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MINIMAL INVASION: AN OPTIMAL L∞ STATE CONSTRAINT PROBLEM

Christian Clason
1
, Kazufumi Ito

2
and Karl Kunisch

1

Abstract. In this work, the least pointwise upper and/or lower bounds on the state variable on a
specified subdomain of a control system under piecewise constant control action are sought. This results
in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization
of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth
Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization
is proved, and well-posedness and superlinear convergence of the Newton method is shown. Numerical
examples illustrate the features of this problem and the proposed approach.
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1. Introduction

We consider the following relaxed L∞-type control problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
c∈R,u∈Rm

c2

2
+
α

2
|u|22

s.t. Ay = f +
m∑

i=1

uiχωi in Ω,

− β2c+ ψ2 ≤ y|ω0 ≤ β1c+ ψ1 in ω0.

(P)

Here α > 0, Ω is a bounded domain in R
n, A is a linear second order elliptic partial differential operator of

convection-diffusion type carrying appropriate boundary conditions (to be made more explicit below), ωi ⊂ Ω,
i = 0, . . . ,m are subdomains and as such open and connected sets in Ω with characteristic functions

χωi(x) =

{
1 x ∈ ωi,

0 x �∈ ωi,
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and f ∈ Lq(Ω) for some q < max(2, n). Further

β1, β2 ∈ R with β1, β2 ≥ 0 and ψ1 ∈ L∞(ω0), ψ2 ∈ L∞(ω0),

and we assume that β1 + β2 > 0 as well as maxψ2 ≤ minψ1. Furthermore, we assume that ψ1(x) = ψ2(x) for
some x ∈ ω0, which can always be guaranteed by re-parameterization according to

ψ1 = ψ1 + β1c, ψ2 = ψ2 − β2c,

where c = d
β1+β2

≤ 0 with d = max(ψ2−ψ1) ≤ 0. Indeed, let x = argmax(ψ2−ψ1). Then note that ψ1−ψ2 ≤ 0
and ψ1(x)− ψ2(x) = 0. Hence after re-parameterization it necessarily holds that c ≥ 0.

To simplify notation, we introduce the control operator B : R
m → L∞(Ω),

Bu =
m∑

i=1

uiχωi .

This problem can be given the following interpretation: A pollutant f enters the groundwater and is (diffusively
and/or convectively) transported throughout the domain Ω. To minimize the concentration y of a pollutant in
a city ω0, wells ω1, . . . , ωm are placed in Ω, through which a counter-agent ui can be introduced. The problem
is therefore to minimize the upper bound c in the formulation y|ω0 ≤ c, or, if the concentration is supposed to
be non-negative, 0 ≤ y|ω0 ≤ c. In general the concentration only satisfies inhomogeneous boundary conditions
ỹ = g on ∂Ω. To return to the formulation introduced above we transform to homogeneous boundary conditions
by means of y = ỹ − gext, where gext is a smooth extension of g into Ω. The resulting constraints on y are of
the form −gext ≤ y ≤ −gext + c, and are a special case of the constrains considered above. The approach we
present can readily be applied to a problem with a unilateral constraint on y.

In case β1 = β2 = 1 and ψ1 = ψ2 = 0 the inequality constraints in (P) result in the norm constraint problem

‖y‖L∞(ω0)
≤ c

which can equivalently be expressed as the following quadratic problem with affine constraints:⎧⎨⎩ min
u∈Rm

1
2
‖y‖2L∞(ω0)

+
α

2
|u|22

s.t. Ay = f +Bu.
(1.1)

Clearly (P) is related to state-constrained optimal control problems but it is different since it involves c as
a free variable. To find the smallest c such that the constraints in (P) admit a feasible solution and such that
the objective is minimized is the objective of this work. Note that for (1.1) with f �= 0 it is required that c > 0
to guarantee that the constraint ‖y‖L∞(ω0)

≤ c is feasible.
Problem (P) with ωi = Ω was treated in [3,7]. In [3] a discretize before optimize approach was pursued so

that phenomena due to lack of L2-regularity of the Lagrange multipliers are not apparent. The work in [7] rests
on an interior point treatment of the state constraints. In addition to the different treatment that we follow
in this work, in the numerical examples we also focus on effects and the interpretation which result from the
choice of the control and observation domains as proper subsets of Ω.

This article is organized as follows. In a short Section 2 we present the regularization that we employ,
prove existence and uniqueness of a solution to (P) and establish the asymptotic behavior of the solutions to
the regularized problems. Section 3 is devoted to the optimality systems for the original and the regularized
problems. The semi-smooth Newton method and its analysis are considered in Section 4, and the final Section 5
contains numerical results.
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2. Existence and regularization

This section is devoted to specifying the regularization that we use, and to establish existence and uniqueness
results. We first address well-posedness of the state equation. We consider the operator

Ay = −
n∑

j,k=1

∂j(ajk(x)∂ky + dj(x)y) +
n∑

j=1

bj(x)∂jy + d(x)y,

where the coefficients satisfy ajk ∈ C0,δ(Ω) for some δ ∈ (0, 1) and bj , d ∈ L∞(Ω), and the corresponding
Dirichlet problem {

Ay = g, in Ω,
y = 0, on ∂Ω,

(2.1)

where the domain Ω is open, bounded and of class C1,δ and g ∈ H−1(Ω) is given. If 0 is not an eigenvalue
of A, this problem has a unique solution in H1

0(Ω). A sufficient condition for this is the existence of constants
λ,Λ ν > 0 such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ|ξ|22 ≤ ajkξjξk for all ξ ∈ R
n,

n∑
j,k=1

|aj,k|2 ≤ Λ2,

λ−2
n∑

j=1

(|dj |2 + |bj |2
)

+ λ−1|d| ≤ ν2, d− ∂jdj ≥ 0, for all 1 ≤ j ≤ n,

where the last inequality should be understood in the generalized sense (cf., e.g., [2], Thm. 8.3). Concerning
the regularity of this solution, we have the following theorem ([8], Thm. 3.16):

Proposition 2.1. For each g ∈ W−1,q(Ω) with 2 < q < ∞, the solution y of (2.1) satisfies y ∈ W 1,q
0 (Ω).

Moreover, there exists a constant C > 0 independent of g such that

‖y‖W 1,q(Ω) ≤ C ‖g‖W−1,q(Ω)

holds.

In particular, since f ∈ Lq(Ω) with q > n, this implies the existence of a unique solution y ∈ W 1,q
0 (Ω) of the

state equation Ay = f +Bu for any control vector u ∈ R
m. This affine solution mapping will be denoted by

y : R
m →W 1,q

0 (Ω), with y(u) = A−1(f +Bu).

Recalling the continuous embedding W 1,q(Ω) ↪→ C(Ω) for any q > n we have moreover that y ∈ C(Ω).
To apply a semi-smooth Newton method, we introduce the Moreau-Yosida regularization of (P), i.e. for

γ > 0 we consider:

⎧⎨⎩ min
c∈R,u∈Rm

c2

2
+
α

2
|u|22 +

γ

2
‖max(0, y|ω0 − (β1c+ ψ1))‖2L2 +

γ

2
‖min(0, y|ω0 + β2c− ψ2)‖2L2 ,

s.t. Ay = f +Bu.

(Pc)

For the case β1 = β2 = 1 and ψ1 = ψ2 = 0 this can be expressed compactly as⎧⎨⎩ min
c∈R,u∈Rm

c2

2
+
α

2
|u|22 +

γ

2
‖max(0, |y|ω0 | − c)‖2L2 ,

s.t. Ay = f +Bu.
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Proposition 2.2. Problem (P) admits a unique solution (c∗, u∗). Moreover, for every γ > 0 there exists a
unique solution (cγ , uγ) to (Pc). The associated states will be denoted by y∗ = y(u∗) and yγ = y(uγ) respectively.

Proof. Problem (P) can equivalently be expressed as

min
u∈Rm

J(u) = min
u∈Rm

1
2

[
ess sup

x∈ω0

max
(
y − ψ1

β1
,
−y + ψ2

β2

)]2

+
α

2
|u|22 ,

where J : R
m → R is continuous and radially unbounded. The mapping

u 
→ ess sup
x∈ω0

max
(
y(u)− ψ1

β1
,
−y(u) + ψ2

β2

)
is convex and hence u 
→ J(u) is strictly convex. As a consequence (P) has a unique solution with

0 ≤ c∗ = ess sup
x∈ω0

max
(
y(u∗)− ψ1

β1
,
−y(u∗) + ψ2

β2

)
·

An analogous argument implies the existence of a unique solution to (Pc). �

We also define ⎧⎨⎩
λγ = λγ,1 + λγ,2,

λγ,1 = γmax(0, yγ |ω0 − (β1c+ ψ1)), λγ,2 = γmin(0, yγ |ω0 + β2c− ψ2),

which will turn out to be the regularized Lagrange multiplier associated to the inequality constraint on y|ω0 .
Note that λγ,1 ≥ 0, λγ,2 ≤ 0 and that strict inequalities cannot hold simultaneously.

Proposition 2.3. We have

(cγ , uγ , yγ)→ (c∗, u∗, y∗) in R× R
m ×W 1,q(Ω),

and
1√
γ
‖λγ‖L2(ω0)

→ 0, as γ →∞. (2.2)

Proof. Due to the optimality of (cγ , uγ) we have

(cγ)2

2
+
α

2
|uγ |22 +

1
2γ
‖λγ‖2L2(ω0)

≤ (c∗)2

2
+
α

2
|u∗|22 . (2.3)

Consequently

{cγ}γ>0, {uγ}γ>0,

{
1
γ
‖λγ‖2L2(ω0)

}
γ>0

, {‖yγ‖W 1,q}γ>0

are bounded.
Thus there exists a sequence {γk} and (ĉ, û, ŷ) ∈ R×R

m×W 1,q
0 such that (cγk

, uγk
, yγk

) converges to (ĉ, û, ŷ).
Taking the limit (2.3) and in Ayγk

− f − Buγk
= 0 we find that (ĉ, û, ŷ) coincides with the unique solution

(c∗, u∗, y∗) of (P). Due to uniqueness of (c∗, u∗, y∗) the whole family (cγ , uγ , yγ) converges in R×R
m×W 1,q(Ω)

to (c∗, u∗, y∗). Taking the limit in (2.3) implies (2.2). �
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3. Optimality system

In this section we derive the optimality systems for (P) and (Pc) and the relationship between them.
We introduce the Lagrangian for the regularized problem

L(u, c, y, p) =
c2

2
+
α

2
|u|22 +

γ

2
‖max(0, y|ω0 − (β1c+ ψ1))‖2L2

+
γ

2
‖min(0, y|ω0 + β2c− ψ2)‖2L2 + 〈p,Ay − f −Bu〉

W 1,q′
0 ,W−1,q ,

where

L : R
m × R×W 1,q

0 (Ω)×W 1,q′
0 (Ω)→ R,

1
q

+
1
q′

= 1.

Since the linearized equality constraint in (P) given by

(u, y) 
→ Ay −Bu

is surjective, the necessary and sufficient optimality system for (Pc) is found to be⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αuγ,i − 〈pγ , χωi〉 = 0, i = 1, . . . ,m,

cγ − 〈λγ,1, β1〉+ 〈λγ,2, β2〉 = 0,

A∗pγ + λ̃γ = 0,

Ayγ − f −Buγ = 0,

(3.1)

where λ̃γ denotes the extension by zero to Ω \ ω0 of λγ .

Theorem 3.1 (optimality system for (P)). There exist λi ∈ L∞(ω0)∗, i = 1, 2, and p∗ ∈ W 1,q′
0 (Ω) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αu∗i − 〈p∗, χωi〉 = 0, i = 1, . . . ,m,

c∗ − 〈λ1, β1〉(L∞)∗,L∞ + 〈λ2, β2〉(L∞)∗,L∞ = 0,

〈p∗, Aϕ〉+ 〈λ1 + λ2, ϕ|ω0〉(L∞)∗,L∞ = 0, for all ϕ ∈ W 1,q
0 (Ω),

Ay∗ − f −Bu∗ = 0,

〈λ1, y
∗|ω0 − (β1c

∗ + ψ1)〉(L∞)∗,L∞ = 0, 〈λ2, y
∗|ω0 + (β2c

∗ − ψ2)〉(L∞)∗,L∞ = 0,

〈λ1, ϕ〉(L∞)∗,L∞ ≥ 0, 〈λ2, ϕ〉(L∞)∗,L∞ ≤ 0, for all ϕ ∈ L∞(Ω).

(3.2)

Moreover {pγ , λγ}γ>0 is bounded in W 1,q′
0 (Ω) × L1(ω0) and for every subsequence such that pγk

converges
weakly in W 1,q′

0 (Ω) and λγk
converges weakly∗ in (L∞(ω0))∗ the subsequential limits satisfy (3.2).

Proof. Let G : R
m × R→ L∞(ω0)× L∞(ω0) be defined by

G(u, c) =
(
y(u)|ω0 − β1c− ψ1

−y(u)|ω0 − β2c+ ψ2

)
,

and
K = {k ∈ L∞(ω0) : k ≤ 0}.
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Then (P) can be expressed in abstract form as

min
u∈R,c∈R

J(u, c) =
1
2
c2 +

α

2
‖u‖2 subject to G(u, c) ∈ K ×K. (3.3)

The regular point condition for (3.3) (cf. [5,6]) is given by

0 ∈ {G′(u∗, c∗)(Rm × R) +G(u∗, c∗)− (K ×K)} . (3.4)

To verify (3.4) we consider for arbitrary (g1, g2) ∈ L∞(ω0)× L∞(ω0)(
A−1(Bu)|ω0 − β1c
−A−1(Bu)|ω0 − β2c

)
+
(
y∗|ω0 − β1c

∗ − ψ1

−y∗|ω0 − β2c
∗ + ψ2

)
−
(
k1

k2

)
=
(
g1
g2

)
. (3.5)

Set u = 0 and
c = max

(
β−1

1 ess sup(−g1), β−1
2 ess sup(−g2), 0

)
.

Then the first coordinate in (3.5) is satisfied with

k1 = −g1 + y∗|ω0 − β1c
∗ − ψ1 − β1c ≤ 0.

Similarly for the second coordinate we have

k2 = −g2 − y∗|ω0 − β2c
∗ + ψ2 − β2c ≤ 0.

Hence there exist (λ1, λ2) ∈ L∞(ω0)∗ × L∞(ω0)∗ such that the last two lines in (3.2) hold.
For later reference we specify that the above argument implies that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for all ρ > 0 there exists M ≥ 0 such that for all g = (g1, g2) ∈ Bρ

there exists (u, c, k1, k2) satisfying

G′(u∗, c∗)(u, c) +G(u∗, c∗)−
(
k1

k2

)
=
(
g1
g2

)
and |(u, c, k1 − y∗|ω0 + β1c

∗ + ψ1, k2 + y∗|ω0 + β2c
∗ − ψ2)|Rm×R×L∞×L∞ ≤M ρ,

(3.6)

where Bρ = {(g1, g2) ∈ L∞ × L∞ : ‖gi‖L∞ ≤ ρ}. In fact, u = 0 is possible.
We also have

J ′(u∗, c∗) + 〈(λ1,−λ2), G′(u∗, c∗)〉(L∞×L∞)∗,L∞×L∞ = 0.
Exploiting this equality we find

c∗ − 〈λ1, β1〉(L∞)∗,L∞ + 〈λ2, β2〉(L∞)∗,L∞ = 0,

which is the second equation in (3.2), and

αui + 〈λ1 + λ2, A
−1(χωi)|ω0〉 = 0, for all i = 1, . . . ,m = 0.

Introducing the adjoint state as the solution to

〈p∗, Aϕ〉+ 〈χω0 , (λ1 + λ2)ϕ〉 = 0, for all ϕ ∈ C∞
0 (Ω)

provides the first and third equation in (3.2). Since λ1, λ2 ∈ L∞(ω0)∗ we have that p∗ ∈ W 1,q′
0 (Ω). This

concludes the proof of the optimality system (3.2).
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Next we argue that {λγ,1}γ>0 and {λγ,2}γ>0 are bounded in L1(ω0). For this purpose we set

�λγ = (λγ,1,−λγ,2)T = (γmax(0, yγ |ω0 − (β1c+ ψ1),−γmin(0, y|ω0 + β2c− ψ2))T .

For ρ > 0 fixed choose g = (g1, g2) ∈ Bρ arbitrarily. Appealing to (3.6) for −g, there exists (ũ, c̃, k), with
k = (k1, k2) ∈ K ×K, such that for (u, c) = (ũ + u∗, c̃+ c∗),

−g =
(
G′(u∗, c∗)((u, c)− (u∗, c∗))

)− (k −G(u∗, c∗))

holds. Taking the inner product with �λγ we have

−〈g,�λγ〉 =
〈
G′(uγ , cγ)((u, c)− (u∗, c∗)), �λγ

〉− 〈k −G(u∗, c∗), �λγ

〉
=
〈
G′(uγ , cγ)((u, c)− (uγ , cγ)), �λγ

〉
+
〈
G′(uγ , cγ)((uγ , cγ)− (u∗, c∗)), �λγ

〉
− 〈k,�λγ

〉
+
〈
G(u∗, c∗)−G(uγ , cγ), �λγ

〉
+
〈
G(uγ , cγ), �λγ

〉
.

Note that 〈k,�λγ〉 ≤ 0, 〈G(uγ , cγ), �λγ〉 ≤ 0 and J ′(uγ , cγ) +G′(uγ , λγ)∗�λγ = 0. Therefore

〈g,�λγ〉 ≤
〈
J ′(uγ , cγ), (u, c)− (uγ , cγ)

〉− 〈G′(uγ , cγ)((uγ , cγ)− (u∗, c∗)), �λγ

〉− 〈G(u∗, c∗)−G(uγ , cγ), �λγ

〉
.

Hence by (2.3) and (3.6) there exists M̃ independent of γ and (u, c) such that

sup
g∈Bρ

〈g,�λγ〉 ≤ M̃ (1 + ‖�λγ‖L1×L1 ‖(u∗, c∗)− (uγ , cγ)‖).

Using (2.3) once again there exists M̂ independent of γ such that

sup
g∈Bρ

〈g,�λγ〉 ≤ M̃ (1 + ‖�λγ‖L1×L1).

This implies boundedness of {‖λγ,1‖L1}γ>0 and {‖λγ,2‖L1}γ>0. It follows that {‖pγ‖W 1,q′
0
}γ>0 is bounded as

well. From Proposition 2.3 we recall that (cγ , uγ , yγ) → (c∗, u∗, y∗) in R × R
m ×W 1,q(Ω), and in particular

yγ → y∗ in C(Ω). Since W 1,q′
0 (Ω) embeds compactly into Lr(Ω) ⊂ L1(Ω) for r =

nq
q−1

n− q
q−1

= nq
nq−(n+q) , there exist

subsequences of pγ , λγ1 , λγ2 , denoted by the same symbols, and p∗, λ1, λ2 such that pγ → p∗ weakly in W 1,q′
(Ω)

and strongly in L1(Ω), and λγ,1, λγ,2 converge to λ1, λ2 weakly∗ in L∞(ω0)∗.
From (2.2) we have 0 = limγ→∞ 1

γ ‖λγ‖2L2(ω0)
and hence

0 = lim
γ→∞

1
γ
‖λγ,1‖2L2(ω0)

, 0 = lim
γ→∞

1
γ
‖λγ,2‖2L2(ω0).

Consequently

0 = lim
γ→∞〈λγ,1,max(0, yγ |ω0 − (β1cγ + ψ))〉 = lim

γ→∞〈λγ,1, yγ |ω0 − (β1cγ + ψ)〉
= 〈λ1, y

∗|ω0 − (β1c
∗ + ψ1)〉(L∞)∗,L∞ .

In a similar way one shows that 0 = 〈λ2, y
∗|ω0 + (β2c

∗ − ψ2)〉(L∞)∗,L∞ . This gives the fifth line of the optimality
system (3.2). The remaining properties of the optimality system (3.2) can easily be obtained by passing to the
limit in (3.1). �
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Remark 3.2. The regularity of the Lagrange multipliers λ1, λ2 ∈ L∞(ω0)∗ is associated to the fact that the
obstacle functions ψ1, ψ2 are in L∞(ω0). If ψ1, ψ2 are taken in C(ω0), the above proof can be adapted to show
that λ1, λ2 are bounded Radon measures in C(ω0)∗.

Since the problem (P) is strictly convex, the system (3.2) provides a sufficient optimality condition. In
particular, the (u, c, y) satisfying (3.2) are unique.

In the final result of this section we address the question of rate of convergence of the regularized solutions
to the solution of the original problem as γ →∞.
Proposition 3.3. We have

1
2
|cγ − c∗|2 +

α

2
|uγ − u∗|22 = O

(
1

γ
1−θ
1+θ

)
,

where θ = nq
nq+2(q−n) .

Proof. Let z1
γ = yγ |ω0 − (β1cγ + ψ1) and z2

γ = yγ |ω0 + (β2cγ − ψ2). Due to optimality of (cγ , uγ , yγ) we find

(cγ)2

2
+
α

2
|uγ |22 +

γ

2
‖max(0, z1

γ)‖2L2 +
γ

2
‖min(0, z2

γ)‖2L2 ≤ (c∗)2

2
+
α

2
|u∗|22 . (3.7)

We shall use the relationships

(cγ)2

2
− (c∗)2

2
+
α

2
|uγ |22 −

α

2
|u∗|22 = (cγ − c∗)c∗ +

1
2
|cγ − c∗|2 + α〈uγ − u∗, u∗〉+ α

2
|uγ − u∗|22, (3.8)

and
〈A(yγ − y∗), p∗〉 = 〈uγ − u∗, B∗p∗〉 = α〈uγ − u∗, u∗〉, (3.9)

and, using (3.2),

〈A(yγ − y∗), p∗〉 = −〈λ1, yγ |ω0 − y∗|ω0〉 − 〈λ2, yγ |ω0 − y∗|ω0〉
= −〈λ1, yγ |ω0 − (cγβ1 + ψ1)〉 − β1〈λ1, cγ − c∗〉+ 〈λ1, y

∗|ω0 − (c∗β1 + ψ1)〉
− 〈λ2, yγ |ω0 + (cγβ2 − ψ2)〉+ β2〈λ2, cγ − c∗〉+ 〈λ2, y

∗|ω0 + (c∗β2 − ψ2)〉
= −〈λ1, z

1
γ〉 − 〈λ2, z

2
γ〉 − c∗(cγ − c∗). (3.10)

Combining (3.7)–(3.10), we obtain

1
2
|cγ − c∗|2 +

α

2
|uγ − u∗|2 ≤ −(cγ − c∗)c∗ − α〈uγ − u∗, u∗〉 − γ

2
‖max(0, z1

γ)‖2L2 − γ

2
‖min(0, z2

γ)‖2L2

= 〈λ1, z
1
γ〉+ 〈λ2, z

2
γ〉 −

γ

2
‖max(0, z1

γ)‖2L2 − γ

2
‖min(0, z2

γ)‖2L2

≤ ‖λ1‖(L∞)∗ ‖max(0, z1
γ)‖L∞ − γ

2
‖max(0, z1

γ)‖2L2

+ ‖λ2‖(L∞)∗ ‖min(0, z2
γ)‖L∞ − γ

2
‖min(0, z2

γ)‖2L2 . (3.11)

In the following estimates K denotes a generic constant, which is independent of α > 0 and γ > 0. We use
the estimate

‖ẑ‖L∞ ≤ K‖ẑ‖θW 1,q ‖ẑ‖1−θ
L2 ,

for ẑ = max(0, z1
γ), where θ = nq

nq+2(q−n) , see e.g. [1], p. 141. This further implies that

‖ẑ‖L∞ ≤ K
(‖λ1‖(L∞)∗

γ

) 1−θ
2

‖ẑ‖θW 1,q

(
γ

‖λ1‖(L∞)∗

) 1−θ
2

‖ẑ‖1−θ
L2 ,
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and

‖ẑ‖L∞ ≤ K
(‖λ1‖(L∞)∗

γ

) 1−θ
1+θ

‖ẑ‖
2θ

1+θ

W 1,q +
γ

2 ‖λ1‖(L∞)∗
‖ẑ‖2L2 ,

where we use that 1−θ
2 + 1+θ

2 = 1. Arguing similarly for ẑ = min(0, z2
γ) and combining these estimates with (3.11)

implies that

1
2
|cγ − c∗|2 +

α

2
|uγ − u∗|22 ≤ K

1

γ
1−θ
1+θ

(
‖λ1‖

2
1+θ

(L∞)∗ ‖z1
γ‖

2θ
1+θ

W 1,q + ‖λ2‖
2

1+θ

(L∞)∗ ‖z2
γ‖

2θ
1+θ

W 1,q

)
.

Since {yγ}γ≥1 is bounded in W 1,q(Ω) this implies the claim. �

In the case n = 2 we find that θ = q
2q−4 and so we obtain the convergence rate O( 1

γ1/3−ε ) for any ε > 0,
provided that q is sufficiently large. For n = 2, using solutions yγ ∈ H2(Ω), the above proof can also be adapted
to obtain the rate O(γ−1/3).

4. Semi-smooth Newton method

This section is devoted to the solution of the optimality system (3.1) by a semi-smooth Newton method. For
this purpose we define

F : R
m × R×W 1,q

0 (Ω)×W 1,q′
0 (Ω)→ R

m × R×W−1,q′
(Ω)×W−1,q(Ω)

by

F (u, c, y, p) =

⎛⎜⎜⎜⎜⎜⎝
αu − 〈p, �χω〉

c− γ 〈β1,max(0, y|ω0 − (β1c+ ψ1))〉+ γ 〈β2,min(0, y|ω0 + β2c− ψ2)〉
γm̃ax(0, y|ω0 − (β1c+ ψ1)) + γm̃in(0, y|ω0 + β2c− ψ2) +A∗p

Ay −Bu

⎞⎟⎟⎟⎟⎟⎠ , (4.1)

where we have set
〈�χω, p〉 = (〈χω1 , p〉, . . . , 〈χωm , p〉)T ,

and m̃ax, m̃in denote extensions by zero from ω0 to Ω \ ω0. Recall from [5] that z 
→ max(0, z) is Newton
differentiable from Lp1(Ω) → Lp2(Ω) provided that 1 ≤ p1 < p2 ≤ ∞ with Newton derivative given in the a.e.
sense by

Dmax(0, z) =

{
1, if z(x) ≥ 0

0, if z(x) < 0.
An analogous statement holds for the min operation. It follows that

G1(y, c) = m̃ax(0, y|ω0 − (β1c+ ψ1))

is Newton differentiable for fixed c from W 1,q
0 (Ω)→W−1,q′

(Ω) with Newton derivative with respect to y given
by

DyG1(y, c) y = χ y,

where χ is given in the a.e. sense by

χ = χ(y, c) =

{
1, if x ∈ ω0 and y|ω0(x) − (β1c+ ψ1(x)) > 0,

0, otherwise.
(4.2)



514 C. CLASON ET AL.

Analogously

G2(y, c) = m̃in(0, y|ω0 + β2c− ψ2)

is Newton differentiable for fixed c from W 1,q
0 (Ω)→W−1,q′

(Ω) with Newton derivative with respect to y given
by

DyG2(y, c) y = χ y,

where χ is given in the a.e. sense by

χ = χ(y, c) =

{
1, if x ∈ ω0 and y|ω0(x) + β2c− ψ2(x) < 0,

0, otherwise.
(4.3)

Let us also consider the mappings H1, H2 : W 1,q
0 (Ω)× R→ R, defined by

H1(y, c) = 〈β1,max(0, y|ω0 − (β1c+ ψ1))〉L2(ω0)
= 〈β1, m̃ax(0, y|ω0 − (β1c+ ψ1))〉L2(Ω)

and

H2(y, c) = 〈β2, m̃in(0, y|ω0 + (β2c− ψ2))〉L2(Ω).

Their Newton derivatives with respect to y are found to be

DyH1(y, c) y = β1〈χ, y〉, DyH2(y, c) y = β2〈χ, y〉.

Similarly, we obtain

DcG1(y, c)c = β1χc,

and

DcH1(y, c)c = β2
1〈χ〉c,

where 〈z〉 = ∫
Ω
z dx. One proceeds analogously for DcG2 and DcH2.

All together the Newton derivative of F at an arbitrary point (u, c, y, p) ∈ R
m+1 ×W 1,q

0 (Ω) ×W 1,q′
0 (Ω) is

given by

DF (u, c, y, p)(u, c, y, p) =

⎛⎜⎜⎜⎜⎜⎝
αu− 〈p, �χω〉

(1 + γβ2
1〈χ〉+ γβ2

2〈χ〉)c− γβ1 〈χ, y〉+ γβ2 〈χ, y〉
−γβ1χc+ γβ2χc+ γχy + γχy +A∗p

Ay −Bu

⎞⎟⎟⎟⎟⎟⎠ , (4.4)

where we have assumed that c > 0 holds. A semi-smooth Newton step is given by

DF (u, c, y, p)(u, c, y, p) = −F (u, c, y, p).

We next address its well-posedness.

Proposition 4.1. For each (u, c, y, p) ∈ R
m×R×W 1,q

0 (Ω)×W 1,q′
0 (Ω), the mapping DF (u, c, y, p) is invertible,

and there exists a constant C > 0 independent of (u, c, y, p) such that

‖DF (u, c, y, p)−1‖L(Rm+1×W−1,q′×W−1,q, Rm+1×W 1,q
0 ×W 1,q′

0 )
≤ C.



MINIMAL INVASION: AN OPTIMAL L∞ STATE CONSTRAINT PROBLEM 515

Proof. For w = (w1, . . . , w4)T ∈ R
m × R × W−1,q′

(Ω) × W−1,q(Ω) we consider the equation
DF (u, c, y, p)(u, c, y, p) = w, i.e.,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

αu− 〈�χω , p〉 = w1

(1 + γβ2
1〈χ〉+ γβ2

2〈χ〉)c− γβ1〈χ, y〉+ γβ2〈χ, y〉 = w2

−γβ1χc+ γβ2χc+ γχy + γχy +A∗p = w3

−Bu+Ay = w4.

(4.5)

Therefore from the third and fourth equation in (4.5), we obtain

y = A−1(Bu) + A−1w4 = A−1(Bu) + r1,

p = A−∗(w3 + γc(β1χ− β2χ)− γy(χ+ χ)
)

= A−∗(w3 + γc(β1χ− β2χ)− γA−1(Bu)(χ+ χ)− γ(χ+ χ)A−1w4

= γcA−∗(β1χ− β2χ)− γA−∗((χ+ χ)A−1(Bu)) + r2,

where
r1 = A−1w4 ∈ W 1,q

0 (Ω) r2 = A−∗(w3 − γ(χ+ χ)A−1w4) ∈W 1,q′
0 (Ω).

Using these representations for y, p in the first two equations of (4.5) we obtain for u, c and i = 1, . . . ,m⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
αui − γc〈χωi , A

−∗(β1χ− β2χ)〉+ γ

m∑
j=1

uj〈(A−1χωi)(χ+ χ), A−1χωj 〉 − 〈χωi , r2〉 = w1,i,

(1 + γ(β2
1〈χ〉+ β2

2〈χ〉))c− γ
m∑

j=1

uj〈β1χ− β2χ,A
−1χωj 〉 − γ〈β1χ− β2χ, r1〉 = w2,

equivalently in matrix form(
αI + γ〈�ψ, (χ+ χ)�ψ〉 −γ〈�ψ, β1χ− β2χ〉
−γ〈β1χ− β2χ, �ψ〉 1 + γ(β2

1〈χ〉+ β2
2〈χ〉)

)(
u
c

)
=
(

w1 + 〈�χω, r2〉
γ〈β1χ− β2χ, r1〉+ w2

)
, (4.6)

where I is the m×m identity matrix,

ψi = A−1χωi ,
�ψ = (ψ1, . . . , ψm)T ,

and
(〈�ψ, (χ+ χ)�ψ〉)i,j = 〈�ψi, (χ+ χ)�ψj〉.

The matrix on the left hand side of (4.6) can be expressed as

M = M1 + γM2 + γM3,

where

M1 =

(
αI 0

0 1

)
, M2 =

( 〈�ψ, χ�ψ〉 −β1〈�ψ, χ〉
−β1〈�ψ, χ〉 β2

1〈χ〉

)
, M3 =

⎛⎝ 〈�ψ, χ�ψ〉 〈β2
�ψ, χ〉

〈β2
�ψ, χ〉 β2

2〈χ〉

⎞⎠ .

We next argue that the symmetric matrix M2 is positive semi-definite. For 〈χ〉 = 0, this is straight-forward.
Henceforth assume that 〈χ〉 �= 0 and let (u, c) ∈ R

m+1 be arbitrary.
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Then we have, using that 2ab+ b2 ≥ −a2,

(uT , c)M2(uT , c)T = uT 〈�ψ, χ�ψ〉u− 2β1c〈�ψ, χ〉Tu+ β2
1〈χ〉 c2 ≥ uT 〈�ψ, χ�ψ〉u− 1

〈χ〉u
T 〈�ψ, χ〉 〈�ψ, χ〉Tu = uTM2u,

where
(M2)i,j = 〈�ψi, χ�ψj〉 − 1

〈χ〉 〈
�ψi, χ〉〈�ψj , χ〉.

The diagonal elements of M2 are given by

(M2)i,i = 〈ψi, χψi〉 − 1
〈χ〉 〈ψi, χ〉2 =

∥∥∥(ψi − 1
〈χ〉 〈ψi, χ〉)χ

∥∥∥2

,

and for the off-diagonal elements we find

(M2)i,j = 〈ψi, χψj〉 − 1
〈χ〉 〈ψi, χ〉 〈ψj , χ〉 =

〈
ψi − 1

〈χ〉 〈ψi, χ〉, (ψj − 1
〈χ〉 〈ψj , χ〉)χ

〉
.

Therefore we have

(M2)i,j =
〈
ψi − 1

〈χ〉 〈ψi, χ〉,
(
ψj − 1

〈χ〉 〈ψj , χ〉
)
χ
〉
.

Consequently M2 is a Gramian matrix and thus positive semi-definite, and we find that the same holds true
for M2. Analogously one argues that M3 is positive semi-definite. All together we obtain

‖M−1‖R(m+1)×(m+1) ≤ max
(

1√
α
, 1
)
.

This estimate is independent of χ, χ, ωi, ω0.
Using (4.6) there exist constants C1 and C2 such that

|(u, c)|Rm+1 ≤ C1|w|
Rm+1×W−1,q′

0 ×W−1,q
0

and
|(y, p)|

W 1,q
0 ×W 1,q′

0
≤ C2|w|

Rm+1×W−1,q′
0 ×W−1,q

0

hold. This implies the claim. �

Thus F is semi-smooth, and from standard results (e.g., [5], Thm. 8.16) we deduce the following convergence
result for the semi-smooth Newton method. For convenience we set

x = (u, c, y, p) ∈ R
m × R×W 1,q

0 (Ω)×W 1,q′
0 (Ω),

and similarly xk, δx, etc.

Theorem 4.2. For each γ > 0 the iteration DF (xk−1)(xk − xk−1) = −F (xk−1) converges superlinearly to
xγ = (uγ , cγ , yγ , pγ) provided that x0 is sufficiently close to xγ .

The full procedure for the solution of problem (Pc) is given as Algorithm 1. Note that Algorithm 1 contains
as inner loop the semi-smooth Newton method and as outer loop the increase of the penalty parameter γ. The
convergence of these two processes was analyzed in Theorem 4.2 and Proposition 2.3 respectively. Here we
choose a simple strategy for increasing γ. In related contexts [4] we proposed a path-following technique which
could be adapted to the present situation. The termination criterion in step 10 is motivated by the following
property of the semi-smooth Newton method.
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Algorithm 1 Semi-smooth Newton method

1: Choose x0, γ0, 0 < τ < 1, ε > 0, k∗; set j = 0
2: repeat
3: Increment j ← j + 1
4: Set x0 = xj−1, k = 0
5: repeat
6: Increment k ← k + 1
7: Compute indicator function of active sets : χ(yk−1, ck−1), χ(yk−1, ck−1) from (4.2) and (4.3)
8: Solve for δx:

DF (xk−1)δx = −F (xx−1),
where F and DF are given by (4.1) and (4.4), respectively

9: Update xk = xk−1 + δx
10: until χ(yk−1, ck−1) = χ(yk−2, ck−2) and χ(yk−1, ck−1) = χ(yk−2, ck−2), or k = k∗

11: Set xj = xk

12: Set γj = τγj−1

13: until supx∈ω0
(y − (β1c+ ψ1)) < ε and infx∈ω0(y + β2c− ψ2) < ε

Proposition 4.3. If χ(yk+1, ck+1) = χ(yk, ck) and χ(yk+1, ck+1) = χ(yk, ck) holds, then xk+1 satisfies
F (xk+1)= 0.

This can be verified by simple inspection, and is shown in [5], Remark 7.1.1.

5. Numerical results

Here we give the results of some numerical tests for a model problem in two dimensions. The geometric
situation is given in Figure 1a: The circular observation domain ω0 (the “town”) is situated in the center of
the unit square [−1, 1]2. On one side, a contaminant given by the function f = 100(1 + y)χ{x>0.75} enters the
domain. Around the town, m = 4 control domains (“wells”) are spaced equally. We consider convective-diffusive
transport, which is described by the operator Ay = −νΔy+b ·∇y with ν = 0.1 and b = (−1, 0)T (i.e., transport
parallel to the x-axis away from the source) with homogeneous Dirichlet conditions. The uncontrolled state y0,
which solves Ay0 = f , is shown in Figure 1b.

The parameters were set to x0 = 0, γ0 = 1, τ = 0.1, and ε = 10−9. The penalty parameter was set to
α = 10−6. The differential operators were discretized by finite differences with N = 64 grid points. We give
results for ψ1 = ψ2 = 0. Since the convergence behavior is very similar in all test cases, we only show details for
the motivating example of optimal L∞-constraints, Section 5.3. A MATLAB code implementing the algorithm
for these examples can be downloaded from http://www.uni-graz.at/~clason/codes/mininvasion.zip.

5.1. Unilateral constraint

We begin by considering the motivating example, which is the unilaterally constrained problem⎧⎨⎩ min
c∈R,u∈Rm

c2

2
+
α

2
|u|22

s.t. Ay = f +Bu, y|ω0 ≤ c.

The numerical solution can be obtained using the above algorithm by simply dropping the min terms and
setting all corresponding active sets to zero. Algorithm 1 terminated at γ∗ = 106, using at most eight (for
γ = 1) Newton iterations. The computed optimal control is u∗ = (−0.0418744,−0.037166,−25.3717,−29.2032)T

http://www.uni-graz.at/~clason/codes/mininvasion.zip
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(a) Geometric setup. (b) Uncontrolled state y0.

Figure 1. Model problem. The left plot shows the pollutant f , while the circles give the
observation domain ω0 (red) and the control domains ω1, . . . , ω4 (black). The right plot shows
the uncontrolled state y0 = A−1f .

(shown in Fig. 2c), which results in a minimal norm bound c∗ = 8.33217×10−4. Correspondingly, the maximum
value of y∗ on ω0 is 8.33217× 10−4, while its minimum value is −0.565084 (cf. Figs. 2a and 2b). It can be seen
that only the controls acting on the control domains located between the source and the observation domain
are active. For completeness, we also show the Lagrange multiplier p∗ for the pde constraint in Figure 2d.

5.2. Non-negativity constraint

We next consider the case of minimizing an upper bound, while enforcing non-negativity of the state, i.e.,
we set β1 = 1 and β2 = 0. Again, Algorithm 1 terminated at γ∗ = 109, after at most seven Newton iterations.
The computed optimal control is u∗ = (70.5931, 58.8345,−17.0403,−26.6347)T , which results in a minimal
upper bound c∗ = 0.350723 and identical maximal value of y∗ on ω0. The minimal value of y∗ on ω0 is
−1.67788× 10−10, within the prescribed tolerance of ε = 10−9. Optimal state y∗, difference y∗ − y0, optimal
control u∗ and Lagrange multiplier p∗ are shown in Figure 3.

We note that due to the non-negativity constraint, the controls near the contaminant inflow cannot act as
strongly as in Example 5.1, and that the optimal control is no longer uniformly negative. Thus the achievable
upper bound is larger than in Example 5.1.

5.3. L∞ norm constraint

Finally, we consider the case β1 = β2 = 1, i.e., the L∞ norm constraint problem (1.1). The iteration
terminated at γ∗ = 109, using at most seven (for c = 1) Newton iterations. Table 1 shows the distance
d(γ) := 1

2 |cγ − cγ∗ |2 + α
2 |uγ − uγ∗ |22, which indicates that the convergence rate proved in Proposition 3.3 is not

optimal. For γ = 1, the norm of the residuals |F (xk)|2 in the semi-smooth Newton method is given in Table 2,
verifying the locally superlinear convergence shown in Theorem 4.2.
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(a) Optimal state y∗
(b) Difference y∗ − y0

(c) Optimal control u∗
(d) Lagrange multiplier p∗

Figure 2. Results for unilateral constraint (y|ω0 ≤ c).

Table 1. Convergence in γ. Shown are the distances d(γ) := 1
2 |cγ − cγ∗ |2 + α

2 |uγ − uγ∗ |22.

γ 1 e0 1 e1 1 e2 1 e3 1 e4 1 e5 1 e6 1 e7 1 e8
d(γ) 5.11 e–04 1.85 e–05 3.34 e–07 3.37 e–09 3.37 e–11 3.37 e–13 3.37 e–15 3.30 e–17 2.73 e–19

The computed optimal control is u∗ = (22.4538, 18.7443,−19.272,−28.7974)T which results in a minimal
norm bound c∗ = 0.202759. The corresponding maximum and minimum value of y∗ on ω0 is 0.202759 (a differ-
ence of −1.70265 compared to the maximum of the uncontrolled state y0) and −0.202759, respectively. Again,
optimal state y∗, difference y∗ − y0, optimal control u∗ and Lagrange multiplier p∗ are shown in Figure 4.
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Table 2. Convergence of semi-smooth Newton method. Shown is the norm of the residual
of (4.1) for the iterates xk.

k 0 1 2 3 4 5 6
|F (xk)|2 2.62 e+02 9.12 e+01 1.34 e+00 7.63 e–01 3.26 e–01 7.07 e–02 2.85 e–12

(a) Optimal state y∗
(b) Difference y∗ − y0

(c) Optimal control u∗
(d) Lagrange multiplier p∗

Figure 3. Results for upper bound minimization with non-negativity constraint (β1 = 1, β2 = 0).
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(a) Optimal state y∗
(b) Difference y∗ − y0

(c) Optimal control u∗
(d) Lagrange multiplier p∗

Figure 4. Results for L∞ norm minimization (β1 = β2 = 1).
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