).

In order to be able to compare the NTJ algorithm with the previous ones, we set h = 3εintĥ/2. It can then
be checked that

E(3ĥvxEεint | v · n(x) < 0) = −h+ o(h) and E(3ĥvxEεext | v · n(x) > 0) = αh+ o(h) (3.16)

as in the previous algorithms, where α = εext/εint.



1028 M. BOSSY ET AL.

NTJ algorithm.
This algorithm is the SNJ algorithm where Step (2) is replaced by

(2) (a) Draw vk uniformly on S2 and Ek according to the exponential distribution with
parameter 1.

(b) Set

xk+1 = p(exit(xk)) =

{
exit(xk) + 2hEkvk if vk · n(exit(xk)) < 0
exit(xk) + 2αhEkvk otherwise.

(3.17)

(c) Define the collision time

Tk =

{
4h2Ek/(3εint) if vk · n(exit(xk)) < 0,
4αh2Ek/(3εint) otherwise.

IF vk · n(exit(xk)) ≥ 0, THEN kill the particle with probability

1 − exp

(
−
∫ Tk

0

κ̄2ds

)
= 1 − exp

(
−4κ̄2αh2Ek

3εint

)
· (3.18)

IF the particle is killed, THEN goto END.

Step (2c) is motivated by the fact that the neutron transport algorithm also approximates the time needed
by the particle to jump from Γ to its next position (in the neutron transport approximation, a jump actually
corresponds to a constant velocity motion on a straight line). Since κ̄2 can be interpreted as a rate of killing
in Ωext in the Feynman-Kac representation (3.4), this justifies the killing probability (3.18). As shown by
the bias computations of Section 4.1 and the numerical tests of Section 5, adding this killing step improves
substantially the performance of the NTJ algorithm.

Note finally that, when εext is larger than εint (which is usually the case in the molecular dynamics context),
the particle is moved further away from the molecule than in the SNJ algorithm, which increases the probability
that the particle gets killed before coming back to Γ.

For more details about Monte Carlo simulations of neutron transport processes, we refer to [13,19,20].
We denote by ūNTJ

h (x0) the expectation of the score obtained by the NTJ algorithm when the initial position
of the particle is x0.

4. Error analysis

In this section, we analyse the convergence of the previous algorithms, first in the case of one sphere, and
then in the general case.

4.1. The one sphere case

We assume that Ωint = S(0, R) with R > 0, N = 1, x1 = 0 and q1 = q. In this case, the solution of
Poisson-Boltzmann’s PDE (1.2) can be explicitly computed:

u(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4π

(
1

εint|x| −
1

εintR
+

1
εextβR

)
if x ∈ Ωint \ {0},

exp
(− κ̄√

εext
(|x| −R)

)
4πεextβ|x| if x ∈ Ωext ∪ Γ,

(4.1)
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where
β = 1 +

κ̄R√
εext

· (4.2)

4.1.1. Estimation of the bias

Due to the spherical symmetry of the problem, the only relevant information in Steps (2) of all the algorithms
of the previous section is the pair of random variables (A,B), where A = ρ(p(x)) is the distance from Γ of the
next position of the particle, and B ∈ {0, 1} is a random variable such that the particle is killed iff B = 0. Note
that A and B may not be independent (for example in the UANJ(α) and NTJ algorithms).

Note that, in all our algorithms, the law of (A,B) is independent of x ∈ ∂B(0, R), A �= 0 and A > −R
a.s. Given any pair of random variables (A,B) satisfying these properties, we consider a sequence of i.i.d. r.v.
(Ak, Bk)k≥1 having the same law as (A,B) and the following generic algorithm.

Generic algorithm.
This algorithm is the SNJ algorithm where Step (2) is replaced by

(2) Let xk+1 = exit(xk) +Akn(xk) and the particle is killed if Bk = 0.

We denote by ū(A,B)(x0) the expectation of the score obtained by this algorithm starting from x0 ∈ R3.

Theorem 4.1. Assume that the pair of r.v. (A,B) satisfy the previous assumptions. Then, for all x0 ∈ Ωint,

ū(A,B)(x0) − (u− u0)(x0) =
E

[
Bu

(
(R +A, 0, 0)

)]− u
(
(R, 0, 0)

)
+O(ε)

P(B = 0) + β
RE(BA�A>0) +O(ε+ E(A2))

· (4.3)

Proof. Let x0 ∈ Ωint and 0 < h < d(x0,Γ). On the one hand, Theorem 3.2 leads to

u(x0) − u0(x0) = Ex0

⎡
⎣−u0(Xτ ′

1
) +

+∞∑
j=2

e−
∫ τj
0 κ2(Xt)dt

(
u0(Xτj) − u0(Xτ ′

j
)
)⎤⎦ . (4.4)

On the other hand, denoting by Lk the event “the particle is still alive in the generic algorithm when in state xk”,
we have

ū(A,B)(x0) = E

[
−u0(exit(x0)) +

+∞∑
k=1

�{xk∈Ωint}�Lk

(
u0(xk) − u0(exit(xk))

)]
.

Defining k(j) := inf{k > k(j − 1) : xk ∈ Ωint} for all j ≥ 1 with the convention that k(0) = 0, the preceding
equality may be written as

ū(A,B)(x0) = E

⎡
⎣−u0(exit(x0)) +

+∞∑
j=1

�Lk(j)

(
u0(xk(j)) − u0(exit(xk(j)))

)⎤⎦ ,
which is similar to (4.4). Extend the definition of ū(A,B)(x0) to all x0 ∈ R3 by

ū(A,B)(x0) = E

[
−�{x0∈Ωint∪Γ}u0(exit(x0)) +

+∞∑
k=1

�{xk∈Ωint}�Lk

(
u0(xk) − u0(exit(xk))

)]
, (4.5)

and set w(|x|) = u(x), w0(|x|) = u0(x) and w̄(|x|) = ū(A,B)(x) for all x ∈ R3 (all these functions are well-defined
because of the spherical symmetry of the problem). Note that

w̄(|x0|) = E

[
−�{x0∈Ωint∪Γ}w0(R) +

+∞∑
k=1

�{xk∈Ωint}�Lk

(
w0(|xk|) − w0(R))

)]
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and that w̄ is constant on [0, R]. For all x0 ∈ Ωint, in view of (3.5), we thus have

w̄(|x0|) − (w − w0)(|x0|) = w̄(R) − w(R) + w0(R). (4.6)

Next,

w̄(R) − w(R) + w0(R) = − w(R) + E
[
�{x1∈Ωint}�L1w0(|x1|)

]
+ E

[
�L1

(
−�{x1∈Ωint}w0(R) +

+∞∑
k=2

�{xk∈Ωint}�Lk

(
w0(|xk|) − w0(R)

))]

= − w(R) + E
[
B�{A<0}w0(R +A)

]
+ E [Bw̄(R +A)] .

Since, by definition of w̄,

w̄(R+ a) = P(L1 | |x0| = R+ a)(w̄(R) + w0(R)) ∀a > 0,

we obtain that

w̄(R) − w(R) + w0(R) = E
[
B�{A<0}(w̄(R) − w(R) + w0(R))

]
+ E

[
B�{A<0}w(R +A)

]
+ E

[
B�{A>0}P(L1 | x0 = R+A)(w̄(R) − w(R) + w0(R))

]
+ E

[
B�{A>0}w(R)P(L1 | |x0| = R+A)

]− w(R).

By (3.10), we have
w(R + a) = w(R)P(L1 | |x0| = R+ a) +O(ε) ∀a > 0

since w′ is bounded on [R,∞). Therefore,

ū(A,B)(x0) − (u− u0)(x0) = w̄(R) − w(R) + w0(R)

=
E[Bw(R +A)] − w(R) +O(ε)

1 − P(A < 0, B = 1) − E
[
B�{A>0}P(L1 | x0 = R+A)

] · (4.7)

The proof of Theorem 4.1 will then be completed by computing the first-order expansion of the denominator in
powers of A.

Letting y0 = (R + a, 0, 0) ∈ R3 with a > ε, we may define the events Si, the positions yi and the radii ri as
in the WOS algorithm of Section 3.2.1. Let us also denote by ti the successive (random) time lengths between
each positions in the WOS algorithm. Then, using (3.9), we have for all a > 0

P(L1 | |x0| = R+ a) = P(SNe) = E

(
Ne∏
i=0

riκ̄/
√
εext

sinh(riκ̄/
√
εext)

)
= E

[
exp

(
− κ̄2

2εext

Ne∑
i=0

ti

)]
.

Now, the positions yi, the radii ri and the times ti satisfy, for some Brownian motion (y0 + Bt, t ≥ 0), for all
i ≥ 0,

ti = inf{t ≥ 0 : y0 +Bt0+...+ti−1+t ∈ ∂S(yi, ri)},
with the convention t−1 = 0. Therefore, by definition of Ne,

τΓ+ε ≤
Ne∑
i=0

ti ≤ τΓ,
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where τΓ = inf{t ≥ 0 : y0 +Bt ∈ Γ} and τΓ+ε = inf{t ≥ 0 : |y0 +Bt| = R+ ε}. Hence, using well-known results
on first hitting times of the norm of a 3-dimensional Brownian motion (see e.g. [4]),

R

R+ a
e−aκ̄/

√
εext = E

[
e−

κ̄2
2εext

τΓ

]
≤ P(L1 | |x0| = R + a) ≤ E

[
e−

κ̄2
2εext

τΓ+ε

]
=
R+ ε

R+ a
e−(a−ε)κ̄/

√
εext .

Therefore,

P(L1 | |x0| = R+ a) = 1 − β

R
a+O(a2 + ε), (4.8)

which ends the proof of Theorem 4.1. �

Theorem 4.1 has the following consequences.

Corollary 4.2. Assume that, for all h > 0, random variables Ah and Bh are defined, that satisfy the assump-
tions of Theorem 4.1 and such that, for some α > 0,

E(Ah | Ah < 0) = −h+ O(h2), E(Ah | Ah > 0) = αh+O(h2),

P(Ah > 0) =
εext

εext + αεint
+O(h), E(A2

h) = O(h2), E(|Ah|3) = O(h3)

and P(Bh = 0) = O(h2)

when h→ 0. Then, for all x0 ∈ Ωint,

ū(Ah,Bh)(x0) − (u− u0)(x0) = O(h2 + ε/h) − q(αεint + εext)
4πεextαβR

(
E(A+

h )
εexth

− E(A−
h )

εinth

)
+
q(αεint + εext)
4πεextαβ2R2

×
(
β

εint

E((A−
h )2)
h

+
β +R2κ̄2/2εext

εext

E((A+
h )2)
h

− R2

εext

P(Bh = 0)
h

)
(4.9)

as h→ 0, where a+ = a∨ 0 and a− = (−a)∨ 0 for all a ∈ R. In particular, the bias ū(Ah,Bh)(x0)− (u− u0)(x0)
is O(h+ ε/h).

Corollary 4.3. When Ωint = S(0, R), for all x0 ∈ Ωint,

ū
ANJ(α)
h (x0) − (u− u0)(x0) =

q
(
1 + α

(
1 + κ̄2R2

2εextβ

))
4πR2βεext

h+O(h2 + ε/h), (4.10)

ū
UANJ(α)
h (x0) − (u− u0)(x0) = O(ε/h) (4.11)

and ū
NTJ(α)
h (x0) − (u − u0)(x0) = O(h2 + ε/h) (4.12)

as h→ 0. Note also that ūSNJ
h = ū

ANJ(1)
h .

Remark 4.4. If ûNTJ(α)
h (x0) denotes the expected score of the NTJ algorithm without killing (i.e. without

Step (2c)), a similar computation would lead to

û
NTJ(α)
h (x0) − (u− u0)(x0) =

qκ̄2

3πβ2εintεext
h+O(h2 + ε/h).

This shows that, in the case of a single sphere, adding the killing step in the NTJ algorithm improves the
order of the algorithm. Since this additional killing step also reduces the lifetime of the particle and hence the
computational cost, there is no interest to omit this step in the NTJ algorithm.
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Proof of Corollary 4.2. Taylor expansions and the explicit formula (4.1) lead to

E [Bhw(R +Ah)] − w(R) = − w(R)E(1 −Bh) + E [BhAh(w′(R−)�Ah<0 + w′(R+)�Ah>0)]

+
1
2

E
[
BhA

2
h(w′′(R−)�Ah<0 + w′′(R+)�Ah>0)

]
+O(E(A3))

= − qP(Bh = 0)
4πεextβR

− q

4πR2
E

[
BhAh

(
�Ah<0

εint
+
�Ah>0

εext

)]

+
q

4πR3
E

[
BhA

2
h

(
�Ah<0

εint
+
�Ah>0

εext
+
κ̄2R2

�Ah>0

2ε2extβ

)]
+O(h3).

Because of our assumption on Ah, the term of order h in the r.h.s. vanishes, and thus this r.h.s. is O(h2).
Moreover,

P(Bh = 0) +
β

R
E(BhAh�Ah>0) =

αβεext

R(εext + αεint)
h+O(h2).

Combining these estimates with (4.3) yields (4.9). �

Proof of Corollary 4.3. In the case of a single sphere, the SNJ, ANJ(α) and UANJ(α) algorithms correspond to
random variables Ah and Bh in the generic algorithm that obviously satisfy the assumptions of Corollary 4.2.
The only non-trivial point is to prove the P(Bh = 0) = O(h2) in the UANJ algorithm, but it can be easily
checked from (3.13) and (3.14) that, in this case,

P(Bh = 0) = 1 − E(exp(−κ̄2τext
h,α)) =

α2κ̄2

2(αεint + εext)
h2 +O(h3).

The bias (4.10) of the ANJ(α) algorithm then follows from easy computations. In the UANJ(α) algorithm,
the corresponding random variables Ah and Bh satisfy

w(R) = E [Bhw(R +Ah)]

by construction and Feynman-Kac’s formula. Therefore, (4.11) follows from (4.3) and calculations of the proof
of Corollary 4.2.

The NTJ algorithm also satisfies the assumptions of Corollary 4.2, but calculations are more difficult. Letting
V be a uniform random vector on S2 and E an independent exponential random variable of parameter 1, we
have

Ah
(d)
=

{
|(R, 0, 0) + 2hEV | −R =

(
R2 + 4hREV1 + 4h2E2

)1/2 −R if V1 < 0

|(R, 0, 0) + 2αhEV | −R =
(
R2 + 4αhREV1 + 4α2h2E2

)1/2 −R if V1 ≥ 0
(4.13)

and

P(Bh = 0) = 1 − P(V1 < 0) − E

(
exp

(
−4κ̄2αh2

3εint
E

)
�V1>0

)
=

2κ̄2α

3εint
h2 +O(h4).

Expanding w.r.t. h, we have

Ah = 2Eh
[
− V −

1 + αV +
1 +

hE

R
(1 − V 2

1 )
(
�V1<0 + α2

�V1>0

)]
+O(h3E3),

where α = εext/εint. In particular, Ah > 0 iff V1 > 0 or V1 < 0 and |V1| < f(hE, V1), where the function f
satisfies

f(hE, V1) =
hE

R
(1 − V 2

1 ) +O(h2E2) ≤ hE

R
(1 − V 2

1 + ChE),
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for some constant C > 0. Considering the r.h.s. above as a polynomial in hE, one can easily see that |V1| <
f(hE, V1) implies that hE > g(|V1|), where

g(|V1|) =
1 − V 2

1 +
√

(1 − V 2
1 ) + 4CR|V1|

2C
≥ R|V1|√

1 + 4CR

since
√
a2 + b − a ≥ b/

√
ā2 + b̄ for all a ∈ [0, ā] and b ∈ [0, b̄]. It then follows from elementary computations

that

E(Ah�Ah<0) = E(Ah�V1<0) + E(Ah�V1<0, |V1|<f(hE,V1))

= −h
2

+
4h2

3R
+O(h3) +O

(
E
[
(hE|V1| + h2E2)�hE>g(|V1|)

])
, (4.14)

where the last term comes from (4.13) and the fact that |√1 + a− 1| ≤ |a| for all a ≥ −1. Now, observing that,
in spherical coordinates, V1 = cos(Φ) where Φ has law sin ϕ

2 �ϕ∈[0,π]dϕ,

E
[
E|V1|�hE>g(|V1|)

]
= E

[
|V1|

(
g(|V1|)
h

+ 1
)

e−g(|V1|)/h

]
≤ C′E

[
|V1|e−g(|V1|)/2h

]

≤ C′
∫ π/2

0

sinϕ cosϕe−R cos ϕ/
√

1+4CRhdϕ ≤ 1 + 4CR
R2

h2.

Similarly,

E
[
E2

�V1<0, |V1|<f(hE,V1)

]
= O(h),

P(V1 < 0, |V1| < f(hE, V1)) = O(h).

In view of (4.14), we thus have

E(Ah�Ah<0) = −h
2

+
4h2

3R
+O(h3).

Since

EAh =
h

2
+
hα

2
+
h2

3R
+
αh2

3R
+O(h3),

we deduce that

E(Ah�Ah>0) =
αh

2
+

4α2h2

3R
+O(h3).

Similarly, it can be checked that

E(A2
h�Ah<0) =

4h2

3
+O(h3)

and

E(A2
h�Ah>0) =

4α2h2

3
+O(h3).

In conclusion, the NTJ algorithm satisfies the assumptions of Corollary 4.2, and (4.9) combined with the
previous estimates yields (4.12).

Note that, when V1 is negative, Ah has some probability to be positive (i.e. the particle could exit from Ωint),
in which case the neutron transport interpretation of the algorithm would suggest to modify the algorithm, for
example by adding a probability of killing depending on the time spent by the particle in Ωext. However, as can
be checked from the previous calculation, such a modification would not change the bias estimate (4.12), so we
chose to present the simplest version of the NTJ algorithm. �
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To conclude this study of the bias in the case of one sphere, let us compute the optimal (in terms of bias)
distribution for Ah, under the assumptions of Corollary 4.2, when α is fixed, Bh = 1 a.s. and P(Ah > 0) =
εext/(αεint + εext) for all h > 0 (which is the case is the SNJ and ANJ algorithms). In this case, the leading
term of the bias in (4.9) is proportional to

α
E(A2 | A < 0)

h
+

E(A2 | A > 0)
h

(
1 +

κ̄2R2

2εextβ

)

= α
Var(A | A < 0) + h2

h
+

Var(A | A > 0) + α2h2

h

(
1 +

κ̄2R2

2εextβ

)
·

which is minimal if A is constant conditionally on {A > 0} and {A < 0}, i.e. in the ANJ case.
When α is not fixed, the optimal value for α in terms of bias is of course α = 0 (with the limitation in the

WOS algorithm that αh > ε). However, this is clearly not optimal in terms of the computational cost, since,
when α decreases, the walk on spheres outside of the molecule becomes very costly and must be repeated an
increasing number of times before the particle gets killed. The next section is devoted to an estimation of the
computational cost of the algorithm in the case of one sphere.

4.1.2. Estimation of the computational cost

Theorem 4.5. Assume that Ωint = S(0, R) with R > 0. Let Nε,R0
e denote the number of steps in the WOS

algorithm with killing rate λ = κ̄2/2εext, starting from y0 ∈ Ωext at a distance R0 from Γ and with threshold ε.
With the notation μext = κ̄/

√
εext, we have

E(Nε,R0
e ) ≤ [(2R+ ε) ∨ (2/μext)]R0

(R+R0) sinh(μextR0)

(
1

2(1 − log 2)
+

log 2
2(1 − log 2)3

+
log(R0/ε)

2(1 − log 2)2

)
· (4.15)

Proof. The proof is based on the estimate in [32] of the expected cost of the WOS algorithm in a half space.
Let us first compute the law of the distance to Γ of the next position y1 in the WOS algorithm. The largest

tangent sphere to Γ has radius R0, and the angle Θ between the vectors y1 − y0 and y0 has distribution

sin θ
2

�θ∈[0,π]dθ.

The distance R1 between y1 and Γ is
√
R2 + 2R0(R+R0)(1 − cosΘ), and its density is

r

2R0(R0 − r)
�r∈[0,2R0].

Let (Rk)k≥1 denote the sequence of radii in the WOS algorithm (without killing). We then have for all k ≥ 2,

P(Nε,R0
e ≥ k) =

∫ 2R0

ε

R+R1

2R0(R+R0)
μextR0

sinh(μextR0)
dR1 . . .

∫ 2Rk−2

ε

R+Rk−1

2Rk−2(R+ Rk−2)
μextRk−2

sinh(μextRk−2)
dRk−1

=
1

2kμext(r + r0) sinh r0

∫ 2r0

γ

dr1
sinh r1

. . .

∫ 2rk−3

γ

drk−2

sinh rk−2

∫ 2rk−2

γ

(r + rk−1)drk−1, (4.16)

where r = μextR, r0 = μextR0 and γ = μextε.
Now, fix a > 0 and let ϕ(x) = x(a+ x)/ sinhx for x > 0. The function ϕ has a unique maximum on (0,+∞)

at the unique solution x∗ of tanhx = x(a+ x)/(a+ 2x). Therefore, the maximal value of ϕ is

(a+ 2x∗)/ coshx∗ ≤ (2a+ 4x∗)/(2 + (x∗)2).
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As a function of x∗, this quantity is maximal at the unique positive solution x∗∗ of (x∗)2+ax∗−2 = 0. Therefore,
the maximal value of (2a+ 4x∗)/(2 + (x∗)2) is equal to

2
x∗∗

=
a

2

(
1 +

√
1 +

8
a2

)
·

This quantity is less than 2a if a ≥ 1, and less than 2 otherwise. In conclusion, we have

x(a+ x)
sinhx

≤ 2(a ∨ 1) ∀x ≥ 0.

Combining this with (4.16), we get

P(Nε,R0
e ≥ k) ≤ [(2r + γ) ∨ 2]r0

μext(r + r0) sinh r0
Phyp(Nγ,r0

e ≥ k),

where

Phyp(Nγ,r0
e ≥ k) =

1
2k−1r0

∫ 2r0

γ

dr1
r1

· · ·
∫ 2rk−3

γ

(2rk−2 − γ)
drk−2

rk−2

is the probability that the WOS algorithm without killing, when Γ is a hyperplane and started at a distance r0
from Γ, has never reached a position at a distance less than γ from Γ after k − 1 steps. Hence,

E(Nε,R0
e ) ≤ [(2r + γ) ∨ 2]r0

μext(r + r0) sinh r0
Ehyp(Nγ,r0

e ).

Sabelfeld and Talay [32] have computed an explicit bound on the expectation of Nγ,r0
e under Phyp which leads

to (4.15). �
The previous result allows one to bound from above the mean computational cost of our algorithms in the

case of one sphere. We only give details in the ANJ(α) case.

Corollary 4.6. For any α > 0, the mean computational cost of the ANJ(α) algorithm when Ωint = S(0, R),
expressed in units of the time length of a single step of the WOS algorithm (assume to be equal to the time
length of a single step of the UWOS algorithm), is bounded from above by

2
R ∨ μ−1

ext

αβμexth

(
C1 + C2 log

αh

ε

)
+

Rεint

βεexth
+O(1 + ε log(1/ε)/h2), (4.17)

where C1 = (1 − log 2)−1 + log 2(1 − log 2)−3 and C2 = (1 − log 2)−2.

Proof. At each time where the particle jumps from Γ to Ωext, the probability that the particle hits Γ again
before getting extinct is given by (4.8). Therefore, the number of times the particle jumps from Γ to Ωext before
being killed is a geometric random variable G with expectation R/αβh + O(1 + ε/h2). Conditionally on the
value of G, the number of times where the particle jumps from Γ to Ωint before being killed is

N = 1 +
G∑

i=1

(Ni − 1),

where Ni are i.i.d. r.v. with geometric distribution with parameter εext/(αεint + εext).
Denoting by L the event “the particle is alive at the end of the WOS algorithm”, it follows from (4.8) and

Theorem 4.5 that

E(Nε,αh
e | L) ≤ R ∨ μ−1

ext

Rμext

(
C1 + C2 log

αh

ε

)
(1 +O(h + ε))
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and

E(Nε,αh
e | Lc) ≤ R ∨ μ−1

ext

αβμexth

(
C1 + C2 log

αh

ε

)
(1 +O(h+ ε/h)).

Now, the mean computational cost is given by

E
[
N + (G− 1)E(Nε,αh

e | L) + E(Nε,αh
e | Lc)

]
,

which, combined with previous estimates, gives (4.17). �

From this result and the estimation of the bias of the ANJ algorithm (4.10), one gets that the leading-order
term in the efficiency of the algorithm (mean computational cost times mean bias) is bounded by

(
2
R ∨ μ−1

ext

αβμext

(
C1 + C2 log

αh

ε

)
+
Rεint

βεext

) q
(
1 + α

(
1 + κ̄2R2

2εextβ

))
4πR2βεext

· (4.18)

This quantity is minimal if α satisfies

ABα2 +Aα+ 1 = log
αh

ε
+
C1

C2
,

where

A = 1 +
κ̄2R2

2εextβ
and B =

εintμext

2εextC2(1 ∨ (μextR)−1)
·

Denoting by α∗(ε, h) the value of α that minimizes (4.18), this suggests to introduce another version of the
ANJ algorithm, that we call Optimized ANJ (OANJ) algorithm, defined as the ANJ(α∗(ε, h)) algorithm,
which, as the other algorithms presented above, will be tested in Section 5.

4.2. General case

In this section, we extend the bias estimates of the previous sections to situations where Ωint is not a sphere.
Since our method is based on uniform bounds on the second-order derivatives of the solution u of Poisson-
Boltzmann equation, our result only holds in situations where we can prove that ∇2u is bounded, i.e. if Γ is
C∞ by Theorem 2.17. Note that, in this case, the UWOS algorithm inside Ωint must be replaced by the WOS
algorithm.

We consider a family of random variables (Ax, Bx)x∈Γ with Ax ∈ R3 and Bx ∈ {0, 1}, and let (Ak
x, B

k
x)k≥1

be i.i.d. copies of (Ax, Bx) for all x ∈ Γ. We construct the following algorithm.

Generalized generic algorithm.
This algorithm is the SNJ algorithm where Step (2) is replaced by

(2) Let xk+1 = exit(xk) +Ak
exit(xk) and the particle is killed if Bk

exit(xk) = 0.

We denote by ū(Ax,Bx)x
(x0) the expectation of the score given by this algorithm started from x0 ∈ R3.

Theorem 4.7. Assume that Γ is a C∞ compact submanifold of R3. With the previous notation, we have

sup
x0∈Ωint

|ū(Ax,Bx)x
(x0) − (u− u0)(x0)|

≤ sup
x∈Γ

∣∣E[Bxu(x+Ax)] − u(x)
∣∣+ ε‖∇u‖L∞(R3)

1 − E

[
Bx

(
�{x+Ax∈Ωint∪Γ} + �{x+Ax∈Ωext}(L1 | x0 = x+Ax)

)] · (4.19)
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In the case of all the algorithms described in Section 3, we actually have

sup
x0∈Ωint

|ūalgo
h (x0) − (u− u0)(x0)| = O(h+ ε/h), (4.20)

where algo ∈ {SNJ,ANJ(α),UANJ(α),OANJ,NTJ} for any α > 0.

Remark 4.8. The computations of Section 4.1.1 suggest that the bias of the neutron transport algorithm
could be of order h2 + ε/h. But this result is due to the fact that the first-order correction in the probability
of exit from Γ, the second-order correction in the expected distance from Γ, and the second-order expansion
of E[u(x + Ax)], exactly cancel in the case of one sphere. It is unclear whether this holds in the more general
case of Theorem 4.7, particularly because nothing is known a priori on the second-order interior and exterior
normal derivatives of u on Γ.

Concerning the UANJ(α) algorithm, its bias is certainly not of a smaller order than h + ε/h, since it only
allows jumps from Γ in the normal direction. Indeed, errors should occur, due to the fact that the process X
also moves in the tangential directions from Γ, to distances of order h (since X moves of a distance of order h
in the normal direction), which should contribute to a nonzero error in the second-order terms in the expansion
of the numerator in (4.19).

The proof of the previous result easily extends to any dimension d and to any solution to the PDE (2.42)
which satisfy the assumptions of Theorem 2.17. In such situation, all the algorithms we describe have a bias of
order h+ ε/h.

Proof. The proof of (4.19) closely follows the proof of (4.3) in Theorem 4.1. First, the formula (4.5) trivially
extends to the previous generalized algorithm. Now, since the simulation of exit(x0) by the UWOS algorithm
is exact if x0 ∈ Ωint, we deduce from (3.5) that, for all x0 ∈ Ωint,

ū(Ax,Bx)x
(x0) − (u− u0)(x0) = E

[
ū(exit(x0)) − u(exit(x0)) + u0(exit(x0))

]
. (4.21)

As in the proof of Theorem 4.1, we then obtain that, for all x0 ∈ Γ,

ū(x) − (u− u0)(x) = E

[
Bx�{x+Ax∈Ωint∪Γ}(u0(x+Ax) + ū(x +Ax))

]
+ E

[
Bx�{x+Ax∈Ωext}ū(x+Ax)

]
− u(x)

= E

[
Bx�{x+Ax∈Ωint∪Γ}E

[
ū(exit(x0)) − (u− u0)(exit(x0)) | x0 = x+Ax

]]
+ E

[
Bx�{x+Ax∈Ωext}E

[
�L1

(
ū(exit(x0)) − (u− u0)(exit(x0))

) | x0 = x+ Ax

]]
+ E

[
Bx�{x+Ax∈Ωint∪Γ} u(x+Ax)

]
+ E

[
Bx�{x+Ax∈Ωext}E

[
�L1u(exit(x0)) | x0 = x+Ax

]]
− u(x), (4.22)

where ū = ū(Ax,Bx)x
. Since

u(y0) = E[u(exit(y0))�L1 ] +O(ε)

by (3.10), where the O(ε) is bounded by ε‖∇u‖L∞(R3), we deduce (4.19) from (4.21) and (4.22).
Now, in all the algorithms of Section 3,

E[A2
x] = O(h2) and P(Bx = 0) = O(h2).
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Therefore, as in the proof of Corollary 4.2, it follows from a second-order expansion in the numerator of (4.19)
and from the fact that ‖∇2u‖L∞(R3) <∞ that, for all x0 ∈ Ωint,

∣∣ūalgo
h (x0) − (u− u0)(x0)

∣∣
≤ sup

x∈Γ

E

[
∇intu(x) · Ax�{x+Ax∈Ωint} + ∇extu(x) · Ax�{x+Ax∈Ωext}

]
+O(h2 + ε)

E
[
�{x+Ax∈Ωext}P(Lc

1 | x0 = x+Ax)
]
+O(h2)

· (4.23)

All our algorithms satisfy

E[∇intu(x) · Ax�{x+Ax∈Ωint}] = ∇intu(x) · n(x)E[Ax · n(x)�{x+Ax∈Ωint}],

and
εextE[Ax · n(x)�{x+Ax∈Ωint}] + εintE[Ax · n(x)�{x+Ax∈Ωext}] = O(h2),

which shows that the numerator in (4.23) is O(h2 + ε).
Concerning the denominator, since Γ is C∞ and compact, there exists r > 0 such that, for all x ∈ Γ, the

exterior sphere of radius r tangent to Γ at x does not intersect Γ except at x. Let us call Sx the sphere with
the same center as the previous one with radius r − ε (assuming without loss of generality that ε < r). By the
standard coupling of the WOS algorithm with a Brownian motion (Bt, t ≥ 0) in R3, for all x ∈ Ωext such that
ε < d(x,Γ) ≤ r,

P(Lc
1 | x0 = x) ≥ 1 − E

[
exp

(
− κ̄2

2εext
τx

)]
= 1 − (r − ε) sinh((r − d(x,Γ))κ̄/

√
εext)

(r − d(x,Γ)) sinh((r − ε)κ̄/
√
εext)

≥ 1 − r sinh((r − d(x,Γ))κ̄/
√
εext)

(r − d(x,Γ)) sinh(rκ̄/
√
εext)

,

where τx = inf{t ≥ 0 : x + Bt �∈ Sπ(x)}. We may assume without loss of generality that ε ≤ hη for some fixed
η > 0 (otherwise (4.20) is trivial). In all our algorithms, we may choose η small enough to have P(|ρ(x+Ax)| ∈
[ηh, η−1h]) ≥ δ for all x ∈ Γ, for some constant δ > 0. Therefore,

E
[
�{x+Ax∈Ωext}P(Lc

1 | x0 = x+Ax)
] ≥ E

[
�{|ρ(x+Ax)|∈[ηh,η−1h]}P(Lc

1 | x0 = x+Ax)
]

≥ rδ

sinh(rκ̄/
√
εext)

(
sinh(rκ̄/

√
εext)

r
− sinh((r − η−1h)κ̄/

√
εext)

(r − η−1h)

)
≥ Ch

for some constant C > 0 independent of h and ε. Combining this with the previous estimates ends the proof of
Theorem 4.7. �

5. Numerical comparisons

The aim of this section is to compare the performance of the different ways to move the simulated Brownian
particle after it hits the interface Γ in the simple cases of a molecule constituted of one sphere and a molecule
constituted of two spheres.

We compare the five different methods previously described in Sections 3.2.3, 3.3 and 4.1.2. These methods
have two main characteristics: the jump direction and the jump asymmetry coefficient α (cf. Sect. 3.3).

• In four of them, the SNJ, ANJ, OANJ and UANJ algorithms, the particle only jumps in the normal
direction to the interface. In the NTJ algorithm, the direction of replacement is chosen uniformly.

• The SNJ algorithm corresponds to the symmetric situation α = 1. In the ANJ and UANJ algorithms, α
is a parameter. We focus on two values of α. The first one, α = εext/εint, which corresponds to the value
19.875 in the numerical tests below, is chosen because it corresponds to a probability 1

2 to go outside
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or inside the molecule. This enables us to compare the ANJ method with the NTJ method, which has the
same asymmetry coefficient (see 3.16). The second value, α = 10, is intermediate between α = 19.875
and the symmetric case α = 1. Finally, the OANJ algorithm involves an asymmetry coefficient α∗,
optimal w.r.t. the bound (4.18). This coefficient is estimated with the Newton method.

We choose the same physical parameters as in [23]:

εext = 78.5, εint = 4 and κ̄ = 9.214 × 10j, for j = −1, 0, 1.

We also consider the case κ̄ = 9.214× 10−3 since the situation where κ̄ is close to zero is relevant in biology. In
such a situation, the end of the WOS algorithm is related to the probability for the Brownian motion to go to
infinity.

We estimate the electrostatic free energy of the molecule (proportional to)

N∑
i=1

qi (u(xi) − u0(xi)) ,

where the xi are the centers of the atoms of the molecule, with the following set of numerical parameters:

ε = 10−8, h between 0.3 and 10−4, and 106 simulated paths.

The value of ε is small enough to ensure that the error term ε/h of the error estimates of the previous section
has never an order larger than h. Note that choosing a very small absorption parameter ε for the WOS outside
Ωint does not increase too much the CPU times as the corresponding mean computational cost is O(| log(ε)|).

Note that an interesting feature of these algorithms is that they only require a small amount of RAM5 and
that they can be easily replicated on clustered processors. However, to make comparison easier, we run our
C/C++ code sequentially on a single processor6.

5.1. Numerical results on the case of a single sphere

In the single sphere case, we fix

Ωint = B(0, 1), q = 1, x1 = (0, 0, 0).

The explicit solution given in (4.1) allows us to compare the numerical error with the theoretical bias computed
in Section 4.1.

We first plot in Figure 4a the global CPU times (in seconds) as a function of h in a logarithmic scale (base 10)
in the case κ̄ = 9.214 × 101. Note that all the numerical tests have been done on the same computer6. We
observe the same behaviour for all algorithms: the CPU time depend linearly of h, which is consistent with
Corollary 4.6. Note that for any values of h and κ̄, a certain amount of CPU time is spent in the UWOS
algorithm before the first exit of the particle. This explains the almost constant CPU time for large h since,
in this case, the particle is killed with a large probability immediately after its first exit (at least if κ̄ is large
enough). As expected, we observe also (except when h is large) that the SNJ algorithm always requires a larger
CPU time than the other algorithms.

Figure 4b shows the CPU times as a function of h for various values of κ̄. We only plot the results for
the NTJ algorithm, but we observe similar results for the other algorithms. The CPU time increases when κ̄
decreases because the process is less killed outside the sphere. We can notice that these CPU times are very
close for κ̄ = 9.214× 10−1 and κ̄ = 9.214× 10−3 especially for small h. This is certainly due to the fact that for
such values the probability to be killed is related to the probability for the Brownian motion to go to infinity.

5Random Access Memory.
6CPU E6850, 3.00 GHz, i686.
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(a) CPU times (Log scale) in terms of h (Log scale) for all

the algorithms, κ̄ = 92.14.

(b) CPU times (Log scale) in terms of h (Log scale) for the

NTJ algorithm, κ̄ = 9.214 × 10j for j = −3,−1, 0, 1.

Figure 4. Single sphere. CPU times.

(a) The ∗NJ algorithms, with κ̄ = 9.214 × 101. (b) The NTJ algorithm, κ̄ = 9.214 × 10n for n =
−3, −1, 0, 1.

Figure 5. Single sphere. Numerical error approximations (and their theoretical bias for the
–NJ algorithm), in terms of h.

This is a good point for all our methods as, for even smaller physical values of κ̄, the CPU time should not
increase too much. Note that the theoretical bounds in Section 4.1.2 may not be optimal w.r.t. κ̄.

Figure 5a shows the observed and theoretical bias of methods SNJ, OANJ and ANJ with α = 10 and
α = 19.875, in the case κ̄ = 9.214 × 101. For all the methods, the theoretical and numerical bias agree and
are of order one in h as the slope of the function in logarithmic scale is one. We observe that the bias of the
SNJ method is smaller than the other “normal jump” algorithms, except of course for the UANJ algorithm
which is essentially unbiased (see Cor. 4.3). The corresponding curve is displayed in Figure 7 and only shows
the Monte Carlo noise in the UANJ error. Note also that the methods OANJ and ANJ with α = 19.875 have
almost the same bias when h decreases. Other values of κ̄ lead to similar conclusions. Concerning the NTJ
algorithm, numerical results are shown in Figure 5b for different values of κ̄. In contrast with the normal jump
methods, the slope of the curve in logarithmic scale is roughly 2, which confirms the theoretical computations
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Figure 6. Single sphere. The (Log) variance in terms of (Log) h.

of Corollary 4.3. For values of h smaller than 0.001, it usually provides at least one exact digit more than the
three methods of Figure 5a.

We have also computed the variance of the score for each method. Figure 6 shows the case of the ANJ
algorithm with α = 10. We observe that the variance is very small and slowly decreases with h and κ̄. The
variance has about the same behaviour for all the other methods.

Finally in Figure 7, we study the performances of the different methods. For each algorithm, we plot the
error as a function of the CPU time. Such plots allow one to compare different methods at given CPU times.
Not surprisingly, the UANJ method is the best one over the whole range of CPU times, as it is unbiased (in the
case of a single sphere only). The irregular pattern of the corresponding curves comes from the Monte Carlo
noise. This plot gives a good indicator of the Monte Carlo part of the global error for all the methods, as they
all have comparable variances. The SNJ method is the worst one, especially when κ̄ is small. The ANJ methods
for α = 10 and α = 19.875 and the OANJ method have quite similar performances. As suggested by Figure 5b,
the NTJ method is always more efficient when h is small enough in all the examples studied: it is faster and its
bias is of order two.

5.2. The case of two spheres

In this section we present numerical tests on a case with two spheres, parameterized by

Ωint = B(x1, 1) ∪B(x2, 1), x1 = (0, 0, 0), x2 = (0, 0, 1), q1 = q2 = 1.

The values of ε and h and the number of simulated paths are the same as in the case of a single sphere. The
exact value of the free energy is unknown in this case.

Figure 8 shows the free energy approximations in terms of h for the SNJ, ANJ(10), ANJ(19.875), UANJ(10),
UANJ(19.875), and NTJ algorithms. We plot the free energy values for κ̄ = 9.214× 10−1 and κ̄ = 9.214× 101.
In these two cases, one can observe convergence of all the methods as h decreases. Note that, for the ANJ(α)
and NTJ algorithms, the convergence of the estimated free energies is not monotone w.r.t. h.

We also compute the free energy with the SNJ algorithm for h = 0.0001, allowing us to estimate a pseudo-
error w.r.t. this reference value for each algorithm. Figure 9 shows the resulting pseudo-error and performance
(CPU time in terms of h) for κ̄ = 9.214.

In Figure 9, we first observe that the error curves corresponding to the ANJ(α) and NTJ algorithms all have
a local minimum around h = 0.03. This is due to the fact that the convergence of the estimated free energies
is not monotone w.r.t. h. The expected bias for these methods, as a function of h, probably cuts the horizontal
line corresponding to the exact free energy for a value of h close to 0.03. Of course, these local minima have
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(a) κ̄ = 9.214 × 10−3. (b) κ̄ = 9.214 × 10−1.

(c) κ̄ = 9.214. (d) κ̄ = 9.214 × 101.

Figure 7. Single sphere. Performance analysis.

no meaning in terms of performance. One should rather compare the parts of the curves corresponding to
smaller h.

The SNJ method has a slightly smaller error than the other normal jump methods, but its performance is
really worse. This is consistent with the case of a single sphere. The other normal jump methods (ANJ(α) and
UANJ(α)) have more or less the same behaviour both in terms of error and performance. This is in contrast with
the case of a single sphere: obviously, the UANJ(α) algorithms being designed for the one sphere problem only,
they have no reason to be unbiased in the present situation. As in the case of a single sphere, the NTJ method
outperforms all the previous ones. We expect that this conclusion is also valid for more realistic problems. As
a conclusion, we recommend the NTJ method for more complex applications.

A. Proof of Theorem 2.17

Under Assumptions (H1)–(H4), the existence and uniqueness of a solution u ∈ H1(D) and the fact that
u ∈ C0(D) are ensured by Theorems 8.3 and 8.30 of [9].

The first step of the proof consists in showing that u restricted to Γ ∩ D is a C∞ function. To this aim,
we consider of C∞ local straightenings of Γ, ψ1, . . . , ψM , defined on U1, . . . ,UM respectively, constructed as



MONTE CARLO ALGORITHMS FOR POISSON-BOLTZMANN EQUATION 1043

(a) κ̄ = 9.214 × 10−1. (b) κ̄ = 9.214 × 101.

Figure 8. Two spheres case. The free energy approximations, in terms of h (Log).

(a) Pseudo error. κ̄ = 9.214. (b) Performance measure. κ̄ = 9.214.

Figure 9. Two spheres case. Pseudo error (Log), and performance measure for the free energy
approximation in terms of h (Log).

in Proposition 2.1. Replacing Ui by Ui ∩D, we may assume that Um ⊂ D. Let us fix i ∈ {1, . . . ,M} and write
for simplicity ψ = ψi, U = Ui and V = ψ(U).

We define v(y) = u(ψ−1(y)), ε̃(y) = ε(ψ−1(y)), g̃(y) = g(ψ−1(y)), λ̃(y) = λ(ψ−1(y)) and M(y) =
(Mij(y)) 1≤i,j≤d = Jψ(ψ−1(y)) for all y ∈ V . Note that, since ψ is C∞ diffeomorphism from U to V , we
have v ∈ H1

loc(V).
With these notations, the PDE (2.42) may be rewritten on U as

−∇ · [ε̃(ψ(x))M(ψ(x))∇v(ψ(x))
]

+ λ̃(ψ(x))v(ψ(x)) = g̃(ψ(x))

and

∇ · [ε̃(ψ(x))M(ψ(x))∇v(ψ(x))
]

=
d∑

i=1

∇
⎡
⎣ε̃ d∑

j=1

Mij∂jv

⎤
⎦ (ψ(x))∂iψ(x) =

d∑
i,j,k=1

∂k

(
ε̃Mij∂jv

)
(ψ(x))Mik(ψ(x)),
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where we write in this section ∂i for the partial derivative w.r.t. the ith variable. Therefore, the change of
variable y = ψ(x) leads to the PDE7

−
d∑

i,j,k=1

Mik∂k

(
ε̃Mij∂jv

)
+ λ̃v = g̃ on V . (A.1)

We are going to use the next lemma repeatedly in the proof. Its proof is postponed at the end of this section.

Lemma A.1. For all i ∈ {1, . . . , d}, on V,

d∑
k=1

∂k(MikdetJψ−1) = 0.

Step 0. To start with, we recall how classical energy computations can be used to prove that ∇v ∈ L2
loc(V)

from the fact that v ∈ L2
loc(V). In the next steps of the proof, we will extend this method to prove L2 estimates

for higher-order derivatives of v (in the sense of distributions).
Let χ ∈ C∞

c (V) and set w = χv. It follows from elementary computations that

−
d∑

i,j,k=1

Mik∂k

(
ε̃Mij∂jw

)
+

d∑
i,j,k=1

Mik∂k

(
ε̃Mijv∂jχ

)
+ λ̃w = χg̃ −

d∑
i,j,k=1

ε̃MijMik∂kχ∂jv.

Multiplying this equation by wdetJψ−1, integrating over V , integrating by parts the first and second terms of
the left-hand side, and using Lemma A.1, we get∫

V
ε̃(y) |M(y)∇w(y)|2 detJψ−1(y)dy −

∫
V
ε̃(y)v(y)detJψ−1(y) ∇χ(y)TM(y)TM(y)∇w(y) dy

+
∫
V
λ̃(y)w2(y)detJψ−1(y)dy =

∫
Vm

χ(y)g̃(y)w(y)detJψ−1(y)dy

−
d∑

i,j,k=1

∫
V
ε̃(y)Mij(y)Mik(y)detJψ−1(y) ∂kχ(y) v(y)

(
∂jw(y) − v(y)∂jχ(y)

)
dy,

where we have used in the last term the relation

w(y)∂jv(y) = v(y)
(
∂jw(y) − v(y)∂jχ(y)

)
.

Using the fact that ε̃, λ̃, g̃, M , χ, ∇χ and detJψ−1 are bounded on the support of χ, and that ε̃ and detJψ−1

are bounded away from 0 on this set, we obtain∫
V
|M(y)∇w(y)|2 dy ≤ C

∫
Supp(χ)

(|w(y)| + |w(y)|2 + |v(y)| |∇w(y)| + |v(y)|2)dy
for some constant C.

Now, letting Sd−1 be the two-dimensional unit sphere in Rd, the function (s, y) �→ |M(y)s|2 is positive and
continuous on the compact set Sd−1 × Supp(χ). Therefore,

C′ := inf
(s,y)∈Sd−1×Supp(χ)

|M(y)s|2 > 0. (A.2)

7Of course, since v is only H1 and ε̃ is discontinuous, all this computation and the PDE (A.1) should be understood in the weak
sense.
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Hence, using Young’s inequality

2ab ≤ η−1a2 + ηb2 (A.3)

with a = |v(y)|, b = |∇w(y)| and 0 < η < 1/(4CC′), we obtain that

‖∇w‖2
L2(V) ≤ C′′

(
‖w‖2

L2(Supp(χ)) + ‖v‖2
L2(Supp(χ))

)
< +∞

for some constant C′′. Since this holds for all χ ∈ C∞
c (V), we finally obtain that ∇v ∈ L2

loc(V).

Step 1. We now adapt the previous computation to prove that ∇(∂2v) ∈ L2
loc(V). First, we compute the

partial derivative of equation (A.1) w.r.t. the second coordinate of y ∈ V , using the fact that ε̃ only depends of
the first coordinate:

−
d∑

i,j,k=1

Mik∂k

(
ε̃Mij∂2,jv

)
+ λ̃∂2v + ∂2λ̃v = ∂2g̃ +

d∑
i,j,k=1

Mik∂k

(
ε̃∂2Mij∂jv

)
+

d∑
i,j,k=1

∂2Mik∂k

(
ε̃Mij∂jv

)
.

We fix χ ∈ C∞
c (U) and we define w = χ∂2v. Then

−
d∑

i,j,k=1

Mik∂k

(
ε̃Mij∂jw

)
+ λ̃w + χv∂2λ̃ = χ∂2g̃ +

d∑
i,j,k=1

χMik∂k

(
ε̃∂2Mij∂jv

)
+

d∑
i,j,k=1

χ∂2Mik∂k

(
ε̃Mij∂jv

)

−
d∑

i,j,k=1

Mik∂k

(
ε̃Mij∂jχ∂2v

)− d∑
i,j,k=1

ε̃MijMik∂kχ∂2,jv. (A.4)

Multiplying the previous equation by wdetJψ−1, integrating over V , integrating by parts every term involving
a partial derivative of ε̃ and using Lemma A.1 when necessary, we obtain

∫
V
|M(y)∇w(y)|2dy ≤ C

∫
Supp(χ)

(|w(y)| + |w(y)|2 + |w(y)v(y)|

+ (|w(y)| + |∇w(y)|) |∇ v(y)| + |w(y)∇∂2v(y)|) dy.

Using (A.2), the relation w(y)∇∂2v(y) = ∂2v(y)
(∇w(y) − ∇χ(y)∂2v(y)

)
, and the inequality (A.3) with an

appropriate η > 0 to bound |∇w(y)| |∇v(y)|, we finally obtain that

‖∇w‖L2(V) ≤ C
(
‖w‖L2(Supp(χ)) + ‖v‖L2(Supp(χ)) + ‖∇v‖L2(Supp(χ))

)
< +∞,

and hence ∇(∂2v) ∈ L2
loc(V).
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Step 2. Following the same method, we can now prove by induction over n that for all n ≥ 0 and k1, . . . , kn ∈
{2, . . . , d}, ∇(∂k1,...,knv) ∈ L2

loc(V). Assume that this holds for n − 1 ≥ 0, fix k1, . . . , kn ∈ {2, . . . , d}, fix
χ ∈ C∞

c (V) and define w = χ∂k1,...,knv.
Considering the nth order partial derivative of (A.1) with respect to yk1 , . . . , ykn , writing the PDE solved

by w as in (A.4), multiplying the result by wdetJψ−1, integrating over V and integrating by parts each term
involving a partial derivative of ε̃, we obtain as above

∫
V
|M(y)∇w(y)|2dy ≤ C

∫
Supp(χ)

⎛
⎝|w(y)| + |w(y)|2 + |w(y)|

⎛
⎝ n∑

j=0

∑
1≤i1<...<ij≤n

|∂ki1 ,...,kij
v(y)|

⎞
⎠

+ (|w(y)| + |∇w(y)|)
⎛
⎝n−1∑

j=0

∑
1≤i1<...<ij≤n

|∇∂ki1 ,...,kij
v(y)|

⎞
⎠+ |w(y)∇∂k1,...,knv(y)|

⎞
⎠ dy.

The key point is that j ≤ n − 1 in the second sum, so that only nth order derivatives of v are involved, for
which L2 bounds are known by assumption. Therefore, using the relation

w(y)∇∂k1,...,knv(y) = ∂k1,...,knv(y)
(
∇w(y) −∇χ(y)∂k1,...,knv(y)

)

and applying (A.3) with appropriate constants, one has

‖∇w‖2
L2(V) ≤ C

(
‖w‖2

L2(Supp(χ)) + ‖v‖2
L2(Supp(χ)) +

n−1∑
j=0

∑
i1,...,ij∈{2,...,d}

‖∇∂i1,...,ijv‖2
L2(Supp(χ))

⎞
⎠ < +∞.

Hence ∇(∂k1,...,knv) ∈ L2
loc(V).

Step 3. Summarizing the previous results, we have v ∈ H1,∞,...,∞
loc (V), which means that v and ∂v/∂x1 are

H∞ w.r.t. the variables x2, . . . , xd. By classical trace results (see e.g. [5]), we deduce that v|{y1=0} admits, as
a function of (y2, . . . , yd) ∈ ψ(U ∩ Γ), partial derivatives of any order in L2

loc(ψ(U ∩ Γ)). Therefore, v|{y1=0} ∈
C∞(ψ(U ∩ Γ)). Since ψ and Γ are C∞, we finally obtain that u|Γ ∈ C∞(Γ ∩D).

Step 4. The problem (2.42) can be decomposed into the following two sub-problems: u = uint in Ωint ∩D and
u = uext in Ωext ∩D, where

⎧⎪⎨
⎪⎩
−εintΔuint(x) + λ(x)uint(x) = g(x) for x ∈ Ωint ∩D
uint(x) = u|Γ(x) for x ∈ Γ ∩D
uint(x) = h(x) for x ∈ Ωint ∩ ∂D

and ⎧⎪⎨
⎪⎩
−εextΔuext(x) + λ(x)uext(x) = g(x) for x ∈ Ωext ∩D
uext(x) = u|Γ(x) for x ∈ Γ ∩D
uext(x) = h(x) for x ∈ Ωext ∩ ∂D.

Regularity results are well-known for these Poisson equations: it follows from Theorem 6.13 of [9] that uext

is C2,α (i.e. C2 with α-Hölder second order derivatives) on any compact subset of D ∩ Ωext, and next from
Lemma 6.18 of [9] that uext ∈ C2,α(D ∩ Ωext); it also follows from the same results that uint ∈ C2(D ∩ Ωint).
From this, we deduce that u ∈ C0(D)∩C2(D\Γ). Since εint∇uint(y)·n(y) = εext∇uext(y)·n(y) for all y ∈ Γ∩D,
it is also trivial to check that û ∈ C1(D). Moreover, the fact that û ∈ W 2,∞

loc (D) is obvious.
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It now only remains to check that u is bounded on D. Since g has compact support, u is solution to
−εextΔu + λ(x)u = 0 in D outside of some (large) ball B. Since the function u is bounded on ∂(D ∩ B), the
boundedness of u in D ∩B follows from the maximum principle (see e.g. Thm. 3.5 in [9]). �

Proof of Lemma A.1. Since the Fréchet derivative of the determinant function at the invertible matrix A is the
linear map H �→ Tr(HA−1)detA, we only have to prove that

d∑
k=1

Mik(y)Tr
(
∂kJψ

−1(y)Jψ(y)
)

= −
d∑

i=1

∂kMik(y).

The left-hand side of the previous equation is equal to

d∑
k=1

Mik(y)
d∑

j,l=1

∂kJψ
−1
lj (y)Mjl(y) =

d∑
j,l=1

Mjl(y)
d∑

k=1

Mik(y)∂lJψ
−1
kj (y)

since ∂kJψ
−1
lj = ∂lJψ

−1
kj , as symmetric second-order partial derivatives. Expliciting the l-th partial derivative

of each term of the equality M(y)Jψ−1(y) = Id, we deduce that

−
d∑

k,l=1

∂lMik(y)
d∑

j=1

Jψ−1
kj (y)Mjl(y) = −

d∑
k=1

∂kMik(y)

since Jψ−1(y)M(y) = Id. This ends the proof of Lemma A.1. �
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[18] N. Limić, Markov jump processes approximating a nonsymmetric generalized diffusion. Preprint, arXiv:0804.0848v4 (2008).
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