
ESAIM: M2AN 44 (2010) 1107–1133 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an/2010054 www.esaim-m2an.org
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Abstract. With the pioneering work of [Pardoux and Peng, Syst. Contr. Lett. 14 (1990) 55–61;
Pardoux and Peng, Lecture Notes in Control and Information Sciences 176 (1992) 200–217]. We have
at our disposal stochastic processes which solve the so-called backward stochastic differential equations.
These processes provide us with a Feynman-Kac representation for the solutions of a class of nonlinear
partial differential equations (PDEs) which appear in many applications in the field of Mathematical
Finance. Therefore there is a great interest among both practitioners and theoreticians to develop
reliable numerical methods for their numerical resolution. In this survey, we present a number of
probabilistic methods for approximating solutions of semilinear PDEs all based on the corresponding
Feynman-Kac representation. We also include a general introduction to backward stochastic differential
equations and their connection with PDEs and provide a generic framework that accommodates existing
probabilistic algorithms and facilitates the construction of new ones.
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1. Introduction

One of the most celebrated results in stochastic analysis is the so-called Feynman-Kac representation formula,
first established in the late forties (see [21,28]) for the heat equation and extended since to more general parabolic
equations. This formula provides us with a fundamental link between solutions of Partial Differential Equations
and solutions of Stochastic Differential Equations (SDEs), thus allowing the dual formulation of numerous
problems.
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In brief, let v : [0, T ] × Rq → R be a function of polynomial growth, which is the solution of the Cauchy
problem

(∂t + L)v = 0, (t, x) ∈ [0, T )× Rq

v(T, x) = Φ(x) x ∈ Rq

where L is the second order differential operator

Lv =
q∑

i=1

V i
0 ∂iv +

1
2

q∑
i,j=1

aij∂i∂jv. (1.1)

In (1.1), V0 = (V i
0 )q

i=1 : Rq → Rq is a Lipschitz function and A = (aij)q
i,j=1 : Rq → Rq×q is a matrix valued

function such that A = V ∗V , where V = (V1, . . . , Vq) is a matrix valued function with columns given by the
Lipschitz functions Vj = (V i

j )q
i=1 : Rq → Rq, j = 1, ..., d2. Then v has the following Feynman-Kac representation3

v(s, x) = E [Φ(Xs,x
T )] , (s, x) ∈ [0, T ]× Rq,

where Xs,x is the solution to the SDE

Xs,x
t = x+

∫ t

s

V0(Xs,x
u ) du+

q∑
i=1

∫ t

s

Vi(Xs,x
u ) dW i

u, s ≤ t ≤ T. (1.2)

Similar representations exists for more general classes of Cauchy, Dirichlet and free boundary problems. How-
ever, it was not until the early nineties that Feynman-Kac formulas were developed for nonlinear equations in
the seminal work of Pardoux and Peng [40,41]. They considered the following Cauchy problem{

(∂t + L)u = −f (t, x, u, (∇uV ) (x)) , t ∈ [0, T ), x ∈ Rq

u(T, x) = Φ(x), x ∈ Rq,
(1.3)

where ∇u is the row vector ∇u := (∂x1u, . . . , ∂xqu). A stochastic representation to the solution of (1.3) is
obtained by means of a solution to a backward stochastic differential equation (BSDE henceforth). The first
occurrence of BSDEs in the literature may be traced back to 1973, when [4] studied a BSDE of a Ricatti type.
The general problem was first addressed by [40] and a vast literature has been developed since. Notably, one
of the driving forces behind the rapid expansion of the theory of BSDEs has been their various applications
in Mathematical Finance. These equations are ideal tools for solving problems in a market framework beyond
the Black-Scholes-Merton classical paradigm. For instance, BSDEs are used in the study of pricing contingent
claims with trading constraints as in [12,27] or in incomplete markets as in [16]. They have also been applied
to problems of recursive utility [13,14] as well as to the pricing of American options [19]. We review some of
their applications in finance in Section 3.

As solutions of BSDEs provide a probabilistic representation (the Feynman-Kac formula) to the solution
of the Cauchy problem (1.3), they form the basis of a number of algorithms of probabilistic nature suited for
the numerical approximation of (1.3), thus offering an alternative to deterministic, grid-based algorithms. It
is a well known fact that this type of algorithms, though very efficient in low dimensions, become difficult to
handle or even intractable, as the dimension increases. The reason is that the size of the grid (and hence the
computational effort) increases exponentially with the dimension of the state space. A probabilistic numerical
method, one based on the numerical approximation of the corresponding BSDE does not require a grid, hence
it can be applied to problems where the dimension of the state space goes beyond the current capabilities

2Note that V is not required to be a square matrix valued.
3For a proof of this result, see, for example, Theorem 5.7.6 in [29].
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of its deterministic counter-parts. In this survey we present four such probabilistic algorithms: the quantization
method (Sect. 5), the Malliavin calculus regression method (Sect. 6), the regression on function bases method
(Sect. 7) and the cubature method (Sect. 8).

In the following section, we describe in detail backward SDEs and forward-backward SDEs and explain
their connection with semilinear PDEs. In Section 3 we describe the applications of BSDEs to Mathematical
Finance and in Section 4 we describe the discretization process for these equations which is the first step towards
constructing probabilistic algorithms for solving the Cauchy problem (1.3).

Throughout we will be working with the following notation and assumptions:

Notation. Let (Ω,F ,P) be a probability space on which we consider a q-dimensional standard Brownian
motion W = {Wt, 0 ≤ t ≤ T }. We shall be working with the following objects:

• {Ft}0≤t≤T denotes the augmented Brownian filtration. We denote by P the previsible σ-algebra on
[0, T ]× Ω. Also B(Rq) is the Borel σ-algebra on the Euclidean space Rq.

• Lp, p ≥ 1 stands for the FT measurable, p-integrable random variables, i.e. for any X : Ω → R such
that

‖X‖p := E [|X |p]1/p <∞.

• H
p,d
T denotes all P measurable processes ψ : [0, T ]× Ω → Rd such that

‖ψ‖p
p := E

∫ T

0

|ψt|pdt <∞.

• For any vector x ∈ Rq, |x| stands for its Euclidean norm, while x · y denotes the inner product of
two such vectors. Moreover for any matrix A with real valued entries, its Euclidean norm is given by
|A| :=

√
tr(AA∗), where ∗ denotes transposition of the matrix.

Assumptions.

(H1a): The coefficients of the forward SDE Vi : Rq → Rq, i = 0, 1, . . . , q are uniformly Lipschitz, i.e.
there exists a constant K such that

|Vi(x) − Vi(y)| ≤ K|x− y|, ∀ i = 0, . . . , q, x, y ∈ Rq.

Moreover the matrix V = (V1, . . . , Vq), i.e. the matrix whose columns are V1, . . . , Vq, is elliptic.
(H1b): The vector fields Vi, i = 0, . . . , q, belong to C∞

b (Rq) the space of bounded infinitely differentiable
functions with all partial derivatives bounded.

Under assumption (H1a) the forward equation (1.2) is known to possess a unique solution such that E[
sup0≤t≤T |Xt|2

]
< ∞ (see for example Chap. 5 of [29]). We shall be working under (H1a) throughout. Some

of the algorithms that we present in this article, require extra smoothness in the vector fields appearing in the
forward equation (1.2) and in that case we will assume (H1b) as well. We will be explicit as to when (H1b) is
in force.

2. Backward SDEs and forward-backward SDEs

Let ξ be a random variable, ξ ∈ L2 and f : [0, T ]×Ω×R×Rq → R be a function measurable with respect to
the σ-field P × B(R)× B(Rd) such that f(·, ·, 0, 0) ∈ H

2,1
T . Pardoux and Peng proved in [40] that there exists a

unique pair of Ft-adapted, progressively measurable processes (Y, Z), taking values in R, Rd respectively, such
that

E

[
sup

t≤s≤T
|Ys|2
]
<∞, Zt ∈ H

2,q
T ,
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which satisfy the equation

Yt = ξ +
∫ T

t

f(s, ω, Ys, Zs)ds−
∫ T

t

Zs · dWs, t ∈ [0, T ]. (2.1)

Heuristically, one starts at the (final) time T with YT = ξ and then Y is constructed backwards in time for the
whole of the interval [0, T ]. That is why equation (2.1) is suitably called a backward SDE. The remarkable fact
about the result is that the process Y is constructed in such a way that it is adapted to the (forward) filtration
{Ft}0≤t≤T throughout [0, T ]. It is the freedom to choose the process Z that makes it possible to construct a
non-anticipative solution to equation (2.1).

Pardoux and Peng proved the existence and uniqueness of the solution of (2.1) under a uniform Lipschitz
assumptions on the driver of the BSDE f in its spatial variables. This assumption has since been relaxed.
For instance the case of a BSDE with a driver of quadratic growth in its z variable, but a bounded terminal
condition has been studied in [30,31]. See also [7] for a study of this case without the assumption of boundedness
on ξ.

Though we shall only be looking at systems where the filtration is generated by a Brownian motion, let us
remark that this condition may also be relaxed. For example El Karoui and Huang [15] study a BSDE driven
by a general càdlàg martingale, and in [3,47] the question of existence and uniqueness to a equation of the
form (2.1) in the presence of random jumps, is addressed.

A case of particular interest, is that where the final value ξ in (2.1) comes from a (forward) stochastic
differential equation (SDE). On the one hand, this provides us with an ideal framework for financial applications
as we shall see in Section 3. On the other hand, it allows us to build the Feynman-Kac representation for the
solution of the Cauchy problem (1.3). To be precise, let us assume that there exists a real valued functional Φ
such that ξ = Φ(Xs,x

· ) and that the driver takes the special form f(t,Xt, Yt, Zt) for a deterministic function
f : [0, T ] × Rq × R × Rq → R, where Xt,x

· is the solution to (1.2). Observe that any randomness on the
backward equation now comes only through the dependence of the driver and the terminal condition on the
state variable x. On these coefficients we make the following:

Assumptions II.

(H2a): The driver of the BSDE f : [0, 1]×Rq ×R×Rq → R is uniformly Lipschitz in its spatial variables
and Hölder continuous with respect to time, i.e. there exists a constant K such that

|f(t, x, y, z)− f(s, x′, y′, z′)| ≤ K(|t− s|1/2 + |x− x′| + |y − y′| + |z − z′|).

The terminal condition Φ(·) is also uniformly Lipschitz.
(H2b): The driver of the BSDE f belongs to C1,m

b ([0, T ]× Rq ×R ×Rq), i.e. it is one time continuously
differentiable with respect to time and m times with respect to its spatial variables. All derivatives are
assumed bounded.

Again, we are primarily working under (H2a). The additional assumption (H2b) shall be needed only for the
algorithm presented in Section 8. By pairing up equations (1.2) and (2.1) we obtain a so-called forward-backward
stochastic differential equation (FBSDE):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dXt,x
s = V0(Xt,x

s )ds+
∑q

j=1 Vj(Xt,x
s )dW j

s , s ∈ [t, T ]

−dY t,x
s = f(s,Xt,x

s , Y t,x
s , Zt,x

s )ds− Zt,x
s · dWs, s ∈ [t, T ]

Xt,x
t = x,

Y t,x
T = Φ(Xt,x

T ).

(2.2)
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Under assumptions (H1a) and (H2a), there exists a triplet of progressively measurable processes (Xt,x
s , Y t,x

s , Zt,x
s )

that solves (2.2) such that

E

[
sup

t≤s≤T
|Xt,x

s |2 + sup
t≤s≤T

|Y t,x
s |2 +

∫ T

t

|Zt,x
s |2ds

]
<∞.

As we shall see, the solution of the system (2.2) provides us with an extension to the Feynman-Kac representation
for semilinear PDEs4.

A closely related class of SDEs are backward stochastic differential equations with reflection with respect to
a continuous time barrier (RBSDEs henceforth). RBSDEs are the stochastic counterpart of obstacle problems.
The algorithms presented in Sections 5 and 6 are applicable to BSDEs as well as RBSDEs (in fact the first of
these was designed with such problems in mind). Hence, it makes sense to briefly present here the setup for
reflected BSDEs.

Consider, as above the BSDE (2.1), where the vector fields satisfy assumption (H1a). We also consider
a terminal condition ξ and a driver f as in (2.2) and also a real valued continuous time process St such
that E

[
(S+

t )2
]
< ∞, called the obstacle. We call a triplet (Y, Z,K) of Ft-adapted, progressively measurable

R × Rd × R+-valued processes, a solution to a reflected BSDE if:
(1) P -almost surely,

Ys = ξ +
∫ T

s

f(u,Xu, Yu, Zu)du+KT −Ks −
∫ T

s

Zu · dWu

Ys ≥ Ss s ∈ [0, T ]. (2.3)

(2) The process Kt is continuous, non decreasing, K0 = 0 and

∫ T

0

(Ys − Ss)dKs = 0.

(3) The processes (Y, Z,K) satisfy the integrability conditions Z ∈ H
2,q
T , KT ∈ L2. As a consequence we

also have that E
[
supt≤s≤T |Ys|2

]
<∞.

The existence and uniqueness for solutions of equations of the form established by El Karaoui et al. [18].
The idea behind a RBSDES is as follows: As long as the solution stays above a certain barrier (modelled by
the process S) it satisfies (2.1). When it hits the barrier, it is reflected back by means of the process K. As a
result, the solution always stays above S. The action of the process K is minimal, in the sense that it occurs
only in the critical situation, when Y = S.

A solution to a RBSDE connects naturally to optimal stopping problems (a fact which beyond its theoretical
value, becomes also important when designing algorithms for solving RBSDEs as we shall see in Sect. 5). It is
shown in Proposition 2.3 of [18] that the process Y is related to the Snell envelope by

Yt = ess sup
τ∈Tt

E

[∫ τ

t

f(s,Xs, Ys, Zs)ds+ Sτ1τ<T + ξ1τ=T |Ft

]
, (2.4)

where Tt denotes the collection of all stopping times taking values in [t, T ].

4The FBSE obtained in this manner is called decoupled because the backward components (Y, Z) do not influence the dynamics
of the forward part X. The coupled version of (2.2) can be found for example in [38,42] and it provides a Feynman-Kac representation
to a class of quasilinear PDEs. Recently, there has also been progress to the direction of obtaining stochastic representations for
fully nonlinear parabolic PDEs in the work of Cheridito et al. [9]. In this survey we shall restrict ourselves to systems of the
form (2.2) or, to put it differently, to the stochastic counterpart of the Cauchy problem (1.3).
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2.1. Connections with PDEs

Let u ∈ C1,2([0, T ]× Rq) be a real valued function which is solution of the Cauchy problem (1.3), where the
second order differential operator L is the infinitesimal generator of the forward part of (2.2). A straightforward
application of Itô’s formula to the process u(t,Xs,x

t ) shows that solution (Y s,x
t , Zs,x

t ) to the backward part of (2.2)
may be identified respectively with (u(t,Xs,x

t ),∇u(t,Xs,x
t )V (Xs,x

t )). In effect, we may identify the solution of
the Cauchy problem (1.3) as u(s, x) = Y s,x

s .
Under (H1a), (H2a) one can not expect that equation (1.3) will have a solution in the classical sense.

However, it can be shown that there exists a solution in the viscosity sense. Pardoux and Peng [41] establish
the link between the flow of the system (2.2) and the solution of (1.3) in the viscosity sense. Their work has
been extended further by Ma et al. [36,37].

Theorem 2.1.
The smooth case [41]:
Define the function u(s, x) = Y s,x

s , (s, x) ∈ [0, T ]×Rq. Assume that assumptions (H1b) and (H2b) are in force
with m = 3 for the latter, and also that Φ ∈ C3

b (Rn). Then u ∈ C1,2([0, T ]×Rq) and solves (1.3) in the classical
sense.

The viscosity case [36,41]:
If only (H1a) and (H2a) are in force, u is the unique viscosity solution to (1.3). If in addition the driver f
and the terminal condition Φ are continuously differentiable with bounded first order partial derivatives then u,
the viscosity solution of (1.3), is continuously differentiable with bounded first order partial derivatives in the
spatial variable. Moreover Zs,x

s = ∇u(s, x)V (x).

In the presence of a reflection, the forward backward system associates to an obstacle problem. Consider the
system (2.3) where the reflection is determined through a function of the underlying diffusion, i.e. St = h(t,Xs,x

t )
where h is a continuous function in (t, x) satisfying the polynomial growth condition

|h(t, x)| ≤ K(1 + |x|p), t ∈ [0, T ], x ∈ Rq,

where p is a given positive integer. We also assume that h(t, x) ≤ Φ(x), x ∈ Rq. A solution to an obstacle
problem in the weak (viscosity) sense is a continuous function u such that for any (t, x) ∈ [0, T ) × Rq:

max ((∂t + L)u(t, x) + f(t, x, u(t, x), (∇uV )(t, x)), h(t, x) − u(t, x)) = 0 (2.5)

and u(T, x) = Φ(x). It is shown in [18] that u(s, x) = Y s,x
s is the unique viscosity solution to (2.5) within the

class of solutions with at most polynomial growth at infinity, where Y s,x
t is the corresponding flow associated

to equation to (2.3), constructed in a similar manner to (2.2). With their work [37], Ma and Zhang recover a
representation for the gradient of a solution to an obstacle problem similarly to the second part of Theorem 2.1.
Naturally, the latter is valid under an additional regularity assumption for the obstacle function h.

3. Applications in finance

The theory of BSDE has found many applications in the field of Mathematical Finance, primarily because
it is suited for the study of financial problems where assumptions of the classical Black-Scholes theory do not
hold. In this section, we briefly describe a few such situations, primerely to motivate the interest in BSDEs
theory. It is by no means a complete list of references nor do we intend to present a sound introduction in
the field of mathematical finance. For a more complete list of the various financial applications of BSDEs, one
should consult the excellent survey article of [20] (which we follow closely).
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3.1. The market framework

The typical model for a continuous time market is that of assuming that traded risky assets evolve as a geometric
Brownian motion. We take up this assumption to keep things as simple as possible. Let us consider a market
with q+1 traded securities. One of these securities should be understood as being risk free (e.g. a bond), where
as the rest may be interpreted as the stocks. The equations governing the evolution of these assets are

dX i
t = V i

0 (t)X i
tdt+

q∑
j=1

V i
j (t)X i

tdW
j
t , i = 1, . . . , q

dX0
t = rtX

0
t dt (3.1)

where Vi, i = 0, . . . , q are Ft-adapted bounded processes. The process r models the risk free interest rate.
We assume that r is a non-negative Ft-adapted, progressively measurable bounded process. We also denote
by θt ∈ Rq the risk premium process, i.e. θi

t measures the gain in excess of the risk free interest rate per
volatility unit, that an investor expects from stock i:

θt = V −1(t)(V0(t) − rt1), (dP × dt) − a.s.,

where 1 is the vector with all entries equal to 1. We now consider a small investor (i.e. one whose actions do not
affect market prices), who wishes to invest in the market modelled by the system (3.1) over a finite time horizon
[0, T ]. At time 0 her wealth is assumed to be Y0 and we denote the portfolio process by πt = (π1

t , . . . , π
q
t ),

i.e. πi
t is the amount invested at time t in the i-th stock. Clearly, decisions made at time t, can only be based

on the available information at time t, hence π is a predictable process. If there are no cash inflows or outflows
from the portfolio up until time T, then the wealth process Yt =

∑q
i=0 π

i
t, where π0

t = Yt −
∑q

i=1 π
i
t denotes the

amount of money invested in the bond, must satisfy

dYt = πi
t

dP i
t

P i
t

= rtYtdt+ πt · (V0(t) − rt1)dt+ πt · VtdWt (3.2)

i.e. any infinitesimal gain or loss realized between times t and t + dt is determined only by her decision at
time t and the infinitesimal market moves. A strategy (V, π) whose dynamics satisfy equation (3.2) is called
self-financing.

3.2. Pricing a contingent claim
A contingent claim of European type is a contract that gives its owner a random payoff at time T modelled by

an FT -measurable random variable ξ. In an arbitrage-free economy, pricing a contingent claim ξ is equivalent
to constructing a self-financing trading strategy for which the terminal wealth, is equal to ξ almost surely.
Assume that we are given such a hedging strategy and we form the dynamics of the corresponding wealth
process according to (3.2) with initial wealth Y0. Since YT = ξ by no arbitrage arguments we can deduce that
the fair price for ξ at time 0 is Y0. Of course, it is not always possible to construct such a hedging strategy,
nor is it a priori certain that such a strategy will be unique. However, one can show using BSDEs that given a
contingent claim ξ ∈ L2, there exists a unique hedging strategy π in the class of strategies that satisfy certain
integrability conditions. Viewing equation (3.2) as a BSDE with terminal condition ξ, we see that πtVt can be
identified with the Z-part of its solution. In this case Y0 is the fair value for ξ at time 0. This is an alternative
to the classical arguments of Black-Scholes theory for pricing a contingent claims. Observe that here, using the
theory of BSDEs, we do not have to appeal to any change of measure arguments. Moreover, this approach can
be extended to situations where the Black-Scholes assumptions do not hold and hence classical techniques via
measure changes may fail.
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3.3. Differential interest rates
We now consider a situation where non linear pricing arises, where we follow [12]. Assume that we wish to

hedge a contingent claim ξ in an economy where there are different interest rates for borrowing and lending.
That is, we can invest in the bond to gain a risk free interest rate rt, but if we wish to borrow money, we would
have to pay an interest rate Rt > rt, which is as well a bounded and adapted process. Clearly, given any trading
strategy π the dynamics of the wealth process Y are no longer described by equation (3.2). Here we invest in
the bond when Yt >

∑q
i=1 π

i
t, but we also have to pay an interest rate Rt on the complementary set.

Starting from the self financing assumption we have that

dYt =
q∑

i=1

πi
t

dX i
t

X i
t

+
(
Yt −

q∑
i=1

πi
t

)
+
rt dt−Rt

(
Yt −

n∑
i=1

πi
t

)
−

dt

= rtYtdt+ πt · Vtθtdt− (Rt − rt)
(
Yt −

q∑
i=1

πi
t

)
−

dt+ πt · VtdWt

where for any real number x, (x)+, (x)− are its positive and negative parts respectively. Hence the dynamics
of the wealth and portfolio process are linked in a nonlinear way. The nonlinearity occurs both with respect to
the wealth and the portfolio process. The results of Pardoux and Peng allow us to deduce the existence of a
unique square integrable strategy that hedges the contingent claim ξ. A similar situation of nonlinear dynamics
occurs in a market where there are short selling constraints (see [27]).

3.4. Pricing American options

Assume the model (3.1) for the market. An American option on the stocks {X i}q
i=1 with expiry T , is a

contract which gives its owner the right to exercise the option at any time t up to the maturity time T in order
to obtain h(Xt), where h is a given function describing the contract. Clearly the aim is to exercise the contract
at the right time, i.e. to choose the (stopping) time τ such that h(Xτ ) = max0≤t≤T h(Xt). It is shown by
El Karoui et al. [19] that the value of such an option is given by the solution to a reflected BSDE. Presenting
the complete argument is quite lengthy, so we just briefly give some key points. The interested reader is referred
to [19].

We have already seen that the value Y Eur
t for a simple (European style) contingent claim ξ (with or without

constraints), may be viewed as the solution of a BSDE

− dY Eur
t = f(t, Y Eur

t , πt)dt− πt · VtdWt, Y Eur
T = ξ (3.3)

where πt is the hedging portfolio. In the absence of constraints, we have f(t, y, z) = −rty − z · Vtθt.
In the American option case it is shown that the value of the contingent claim is the solution to the reflected

BSDE with obstacle h(Xt) corresponding to (3.3). That is, the value Y Am
t of the option is the first component

of the progressively measurable triplet (Y Am, Z,K) that solves the reflected BSDE

− dY Am
t = f(t, Y Am

t , Zt)dt− dKt − Zt · VtdWt, Y Am
T = h(XT )

Y Am
t ≥ h(Xt), t ≤ T, a.s. (3.4)∫ T

0

(Y Am
t − h(Xt))dKt = 0.

This agrees with basic no-arbitrage financial arguments according to which the value of an American option
should never be below its intrinsic value, i.e., below h(Xt). The processK in the solution of (3.4) is interpreted as
a consumption process. Finally let us remark that the above result verifies that the price of the American option
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is the smallest initial endowment by which a self-financing super-hedging strategy may be constructed5. Indeed,
using a comparison theorem for RBSDEs (see [19]) it holds that Y Am

t ≤ Y ′
t for any t ∈ [0, T ], where Y ′ is the first

component of any other solution (Y ′, Z ′,K ′) for (3.4) that does not satisfy the condition
∫ T

0
(Y ′

t −h(X i
t))dK

′
t = 0

(Y ′ is the wealth process of a super-hedging strategy).
To conclude, we have given a brief account on how the value of European or American options with or with-

out constraints on the market, may be represented as solutions to BSDEs, respectively RBSDEs. Moreover, by
employing Theorem 2.1, we can give a PDE interpretation of these financial instruments. To be precise, the
value of a contingent claim is the solution in the viscosity sense of the Cauchy problems (1.3), respectively (2.5)
which involve (possibly) nonlinear PDEs, thus extending the results of Black and Scholes.

3.5. Non linear evaluations and g-expectations

The connection between risk measures and non linear expectations using tools from the theory of BSDEs has
been an area of very active research in recent years. There are numerous occasions where the linearity properties
of pricing mechanisms give rise to paradoxes, and hence the interest in modern economic theory for non linear
evaluation techniques remains high. To the best of our knowledge, non-linear pricing mechanisms and their
connections with BSDEs and g-expectations where first considered in [17], whereas an early axiomatic approach
can be found in [43]. The interested reader should consult [44] for a more detailed exposition of recent advances
in this field. The most prominent applications of these dynamic (non linear) expectations is to risk measures,
see for example [22] and also the study of Rosazza Giannin [46] on the connections among risk measures and
g-expectations. As we have done so far, we will take a brief look on the basic notions and definitions, merely to
motivate interest.

We continue to work under the same market framework that we have been using throughout this section.
We then consider the following family of operators.

Definition 3.1. The family
Es,t : L2(Ft) → L2(Fs), s ≤ t ≤ T

is called an Ft-consistent family of evaluations if it satisfies the following set of axioms:
(A1): Et,t[Y ] = Y, a.s. for Y ∈ Ft, in particular Et,t[c] = c.
(A2): Es,t [Et,v [Y ]] = Es,t [Y ] , s ≤ t ≤ v a.s.
(A3): Es,t [Y ] ≥ Es,t

[
Ȳ
]

a.s. if Y ≥ Ȳ a.s.
(A4): For all s ≤ t we have 1AEs,t [Y ] = Es,t [1AY ] , A ∈ Ft.

To interpret this set of conditions, one should think that the value at time t of any financial instrument
should depend only on the trajectories of the underlying prices Xs, 0 ≤ s ≤ t up to time t. Then (A1) is
obvious. (A2) states that the value of an Fv measurable contingent claim Y at time s is the same as the value
of a portfolio at an intermediate time t, which is equal almost surely to Y at time v. The next axiom expresses
the simple economic intuition that a claim which dominates another claim a.s. at time T , should also be worth
more at any previous time. Finally (A4), also called the “zero-one law”, tells that at time t, we know whether
the event A has occurred. Hence the value of Y is either 0 or equal to the value of Y restricted on the set A.

If instead of (A2), one considers
(A2′): Es,t [Y ] = Y, a.s. ∀Y ∈ L2 (Fs)

then, a family of operators that satisfies (A1)-(A2’)-(A3)-(A4) is called an Ft-consistent family of non linear
expectations.

As it turns out, and is discussed in great detail in [44], one can generate non linear expectations and evaluation
by means of BSDEs.

5A super-hedging strategy is a strategy that super-replicates the contingent claim, hence it is a strategy for which the corre-
sponding wealth process is larger than or equal to the value of the contingent claim at exercise time.
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Definition 3.2. Consider a market described by the set of equations (3.1) and assume that we are given a real
valued function g : Rd × R × Rd → R uniformly Lipschitz in all its spatial variables and such that

(i) g(x, 0, 0) ≡ 0, ∀x ∈ Rd

or

(ii) g(x, y, 0) = 0, ∀x ∈ Rd, y ∈ R.

For any t ≤ s ≤ T consider the family of operators Eg
s,t : L2(Ft) → L2(Fs) with Eg

s,t[ξ] = Ys where Ys is the
solution of the backward SDE

Ys = ξ +
∫ t

s

g(Xu, Yu, Zu)du−
∫ t

s

ZudWu.

Eg
s,t[·] is called a g-expectation.

It is shown in [44] that if the generator g of a BSDE satisfies (i) of Definition 3.2 above, then Eg
s,t is a non

linear evaluation, whereas if it satisfies (ii) it is an Ft consistent non linear expectation. Roughly speaking
properties (A1) and (A4) follow from the uniqueness results to solutions of BSDEs. Property (A2) is known
in the BSDE literature as the flow property whereas (A3) is just the comparison theorem for BSDEs. All the
above can be found in [20]. Examples of g-expectations of course include all examples that we have considered
thus far in this section.

Of course the more interesting questions are whether all dynamic non linear expectations can be described as
g expectations as well as, how can one identify a market pricing mechanism as a g-expectation. Some attempts
to answer these questions are made in [45].

4. Discretizing a FBSDE

Having seen a few of the applications of FBSDEs in finance and having established their connections with
nonlinear PDEs, we now describe a time discretization procedure of the solution of a FBSDE. This procedure
is the first step towards constructing probabilistic algorithms for nonlinear PDEs. Implicitly or explicitly, all
numerical schemes for forward backward systems that we present in this article, with the exemption of the
algorithm by Bally and Pages presented in Section 5, rely on the discretization of a BSDE in an Euler scheme
fashion, obtained independently in [5,49].

The methods presented below follow the programme: We first fix a partition π = {0 = t0 < t1 < . . . < tn = T }
of the time interval [0, T ] and we consider an exact sample of the forward diffusion at these points (Xt1 , . . . , Xtn)
if this is possible (for example if X is a geometric Brownian motion), or an approximate sample (Xπ

t1 , . . . , X
π
tn

)
obtained by considering the corresponding Euler approximationXπ of the forward diffusion along the partition π.

Both the forward diffusion and its Euler approximation have a number of common characteristics, that are
essential in the discretization of BSDEs, so we enumerate them in the following definition:

Definition 4.1. Consider a partition π of [0, T ] as above and let R(π) denote the class of step processes X̄π
t ,

constant between ti, ti+1, that satisfy the following:
(1) There exists a p > 1 such that max1≤i≤n ‖X̄π

ti
‖p <∞.

(2) {X̄π
ti
}0≤i≤n is a Markov chain.

(3) For any function h : Rq → R such that h(X̄π
ti+1

)(Wti+1 −Wti) ∈ L1 we have

E[h(X̄π
ti+1

)(Wti+1 −Wti)|F X̄π

ti
] = E[h(X̄π

ti+1
)(Wti+1 −Wti)|X̄π

ti
],

where F X̄π

denotes the natural filtration of the process X̄π.
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Given a process X̄π ∈ R(π), the next step is to construct the corresponding discrete versions of the processes
(Y, Z). To see how this must be done, let us assume for simplicity, that the choice of process within the
class R(π) is the diffusion itself. We also make the assumption that f and Φ are smooth functions with
respect to their spatial variables and have bounded partial derivatives of all orders. At time T, we assign
Y π

tn
= Φ(X̄π

tn
) = Φ(XT ) = YT and based on this we wish to construct an approximation Y π

tn−1
to Ytn−1 . Let

ε = tn − tn−1 and observe that, by taking conditional expectations on (2.2) we have

Ytn−1 = YT−ε

= E

[
Φ(XT ) +

∫ T

T−ε

f(s,Xs, Ys, Zs)ds|FX
T−ε

]

= E

[
Φ(XT ) +

∫ T

T−ε

f (s,Xs, u(s,Xs), (∇uV )(s,Xs)) ds|FX
T−ε

]

and, by discretizing the Riemann integral using the left hand point of the interval, we obtain

YT−ε � E
[
Φ(XT )|FX

T−ε

]
+ εf(T − ε, x, u(T − ε,XT−ε),∇u(T − ε,XT−ε)V (XT−ε)). (4.1)

Since we also have that YT−ε � u(T − ε,XT−ε) the above would be an implicit definition for an approximation
of YT−ε but for the presence of the gradient. However, assuming that Φ is smooth enough to perform a second
order Itô-Taylor expansion on u(·, X·), we get

Φ(XT ) = u(T,XT )

= u(T − ε,XT−ε) + (∂t + L)u(T − ε,XT−ε)ε

+ (∇u(T − ε,XT−ε))
∗
V (XT−ε)(WT −WT−ε)

+
q∑

i,j=0

LiLju(T − ε,XT−ε)
∫ T

T−ε

∫ s

T−ε

dW j
udW i

s +O(ε3/2),

where we understand that O(ε3/2) stands for terms with L2 norms smaller than a constant multiple of ε3/2 and

the first order differential operators Lj are defined as Lj =
q∑

i=1

V i
j ∂xi for j = 1, . . . , q. Hence, if we multiply by

WT −WT−ε and condition with respect to FT−ε we obtain

(∇u(T − ε,XT−ε))∗V (XT−ε) =
1
ε
E [Φ(XT ) (WT −WT−ε) |FT−ε] +O(ε3/2). (4.2)

Putting (4.1) and (4.2) together and using the Markov property of the diffusion, we may define an approximation
of Ytn−1 as

Y π
tn−1

= E [Φ(XT )|XT−ε] + f

(
T − ε,XT−ε, Y

π
T−ε,

1
ε
E [Φ(XT )(WT −WT−ε)|XT−ε]

)
. (4.3)

The above procedure is then repeated in the same manner n times until time 0 is reached. Observe that, (4.3) is
also an implicit definition for the regression function that approximates u(tn−1, ·). It is this regression function
that replaces Φ in (4.3) computing Y π

tn−2
from Y π

tn−1
. To describe these regression functions we introduce the

following family of operators.

Definition 4.2. Let π = {0 = t0 < . . . < tn = T } be a partition of [0, T ] where we denote by hi+1 = ti+1 − ti
and ΔWi+1 = Wti+1 − Wti . Given a process X̄π

t ∈ R(π) and function g : Rq → R, we define inductively,
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in a backward manner (that is for i = n− 1, . . . , 0), the one step operators

Rig (x) = Eti,x[g(X̄π
ti+1

)] + hi+1f

(
ti, x, Rig (x) ,

1
hi+1

Eti,x[g(X̄π
ti+1

)ΔWi+1]
)
, (4.4)

where Eti,x[F ] := E[F |X̄π
ti

= x].

For this and other families of operators we use the notation

Ri,jΦ(x) =

{
Ri ◦ . . . ◦RjΦ(x) i < j

1 i ≥ j
(4.5)

where 1 denotes the identity operator. Observe that, given an x ∈ Rq the definition (4.4) is an implicit one,
i.e. Rig(x) is the unique fixed point of the mapping

x→ Eti,x

[
g
(
X̄π

ti+1

)]
+ hi+1f

(
ti, x, Rig (x) ,

1
hi+1

Eti,x

[
g
(
X̄π

ti+1

)
ΔWi+1

])
.

This mapping is a contraction for hi+1 < 1/K and hence Rig(x) is well defined. The definition of the corre-
sponding family of operators {Ri}i used to approximate a reflected BSDE (equivalently an obstacle problem) is
very similar to (4.4). We postpone the presentation of this until Section 5 where we discuss an algorithm that
is particularly designed to solve obstacle problems.

As it turns out, the assumption of smoothness for f and Φ may be reduced to Lipschitz regularity, and one
may use equation (4.4) as a starting point to produce a discrete time process that approximates Yt.

Theorem 4.3 ([5,49]). Given a partition π of [0, T ], consider the family of operators {Ri}n−1
i=0 defined as

in (4.4). Let {Y π
ti
}n−1

i=0 , {Zπ
ti
}n−1

i=0 be the random variables defined as

Y π
ti

= Ri,n−1Φ(X̄π
ti
) and Zπ

ti
=

1
hi+1

Eti,X̄π
ti

[
Y π

ti+1
ΔWi+1

]
, i = n− 1, . . . , 0

and (Y π, Zπ) be the step processes

Y π
t =

n−1∑
i=0

Y π
ti

1[ti,ti+1)(t) + Φ(X̄π
tn

)1t=T , Z
π
t =

n−1∑
i=0

Zπ
ti

1[ti,ti+1)(t)

for t ∈ [0, T ]. Then there exists a constant C independent of the partition π such that

sup
0≤t≤T

E
[
|Yt − Y π

t |2
]
+ E

∫ T

0

|Zt − Zπ
t |2 dt ≤ C|π|.

In particular |Y0 − Y π
0 | = O(|π|1/2).

Remark 4.4. In Theorem 4.3, the process Y is approximated pointwise. In particular Y π
0 is indeed an

approximation of Y0. By contrast, the process Z is only approximated in the L2 (dP × dt)-norm. Hence it is not
necessarily the case that, for example, Zπ

0 is an approximation of Z0. When working only under the Lipschitz
assumptions of Theorem 4.3, one can not hope for a robust approximation of Z. However, by assuming more
regularity on the coefficients of (2.2) Gobet and Labart [24] show that it is possible to obtain estimates on the
error |Zπ

ti
− Zti | similar to the ones of |Y π

ti
− Yti | in Theorem 4.3. As most of the designers of the forthcoming

algorithms choose to work under minimal smoothness assumptions, we do so as well and focus on the Y part of
the solution from now on.
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Remark 4.5. It is worth noting that both the Bouchard-Touzi and the Zhang proof of Theorem 4.3 rely in an
essential way, on a result obtained by Zhang [48] that is known as the L2 regularity of Z. The regularity of Z
states that under assumptions (H1a) and (H2a), for any partition π of [0, T ] there exists a constant C = C(T,K)
independent of π such that

n∑
i=1

E

[∫ ti

ti−1

|Zt − Zti−1 |2 + |Zt − Zti |2dt
]
≤ C(1 + |x|2)|π| (4.6)

given that X0 = x.

The estimates of Theorem 4.3 complete the first task of discretizing a BSDE. We note that these estimates
are sharp. One can show (similar to [24] where the authors prove the result for a slightly different discretization)
the following error expansion

Yti − Y π
ti

= ∇xu(ti, Xti)(X̄
π
ti
−Xti) +G|π| +O(|X̄π

ti
−Xti |2),

where G is a random variable with G ∈ L2. Consequently, the error is of order |π| even when X̄π = X , that is,
exact sampling is used for the forward diffusion.

We note that every backward step requires the evaluation of certain (conditional) expectations which can
not be solved explicitly in most cases. Hence, to obtain a fully implementable scheme a method of computation
for these expectations, must be employed. The algorithms that we present below differ in the choice for this
method. The methods employed are either of a Monte Carlo (MC) type or, as is the case of the cubature
method described in Section 8, rely on a weak approximation of the law of the forward diffusion.

The arguments are further complicated as the regression function used at every step on our (nonlinear)
backward projection comes from the empirical estimate achieved in one step above. Hence, one should be very
careful when deriving the error estimates of any particular method to avoid compounding the corresponding
local errors. The exact asymptotics of the error of any algorithm will clearly depend on the choice of method
for approximating the conditional expectations involved in the definition of Y π

t .
To see how the local error propagates, we remain at a generic level and introduce an operator Ēti,x[·] which

stands for an approximation of Eti,x[·] = E[·|X̄π
ti

= x]. Particular examples for the operator Ēti,x[·] are given in
the subsequent sections. With such an operator at hand, we define inductively, in a backward manner (that is
for i = n− 1, . . . , 0), the family of operators {R̄i}n−1

i=0 as

R̄ig (x) = Ēti,x[g(X̄π
ti+1

)] + hi+1f

(
ti, x, R̄ig (x) ,

1
hi+1

Ēti,x[g(X̄π
ti+1

)ΔWi+1]
)
. (4.7)

Then, an approximation of Y0 is given by Ȳ π
t0 := R̄0,n−1Φ(x) given that X0 = x. To obtain an evaluation for the

error for any algorithm, one needs to look at the difference R0,n−1Φ(x) − R̄0,n−1Φ(x). To estimate this error,
one can use a Trotter product expansion, that is

|R0,n−1Φ(x) − R̄0,n−1Φ(x)| =

∣∣∣∣∣
n−1∑
i=1

R0,i−1R̄i,n−1Φ(x) −R0,iR̄i+1,n−1Φ(x)

∣∣∣∣∣ , or

=

∣∣∣∣∣
n−1∑
i=1

R̄0,i−1Ri,n−1Φ(x) − R̄0,iRi+1,n−1Φ(x)

∣∣∣∣∣ . (4.8)

Assume that we choose to work with the first expansion. It is an easy consequence of the defining properties of
the family R(π), Hölder’s inequality and basic estimates on the moments of Brownian motion that given two
functions g1, g2 : Rq → R we have

|R0,ig1(x) −R0,ig2(x)| ≤ Ci,p E
[
|(g1 − g2)(X̄π

ti
)|p|X̄π

0 = x
]1/p (4.9)
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with p > 1 and Ci,p are positive constants such that supi Ci,p := C <∞. Plugging (4.9) in (4.8) yields

|Y0 − Ȳ0| = |R0,n−1Φ(x) − R̄0,n−1Φ(x)|

≤ C

n−1∑
i=1

E
[
|(Ri − R̄i)R̄i+1,n−1Φ(X̄π

ti
)|p|X̄π

0 = x
]1/p

. (4.10)

If the operators Ēti,x[·], i = 0, . . . , n − 1, x ∈ Rq are defined by means of the cubature method (see Sect. 8),
a similar property to (4.9) is enjoyed by the family {R̄i}0≤i≤n−1. Hence we can use the second form of the
Trotter expansion appearing in (4.8) to obtain

|R0,n−1Φ(x) − R̄0,n−1Φ(x)| ≤ C
n−1∑
i=1

Ē
[
|(Ri − R̄i)Ri+1,n−1Φ(X̄π

ti
)|p|X̄π

0 = x
]1/p

. (4.11)

The choice between (4.10) and (4.11) depends on the qualitative properties of the two families and the com-
plexities that the choice of method for Ēti,x[·] induces in providing asymptotic estimates for the error. Either
way we proceed in the following manner:

Going back to (4.4) and (4.7) and using the Lipschitz property of the driver f , we have for any Lipschitz
function g : Rq → R

Rig(x) − R̄ig(x) =
(
E − Ē

)
ti,x

[
g(X̄π

ti+1
)
]

+ ν(x)(Rig(x) − R̄ig(x))

+ ζ(x) · 1
hi+1

(
Eti,x − Ēti,x

) [
g(X̄π

ti+1
)ΔWi+1

]
(4.12)

with ν(x), ζ(x) taking values in R, Rq respectively and being bounded by K. Hence,

|Rig(x) − R̄ig(x)| ≤
C

1 − hi+1K
max
0≤l≤q

∣∣∣(E − Ē
)
ti,x

[
g(X̄π

ti+1
)ΔW l

i+1

]∣∣∣ (4.13)

provided that the partition is fine enough to guarantee hi+1 < 1/K. Given that X̄π
t0 = x we can put (4.10)

together with (4.13) to obtain

|Y 0,x
0 − Ȳ π,0,x

0 | = |R0,n−1Φ(x) − R̄0,n−1Φ(x)|

≤ C

n−1∑
i=0

∥∥∥∥max
0≤l≤q

(
Eti,X̄π

ti
− Ēti,X̄π

ti

) [
R̄i+1,n−1Φ(X̄π

ti+1
)ΔW l

i+1

]∥∥∥∥
p

(4.14)

with p > 1 and C a generic constant independent of the partition. Of course, one can use (4.11) instead of (4.10)
and obtain the corresponding result.

Remark 4.6. Observe that similar to (4.4), the definition (4.7) is an implicit one and given any method Ēti,x,
the computed approximating value R̄ig(x) comes as the unique fixed point of the corresponding mapping. Hence
to compute R̄ig(x) one has to perform successive Picard iterations at every discretization point ti. A standard
argument shows that with I iterations at every time step ti, one obtains a value which is at most ChI far from
the unique fixed point.

5. The quantization method

The quantization method has been introduced by Bally and Pagès in [1,2]. This method was first developed
to treat the case of reflected BSDEs when the driver is independent of the z variable, presumably because at
the time the L2 regularity of Z (see Rem. 4.5) was not known.
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As this algorithm was particularly designed, for the numerical solution of obstacle problems, we will provide
here the equivalent formulation of the families {Ri}0≤i≤n, {R̄i}0≤i≤n in the presence of an obstacle. This will
be nothing more than a straightforward extension of what we presented in the previous section. However, note
that Bally and Pagès constructed their discretization based on the representation of a solution to a RBSDE as
a Snell envelope (see (5.2) below) and showed its convergence independently of [5,49].

The quantization method is an interesting mixture of analytical and MC methods. One first builds a time-
space grid and computes the transition probabilities for the underlying forward diffusion Xt on this grid, by MC
simulation. Once these probabilities are settled, evaluating the BSDE on the grid (i.e. solving the corresponding
obstacle problem) reduces to solving analytically a backward dynamic programming formula. As the authors
remark, the error estimates for this method depend on the dimension as analytical methods do.

The aim here is to approximate a reflected BSDE of the form:

Yt = Φ(XT ) +
∫ T

t

f(u,Xu, Yu)du+KT −Ks −
∫ T

t

Zu · dWu. (5.1)

Yt ≥ Φ(Xt).

In PDE language, we wish to approximate u(0, x), x ∈ Rq, where u solves the obstacle problem

max(∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x)),Φ(x) − u(t, x)) = 0, u(T, x) = Φ(x),

where L is the second order operator associated with the forward diffusion. Evidently, the formulation of the
family of operators (4.4) needs to be adjusted so as to take into account the presence of the reflection with
respect to the barrier Φ(Xt). The discretization scheme that was considered by Bally and Pagès uses as a
starting point the representation of the solution of (5.1) as the Snell envelope

Yt = ess sup
τ∈Tt

E

[∫ τ

t

f(s,Xs, Ys)ds+ Φ(Xτ )|Ft

]
. (5.2)

Given a partition π of [0, T ] we consider a process X̄π ∈ R(π) from whose distribution we can sample directly
and a Lipschitz continuous function g : Rq → R. We then set

Rig(x) = max
(
Φ(X̄π

ti
),Eti,x

[
g(X̄π

ti+1
)
]

+ hi+1f(ti, x, Rig(x))
)
, 0 ≤ i < n. (5.3)

That is, Rig(X̄π
ti
) is the discrete (Φ, f)-Snell envelope of {X̄π

ti
}0≤i≤n. It is then easy to show that

Ri,n−1Φ(X̄π
ti

) = ess sup
τ∈T̄i

Eti,X̄π
ti

[
Φ(X̄τ ) +

τ̄∑
k=i+1

f(tk, X̄π
tk
, Rk,n−1Φ(X̄π

tk
))

]

where T̄i denotes the collection of all {ti, . . . , tn} valued stopping times and τ̄ = (nτ)/T . As before, we consider
Y π

ti
= Ri,n−1Φ(X̄π

ti
) the discrete time approximation of the process Y . For the operators (5.3), one can obtain

the same error estimates as the ones of Theorem 4.3 under the general case where the coefficients are only
Lipschitz continuous and the choice within the class R(π) is, for example, the Euler approximation to the
forward diffusion. It is also worth noting that Bally and Pagès [1] explain how these error estimates may be
improved if one assumes greater smoothness of f, h in (5.1). This fact is analysed in great detail by Gobet and
Labart [24].

Having explained how the discretization of the BSDE works out in the presence of a reflection, let us now
give the description of the operator Ē[·]. This operator is based on the space discretization by quantization of
the process chosen from the family R(π). The quantization is constructed as follows:
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We consider a grid Γk = {xk
1 , . . . , x

k
Nk

} of points in Rq given for every k = 1, . . . , n − 1. We denote by
X̂k := ProjΓk

(X̄π
tk

), the projection of the Rq vector X̄π
tk

on the grid Γk following the closest neighbor rule. We
define pk

ij to be the transition probabilities for the discrete Markov chain X̂ on these grids, i.e.

pk
ij := P

[
X̂k+1 = xk+1

j |X̂k = xk
i

]
, i = 1, . . . , Nk, j = 1, . . . , Nk+1

= P

[
X̂k+1 ∈ C(xk+1

j )|X̂k ∈ C(xk
i )
]

where C(xk
i ) is the cell of xk

i in the Voronoi tessellation,

C(xk
i ) := Proj−1

Γk
(xk

i ) ⊂ {x : |x− xk
i | = min

1≤l≤Nk

|x− xk
l |}.

Let us assume for the moment that these transition probabilities can be computed explicitly. Then the operator
Ē[·] is defined as

Ētk,x

[
h(X̄π

tk+1
)
]

:= E

[
h(X̂k+1)|X̂k = xk

i

]
, xk

i = ProjΓk
(x)

=
Nk+1∑
l=1

h(xk+1
l )pk

il

for any Borel function h : Rq → R. Similarly to (4.7), we define

R̄ig (x) = max
(
Φ(x), Ēti,x

[
g(X̄ti+1)

]
+ hi+1f(ti, x, R̄ig(x))

)
, i = n− 1, . . . , 0,

and, as before, we set Ȳ π
ti

:= R̄i,n−1Φ(X̄ti). It is shown in [1] that if one chooses X̄π to be the Euler approxi-
mation to the forward diffusion and assumes Lipschitz coefficients in (5.1), then

max
0≤k≤n−1

‖Ytk
− Ȳ π

tk
‖p = O(n−1/2), ∀ p > 1.

However, two points remain to be clarified. The first one is the choice of the grids Γk used in the quantization
of the underlying diffusion. The objective is to construct optimal grids, in the sense that they minimize the
corresponding Lp- error. To be specific, let X be an Rq-valued random variable. Then, for a set of points Γ
in Rq (a grid), the corresponding Lp quantization error is

‖X − ProjΓ(X)‖p :=
(∫

Rq

|X − ProjΓ(X)|p PX(dx)
)1/p

. (5.4)

The grid Γ is called optimal if it minimizes the quantity (5.4). It can be shown that there exists at least one
optimal grid and there exists algorithms for the computation by simulation of an optimal grid. See [2] for a
stochastic recursive algorithm for the construction of an optimal grid called the extended Competitive Learning
Vector Quantization. Bally and Pagès [1] explain how the parameters n, Nk, k = 1, . . . , n− 1 may be chosen to
achieve optimal error estimates depending on the smoothness that the coefficients of (5.1) enjoy. In particular,
if one decides to deploy N points for the quantization of the underlying diffusion N = N1 + . . .+Nn and if the
coefficients of (5.1) are only Lipschitz continuous, then n,Nk, k = 1, . . . , n − 1 should be chosen according to
the relationships

n ∼
(

2d
d+ 1

Cp(x)
) 2

3d+2

N2/(3d+2)

Nk ∼ 3d+ 1
2(d+ 1)

(k/n)d/(2(d+1))N

n
·
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The second point to be clarified is the fact that the transition probabilities are not known explicitly in most
interesting cases. Thus, they need to be estimated through MC simulation introducing a further statistical
error. Given M independent copies of X̄, {X̄ l}1≤l≤M , we define

p̂k
ij :=

∑M
l=1 1{X̂l

k+1=xk+1
j }1{X̂l

k=xk
i }∑M

l=1 1{X̂l
k=xk

i }
,

where X̂ l
k = ProjΓk

(X̄ l
tk

). We adjust the definition of the operator Ē according to these empirical probabilities
in a natural manner

Ētk,x

[
h(X̄tk+1)

]
=

Nk+1∑
l=1

h(xk+1
l )p̂k

il (5.5)

and change the definition of the family {R̄i}0≤i≤n−1 accordingly. The end result is that we obtain the error
estimate of the form

|Yt0 − Ȳ π
t0 | ≤ C

(√
nN
∑n

k=1 ‖Xtk
− X̂k‖2 +

√
n√

M
+
N2

M

)
,

where Ȳ π
t0 = R̄0,n−1Φ(x) and {R̄i}0≤i≤n−1 is defined by (5.4) with Ē given by (5.5).

6. The Malliavin calculus regression method

The Malliavin calculus regression method was introduced by Bouchard and Touzi in [5]. The algorithm
makes use of the Malliavin integration by parts formula, to obtain an alternative representation for the required
conditional expectations which, in turn allows their Monte Carlo estimation. This representation was first
established in [6].

In the following we use some basic facts of Malliavin calculus which may be found in [5,6]. For a detailed
exposition of the subject, the interested reader should consult the excellent monograph of [39]. Throughout this
section, the stronger assumption (H1b) on the coefficients of the forward part of (2.2), is in force.

To simplify matters, assume X is a one dimensional diffusion and g : R → R is a smooth function. We also
assume that Xt ∈ D1,2 for any t ∈ [0, T ], the space of Malliavin differentiable random variables and we denote
the Malliavin derivative process of Xt by DsXt. We also fix two times s, t ∈ [0, T ], s < t and we consider the
regression function r(x) = E [g(Xt)|Xs = x]. Using Bayes’ rule, we may formally write r(x) as

r(x) =
E [g(Xt)εx(Xs)]

E [εx(Xs)]

where εx stands for the Dirac delta function at x. Suppose now that we are given a process ht such that

∫ T

0

DuXshudu = 1,
∫ T

0

DuXthudu = 0, P -a.s.
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Then, (still only formally) considering the Dirac function as the derivative of the Heaviside function Hx(y) :=
1[x,∞)(y), we have that

E [g(Xt)εx(Xs)] = E

[
g(Xt)

d
dx
Hx(Xs)

]
= E

[
g(Xt)

d
dx
Hx(Xs)

∫ T

0

DuXshudu

]

= E

[∫ T

0

g(Xt)DuHx(Xs)hudu

]

= E

[∫ T

0

g′(Xt)DuXthu + g(Xt)DuHx(Xs)hudu

]

= E [g(Xt)Hx(Xs)δ(h·)] .

The last equality following from the Malliavin integration by parts formula and δ(h·) is the Skorohod integral
of the process ht. A similar representation holds for the denominator of r(x). In fact the actual representation
is a bit more involved, but the idea is as above and it constitutes of integrating up the Dirac to the Heaviside
function.

For this method the choice within the class R(π) is the Euler approximation to the forward diffusion. This
is necessary as we will need to simulate the underlying process at the points of the partition. If the actual
diffusion can be simulated (as is the case for example for geometric Brownian motion or the Ornstein-Uhlenbeck
process), then we can work with the actual diffusion.

Given a multi index I = (i1, . . . , ik) with 1 ≤ i1 < . . . < ik ≤ d we denote by |I| its length. For any index i
we write ∂i = ∂

∂xi
and ∂I = ∂i1 . . . ∂ik

. Let L denote the collection of smooth functions φ ∈ C∞
b (Rn), such that

∑
|I|≤d

∫
Rd

|x|m∂Iφ(x)2dx <∞, for some fixed integer m. (6.1)

Given a matrix valued process h with columns denoted by hi and a random variable F we denote by

Sh
i [F ] :=

∫ ∞

0

F (hi
t)

∗dWt

and for a multi index I = (i1, . . . , ik)

Sh
I [F ] := Sh

i1 ◦ . . . ◦ S
h
ik

[F ],

where the integrals are understood in the Skorohod sense. We extend the definition to I = ∅ by setting
Sh
∅ [F ] = F. Now, under assumption (H1b), the Euler scheme (or the diffusion itself) X̄π ∈ D∞, i.e. it is

infinitely many times differentiable in the Malliavin sense. Moreover, there exists for every i = 0, . . . , n a matrix
valued process hi(t) (see [5,6]) such that

∫ 1

0

DtX̄
π
ti
hi(t)dt = Iq,

∫ 1

0

DtX̄
π
ti+1

hi(t)dt = 0, (6.2)

where Iq is the identity matrix in Rq×q. The representation is as follows:
Let ρ, a : Rq → R be real valued functions, with a being affine and ρ being random function of the form �(·, χ)

with χ a random variable independent of Xπ. Assume that the random variable F = ρ(X̄π
ti+1

)a(ΔWi+1) ∈ L2.
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Then the operator Ē[·] considered by Bouchard and Touzi [5] is defined as

Ē
[
F |X̄π

ti
= x
]

:=
E
[
QF [hi, φF ](x)

]
E [Q1[hi, φ1](x)]

, (6.3)

for all localizing functions φ1, φF ∈ L, where for any φ ∈ L

QF [hi, φ](x) := Hx(X̄π
ti

)ρ(X̄π
ti+1

)Shi

(1,...,d)[a(ΔWi+1)φ(X̄π
ti
− x)],

hi(t) is a matrix valued process that satisfies (6.2) and Hx(y) :=
∏d

i=1 1xi≤yi is the Heaviside function in
d-dimension. Observe the introduction of the localizing functions φ1, φF in (6.3) capture the idea that, all
relevant information are located in a neighborhood of x. Moreover it allows the variance reduction of the
corresponding estimator. For a study on the optimal choice of localizing functions see [6].

Equation (6.3) suggests a Monte Carlo estimation for the involved conditional expectations. However, there
are certain numerical complexities regarding the implementation of the algorithm. Firstly, the presence of the
Heaviside function in the numerator and denominator of (6.3) is an undesirable feature. This is addressed
by appealing to advanced sorting algorithms in many dimensions. Another difficulty is the fact that the
Monte Carlo estimation of the denominator of (6.3) introduces integrability problems. Indeed, if Q̂F , Q̂1

are Monte Carlo estimations of QF , Q1 respectively then, by the central limit theorem Q̂1 has an asymptotic
Gaussian distribution, thus creating integrability problems in the ratio Q̂F/Q̂1. The way this problem is tackled
in [5] is by taking advantage of preliminary bounds available for Y and Z. It can be shown that there exist two
functions ν and ν with quadratic growth, i.e.

lim sup
|π|→∞

{|ν(x)|, |ν(x)|} < C1x
2 + C0

with C1, C0 independent of π, such that

ν(x) ≤ Y π
ti
, Eti,x

[
Y π

ti+1

]
,

1√
hi

Eti,x

[
Y π

ti+1
ΔWi+1

]
≤ ν(x). (6.4)

We use the above bounds we construct the operator T ν [F ] = ν(x) ∨ F ∧ ν(x). The Monte Carlo simulation
based on (6.3) is build as follows: Consider nN copies of the approximation Xπ

t of the forward diffusion,
{Xπj

, j ∈ Ni}, Ni = {Ni + 1, . . . , N(i + 1)}. We make use of N copies at every point tk on the grid. The
realization of the operator Ēti,x in this algorithm is

Ēti,x

[
g(X̄π

ti+1
)ΔW l

i+1

]
= T ν

[
Êti,x

[
g(X̄π

ti+1
)ΔW l

i+1

]]
,

with

Êti,x

[
g(X̄π

ti+1
)ΔW l

i+1

]
=
Q̂F [hi, φ

F ](x)
Q̂1[hi, φ1](x)

(6.5)

where φ1, φF are possibly different localizing functions in L0, and

Q̂F
i [hi, φ

F ](x) =
1
N

∑
k∈Ni+1

Hx(Xπ(k)

ti
)g(Xπ(k)

ti+1
)Sh

(k)
i

[
φF
(
Xπ(k)

ti+1
− x
)

ΔW l(k)

i+1

]

Q̂1
i [hi, φ

1](x) =
1
N

∑
k∈Ni+1

Hx(Xπ(k)

ti
)Sh

(k)
i

[
φF
(
Xπ(k)

ti+1
− x
)]
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where ΔW l(k)

i+1 is the l-th entry of the k-th copy of the forward diffusion. Similarly Xπ(k)

ti
, h

(k)
i stand for the

evaluation of the Euler scheme and the random variable hi using this copy. At time t0, Ē is just the truncation
of the empirical mean

Ē0,x

[
g
(
Xπ

t1δW
l
1

)]
= T ν

(
1
N

∑
k∈N1

g
(
Xπ(k)

ti+1

)
ΔW l(k)

1

)
.

Combining (4.4) with the above MC simulation and the preliminary bounds (6.4), provides us with the approx-
imation Ȳ π

ti
= R̄i,n−1Φ(Xπ

ti
) for Yti and in particular R̄0,n−1Φ(x) for Y0.

The Malliavin calculus algorithm presents two numerical complexities. The first one is due to the presence of
the Heaviside function in (6.3). This is handled by appealing to advanced sorting algorithms in many dimensions.
The second one is the fact that the Malliavin weights Shi

[
φ
(
Xπ(k)

ti+1
− x
)

ΔW l
i+1

]
constitute of an exploding

number of terms, once transformed to Itô integrals, as the dimension increases, thus making its computation
intractable. This point is handled in [11] by truncating the process hi(t) and considering

h̄i = |π|−1
(
σ−1(X̄π

ti−1
)1{[ti−1,ti)} − σ−1(X̄π

ti
)1{[ti,ti+1)}

)
, (6.6)

in its place, Sh̄i in place of Shi , and form a backward induction scheme based on these new weights. Such a
substitution will require only 1/2d of the original terms to be computed. Moreover, it is shown that by scaling
the localizing function accordingly no precision is lost. The end result is that with this algorithm we obtain an
error estimate of the form

max
0≤i≤n

‖Yti − Ȳ π
ti
‖p ≤

⎧⎪⎨
⎪⎩

C1√
|π|

+ C2
|π|−d/4

N1/2 if h(t) is used

C1√
|π|

+ C2|π|
1
p (( 1

2+α)−1) + C3
|π|−1−αd/2p

N1/2p if h̄(t) is used
(6.7)

where C1, C2, C3 are independent of the partition and with p > 1, α > 1/2.

Remark 6.1. Let us comment that the algorithm of Bouchard and Touzi may be adapted to the case of reflected
BSDEs. One merely has to change the definition of the family {Ri}0≤i≤n−1 to account for the reflection. The
details are very similar to the previous section and are given in the last part of [5]

7. The regression on function bases method

The regression on function bases method was introduced by Gobet et al. [25]. The algorithm is based on
estimating the involved (conditional) expectations by considering the projections of the random variables on a
(finite) function basis and then estimating these projections by MC simulation. This idea was first introduced
by Longstaff and Schwartz [32] to address the problem of pricing American type options and further applied
successfully in the nonlinear framework of BSDEs. It has also been extended to treat the case of generalized
BSDEs where the underlying forward process may be a jump diffusion but we shall not present the details for
this here. The interested reader should consult [26]. Let us also mention that this algorithm is applicable to
BSDEs where the terminal condition can be path dependent, i.e. situations where ξ = Φ(X·) for appropriate
functionals Φ. Thus it links naturally to the problem of pricing path dependent contingent claims, such as
look-back and barrier options, in the presence of market imperfections. In accordance to our practice so far, we
will only consider simple terminal payoffs thus keeping the link with non linear PDEs6.

6The extension to path dependent payoffs for this algorithm is not difficult and it amounts to adding extra state variables
so as to make the implicit dynamics of the system Markovian. For example, if the terminal condition was of the form ξ =
Φ(XT , max0≤t≤T Xt) which is the case of European barrier option, then given a discretization X̄π

ti
of the forward process, one

should consider as state variables the augmented pair (X̄π
ti

, max0≤i≤i X̄π
tj

)0≤i≤n (see [25]).
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Let Ui = {Uj|Uj ∈ mFti , j = 1, . . . , k} be a family of random variables measurable with respect to Fti . Given
another integrable random variable F we denote by ProjUi

[F ] the projection of F on the space spanned by Ui

and we also write ResUi [F ] for the residue of this projection, i.e. ResUi [F ] = F − ProjUi
[F ]. The idea behind

the algorithm of Gobet et al. [25] is simple and yet powerful. We consider d+1 families of measurable functions
{(pl,ti(x))0≤l≤d}0≤i≤n−1 available at times {ti}0≤i≤n−1. If {X̄π

ti
}0≤i≤n is a directly simulable approximation of

the forward diffusion then, (pl,ti(X̄π
ti
)) is going to be used to estimate Eti,X̄π

ti

[
Ri+1,n−1Φ(X̄π

ti+1
)ΔW l

i+1

]
with

the understanding that ΔW 0
i+1 = 1. For this algorithm, the operator Ē is given by (l = 0, . . . d):

Ēti,X̄π
ti

[
Ri+1,n−1Φ(X̄π

ti+1
)ΔW l

i+1

]
= Proj<pl,ti

(X̄π
ti

)>

[
Ri+1,n−1Φ(X̄π

ti+1
)ΔW l

i+1

]
, (7.1)

where 〈pl,ti(X̄π
ti

)〉 denotes the subspace of L2(Fti) spanned by {pl,ti(X̄π
ti

)}. At this level, the operator Ē is still
only a theoretical one. The goal is to estimate the coefficients of these projections via MC simulation, i.e. the
d+ 1 families of real numbers {(αl,ti)}0≤l≤d, such that

Ēti,X̄π
ti

[
Ri+1,n−1Φ(X̄π

ti+1
)ΔW l

i+1

]
= αl,ti · pl,ti(X̄

π
ti

), ∀ l = 0, . . . , d.

This problem may be formulated in different ways. As the authors in [25] remark, it is more convenient to view
it as a least squares problem. Indeed, given that at time ti we “know” X̄π

ti
, Ri+1,n−1Φ(X̄π

ti+1
) then Ri,n−1Φ(X̄π

ti
)

and Eti,X̄π
ti

[Ri+1,n−1Φ(X̄π
ti+1

)ΔWi+1] minimize

E

[(
Y π

ti+1
− ψ + hif(ti, X̄π

ti
, ψ, ζ) − ζ · ΔWi+1

)2]
(7.2)

among all L2(Fti) random variables ψ and ζ taking values in R, Rd respectively. The coefficients {(αl,ti)}0≤l≤d

of the projections on the finite function bases are obtained iteratively through (7.2) (recall that definition (4.4)
is implicit and hence, Picard iterations are necessary to obtain the value of Ri,n−1Φ(x)). In particular, let us
denote by αj,J

l,i , 0 ≤ l ≤ d the coefficients obtained by performing j iterations on the least squares problem (7.2)
at time ti where J iterations have been performed at any time after ti. We set α0,J

l,i = 0 for all l and we

also denote by f(i, αj−1,J
i ) = f

(
ti, X̄

π
ti
, αj−1,J

0,i · p0,i, . . . , α
j−1,J
d,i · pd,i

)
where we suppress the dependence of the

function bases families on the random variables {X̄π
ti
}1≤i≤n, i.e. pl,i ≡ pl,i(X̄π

ti
). Then αj,J

l,i , 0 ≤ l ≤ d are
obtained as the argmin of the minimization problem

min
(α0,...,αd)

E

[
αJ,J

0,i+1p0,i+1 − α0p0,i + hi+1f(i, αj−1,J
i ) −

d∑
l=1

αlpl,iΔW l
i+1

]
. (7.3)

If there are multiple solutions to the above then, we may choose the one of minimal norm. It is shown in [25]
that the error induced by truncating the expectation projection operator from a projection on the space L2(Fti)
to the smaller space spanned by the function bases is

max
0≤i≤n

‖Ri,n−1Φ(X̄π
ti
) − R̄i,n−1Φ(X̄π

ti
)‖2

2 ≤ Ch2J−2 + C

n−1∑
i=0

E
[
|Rp0,i(Ri,n−1Φ(X̄π

ti
))|2
]

+ Ch
n−1∑
i=0

d∑
l=1

E

[∣∣∣∣Rpl,i

(
1

hi+1
E

[
Ri+1,n−1Φ(X̄π

ti+1
)ΔW l

i+1

])∣∣∣∣
2
]
. (7.4)

In (7.4), J is the number of iterations performed at every discretization step. Observe that at this stage the
value J = 2 is relevant, in order to keep the same error estimate as the one induced by the discretization
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of the BSDE. Moreover, observe that the error is quantified in terms of the residue of the projection of the
random variables Ri,n−1Φ(X̄π

ti
) rather than in terms of R̄i,n−1Φ(X̄π

ti
). In other words, at this step one is able

to use a Trotter product expansion of the error, as in (4.11). This greatly facilitates the analysis of the error
with respect to the influence of the function bases as in the alternative Trotter expansion, the influence of the
function basis would be also hidden inside the residue of the projection.

Finally, one computes the coefficients (αJ,J
l,i )0≤l≤d, 0 ≤ i ≤ n, by means of MC simulation. To that end

consider M copies of X̄π
· denoted by

(
X̄m,π

·
)
1≤m≤M

. To estimate the coefficients we shall draw upon (7.3).

Let (αj,J,M
l,i )0≤l≤d denote the MC estimation of the family (αJ,J

l,i )0≤l≤d at time ti where j Picard iterations have
been performed at time ti and J at every time after ti. We also set α0,J,M

l,i = 0 for every l and i. Given that
we have already computed (αj−1,J,M

l,i )0≤l≤d the coefficients (αj,J,M
l,i )0≤l≤d are obtained as the solution to the

empirical least squares problem

min
(α0,...,αd)

1
M

M∑
k=1

(
αJ,J,M

0,i+1 p
m
0,i+1 − α0p

m
0,i + hi+1f(i, αj−1,J,M

i ) −
d∑

l=1

αlp
m
l,iΔW

l,m
i+1

)2

(7.5)

where pm
l,i = pl,ti(X̄

π,m
ti

) for l = 0, . . . , d and ΔW l,m
i+1 is the l-th component of the m-th copy of the Brownian

motion. Having solved the least square problem above, it is natural to define

ˆ̄Eti,x

[
Ri+1,n−1Φ(X̄π

ti+1
)ΔW l

i+1

]
:= T ν

[
αJ,J,M

l,ti
· pl,ti(x)

]
, ∀ l = 0, . . . , d

as the MC approximation of Ē[·], where T ν [·] is the truncation operator introduced in (6.4) of Section 6 (in fact
the actual truncation operator used in [25] is a bit more elaborate). Denote by { ˆ̄Ri}0≤i≤n the family of empirical
operators defined exactly similar to (4.7) with ˆ̄E[·] in place of Ē[·]. The error estimate is of the form7

max
0≤i≤n

E

[∣∣∣Ri,n−1Φ(X̄π
ti
) − ˆ̄Ri,n−1Φ(X̄π

ti
)
∣∣∣2] ≤ C1h

J−1 +
C2

hM
+ C3h, (7.6)

where the constants C1, C2, C3 depend on the up to fourth moments of the random variables pl,i(X̄π
ti
),

0 ≤ l ≤ d, 1 ≤ i ≤ n. The study of how one should optimally choose between n, M and the number of
functions in the function basis to achieve a certain error accuracy, is developed in great detail in [25,26] which
the interested reader should consult.

8. The cubature method
8

The cubature method was recently introduced in the context of BSDEs in [10] and it is based on the work
of Lyons and Victoir [34]. The method’s basic idea is that the approximation of the solution of a BSDE can be
viewed as a problem of weak approximation of the forward diffusion. More precisely, the backward component
of a BSDE is an integral of an implicitly defined functional with respect to the Wiener measure. The cubature
method of Lyons and Victoir produces an approximation of the Wiener measure (and implicitly of the law of
the forward component of the BSDE) based on the classical iterated integrals expansion of a diffusion processes
developed by Chen [8]. The method replaces the Wiener measure with the law of a Markov process which is
directly computable or at least a lot easier to sample from. The roots of the Lyons-Victoir cubature method
lie in theory of rough paths developed by Lyons and his collaborators (see, for example, [23,33,35]). One of
the outcomes of the rough paths theory is the possibility of describing the evolution of a complex dynamical
system by using its so-called “signature” – essentially an algebraic equivalent of the iterated integrals expansion

7The exact error estimate can be found in Theorem 3 of [25] and is further analyzed in [26].
8Throughout this section, assumptions (H1b) and (H2b) are in force.
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introduced by Chen in the late fifties. The approximating process is chosen so that its signature coincides in
expectation with the signature of the original process up to some order. The expected value of the signature
of the new process will offer an accurate approximation of that of the original process and, implicitly, also its
distribution will match closely that of the original process. Therefore, as the cubature method can be used to
approximate the law of the forward component of the BSDE, it also leads to a corresponding approximation of
the backward one.

In the following, we denote by M :=
⋃
k∈N

{0, . . . , q}k the set of all multi indices with entries in the set {0, . . . , q}

and consider the norm

‖α‖ := |α| + number of 0 entries in α,

where |α| is the length of α, e.g. if α = (1, 2, 0), then |α| = 3 and ‖α‖ = 4. We also fix m to be an arbitrary
positive integer and CLip([0, t]; Rq) denotes the space of Lipschitz Rq valued continuous functions.

Definition 8.1. We say that the positive weights λ1, . . . , λN and the paths of bounded variation ωb,1, . . . ωb,N ∈
CLip([0, b]; Rq) define a cubature formula of degreem at time b, if and only if, for any multi index α = (α1, . . . , αk)
with ‖α‖ ≤ m

E

[∫
0<t1<...<tk<b

◦ dWα1
t1 . . . ◦ dWαk

tk

]
=

N∑
j=1

λj

∫
0<t1<...<tk<b

dωα1
b,j(t1) . . . dω

αk

b,j(tk). (8.1)

In (8.1) we use the convention that W 0(t) = t and similarly for any ω ∈ CLip([0, b]; Rq), j = 1, . . . , N, ω0(t) = t.

The identity (8.1) can be re-written as

E

[∫
0<t1<...<tk<b

◦ dWα1
t1 . . . ◦ dWαk

tk

]
= EQm

b

[∫
0<t1<...<tk<b

◦ dWα1
t1 . . . ◦ dWαk

tk

]
, (8.2)

where Qm
b is the cubature measure defined on (C0([0, b]; [0, b]× Rq),B ([0, b]) ⊗F)

Qm
b =

N∑
j=1

λjδωb,j
(8.3)

and δω denotes the Dirac measure at the point ω ∈ C([0, b]). Specific examples of cubature methods form = 3, 5
are described in [34]. Moreover, given a function g : Rq → R, one has

EQm
b

[
g(X0,x

t )
]

=
N∑

j=1

λjδωb,j

(
g(X0,x

b )
)
,

where δωb,j

(
g(X0,x

b )
)

is the solution of the ordinary differential equation obtained by formally replacing the
Brownian motion W with the path ωb,j in Stratonovitch version of the forward part of the BSDE. More precisely,

δωb,j

(
g(X0,x

b )
)

is the solution at time b of the equation

{
dYt,x = V̄0(yt,x)dω0

b,j(t) +
∑q

i=1 Vi(yt,x)dωi
b,j(t)

y0,x = x
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driven by ωb,j where, again, we use the convention ω0
b,j(t) = t and V̄0 = V0 − 1

2

∑q
i=1 L

jVj and Lj are the

differential operators Lj =
q∑

i=1

V i
j ∂xi for j = 1, . . . , q. We also define L0 to be the differential operator L0 =

q∑
i=1

V̄ i
0∂xi . The following result is reported from [34]:

Proposition 8.2. Let the path ωt,1, . . . , ωt,N ∈ Cbv([0, t]; Rq) and the positive weights λ1, . . . , λN define a
cubature formula of order m at time t. Let g ∈ Cm+2

b (Rq; R). Then

sup
x

∣∣∣E [g(X0,x
t )
]
− EQm

t

[
g(X0,x

t ))
]∣∣∣ ≤ C

m+2∑
j=m+1

tj/2 sup
α∈M, ‖α‖=j

‖Lαg‖∞, (8.4)

where C is a constant independent of t and g. In (8.4), the differential operator Lα corresponding to the
multi-index α = (α1, α2, . . . , αk) ∈ M is defined to be Lα := Lα1Lα2 . . . Lαk .

The above result is justified by combining the properties of the cubature paths with the Stratonovich-Taylor
expansion of g(X0,x

t ). In a similar manner, we can also obtain:

Corollary 8.3. Within the setting of Proposition 8.2, we have for any l = 1, . . . , q

sup
x

|E
[
g(X0,x

t )W l
t

]
− EQm

t

[
g(X0,x

t )W l
t

]
| ≤ C

m+2∑
j=m

t(j+1)/2 sup
α∈M, ‖α‖=j

‖Lαg‖∞ (8.5)

again with C independent of t.

Proposition 8.2 and Corollary 8.3 tell us that the cubature measure EQm
hi+1

[·] is, in effect, an excellent

candidate for the operator Ēti,x [·]. More precisely we define the family of operators {R̄i}i as follows:

R̄ig (x) = EQm
hi+1

[g(Xti,x
ti+1

)]

+ hi+1f

(
ti, x, R̄ig (x) ,

1
hi+1

EQm
hi+1

[g(Xti,x
ti+1

)(Wti+1 −Wti)]
)
. (8.6)

To explain how one computes the family {R̄i}0≤i≤n−1 we first take a closer look at the operator EQm
hi+1

[·],
i = 0, . . . , n − 1. From the definition of the cubature measure, it is straightforward that, given a function
g : Rq → R, EQm

hi+1
[g(Xti,x

ti+1
)] is equal to a weighted average of solutions of ODEs. Indeed, according to (8.3)

EQm
hi+1

[
g(Xti,x

ti+1
)
]

=
N∑

j=1

λjδωhi+1,j

(
g(Xti,x

ti+1
)
)

where δωhi+1,j

(
g(Xti,x

ti+1
)
)

is just a solution of an ODE from ti to ti+1 formulated by substituting the path
ωhi+1,j in place of the Brownian motion in the forward part of the BSDE.

More precisely, let Ξt,x(ω), ω ∈ C0
0,bv([0, t]; Rq) denote the solution at time t of the ODE

{
dYt,x = V̄0(yt,x)dω0(t) +

∑q
i=0 Vi(yt,x)dωi(t)

y0,x = x

driven by ω, where we understand that ω0(t) = t. Given a partition 0 = t0 < t1 < . . . < tn = T of [0, T ]
and a set of N paths and N weights that define a cubature formula of order m, we proceed in building a tree
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with depth n. The root of the tree is the point x = X0. We then define the singleton N0 = {x}. At depth k,
we will have Nk points, the totality of which we denote by Nk. We define the sets Nk recursively as follows:

Given an integer k = 1, . . . , n and a point χ ∈ Nk−1 we set

Nχ
k := {y ∈ Rq| y = Ξhk,χ (ωhk,j) for some j = 1, . . . , N}

Nk :=
⋃

χ∈Nk−1

Nχ
k .

The family {R̄i}0≤i≤n−1 is then evaluated on the tree
⋃n

k=0 Nk. For every i = 0, . . . , n−1, R̄i,n−1Φ is evaluated
at all the different knots in the set Ni.

Algorithm.
i = n Compute the function Φ on all points of Nn.

for i = n− 1 to i = 0 do
(recall the convention (4.5)) Compute the N i values of the function R̄i,n−1Φ(·) at all points of Ni, as the
unique fixed point of equation (see (8.6))

R̄i,n−1Φ (χ) = EQm
hi+1

[R̄i+1,n−1Φ(Xti,χ
ti+1

)]

+ hi+1f

(
ti, χ, R̄i,n−1Φ (χ) ,

1
hi+1

EQm
hi+1

[R̄i+1,n−1Φ(Xti,χ
ti+1

)(Wti+1 −Wti)]
)

where χ ∈ Ni and

EQm
hi+1

[R̄i+1,n−1Φ(Xti,χ
ti+1

)] =
∑

y∈Nχ
i+1

λyR̄i+1,n−1Φ(y)

where λy denotes the weight that corresponds to the ODE that lead to the point y.
end for
Return R̄0,n−1Φ(x).

The global error for this algorithm is analysed in detail in [10]. To quantify it, one needs to work with (4.11)
rather than (4.10). In fact the Trotter expansion that is used is of the form

|Y 0,x
0 − R̄0,n−1Φ(x)| ≤

n−1∑
i=1

|R̄0,i−1Y
0,x
ti

− R̄0,iY
0,x
ti+1

|

≤
n−1∑
i=1

|R̄0,i−1u(ti, X̄π
ti
) − R̄0,iu(ti+1, X̄

π
ti+1

)|, (8.7)

where u solves (1.3).
The choice to work with an expansion as above is not just a matter of taste. Recall that from (4.14),

we need to quantify the error (E − EQm
hi+1

)
[
g(Xti+1)|Xti = x

]
for appropriate functions g. However, we see

from (8.2) and (8.5) that these errors will essentially depend on the derivatives of the functions inside the
expectations. With an expansion of the form (4.10) or (4.11) we would have to quantify the derivatives of the
functions Ri,n−1Φ(x) or R̄i,n−1Φ(x), a difficult task. Working with (8.7), these derivatives are estimated by
using standard PDE arguments through (1.3).

However, it is not always the case that a classical solution of the PDE (1.3) exists. Under (H1b), (H2b) and
the additional assumption that Φ ∈ C2

b (Rd) this is true. For problems where Φ is merely Lipschitz continuous,
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one can only argue the PDE (1.3) has solution only in the viscosity sense (see [41]). There is a detailed discussion
in [10] on how one can circumvent this problem and produce satisfactory error estimates. The price that has
to be paid for this reduction on the assumption on the smoothness of Φ is that one has to work with a rather
exotic partition. We report the main theorem from [10]:

Theorem 8.4. Let assumptions (H1b) and (H2b) hold true and Φ ∈ CLip(Rd), the space of Lipschitz continuous
functions. Let the family of operators {R̄i}n

i=0 be constructed using a cubature formula of order m. Consider
also a partition of [0, T ], π = {0 = t0 < t1 < . . . < tn = T } such that hi < hn < 1, ∀ i = 1, . . . , n − 1. Then,
there exists a constant C independent of the partition, such that the global error satisfies

|Y0 − R̄0,n−1Φ(x)| ≤

⎧⎨
⎩
C
(
h

1/2
n +

∑n−1
i=1 h

2
ih

−3/2
n

)
m = 3

C
(
h

1/2
n +

∑n−1
i=1

(
h2

ih
−1
n + h

(m+1)/2
i h

−m/2
n

))
m ≥ 5.

(8.8)

In particular, if one considers a partition of the form ti = T (1 − 1/n)i/nα, tn+1 = T , i.e. a partition with
M = nα + 1 points where α = 2 1m=3 + 3

2 1m=5, then one obtains the error estimate

|Y0 − R̄0,n−1Φ(x)| = O
(
1/M1/4

)
1m=3 +O

(
1/M1/3

)
1m=5.
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