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ELLIPTIC EQUATIONS OF HIGHER STOCHASTIC ORDER

Sergey V. Lototsky1, Boris L. Rozovskii2 and Xiaoliang Wan3

Abstract. This paper discusses analytical and numerical issues related to elliptic equations with
random coefficients which are generally nonlinear functions of white noise. Singularity issues are
avoided by using the Itô-Skorohod calculus to interpret the interactions between the coefficients and the
solution. The solution is constructed by means of the Wiener Chaos (Cameron-Martin) expansions. The
existence and uniqueness of the solutions are established under rather weak assumptions, the main of
which requires only that the expectation of the highest order (differential) operator is a non-degenerate
elliptic operator. The deterministic coefficients of the Wiener Chaos expansion of the solution solve a
lower-triangular system of linear elliptic equations (the propagator). This structure of the propagator
insures linear complexity of the related numerical algorithms. Using the lower triangular structure
and linearity of the propagator, the rate of convergence is derived for a spectral/hp finite element
approximation. The results of related numerical experiments are presented.
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1. Introduction

The objective of this paper is to study, both analytically and numerically, linear elliptic equations with
random coefficients. The perturbations introduced by the random coefficients can represent actual physical
input or uncertainty about the model. In this paper, we limit our considerations to coefficients that are (possibly
nonlinear) functions of Gaussian random fields. A popular example of an equation with random coefficients is
Darcy equation for pressure with lognormal permeability field (see [8] and the references therein). It can be
specified as the following Dirichlet problem:

−∇ (a (x, ω)∇u(x)) = f(x), x ∈ O ⊂ R
d, u|∂O = g (x) , (1.1)

where

a (x, ω) = ā(x) exp
{

ε(x) − 1
2

E |ε(x)|2
}

, (1.2)
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ω symbolizes “chance”, ε(x) =
∑

k≥1 σk(x)ξk is the noise term, σk(x) are deterministic functions, and ξ :=
{ξk (ω)}k≥1 is a set of uncorrelated Gaussian random variables with zero mean and unit variance. The force f

and the boundary value g as well as the boundary itself are assumed to be non-random. Clearly, ε(x) is a
Gaussian random field with zero mean and covariance Q (x, y) =

∑
k σk(x)σk(y) and ā(x) is the mean of

a (x, ω): ā(x) = E [a(x, ω)] .
Another typical example is (1.1) with

a (x, ω) := ā(x) + ε(x, ω). (1.3)

Models (1.1)–(1.3) have been actively investigated recently in the context of uncertainty quantification problems
(see e.g. [2]). Note that equation (1.1) with the function a (x, ω) from (1.3) is ill-posed because a (x, ω) can
take negative values.

Linear equation with multiplicative noise are usually referred to as bi-linear. These equations are much
more challenging than linear equations with additive random perturbations. In fact, equation (1.1) is often too
singular to be “physical”. By this reason, certain regularization is in order for each of these two models.

One effective and popular regularization procedure for these models is to replace equation by its Wick product
version

−∇ (a (x, ω) � ∇u(x)) = f(x), x ∈ O ⊂ R
d, u|∂O = g (x) ; (1.4)

see [8] for a discussion of the Wick product as a modeling tool. Admittedly, “Wick product” is anything but
product, it is rather a stochastic convolution. In fact, Wick product is a version of Malliavin divergence operator.
For example, a (x, ω) � ∇u(x) is the action of the Malliavin divergence operator with respect to a (x, ω) on the
random field ∇u(x).

The idea of this regularization procedure was championed by Itô in his seminal work [9]. Specifically, Itô has
replaced the “product” model

u̇(t) = a (u(t)) + b (u (t)) · Ẇ (t)
by a “stochastic convolution” model

u̇(t) = a (u(t)) + b (u (t)) � Ẇ (t) ,

which turned out to be equivalent to the stochastic Itô differential:

b (u (t)) � Ẇdt = b (u (t)) dW (t).

In this paper we extend Itô’s approach to elliptic stochastic PDEs. Since absence of the time variable prevents
elliptic SPDEs from being “causal”, the underlying Itô integrals are replaced by the Skorohod integrals (see [15]).
The subsequent analysis of the equation is based on the Wiener chaos expansion (WCE) with respect to the
Cameron-Martin basis. The Cameron-Martin basis consists of random variables

ξα =
∏
k

Hαk
(ξ)√

αk!
,

where α = (α1, α2, . . .) is a multi-index with non-negative integer entries and Hαk
(x) is the Hermite polynomial

of order αk (see Sect. 2 for more detail). The WCE solution of the equation is given by the series u (x) =∑
α∈J uα (x) ξα, where uα = E [uξα] . One can view the Cameron-Martin expansion as a Fourier expansion

that separates random and deterministic components of the equation. We demonstrate that the deterministic
components uα (x) are uniquely defined by a lower triangular system of linear deterministic elliptic equations
(see (3.5) below). We refer to this system as the (uncertainty) propagator. Since the basis elements ξα are given
by explicit formulas, the propagator is the key element of the solution.

From the numerical stand point, it is important that the lower triangular (in fact, bi-diagonal) structure of
the propagator ensures linear computational complexity. While it is possible to define an approximate WCE
solution for the standard multiplicative model (1.1), the corresponding propagator turns out a full system.
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From the statistical point of view, it is important that a solution of the Wick product model (1.4) is an
unbiased random perturbation of a solution of the deterministic equation (1.5)

−∇ (E [a (x, ω)]∇v(x)) = f(x), x ∈ O ⊂ R
d, u|∂O = g (x) (1.5)

in that the mean (expectation) of the solution of equation (1.4) is a solution of equation (1.5).
In this paper we investigate elliptic equations of arbitrary deterministic and stochastic order. As usual, by

deterministic order we understand the order of the highest differential operator; in particular, equation (1.1) has
deterministic order two. The “stochastic order” of the equation is, by definition, the highest order of the Hermite
polynomial in the Wiener chaos expansion of the random coefficients. For equation (1.1) with the coefficient
a(x, ω) defined by (1.3) the stochastic order is 1; for the same equation with the log-normal coefficient (1.2)
this order is infinite. Note that any a (x, ω) which is nonlinear function of ξ := {ξk (ω)}k≥1 has stochastic order
higher than 1.

The stochastic order is an important and also intricate characteristic of the equations in question. For
example, analytically, problem (1.1) with Gaussian a (x, ω) (stochastic order 1) is much more difficult than the
lognormal a (x, ω) (stochastic order ∞). One reason for this is that in the Gaussian case problem (1.1) is ill
posed (from the classical point of view). However, as we will see later, this ill posedness is irrelevant in our
setting. In particular, it is shown in Section 3 that bilinear stochastic elliptic PDEs are uniquely solvable under
a few simple conditions. The key is the following:

Assumption A. The expectation of the highest order (differential) operator is a nondegenerate elliptic
operator.

For example, in the setting (1.1) this means E [a(x, ω)] ≥ c > 0.
In Section 4 it is shown that under assumptions that are very close to those that guarantee the existence and

uniqueness of the solution one can construct effective finite-element approximation algorithms. More specifically,
using the lower triangular structure and the linearity of the uncertainty propagator and incorporating the
estimates of the operator norms, we provide an a priori error estimate for the convergence of spectral/hp finite
element method. For equations of stochastic order one, this analysis has been carried out in [22]. The same
strategy can be replicated to obtain new a priori error estimates for other numerical methods for solving the
propagator.

As mentioned above the WCE solution is given by the series

u (x) =
∑
α∈J

uα (x) Hα(ξ)/
√

α!.

However, very simple examples (see Sect. 3) demonstrate that the variance of WCE solutions is typically infinite
or, more precisely, that E ‖u‖2 =

∑
α∈J ‖uα‖2 = ∞. Fortunately, the blow-up of the Wick product model is

controllable, in that the WCE solution can be effectively rescaled by simple weights rα such that
∑

α r2
αu2

α < ∞
(see Thm. 3.3). We remark that, in the “standard product” setting, the blow-up of the WCE solution is typically
much more severe than in the Wick product setting (see Sect. 5).

There are alternative ways to address bi-linear elliptic SPDEs. The most developed alternative approach
is based on Hida’s white noise analysis [7]. The white noise approach exploits the built-in set of stochastic
spaces, such as Hida or Kondratiev spaces [11,12], or even larger exponential spaces [16]. The traditional
approach [17,20,21], etc., has to select a stochastic space and then to study the largest possible class of equations
admitting a solution in that space. The difference of our approach is that we select the stochastic space that is
in some sense optimal for the particular equation under consideration.

The paper consists of four sections. Section 2 describes the classes of solution spaces for the equations of
interest. The theorem about existence and uniqueness of the solution is in Section 3. Numerical analysis of
the equation using finite-element approximation, including the proof of convergence, is in Section 4. Finally,
Section 5 presents results of numerical experiments.
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2. Weighted chaos spaces

Let J be the set of multi-indices α = (α1, α2, . . .) such that αk ∈ {0, 1, 2, . . .}. For α, β ∈ J , we define

|a| =
∑
k≥1

αk, α! =
∏
k≥1

αk!, α + β = (α1 + β1, α2 + β2, . . .).

By definition, α > 0 if |α| > 0 and β ≤ α if

βk ≤ αk for all k ≥ 1.

If β ≤ α, then we define
α − β = (α1 − β1, α2 − β2, . . .).

We use the following notations for the special multi-indices:
(1) (0) is the multi-index with all zero entries: (0)k = 0 for all k;
(2) ε(i) is the multi-index of length 1 and with the single non-zero entry at position i:

ε(i)k =

{
1, if k = i;
0, if k �= i.

We also use convention ε(0) = (0).

Given a sequence q = (qk, k ≥ 1) of positive numbers and α ∈ J , we define

qα =
∏
k≥1

qαk

k . (2.1)

Next, we introduce the following objects:
(1) F = (Ω,F , P), a complete probability space that is big enough to support countably many independent

Gaussian random variables;
(2) ξ = {ξk, k ≥ 1}, i.i.d. standard normal random variables on F;
(3) V , a real separable Hilbert space;
(4) Hn = Hn(t), n = 0, 1, 2, . . . , t ∈ R, one-dimensional Hermite polynomial of order n:

Hn(t) = (−1)net2/2 dn

dtn
e−t2/2. (2.2)

In particular, H0(t) = 1, H1(t) = t, H2(t) = t2 − 1, H3(t) = t3 − 3t, . . .
(5) Stochastic Hermite polynomials

Hα(ξ) =
∏
k≥1

Hαk
(ξk), α ∈ J .

For example, if α = (0, 2, 0, 1, 3, 0, 0, . . .), then

Hα(ξ) = (ξ2
2 − 1) ξ4 (ξ3

5 − 3ξ5).

Recall the following result (Cameron and Martin [3]).

Theorem 2.1. The collection {
Hα(ξ)√

α!
, α ∈ J

}
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is an orthonormal basis in the space of square-integrable random variables that are measurable with respect to
the σ-algebra generated by the collection ξ.

In what follows, assume that the σ-algebra F in F is generated by ξ, and denote by L2(F; V ) the collection of
square-integrable V -valued random elements. By Theorem 2.1, every v ∈ L2(F; V ) has a unique representation

v =
∑
α∈J

vαHα(ξ), (2.3)

where

vα =
E [vHα(ξ)]

α!
, (2.4)

and
E‖v‖2

V =
∑
α∈J

α! ‖vα‖2
V . (2.5)

Then, given a collection R = {rα, α ∈ J } of positive real numbers, we define the space RL2(F; V ) as the
closure of L2(F; V ) in the norm

‖v‖2
RL2(F;V ) =

∑
α∈J

rαα! ‖vα‖2
V . (2.6)

The space RL2(F; V ) is called a weighted chaos space. We use the notation

RL2(F) = RL2(F; R).

Proposition 2.2. Let {vα, α ∈ J } be a collection of elements from V . Then there exists a collection R such
that

∑
α∈J vαHα(ξ) ∈ RL2(F; V ).

Proof. We use the following result: if p > 1, then

∑
α∈J

1
(2N)pα

< ∞ (2.7)

where N is the sequence of positive integers and

(2N)pα =
∏
k≥1

(2k)pαk

(see [8], Prop. 7.1). Then it is enough to take

rα =
1

α! (2N)2α(1 + ‖vα‖2
V )

· �

Definition 2.3. A generalized random element is a collection {vα, α ∈ J } of elements from V .

3. Stochastic elliptic equations: Existence and uniqueness of solutions

Let I be a subset of J such that (0) ∈ I and let V ′ be a real separable Hilbert space. Consider a collection
{Aα, α ∈ I} of bounded linear operators from V to V ′, such that the operator A(0) has a bounded inverse.
The objective of this section is to study the existence and uniqueness of solution of the following stochastic
equation ∑

β∈I
(Aβu) � Hβ(ξ) = f (3.1)
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where f ∈ V ′ is non-random and � denotes the Wick product [8]. In particular,

Hα(ξ) � Hβ(ξ) = Hα+β(ξ). (3.2)

Definition 3.1. Equation (3.1) is said to have finite stochastic order N if

max
α∈I

|α| = N.

The equation (3.1) is said to have infinite stochastic order if

sup
α∈I

|α| = ∞.

A special case of (3.1) is

Au +
∑
k≥1

Mku � ξk = f ; (3.3)

this equations is studied in [14]. In (3.3), Aα = 0 for |α| > 1, and the equation has stochastic order 1:

A(0)u +
∑
k≥1

(
Aε(k)u

) � Hε(k)(ξ) = f. (3.4)

In general, (3.1) can be written as

A(0)u = f −
∑

β∈I, |β|>0

(
Aβu

) � Hβ(ξ)

and interpreted as a bi-linear stochastic perturbation of the deterministic equation A(0)u = f ; this is the reason
for assuming that (0) ∈ I. The use of the Wick product ensures that the perturbation has zero average.

In view of Proposition 2.2 and property (3.2) of the Hermite polynomials, the following definition is natural.

Definition 3.2. A solution of equation (3.1) is a generalized random element such that

A(0)u(0) = f, |α| = 0,

A(0)uα = −
∑
β∈I

0<β≤α

Aβuα−β, |α| > 0. (3.5)

Indeed, writing u =
∑

α∈J uαHα(ξ), substituting it formally into (3.1), and using (3.2), we find

∑
α∈J

∑
β∈I

AβuαHα+β(ξ) = f,

or

∑
α∈J

⎛
⎜⎜⎝∑

β∈I
β≤α

Aβuα−β

⎞
⎟⎟⎠Hα(ξ) = f.

Equating the coefficients of every Hα(ξ), we conclude that (3.5) must hold.
The following theorem establishes the existence and uniqueness of solution of equation (3.1).
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Theorem 3.3. Assume that:

(1) The operator A(0) has a bounded inverse A−1
(0) from V ′ to V .

(2) Each of the operators A−1
(0)Aβ, β ∈ I, |β| > 0, is bounded on V , with the operator norm Cβ.

(3) There exists a sequence b = (b1, b2, . . .) of positive numbers, such that, for all β ∈ I,

Cβ ≤ bβ. (3.6)

(4) The function f is deterministic and belongs to V ′.

Then

(1) Equation (3.1) has a unique solution u;
(2) The solution is an element of the weighted chaos space RL2(F; V ) with

rα =
cα

α!

for some sequence c = (c1, c2, . . .) of positive numbers.

Proof. To begin, let us first understand the structure of the system of equations (3.5). Define

Bβ = −A−1
(0)Aβ, β ∈ I.

Then (3.5) becomes

u(0) = A−1
(0)f, |α| = 0,

uα =
∑
β∈I

0<β≤α

Bβuα−β, |α| > 0. (3.7)

Thus, uα with |α| = n > 0 is determined by uα with |α| < n, which implies existence and uniqueness of solution
of (3.5), and hence of (3.1).

In view of (2.7), to prove that the solution is an element of a weighted chaos space with weights rα of the
form rα = cα/α! for some sequence c = (c1, c2, . . .) of positive numbers, it is enough to show that there exists
a sequence of positive numbers q = (qk, k ≥ 1) such that

‖uα‖V ≤ qα‖u(0)‖V ; (3.8)

then we can take ck = (2kqk)−2. Thus, to complete the proof, it remains to establish (3.8).
We start with the particular case (3.3). Even though this equation has been studied in [14], the analysis

there relies on a closed-form expression for uα and does not easily extend to higher orders. Denote by Bk the
operator A−1Mk. Then, for |α| > 0, (3.7) becomes

uα =
∑
k≥1

1αk>0Bkuα−ε(k). (3.9)

We now show by induction that (3.8) holds with

qk = 4k2bk.
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Since uε(k) = Bku(0), we have (3.8) for |α| = 1. Now assume that (3.8) holds for all α with |α| ≤ n − 1.
Then (3.9) and the triangle inequality imply, for α with |α| = n,

‖uα‖V ≤ ‖u(0)‖V

∑
k≥1

1αk>0 bkqα−ε(k)

= qα‖u(0)‖V

∑
k≥1

1αk>0

4k2
≤ qα‖u(0)‖V

∞∑
k=1

1
4k2

< qα‖u(0)‖V ,

because
∑

k≥1 k−2 = (π2/6) < 4. This completes the proof of (3.8) for equation (3.3).
Let us now consider the general equation (3.1). We will use assumption (3.6) to show that (3.8) holds for

N > 1 with
qk = C0k

2bk,

where

C0 = 2
∑
α∈J

1
(2N)2α

; (3.10)

see (2.7). For the curious reader, we note that numerical computations show that C0 ≈ 3.2, and simple analytic
considerations put the value of C0 in the range [3.0, 3.4].

As in the case of equation (3.3), the proof of (3.8) is by induction on |α|. Let k0 = min{|β| : β ∈ I}. If
|α| ≤ k0, then uα = 0 and so (3.8) trivially holds. If α ∈ I and |α| = k0, then (3.5) implies

uα = Bαu(0), ‖uα‖ ≤ bα‖u(0)‖V ≤ qα‖u(0)‖V .

Now assume that (3.8) holds for all uα with |α| ≤ n− 1 and fix |α| = n > k0. By (3.7), the triangle inequality,
and the induction assumption,

‖uα‖V ≤
∑
β∈I

0<β≤α

‖Bβuα−β‖V ≤ ‖u(0)‖V
qα

C0

∑
β∈I

1
(2N)2β

≤ ‖u(0)‖V
qα

C0

∑
β∈J

1
(2N)2β

≤ qα‖u(0)‖V ,

where the last inequality follows from (3.10). This completes the proof of Theorem 3.3. �

Below, we illustrate Theorem 3.3 on several examples. To emphasize the main points, we consider a simplified
version of equation (3.1), in which:

(1) V = V ′ = R, so that every operator Aβ is multiplication by a real number; then, with no loss of
generality, we take A(0) = 1.

(2) f = 1.
(3) The operators Aβ are such that Aβ �= 0 only if β = (n, 0, 0, . . .) for some n = 0, 1, 2, . . .

In other words, (3.1) becomes
u = 1 +

∑
k≥1

aku � Hk(ξ), (3.11)

where ξ is a standard Gaussian random variable. The solution u has the form

u =
∑
n≥0

unHn(ξ)
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for some real numbers un, and

E|u|2 =
∑
n≥1

n! u2
n. (3.12)

As a first example, consider the equation

u = 1 + u � ξ. (3.13)

It is easy to verify that u = 1 +
∑

k≥1 Hk(ξ) is a solution, that is, uk = 1 for all k. By (3.12), u /∈ L2(F; R).
The coefficients of the solution of (3.13) are bounded. With a simple modification of (3.13), we can get

coefficients that grow exponentially fast. Indeed, consider

u = 1 + u � ξ + u � (ξ2 − 1), (3.14)

recall that ξ2 − 1 = H2(ξ). Then (3.5) implies

u0 = 1, u1 = 1, un = un−1 + un−2, n ≥ 2.

Thus, un is nth Fibonacci number, and, as n → ∞, un behaves asymptotically as (1+
√

5)n/2n. In other words,
we have un ≥ rn for some r > 1. Again, (3.12) implies Eu2 = ∞ and so u /∈ L2(F; R).

Examples (3.13) and (3.14) show that, if equation (3.1) has finite stochastic order, then, in general, the
solution does not belong to L2(F; V ). In fact, we are not aware of any elliptic equation with multiplicative
finite-order noise and with a square-integrable solution.

Let us consider now the equation

u = 1 −
∑
n≥1

u � Hn(ξ)
n!

· (3.15)

This equation has infinite stochastic order. Direct computations show that

u = 1 +
∑
n≥1

(−1)n

n!
Hn(ξ) = e−ξ−(1/2);

one can also derive this by re-writing (3.15) as

eξ−(1/2) � u = 1

and noticing that eξ−(1/2) � e−ξ−(1/2) = 1. In particular, Eu2 = e < ∞, so u ∈ L2(F; R).

4. Numerical analysis of a stochastic Dirichlet problem

Let O ∈ R
d be a bounded, open, connected set with a Lipschitz continuous boundary ∂O. Denote by 〈·, ·〉

the inner product in L2(O). Consider the following problem:

⎧⎪⎨
⎪⎩

Au +
∑
β∈I
|β|≥1

Aβu � Hβ(ξ) = f, x ∈ O,

u = 0, x ∈ ∂O,

(4.1)
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where ξ is a finite- or infinite-dimensional standard Gaussian random variable. For simplicity, we assume that
the force term f(x) is a deterministic function. The operators A = A(0) and Aβ are defined by

Au(x) = −
d∑

i,j=1

Di

(
aij(x)Dju(x)

)
, (4.2)

Aβ(x) = wβ(x)
d∑

i,j=1

Di

(
σij,β(x)Dju(x)

)
, (4.3)

where the functions aij(x), σij,β(x), and wβ(x) satisfy the following assumptions:

Assumption 4.1.
(a) The functions aij(x) are measurable and bounded in the closure Ō of O.
(b) There exist positive numbers A1, A2 such that A1|y|2 ≤ aij(x)yiyj ≤ A2|y|2 for all x ∈ Ō and y ∈ R

d.
(c) The functions σij,β(x) are bounded and measurable:

|σij,β(x)| ≤ Cσ
β for all x ∈ Ō, i, j = 1, . . . , d. (4.4)

(d) The functions wβ(x) are bounded and Lipschitz continuous:

|wβ(x)| ≤ Cw
β and |wβ(x) − wβ(y)| ≤ CL

β |x − y|, x, y ∈ Ō. (4.5)

(e) There exists a sequence b = (b1, b2, . . .) of positive numbers such that, for all β ∈ I,(
CL

β + Cw
β

)
Cσ

β ≤ bβ.

Taking as V and V ′ the Sobolev spaces H1
0 (O) and H−1(O), respectively, we note that Theorem 3.3 applies

to equation (4.1) because the operators A−1Aβ are bounded on V . Indeed, note that

‖u‖2
V = ‖u‖2

L2(O) + ‖∇u‖2
L2(O)

and let Cπ be the Poincaré constant for the domain O:

‖u‖2
L2(O) ≤ Cπ‖∇u‖2

L2(O). (4.6)

Assumption 4.1(b) implies

〈Au, u〉 ≥ A1

1 + Cπ
‖u‖2

V , u ∈ V ;

here 〈·, ·〉 denotes the duality paring between V ′ and V relative to the inner product in L2(O). Then, by direct
computation,

‖A−1Aβu‖V ≤
(

1 + Cπ

A1

)(
CL

β + Cw
β

)
Cσ

β .

Example 4.2. Let G(x) is a Gaussian field on O with representation

G(x) =
∞∑

k=1

hk(x)ξk, (4.7)

where {hk, k ≥ 1} are smooth bounded functions such that

∑
k≥1

(
sup
x∈O

|hk(x)|2 + sup
x∈O

|∇hk(x)|2
)

< ∞ (4.8)
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and ξ = {ξk, k ≥ 1} is a collection of independent standard Gaussian random variables. Note that

Ḡ(x) := EeG(x) = exp

⎛
⎝1

2

∑
k≥1

h2
k(x)

⎞
⎠ .

Examples of (4.7) are Karhuan-Loève expansion [13], spectral expansion [19], and Fourier-Wavelet expansion [6].
Consider the equation

∇ · (eG(x) � ∇u) = f. (4.9)
If

hα(x) =
Ḡ(x)
α!

∏
k

hαk

k (x), α ∈ J ,

then
eG(x) = Ḡ(x)

(
1 +

∑
|β|≥1

hβ(x)Hβ(ξ)
)

and (4.9) becomes a particular case of (4.1):

∇ ·
(
Ḡ(x)∇u

)
+
∑
|β|≥1

∇ · (Ḡ(x)hβ(x)∇u
) � Hβ(ξ) = f ;

to satisfy Assumption 4.1(e), take bk = supx∈O |hk(x)| + supx∈O |∇hk(x)|.
Replacing in (4.9) the usual exponential eG(x) with the Wick exponential

e�G((x)) = eG(x)− 1
2
∑

k≥1 h2
k(x) (4.10)

also leads to an equation of the form (4.1).

The objective of this section is to study numerical solution of (4.1). Specifically, we construct an approxima-
tion of (4.1) using finite elements in the physical space O and a truncated chaos expansion in the probability
space. For the sake of concreteness we assume that the physical space is two-dimensional: d = 2.

Let Th be a family of triangulations of O with straight edges and h the maximum size of the elements in Th.
We assume that the family is regular, in other words, the minimal angle of all the triangles is bounded from
below by a positive constant. We define the finite element space as

V K
h,p =

{
v
∣∣∣ v ◦ F−1

K ∈ Pp(R)
}

, Vh,p =
{
v ∈ H1(D)

∣∣∣ v|K ∈ V K
h,p, K ∈ Th

}
,

where FK is the mapping function for the element K which maps the reference element R (for example, an
equilateral triangle or an isoceles right triangle) to the element K and Pp(R) denotes the set of polynomials
of degree at most p on R. We assume that vh|∂O = 0, vh ∈ Vh,p. Thus, Vh,p is an approximation of H1

0 (O) by
piece-wise polynomial functions. There exist many choices of basis functions on the reference elements, such as
h-type finite elements [5], spectral/hp elements [10,18], etc.

To describe truncated chaos expansion, fix positive integers M, n and define the finite dimensional set
JM,n ⊂ J as

JM,n :=
{
α
∣∣∣ |α| ≤ M, αk = 0, k > n

}
. (4.11)

The truncated Wiener chaos space V M,n is then

V M,n :=
{ ∑

α∈JM,n

fαHα(ξ)
∣∣∣ fα ∈ R

}
. (4.12)
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Similarly, let
IM,n = I ∩ JM,n.

It follows from (3.5) that uα is fully determined by coefficients uβ and operators Aβ with β ≤ α. Thus we only
need to keep the operators Aβ with β ∈ IM,n if we only consider the coefficients uα with α ∈ JM,n.

The sFEM (stochastic finite element method) can be formulated as follows: Find uM,n
h,p ∈ Vh,p ⊗ V M,n such

that, for all v ∈ Vh,p ⊗ V M,n,

E〈A(0)u
M,n
h,p , v〉 + E

∑
β∈IM,n

|β|>0

〈AβuM,n
h,p � Hβ(ξ), v〉 = E〈f, v〉. (4.13)

Remark 4.3. The underlying idea of sFEM is to consider a finite element approximation, followed by a
truncation of the chaos expansion. Alternatively, it is possible to truncate the chaos expansion first and then
apply the finite element method to the truncated version of the uncertainty propagator (3.5):

A(0)u(0) = f, |α| = 0,

A(0)uα +
∑

β∈IM,n

0<β≤α

Aβuα−β = 0, |α| > 0. (4.14)

This approach will not be discussed in this paper.

The following is the main result about the convergence of the stochastic finite element method.

Theorem 4.4. Assume that conditions given in Assumption 4.1 and Theorem 3.3 are satisfied and in addition,
u ∈ RL2(F; Hm+1(O)) for some integer m ≥ 1. Then

‖u − uM,n
h,p ‖RL2(F;H1

0 (O)) ≤ C1h
μ−1p−m‖u‖RL2(F;Hm+1(O)) + C2‖f‖H−1(O)

(
1

2M
+

1√
n

)
, (4.15)

where μ = min(m + 1, p + 1), the constants C1 and C2 are independent of h and p, and C2 is also independent
of M, n.

Proof. Define V = H1
0 (O) and let the Wiener-chaos expansion of u and uM,n

h,p be

u =
∑
α∈J

uαHα(ξ), uM,n
h,p =

∑
α∈JM,n

ûαHα(ξ),

respectively. Then
u − uM,n

h,p =
∑

α∈JM,n

(uα − ûα)Hα +
∑

α∈J\JM,n

uαHα, (4.16)

and

‖u − uM,n
h,p ‖2

RL2(F;V ) =
∑

α∈JM,n

‖uα − ûα‖2
V ‖Hα‖2

RL2(F)

+
∑

α∈J\JM,n

‖uα‖2
V ‖Hα‖2

RL2(F) = I1 + I2. (4.17)

The structure of equation (3.5) ensures that the coefficients uα with α ∈ J \JM,n and operators Aβ with
β ∈ I\IM,n do not affect ûα with α ∈ JM,n. In other words, I1 is the error from the finite element discretization
and I2 is from the truncation of the chaos expansion.
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We first look at the term I1 by considering equation (4.14). Since the equation for u(0) is a usual deterministic
elliptic equation, we here only consider the equations for uα with |α| > 0. By (4.13),

A(0)ûα +
∑

β∈IM,n

0<β≤α

Aβûα−β = 0. (4.18)

Furthermore, although we truncate the number of random variables and the multi-index set I, the structure of
the uncertainty propagator (3.5) ensures that the exact solution also satisfied

A(0)uα +
∑

β∈IM,n

0<β≤α

Aβuα−β = 0. (4.19)

Denote by a(·, ·) the bilinear form generated by the elliptic operator A(0):

a(u, v) = 〈Au, v〉.
Then, for every vh ∈ Vh,p,

a(ûα − vh, ûα − vh) = a(uα − vh, ûα − vh) + a(ûα − uα, ûα − vh)

= a(uα − vh, ûα − vh) −
∑

β∈IM,n

0<β≤α

〈Aβ(uα−β − ûα−β), ûα − vh〉 . (4.20)

Assumption 4.1(b) implies

A1

1 + Cπ
‖u‖2

V ≤ a(u, u), a(u, v) ≤ A2‖u‖V ‖v‖V , u ∈ V,

where Cπ is the Poincaré constant for the domain O; see (4.6). Then, with C1 = A1/(1 + Cπ) and thinking
wh = ûα − vh,

C1‖ûα − vh‖V ≤ A2‖uα − vh‖V + sup
wh∈Vh,p

wh �=0

∣∣∣∣∣∣∣∣
∑

β∈IM,n

0<β≤α

〈Aβ(uα−β − ûα−β), wh〉

∣∣∣∣∣∣∣∣
‖wh‖V

·

Combining the above inequality with the triangle inequality

‖uα − ûα‖V ≤ ‖uα − vh‖V + ‖ûα − vh‖V ,

we find

‖uα − ûα‖V ≤
(

1 +
A2

C1

)
inf

vh∈Vh,p

‖uα − vh‖V

+
1
C1

sup
wh∈Vh,p

wh �=0

∣∣∣∣∣∣∣∣
∑

β∈IM,n

0<β≤α

〈Aβ(uα−β − ûα−β), wh〉

∣∣∣∣∣∣∣∣
‖wh‖V

· (4.21)
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By Assumptions 4.1(c,d),

〈Aβu, v〉 ≤ Cβ‖u‖V ‖v‖V (4.22)

where Cβ = Cσ
β

(
CL

β + Cw
β

)
. Therefore,

‖uα − ûα‖V ≤ C inf
vh∈Vh,p

‖uα − vh‖V +
∑

β∈IM,n

0<β≤α

Ĉβ‖uα−β − ûα−β‖V (4.23)

for some constants C and Ĉβ. The first term on the right-hand side is the approximation error of finite element
approximation and the second term is the error propagated from the approximation of lower-order coefficients.
Using equation (4.23) recursively, we obtain

‖uα − ûα‖V ≤
∑
β≤α

Ĉα,β inf
vh∈Vh,p

‖uβ − vh‖V , (4.24)

with some constants Ĉα,β. According to the theory of the finite element approximation [1,5], there exists a
positive number Cf such that, for every function u ∈ H1

0 (O) ∩ Hm+1(O),

inf
vh∈Vh

‖uα − vh‖V ≤ Cfhμ−1p−m‖uα‖Hm+1(D), (4.25)

where μ = min(m + 1, p + 1). Then

‖uα − ûα‖2
V ≤ C2

fh2μ−2p−2m

⎛
⎝∑

β≤α

Ĉα,β‖uα‖Hm+1(O)

⎞
⎠

2

≤ C2
fh2μ−2p−2m

∑
β≤α

Ĉ2
α,β

∑
β≤α

‖uβ‖2
Hm+1(O)

= h2μ−2p−2mĈα

∑
β≤α

‖uβ‖2
Hm+1(O),

and the term I1 can be bounded as

I1 ≤ h2μ−2p−2m
∑

α∈JM,n

Ĉα

∑
β≤α

‖uβ‖2
Hm+1(D)‖Hα‖2

RL2(F)

≤ h2μ−2p−2mC(M, n)
∑

α∈JM,n

Ĉα‖uα‖2
Hm+1(D)‖Hα‖2

RL2(F)

≤ h2μ−2p−2mC(M, n) max
α∈JM,n

Ĉα

∑
α∈JM,n

‖uα‖2
Hm+1(D)‖Hα‖2

RL2(F)

≤ h2μ−2p−2mC1(M, n)‖u‖2
RL2(F;Hm+1(D)). (4.26)

To estimate the truncation error I2 of the Wiener chaos expansion, note that ‖Hα‖2
RL2(F) = rα α!, and, by (3.8),

rα =

(
2N)−2αq−α

α!
·

Also,
‖uα‖V ≤ qα‖u(0)‖V ≤ CAqα‖f‖H−1(D).
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As a result,

I2 =
∑

α∈J\JM,n

‖uα‖2
V ‖Hα‖2

RL2(F) ≤ CA‖f‖H−1(D)

∑
α∈J\JM,n

(2N)−2α ≤ C2

(
1

22M
+

1
n

)
,

where the last inequality is taken from [4], proof of Theorem 2. This, together with (4.17) and (4.26), completes
the proof of Theorem 4.4. �

5. Computations

In this section we present some results of numerical experiments and compare our model with another one
studied in the literature on uncertainty quantification. We consider the following one-dimensional problem⎧⎨

⎩
− d

dx(K ∗ d
dxu) = 1,

u(0) = 0, u(1) = 0,
(5.1)

where
• ∗ denotes either the Wick product � or the ordinary product · ;
• K = ecξ− 1

2 c2
, ξ is a standard Gaussian random variable, c > 0 is a real number.

The random variable K can be regarded as a simplified version of the random field e�G(x) from (4.10). Note
that

E [K] = 1, Var [K] = ec2 − 1. (5.2)
Denote by Hi the normalized Hermite polynomials:

Hi(ξ) =
Hi(ξ)√

i!
·

Substituting the truncated Wiener chaos expansion

u(x) =
n∑

i=0

ui(x)Hi(ξ)

into equation (5.1) and implementing the finite element projection we obtain the uncertainty propagators

−
n∑

i=0

d2

dx2
ui(x)E

[
KHiHj

]
= δ0,j , j = 0, 1, . . . , n (5.3a)

−
n∑

i=0

d2

dx2
ui(x)E

[
(K � Hi)Hj

]
= δ0,j , j = 0, 1, . . . , n (5.3b)

for the ordinary product and the Wick product, respectively.
Using the Taylor expansion and the properties of Hermite polynomials, we obtain

E
[
KHiHj

]
= e−c2/2

∞∑
n=0

[n/2]∑
k=0

∑
p≤i∧j

A(n, k)B(i, j, p)δn−2k,i+j−2p, (5.4a)

E
[
(K � Hi)Hj

]
=

e−c2/2

√
i!

∞∑
n=0

[n/2]∑
k=0

cn

√
(n − 2k + i)!

(n − 2k)!(2k)!!
δn−2k+i,j , (5.4b)
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where

A(n, k) =
cn

n!

(
n

2k

)
(2k − 1)!!

√
(n − 2k)!, B(i, j, p) =

[(
i

p

)(
j

p

)(
i + j − 2p

i − p

)]1/2

.

Formulas similar to (5.4a) and (5.4b) can also be derived when

K(x) = e�G(x), (5.5)

with G(x) given by (4.7). For simplicity, we present numerical results for the space-independent case G(x) = cξ,
corresponding to K = ecξ−(c2/2). The qualitative behavior of the solutions of (5.1), with either ordinary or
Wick product, remains the same for the more general noise (5.5), as long as conditions (4.8) hold.

Let us compare the matrix structures of E
[
KHiHj

]
and E

[
(K � Hi)Hj

]
.

• Ordinary product. For all c1, . . . , cn ∈ R, we have

n∑
i,j=1

cicjE
[
KHiHj

]
= E

⎡
⎣ n∑

i,j=1

cicjKHiHj

⎤
⎦

= E

⎡
⎣( n∑

i=1

K1/2Hici

)2
⎤
⎦ ≥ 0.

It can be shown that when K is lognormal, ci must be zero if the equality is satisfied. In other
words, the matrix E

[
KHiHj

]
is symmetric and positive definite. Thus all the eigenvalues of the matrix(

E
[
KHiHj

]
, i, j = 1, . . . , n

)
are positive, and the system (5.3a) is well-posed. However, all unknowns

in equation (5.3a) are coupled together, which is not a desirable property for numerical computation.
• Wick product. As n must be even for i = j to get nonzero terms in equation (5.4b), it follows that

E
[
(K � Hi)Hi

]
= 1 for all i = 0, 1, . . . Indeed,

E
[
(K � Hi)Hi

]
=

e−1/2

√
i!

∞∑
m=0

m∑
k=0

√
(2m − 2k + i)!

(2m − 2k)!(2k)!!
δ2m−2k+i,i

=
e−1/2

√
i!

∞∑
m=0

√
i!

(2m)!!

= e−1/2
∞∑

m=0

1
2mm!

= e−1/2e1/2 = 1.

Furthermore, we note that E
[
(K � Hi)Hj

]
is a lower-triangular matrix. In other words, the coefficient ui

depends only on uj with j < i.
In the first numerical experiment, we take c = 1 and compare the chaos coefficients of solutions corresponding

to the ordinary and Wick products. Figure 1 presents the results. For a better comparison, we use the same
scale on both graphs and also plot the function Ud, the solution of

− d2Ud(x)
dx2

= 1, 0 < x < 1; Ud(0) = Ud(1) = 0. (5.6)

Note that Ud is the solution of (5.1) when K is replaced by its mean value E [K] = 1.
We make the following observations:
(1) When the ordinary product is used, Ud �= u0; when the Wick product is used, Ud = u0. This is a

direct consequence of equations (5.3a) and (5.3b). In Figure 2, we plot the function u0 corresponding
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Figure 1. Chaos expansion coefficients. Left: ordinary product; right: Wick product.
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Figure 2. The plot of E [u(x)] for different values of c, ordinary product.

to the ordinary product, for different values of c. It appears that u0 is an increasing function of c and
is close to Ud when c ≤ 0.1.

(2) The larger the number i, the smaller the coefficient ui. However, it appears that the coefficients for the
Wick product are much smaller than the corresponding coefficients for the ordinary product. Below,
we investigate this phenomenon further by changing the value of c.

In the second numerical experiment, we study the relation between the variance of the perturbation K and
the variance of the corresponding solution. We change the value of c from 0.1 to 2.5, which, by (5.2), is equivalent
to changing the standard deviation of K from 0.1003 to 22.7379. Figures 3 and 4 present the results.

In Figure 3, we plot the variance of the solution as a function of x for several values of c, and notice that,
in each case, the variance seems to be largest near the middle of the interval (0, 1). In Figure 4, we plot the
solution variance at point x = 0.5 as a function of c. It appears that variances corresponding to ordinary and
Wick products are close for small c, but diverge quickly as c increases: in the same range of the values of c,
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Figure 3. Variance of the solution for different values of c. Left: ordinary product; right: Wick product.
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Figure 4. Variance of the solution at x = 0.5, as a function of c.

the variance of the solution increases from O(10−5) to O(106) for the ordinary product, and from O(10−5) to
O(101) for the Wick product.

In summary, although the solutions of equation (5.1) with Wick and ordinary products belong to
L2(F; H1

0 (0, 1)), the two different products lead to many differences in the properties of the solution. The differ-
ences are especially pronounced when the noise K is large. A more detailed analysis shows that many numerical
characteristics of the solutions differ by the factor of ec2

, which is related to the equality ecξ− 1
2 c2 � e−cξ− 1

2 c2
= 1.

At this point, we make the statement intentionally vague, because this scaling by the factor ec2
seems to have

many important ramifications and must be studied further, both analytically and numerically.
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