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CONVERGENCE OF A CONSTRAINED FINITE ELEMENT DISCRETIZATION
OF THE MAXWELL KLEIN GORDON EQUATION ∗
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Abstract. As an example of a simple constrained geometric non-linear wave equation, we study
a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint
preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2
for initial data of finite energy.
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1. Introduction

Non-linear wave equations are at the heart of basic physical models. Fundamental particles are best described
by the quantum version of the Yang-Mills-Higgs equation (YMH) and gravitational fields satisfy the Einstein
equation for general relativity (GR). For the former the unknown is a connection on a certain vectorbundle over
space-time, whereas for the latter it is a pseudo-Riemannian metric. The equations can in both cases be derived
from a variational principle involving a Lagrangian with a large gauge-group giving rise to constraints. Second
order hyperbolic partial differential equations involving unknowns from differential geometry and stemming
from a variational principle will be called geometric wave equations.

The well-posedness of equations with such a rich structure has recently been proved in Sobolev spaces of
relatively low regularity. This is relevant both to physics and numerical analysis, since norms related to the
energy are the most natural and are most easily incorporated into stability arguments for numerical schemes.
For an introduction to the mathematics of geometric wave equations see [28]. Well posedness in the energy
norm for the Yang-Mills equation was proved in [21]. For general relativity, progress on the issue is surveyed
in [19].

Numerical models exist for both GR and YMH but little, if any, numerical analysis is available for them.
The only geometric wave equation for which we are aware of convergence proofs is the wave map equation [3].
With the long-term goal of understanding numerical schemes for GR and YMH we propose to study in this
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paper the simplest equation in the YMH family, namely the Maxwell-Klein-Gordon (MKG) equation obtained
with the gauge group U(1).

In the MKG equation the unknowns are the electromagnetic field, described by a vector potential, and a scalar
(complex) field. The scalar field gives rise to a current exciting the electromagnetic field whereas the vector
potential enters the coefficients of the wave-equation satisfied by the scalar field. While the wave equation and
the Maxwell equations are both linear, the coupling creates a non-linear evolution equation. It is also important
that electric charge should be conserved, which gives a non-linear constraint on the flow.

In [10] a finite element method for the YM equation was introduced, whereby the constraint is satisfied
through a special application of Lagrange multipliers. In [9] the method was generalized so that it covers all
equations in the YMH family and in particular the MKG equation. In this paper we shall prove convergence
for this scheme in space dimension 2 with continuous time. The essential features of the scheme are that it
preserves energy, which gives control over the curl of the vector potential, and that the constraint preservation
gives a weak control over its divergence. Together curl control and divergence control would imply control in
the Sobolev space H1, if it weren’t for the fact that the finite element spaces we use, namely Nédélec’s edge
elements, are not in this space. Nevertheless we prove a discrete analogue of the Sobolev embedding, valid for
Nédélec’s edge elements, in the spirit of Kikuchi’s compactness result [18]. The proof uses recently constructed
commuting interpolators defined on rough functions. Together with Kato’s inequality, this gives us strong
convergence in Lp spaces. A duality argument gives control of the Lagrange multiplier, sufficient to conclude
that the limit of the discrete solutions satisfies the continuous MKG equations. The difficulties arising in space
dimension 3 are pointed out along the way – the arguments used here fail critically in this case.

The paper is organized as follows. In Section 2, after setting up notations, we give some preliminary results.
Since some of the results might be of general interest (in particular the discrete Sobolev embedding), we state
and prove them for arbitrary dimension. Section 3 is then dedicated to the exposition of the MKG equation
and the semi-discrete scheme we use. Convergence of the approximate solutions of MKG is then obtained in
Section 4.

2. Preliminary

2.1. Notations

Fix an integer n ≥ 2 and let Ω be a bounded domain in Rn, which is either contractible with a continuously
differentiable boundary, or convex. Thus the topology is trivial (curl-free vector fields are gradients) and basic
elliptic regularity estimates hold.

2.1.1. Continuous spaces

We recall some standard notations.
Lp spaces:

• Lp(Ω) denotes the classical Lp space of real valued functions on Ω, for p ∈ [1,∞].
• We say that φ ∈ Lp(Ω,C) if �(φ) ∈ Lp(Ω) and �(φ) ∈ Lp(Ω), where � and � are the real and imaginary

parts of a complex number. If there is no ambiguity we will sometimes omit the C from the notation.
Sobolev spaces:

• Hs(Ω) and Hs
0(Ω), for s ∈ R, the usual Hilbertian Sobolev spaces of real valued functions. For s ∈ N

standard norms and seminorms are denoted ‖ · ‖Hs(Ω) and | · |s. For complex valued functions we write
Hs(Ω,C).

• W s,p(Ω), W s,p
0 (Ω) denote the Banach spaces obtained by generalizing the above spaces to Lp integrability.

• Recall that for s > 0 and 1 < p <∞, W−s,p(Ω) is dual to W s,p′
0 (Ω) where 1

p + 1
p′ = 1.

Scalar product:
• We denote by · the canonical scalar product on vectors in Rn, and by | · | the associated norm.
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• The real-valued scalar product on L2(Ω,C) is denoted 〈·, ·〉, and ‖ · ‖ is the associated L2-norm; 〈·, ·〉 is
also used for the duality products between Sobolev spaces with L2 as pivot space.

Spaces of vector fields:
• L2(Ω) is the space of square integrable vector fields and similar definitions hold for H1(Ω), Hs(Ω),

Lp(Ω,C), etc.
• H(curl,Ω) is the space of vector fields in Rn with square integrable curl; the analogue space for the

divergence will be noted H(div,Ω). For basic results on H(curl,Ω) and H(div,Ω), see [17,25].
• H0(curl,Ω) := {A ∈ H(curl,Ω) such that γτA = 0 on ∂Ω} where γτA is the tangential component

of A on ∂Ω.
• V := {v ∈ H0(curl,Ω)| div v = 0 in Ω}.
• For q ≥ 1, Hq

0(curl,Ω) := H0(curl,Ω) ∩ Lq(Ω).
Time dependence. Fix a time T > 0:

• For any closed subinterval I of [0, T ] and Banach space X , we let C(I,X) be the space of continuous
functions from I to X , which is a Banach space when equipped with the uniform norm. Also, C(0, T ;X)
will stand for C([0, T ], X).

• For p ∈ [1,∞] and X a Banach space, Lp(0, T ;X) is the Bochner space defined in [30].
• Cw(0, T ;X) denotes the space of functions of time with values in X which are weakly continuous,

explicitly u ∈ Cw(0, T ;X) means that t �→ l(u(t)) is continuous on [0, T ], for all l in X�, the dual of X .

2.1.2. Semi-discretization

Let (Th) be a regular and quasi-uniform family of simplicial meshes of the domain Ω. As usual the parameter h
is also the mesh-width of Th. We use some standard finite element spaces on Th, and simplices are usually denoted
by K.

• P1 is the space of affine functions (on some open subset of Rn).
• Y 0

h is the space of piecewise affine and continuous real functions on Ω, vanishing on the boundary
∂Ω [12].

• Y1
h is the space of Nédélec edge element vector fields on Ω (see [4,25]) with vanishing tangential com-

ponent on the boundary ∂Ω. Thus Y1
h ⊂ H0(curl,Ω).

• Z0
h is the space of piecewise affine and continuous complex scalar functions vanishing on the bound-

ary ∂Ω.
• We also put Xh := Y1

h × Z0
h.

We define the space of discrete divergence free vectors:
• Vh :=

{
vh ∈ Y1

h : 〈vh,gradβh〉 = 0, ∀βh ∈ Y 0
h

}
.

Remark 2.1. Many of the difficulties we encounter are related to the fact that:

Vh � V,

but will be resolved by estimating the gap from the former to the latter in appropriate norms.

For the case of a curved boundary we suppose that the mesh and finite element spaces are adapted by
appropriate parameterizations, using the techniques in [15].

Throughout the paper, we will use the notation C to refer to a constant independent of h. It might be
needed to be taken larger in subsequent steps of our arguments, but we nevertheless keep the same notation
throughout.

2.2. Preliminary results

In this section we present some preliminary results. We state them for arbitrary dimension n and will use
them in following sections in the particular case n = 2, and in remarks concerning n = 3. These results are either
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quite classical, or generalizations of classical results from the L2 case to the Lq case, or from time independent
fields to time dependent ones.

In the following theorem, where D denotes the standard gradient, we recall Kato’s inequality.

Theorem 2.2 ([22]). If A : L2
loc(R

n,Rn), f ∈ L2(Rn,C) and (D+ iA)f ∈ L2(Rn), then |f |, the modulus of f ,
is in H1(Rn) and the diamagnetic inequality:

|D|f |(x)| ≤ |(D + iA)f(x)|

holds pointwise for almost every x ∈ Rn.

The second result we state in this section is the well-known Helmholtz decomposition of fields in H(curl,Ω).
We have a statement both in the continuous and in the discrete case. Under the hypotheses for our domain, we
have in the continuous case:

For every u ∈ H0(curl,Ω), there exists a unique ů ∈ V and p ∈ H1
0 (Ω) such that:

u = ů + grad p

and in the discrete case:

For every uh ∈ Y1
h, there exists a unique ůh ∈ Vh and ph ∈ Y 0

h such that:

uh = ůh + grad ph.

These results can be found for example in [2,25].

In the following many results will rely on Sobolev embeddings [1] one variant of which is recalled here:

Proposition 2.3. For all q ∈ ]1, n[, with q� defined by 1/q − 1/n = 1/q�, one has a continuous embedding
Lq(Ω) ↪→W−1,p(Ω), for p ≤ q�. It is compact when p < q�.

The study of the convergence of the scheme relies on norm estimates in both time and space and on the
possibility to extract strongly converging subsequences. Thus we need the characterization of compact sets in
the time dependent case, in spaces L∞(0, T ;B) where B is a Banach space; this has been studied for example
by Simon in [30]. The following theorem gives a sufficient condition for compactness for subsets of L∞(0, T ;B).

Theorem 2.4 ([30]). Suppose that X,B, Y are Banach spaces such that X ⊂ B ⊂ Y with continuous embed-
dings, the first being compact. Suppose F is a bounded set in L∞(0, T ;X) such that ∂F∂t is bounded in Lr(0, T ;Y )
for some r > 1. Then F is relatively compact in C(0, T ;B).

The next propositions (2.5 to 2.12) are generalization of some classical L2 results to the Lp case (Props. 2.5, 2.8,
2.9 and 2.12) and/or to the time dependent case (Props. 2.7 and 2.11).

The objective of the next two propositions is to establish an analogue of the usual Kikuchi compactness
property, in Lq and to include time dependence. The property is first proved for fields independent of time,
then extended to time dependent fields.

Denote by 2∗ the number such that 1
2∗ = 1

2 − 1
n for n ≥ 2 (with the convention that 2∗ = +∞ for n = 2).
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Proposition 2.5. Let 1 ≤ q ≤ 2� (q < 2� if n = 2). Then there exists C > 0 such that for all vh ∈ Vh,

‖vh‖Lq(Ω) ≤ C‖curl vh‖L2(Ω).

Furthermore if 1 ≤ q < 2∗, vh ∈ Vh and curl vh is bounded in L2(Ω), then (out of any subsequence) one can
extract a subsequence converging (in norm) in Lq(Ω) to some v ∈ V.

Proof. Let q be as in the statement of the theorem. We first prove the bound on the Lq(Ω) norm.
We denote by:

• P the L2-orthogonal projection on the space of square integrable divergence free vectors. The kernel
of P is gradH1

0 and this projection preserves the curl, i.e.

curl ◦ P = curl. (2.1)

Furthermore PVh ⊂ V.
• Qh the Lp stable projection onto Y1

h constructed in [11] (the ones constructed in [2,26] could also be
used). It verifies the following property:

If curl v = 0, then curlQhv = 0. (2.2)

For vh ∈ Y1
h we have Pvh ∈ V and curlPvh ∈ Lq(Ω) so Pvh ∈ W1,q(Ω) (using arguments of regularity of

solution of elliptic problems, see for example [29]). We get also the estimate:

|Pvh|1,q ≤ C‖curlPvh‖Lq(Ω). (2.3)

Remark 2.6. We have curl vh = curlPvh = curlQhPvh for vh ∈ Y1
h.

Choose now vh ∈ Vh.
By triangular inequality,

‖vh‖Lq(Ω) ≤ ‖vh −QhPvh‖Lq(Ω) + ‖QhPvh − Pvh‖Lq(Ω) + ‖Pvh‖Lq(Ω).

(a) We have by Bramble-Hilbert type estimates:

‖Pvh −QhPvh‖Lq(Ω) ≤ Ch|Pvh|1,q ≤ Ch‖curlPvh‖Lq(Ω) ≤ Ch‖curl vh‖Lq(Ω),

so that we can use the inverse inequality (4.5.11) in [6] and obtain:

‖Pvh −QhPvh‖Lq(Ω) ≤ Chhmin(0,n
q −n

2 )‖curl vh‖L2(Ω). (2.4)

(b) Furthermore
‖vh −QhPvh‖Lq(Ω) ≤ Chmin(0,n

q −n
2 )‖vh −QhPvh‖L2(Ω).

But since curl(vh −QhPvh) = 0, we have that vh ⊥ vh −QhPvh, and Pvh ⊥ vh −QhPvh. So that

‖vh −QhPvh‖2
L2(Ω) ≤ ‖vh −QhPvh‖L2(Ω)‖Pvh −QhPvh‖L2(Ω).

Therefore
‖vh −QhPvh‖Lq(Ω) ≤ Chmin(0,n

q −n
2 )‖Pvh −QhPvh‖L2(Ω).

By (2.4), one concludes that

‖vh −QhPvh‖Lq(Ω) ≤ Chhmin(0,n
q −n

2 )‖curl vh‖L2(Ω). (2.5)
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(c) By the Sobolev embedding of H1(Ω) into Lq(Ω), we have:

‖Pvh‖Lq(Ω) ≤ C‖Pvh‖H1(Ω).

Friedrich’s inequality yields then

‖Pvh‖Lq(Ω) ≤ C‖curl vh‖L2(Ω). (2.6)

(d) Since 1 + n
q − n

2 ≥ 0, we combine (2.4)–(2.6) to conclude that for some C > 0:

∀vh ∈ Vh, ‖vh‖Lq(Ω) ≤ C‖curl vh‖L2(Ω). (2.7)

It remains to prove that a subsequence of vh converges strongly in Lq(Ω), if 1 ≤ q < 2∗.
Since (Pvh) is bounded in H1(Ω) we deduce strong convergence in Lq(Ω) after subsequence extraction. Then

since for 1 ≤ q < 2∗ we have 1 + n/q − n/2 > 0, from (2.4) and (2.5) we deduce that (vh) converges in Lq(Ω)
and has the same limit as Pvh in Lq(Ω). This concludes the proof. �

Proposition 2.5 can be generalized to fields with a time dependence:

Proposition 2.7. Let 1 < q ≤ 2∗ (q < 2∗ if n = 2).
There exists C > 0 such that for all vh ∈ L∞(0, T ;Vh)

‖vh‖L∞(0,T ;Lq(Ω)) ≤ C‖curl vh‖L∞(0,T ;L2(Ω)).

Furthermore if there exists C > 0 such that

‖curl vh‖L∞(0,T ;L2(Ω)) ≤ C,

and
‖v̇h‖L∞(0,T ;L2(Ω)) ≤ C,

then for all q < 2∗ there exists v ∈ L∞(0, T ;V) such that a subsequence of (vh) converges in the L∞(0, T ;Lq(Ω))
norm to v .

Proof. As all inequalities from the proof of Proposition 2.5 can be transported to time dependent fields, the
only point which has to be clarified is that a subsequence of vh has a limit in L∞(0, T ;Lq(Ω)).

Remark that if (vh) is bounded in L∞(0, T ;H(curl,Ω)) then (Pvh) is bounded in L∞(0, T ;H1(Ω)). More-
over, P commutes with time-differentiation and therefore

‖ ˙̂
Pvh‖L∞(0,T ;L2(Ω)) ≤ ‖v̇h‖L∞(0,T ;L2(Ω)) ≤ C,

where ˙̂
Pvh denotes the time derivative of Pvh.

Applying Theorem 2.4, Pvh converges strongly (considering a subsequence) in L∞(0, T ;L2(Ω)). Using
inequalities (2.4) and (2.5) for time dependent fields, ‖vh − Pvh‖L∞(0,T ;L2(Ω)) converges to 0 as h tends to 0.
Then an interpolation inequality between Lp spaces, the convergence of vh in L∞(0, T ;L2(Ω)), and the fact
that ‖vh‖L∞(0,T ;Lq(Ω)) is bounded, complete the proof. �

The next proposition gives stability results for projections onto finite element spaces. This result will be
needed in Section 4.5.

Proposition 2.8. Let P 1
h be the L2 projection on Y1

h and P 0
h be the L2 projection on Z0

h. Then:
(a) P 1

h is stable in Lp, and from H1(Ω) to H(curl,Ω).
(b) P 0

h is stable in Hs(Ω), for all −1 ≤ s ≤ 1.
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Proof. (a) For P 1
h :

• Stability in Lp(Ω)
Using the result in [14] in the vectorial case, one obtains stability in the Lp-norm.

• Stability in H(curl,Ω)
Let Qh be the operator constructed in [11] already used in the proof of Proposition 2.5. It is stable
both in L2(Ω) and H(curl,Ω). Using also the inverse inequality between H(curl,Ω) and L2(Ω),
one has:

∀u ∈ H1(Ω), ‖P 1
hu‖H(curl,Ω) ≤ ‖QhP 1

hu −Qhu‖H(curl,Ω) + ‖Qhu‖H(curl,Ω) (2.8)

≤ Ch−1‖QhP 1
hu −Qhu‖L2(Ω) + ‖Qhu‖H(curl,Ω) (2.9)

≤ Ch−1‖P 1
hu − u‖L2(Ω) + ‖Qhu‖H(curl,Ω) (2.10)

≤ C‖u‖H1(Ω). (2.11)

(b) For P 0
h :

• The stability in H1(Ω) comes from the result in [5,13].
• The stability in H−1(Ω) follows by duality.
• The stability in Hs(Ω), for −1 ≤ s ≤ 1 is obtained by using interpolation inequalities. �

Discretizing continuous equations leads to discrete ones which should have good convergence properties. The
next proposition states this for a particular class of equations.

Proposition 2.9. Let p ∈ ]1,+∞[ be given, a(·, ·) the bilinear form on W 1,p(Ω) ×W 1,p′(Ω) (1/p+ 1/p′ = 1)
given by:

a(u, v) =
∫

Ω

gradu · grad v,

and for h > 0, fh ∈W−1,p(Ω), f ∈ W−1,p(Ω).
Let also uh ∈ Y 0

h be the solution of

a(uh, vh) = 〈fh, vh〉, ∀vh ∈ Y 0
h ,

and u ∈W 1,p
0 (Ω) the solution of

a(u, v) = 〈f, v〉, ∀v ∈ W 1,p′
0 (Ω).

Then:
(i) ‖uh‖W 1,p(Ω) ≤ C‖fh‖W−1,p(Ω).
(ii) If fh −→

h→0
f in W−1,p(Ω), then uh −→

h→0
u in W 1,p

0 (Ω).

This is essentially a reformulation of the following fact:

Remark 2.10. The bilinear form a verifies a uniform discrete inf-sup condition in the normsW 1,p(Ω)×W 1,p′(Ω)
see [6,29].

The following proposition is a generalization to time dependent fields:

Proposition 2.11. Let T > 0 and p ∈ ]1,+∞[ be given, a(·, ·) the bilinear form on W 1,p(Ω) × W 1,p′(Ω)
(1/p+ 1/p′ = 1) given by:

a(u, v) =
∫

Ω

gradu · grad v,

and for h > 0, fh ∈ L∞(0, T ;W−1,p(Ω)), f ∈ L∞(0, T ;W−1,p(Ω)).
Let also uh ∈ L∞(0, T ;Y 0

h ) be the solution of

a(uh(t), vh) = 〈fh(t), vh〉, ∀vh ∈ Y 0
h , for a.e. t in [0, T ],
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and u ∈ L∞(0, T ;W 1,p
0 (Ω)) the solution of

a(u(t), v) = 〈f(t), v〉, ∀v ∈ W 1,p′
0 (Ω) for a.e. t in [0, T ].

Then:

(i) ‖uh‖L∞(0,T ;W 1,p(Ω)) ≤ C‖fh‖L∞(0,T ;W−1,p(Ω)).
(ii) If fh −→

h→0
f in L∞(0, T ;W−1,p(Ω)), then uh −→

h→0
u in L∞(0, T ;W 1,p

0 (Ω)).

We will also need Lp stability of the Helmholtz decomposition as stated in the following:

Proposition 2.12. The discrete Helmholtz decomposition in Y1
h is stable in Lp-norm.

Proof. Let Eh ∈ Y1
h and let E̊h ∈ Vh and ph ∈ Y 0

h satisfy Eh = E̊h + grad ph. Keeping notations from
Proposition 2.9, we deduce that div Eh ∈ W−1,p(Ω), and a(ph, vh) = 〈div Eh, vh〉 for all vh ∈ Y 0

h . Therefore:

‖ph‖W 1,p(Ω) ≤ C‖Eh‖Lp(Ω).

Stability of the decomposition follows. �

Finally we state a result on compact perturbations (Prop. 2.13) and a result on dual estimates (Prop. 2.14)
which we will use in Section 4.5 to get estimates on the time derivative of the discrete solutions and on the
Lagrange multiplier.

The following proposition is a generalization of the result obtained in [7], Proposition A.5.2 (see also [8]
Thm. 1.12, Cor. 1.17). The dual space of a Banach space Y is denoted Y �.

Proposition 2.13. Let X and Y be two reflexive Banach spaces and A : X → Y ∗ a continuous linear map
with closed range. Let K denote a relatively compact set of compact operators X → Y ∗. Let (Xh) and (Yh) be
two families of finite-dimensional subspaces of X and Y . Suppose that (Yh) verifies an approximation property:

∀y ∈ Y, lim
h→0

inf
y′∈Yh

‖y − y′‖ = 0,

that A satisfies a discrete uniform inf-sup condition on Xh × Yh, and for all B ∈ K, A + B is injective. Then
there exists a constant C such that for all B ∈ K, A + B verifies a uniform discrete inf-sup condition with
constant C.

Proof. We apply Proposition A.5.2 in [7]. For every B ∈ K, one can construct a ball B(B, rB) of center B and
radius rB sufficiently small, such that for B′ ∈ B(B, rB), A+ B′ verifies an inf-sup condition independent of B′.
Denote the corresponding constant by CB. Since {B(B, rB), B ∈ K} covers K, we can extract from it a finite
subcover. Let C be the worst inf-sup constant in this finite family. Then for all B ∈ K, A+B verifies a uniform
inf-sup condition with constant C. This concludes the proof. �

Proposition 2.14. Let X and Y be two Banach spaces equipped with respectively the norms ‖ · ‖X and ‖ · ‖Y ,
a(·, ·) a continuous bilinear form on X × Y.

Then let (Xh) and (Yh) be two families of subspaces of equal finite dimension of X and Y respectively. We
suppose that a(·, ·) verifies a discrete inf-sup condition on Xh × Yh. We consider Th : Y ′ → Xh, such that for
all u ∈ Y ′:

a(Thu, vh) = 〈u, vh〉, ∀vh ∈ Yh, (2.12)

and T ′
h : X ′ → Yh, such that for all v ∈ X ′:

a(uh, T ′
hv) = 〈uh, v〉, ∀uh ∈ Xh. (2.13)
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Let X+ and Y− be two other Banach spaces (with respective norms ‖.‖X+ and ‖.‖Y−) such that X ⊂ X+ and
Y− ⊂ Y, and suppose that if v ∈ X ′

+ then T ′
hv ∈ Y− and one has

‖T ′
hv‖Y− ≤ C‖v‖X ′

+
. (2.14)

Then for all u in Y ′−,

‖Thu‖X+ ≤ C‖u‖Y′
− .

Proof. Existence of solutions is guaranteed by inf-sup conditions. From (2.12)–(2.14), we deduce:

‖Thu‖X+ = sup
v∈X ′

+

〈Thu, v〉
‖v‖X ′

+

= sup
v∈X ′

+

a(Thu, T ′
hv)

‖v‖X ′
+

= sup
v∈X ′

+

〈u, T ′
hv〉

‖v‖X ′
+

≤ C‖u‖Y′
− . �

This proposition generalizes to the time dependent case in an obvious way.
These preliminary results are valid for arbitrary dimension n. From now on we will consider a domain Ω

included in R2, and study the Maxwell Klein Gordon equation in this case. However all along the article the
difficulties in dimension n = 3 will be pointed out.

3. Equation and discrete formulation

Let n = 2 so that Ω ⊂ R2.

3.1. Continuous formulation

3.1.1. General setting

Let T > 0 be given. Solving the Maxwell Klein Gordon equation consists in finding:

• a time dependent gauge potential defined on [0, T ], t �→ A(t) =
(

α(t)
A(t)

)
where α(t) is a real function

on Ω and A(t) a real vector field on Ω; and
• a time dependent complex scalar function on Ω, defined on [0, T ]: t �→ φ(t),

which constitute a critical point of the action:

S(A, φ, α) =
1
2

∫ T

0

‖curlA‖2
L2(Ω) − ‖gradα− Ȧ‖2

L2(Ω) + ‖DAφ‖2
L2(Ω) − ‖φ̇+ iαφ‖2

L2(Ω).

As before D denotes the spatial gradient operator acting on complex functions and DAφ = Dφ + iAφ is the
covariant derivative of φ.

We can express the variation of S at (α,A, φ) in the direction (α′,A′, φ′). Then the stationarity of the action
gives Euler-Lagrange equations:

• variation with respect to A′ gives an evolution equation for A,
• variation with respect to φ′ gives an evolution equation for φ,
• variation with respect to α′ gives a constraint on the flow.

For more details on this we refer to [9].
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3.1.2. In the temporal gauge

From now on we turn to the Maxwell Klein Gordon equation in temporal gauge, that is, we impose α(t) ≡ 0.
The equations to solve on [0, T ] are then:

Ȧ = −E, (3.1)

φ̇ = −ψ, (3.2)

Ė = curl(curl(A)) + �(DAφφ̄), (3.3)

ψ̇ = D∗
ADAφ. (3.4)

The constraint is given by:

div(E) + �(ψφ̄) = 0. (3.5)

We suppose that initial conditions are:

A(0, .) = A0(.) ∈ H0(curl,Ω) ∩ H1(Ω), (3.6)
φ(0, .) = φ0(.) ∈ H1

0 (Ω,C), (3.7)
E(0, .) = E0(.) ∈ L2(Ω), (3.8)
ψ(0, .) = ψ0(.) ∈ L2(Ω,C), (3.9)

and that they verify the constraint given by (3.5) (in H−1(Ω)).
We define the energy of the field at time t by:

H(t) = 〈E,E〉 + 〈curlA, curlA〉 + 〈ψ, ψ〉 + 〈DAφ,DAφ〉, (3.10)

and have that

H(0) < +∞. (3.11)

Proposition 3.1. This energy is conserved in time for smooth solutions.

In the rest of the paper we often drop the complex sign C for simplicity of notation.

Weak solution. We introduce the notion of weak solution to (3.1)–(3.4).

Definition 3.2. (E,A, ψ, φ) is said to be a weak solution of (3.1)–(3.4), if

• We have:
– E ∈ C(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)),
– A ∈ C(0, T ;L2(Ω)) ∩ L∞(0, T ;H0(curl,Ω) ∩ W1,q(Ω)) for q < 2,
– ψ ∈ C(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)),
– φ ∈ C(0, T ;L2(Ω)) ∩ L∞(0, T ;H1

0(Ω)).

•
{

Ȧ = −E,
φ̇ = −ψ.

• For every (E′, ψ′) ∈ C∞
c (]0, T [×Ω)2 × C∞

c (]0, T [×Ω), there holds

−
∫ T

0

〈E, Ė′〉dt−
∫ T

0

〈ψ, ψ̇′〉dt =
∫ T

0

〈curlA, curlE′〉dt+
∫ T

0

〈DAφ, iφE′〉dt+
∫ T

0

〈DAφ,DAψ
′〉dt. (3.12)
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3.2. Discrete formulation

3.2.1. A saddle point problem

Considering the variational formulation of (3.3) and (3.4), and simply discretizing in space in Xh provides
a scheme which violates the constraint (3.5). In order to preserve it we consider the following constraint
preserving scheme proposed in [9] and formulated as a saddle point problem:

For T > 0, find t �→ (Ah(t), φh(t)) ∈ Xh and a Lagrange multiplier t �→ βh(t) ∈ Y 0
h such that for all t ∈ [0, T ]:

Ȧh = −Eh, (3.13)

φ̇h = −ψh, (3.14)

and for all (E′
h, ψ

′
h) ∈ Xh and all β′

h ∈ Y 0
h :

〈Ėh,E′
h〉 + 〈ψ̇h, ψ′

h〉+〈E′
h,gradβh〉 − 〈ψ′

h, iφhβh〉 = 〈curlAh, curlE′
h〉+〈DAh

φh, iφhE′
h〉+〈DAh

φh, DAh
ψ′
h〉,

(3.15)

〈Ėh,grad β′
h〉 − 〈ψ̇h, iφhβ′

h〉 = 0, (3.16)

with initial conditions:

Ah(0, .) = A0
h ∈ Y1

h, (3.17)
Eh(0, .) = E0

h ∈ Y1
h, (3.18)

φh(0, .) = φ0
h ∈ Z0

h, (3.19)
ψh(0, .) = ψ0

h ∈ Z0
h, (3.20)

where we suppose that A0
h, E0

h, φ
0
h, ψ

0
h are chosen such that:

(i) A0
h −→
h→0

A0 in Hq
0(curl,Ω), ∀q < +∞ (for n ≥ 3 replace by q ≤ 2�),

(ii) E0
h −→
h→0

E0 in L2(Ω),

(iii) φ0
h −→
h→0

φ0 in H1(Ω),

(iv) ψ0
h −→
h→0

ψ0 in L2(Ω),

and the following constraint is satisfied initially:

〈E0
h,gradβ′

h〉 − 〈ψ0
h, iφ

0
hβ

′
h〉 = 0, ∀β′

h ∈ Y 0
h . (3.21)

The rationale behind the discrete constraint is as follows. Differentiating (3.5) in time gives:

div(Ė) + �(ψ̇φ̄+ ψ ˙̄φ) = 0. (3.22)

Then we remark that for solutions:
�(ψ ˙̄φ) = −�(ψψ̄) = 0. (3.23)

Finally we remark that for a ∈ C and b ∈ R we have:

(�a)b = �(āib) (3.24)

so that testing the constraint with a real β′ leads to (3.16).
Notice that it is possible to choose initial conditions satisfying the given constraint. Indeed, one chooses φ0

h,
ψ0
h and A0

h such that (iii), (iv) and (i) are verified. One then considers the Helmholtz decomposition of E0:

E0 = E̊
0

+ grad p0.
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Then defining p0
h as the solution of 〈grad p0

h,grad β′
h〉 − 〈ψ0

h, iφ
0
hβ

′
h〉 = 0 for all β′

h ∈ Y0
h, one concludes using

results from Section 2.2 that p0
h converges to p0 in H1(Ω). Choosing E̊

0

h such that E̊
0

h −→
h→0

E̊
0

in L2(Ω), and

defining E0
h := E̊

0

h + grad p0
h gives the desired property.

3.2.2. Existence of a solution to the discrete formulation

The above equation can be viewed with (Ah, φh) ∈ Xh as given parameters. We then can rewrite equa-
tions (3.15) and (3.16) as:

〈Ėh,E′
h〉 + 〈ψ̇h, ψ′

h〉 + 〈E′
h,grad βh〉 − 〈ψ′

h, iφhβh〉 = fAh,φh
(E′

h) + gAh,φh
(ψ′
h), (3.25)

〈Ėh,grad β′
h〉 − 〈ψ̇h, iφhβ′

h〉 = 0, (3.26)

where
fAh,φh

(E′
h) = 〈curlAh, curlE′

h〉 + 〈DAh
φh, iφhE′

h〉
and

gAh,φh
(ψ′
h) = 〈DAh

φh, DAh
ψ′
h〉.

Proposition 3.3. Let h > 0 be fixed. The system given by (3.25) and (3.26) with unknowns (Ėh, ψ̇h, βh) has
a unique solution in Xh × Y 0

h . Furthermore, the solution depends smoothly on the parameters (Ah, φh).

Taking E′
h = gradβ′

h and ψ′
h = 0 gives the following discrete Babuska-Brezzi compatibility condition:

inf
β′

h∈Y 0
h

sup
(E′

h,ψ
′
h)∈Xh

〈E′
h,gradβ′

h〉 − 〈ψ′
h, iφhβ

′
h〉

(|β′
h|2 + |gradβ′

h|2)
1
2 (|E′

h|2 + |ψ′
h|2)

1
2
≥ 1
C
,

where C is a positive constant independent of the time t and of φh. Since h is fixed and all spaces we are dealing
with are of finite dimension and all the considered operators are polynomial in the unknowns, we have proved
the proposition. �

We denote PY1
h

the projection from Xh × Y 0
h on Y1

h, and PZ0
h

the projection from Xh × Y 0
h on Z0

h.

If S is the solution operator associated to equation (3.25), we are able to solve in Xh the equations

Äh = −PY1
h
◦ S(Ah, φh), (3.27)

φ̈h = −PZ0
h
◦ S(Ah, φh), (3.28)

locally in time with initial conditions given by (3.6)–(3.9).
This implies that we have existence of (Ah, φh) ∈ Xh for the discrete formulation locally in time.
We define the discrete energy at any time:

Hh(t) =
1
2

(〈Eh,Eh〉(t) + 〈curlAh, curlAh〉(t) + 〈ψh, ψh〉(t) + 〈DAh
φh, DAh

φh〉(t)).

The constraint associated with the discrete formulation of (3.1)–(3.4) is given by:

〈Eh,gradβ′
h〉 − 〈ψh, iφhβ′

h〉 = 0, ∀β′
h ∈ Y 0

h . (3.29)

One can find in [9] a detailed proof of the following:

Proposition 3.4. Equations (3.13)–(3.16) preserve the constraint (3.29) and the energy of the system.

Energy conservation guarantees that the solutions of equations (3.13)–(3.20) are defined on the whole time-
interval [0, T ].

We now would like to prove that the sequence (Eh,Ah, ψh, φh) converges (in a sense which has to be made
precise) to a weak solution of the Maxwell Klein Gordon equation (in the sense of Def. 3.2).
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4. Convergence of the solution

The rest of the paper is dedicated to proving the following result:

Theorem 4.1. Let E0, A0, ψ0, φ0 be given as in (3.6)–(3.9). There exists:
• E ∈ C(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)),
• A ∈ C(0, T ;L2(Ω)) ∩ L∞(0, T ;H0(curl,Ω) ∩ W1,q(Ω)), for a q < 2,
• ψ ∈ C(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)),
• φ ∈ C(0, T ;L2(Ω)) ∩ L∞(0, T ;H1

0 (Ω)),
such that the sequence (Eh,Ah, ψh, φh) solution of (3.13)–(3.20) converges to (E,A, ψ, φ) with:

• Eh −→
h→0

E in C(0, T ;H−1(Ω)), Eh ⇀
h→0

E in L∞(0, T ;L2(Ω)) weak-star,

• Ah −→
h→0

A in C(0, T ;Lq(Ω)), q < 2�, curlAh ⇀
h→0

curlA in L∞(0, T ;L2(Ω)) weak-star,

• ψh −→
h→0

ψ in C(0, T ;H−1(Ω)), ψh ⇀
h→0

ψ in L∞(0, T ;L2(Ω)) weak-star,

• φh −→
h→0

φ in C(0, T ;Lq(Ω)), ∀q < +∞, gradφh ⇀
h→0

gradφ in L∞(0, T ;L2(Ω)) weak-star.

Furthermore (E,A, ψ, φ) is a weak solution of the Maxwell Klein Gordon equation given by (3.1)–(3.9) in the
sense of Definition 3.2 with initial conditions given by (3.6)–(3.9).

Strong convergence in Lq spaces of either φh or Ah is used to handle the nonlinear terms in the right hand side
of (3.12). Energy and constraint preservation give boundedness a priori and some weak convergence properties
whereas Sobolev embeddings and the Aubin-Lions lemma give the needed strong convergence.

We first obtain strong convergence for φh thanks to a priori estimates on Ah (Sects. 4.1.2 and 4.2). Then
Section 4.3 is dedicated to strong convergence on the gauge potential Ah. Finally Section 4.5 leads to strong
convergence for Eh, ψh and weak-star convergence on the Lagrange multiplier βh.

4.1. A priori estimates

4.1.1. Bounds in the energy norm

From energy conservation (see Sect. 3.2), we deduce the following bounds

||Eh||L∞(0,T ;L2(Ω)) ≤ C, (4.1)

||curlAh||L∞(0,T ;L2(Ω)) ≤ C, (4.2)

||ψh||L∞(0,T ;L2(Ω)) ≤ C, (4.3)

||DAh
φh||L∞(0,T ;L2(Ω)) ≤ C, (4.4)

Kato’s inequality, Theorem 2.2 gives:

‖D |φh| ‖L2(Ω) ≤ C, a.e. in [0, T ],

where D still denotes the standard spatial differentiation operator. And so:

‖ |φh| ‖L∞(0,T ;H1
0 (Ω)) ≤ C. (4.5)

Using the Sobolev embedding gives for each q < +∞ a bound:

‖φh‖L∞(0,T ;Lq(Ω)) ≤ C. (4.6)

We deduce some weak convergence properties, after extraction of subsequences.
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(a) It follows from (4.6) that there exists φ ∈ L∞(0, T ;Lq(Ω)) such that

φh ⇀ φ as h→ 0 in L∞(0, T ;Lq(Ω)) weak-star, for all q < +∞. (4.7)

By (4.3), we can get also

φ̇h ⇀ φ̇ in L∞(0, T ;L2(Ω)) weak-star. (4.8)

(b) In a similar way, from (4.1) we deduce weak-star convergence for Ȧh:

Ȧh ⇀ Ȧ in L∞(0, T ;L2(Ω)) weak-star. (4.9)

Also, using (4.2), we deduce:

curlAh ⇀ curlA in L∞(0, T ;L2(Ω)) weak-star. (4.10)

In order to prove strong convergence of φh we shall first obtain some uniform estimates on Ah in Lq norms, for
q < +∞.

4.1.2. Estimate for the gauge potential Ah

The idea here is to exploit the discrete Helmholtz decomposition of Ah and give uniform estimates for each
part of its decomposition.

Uniform estimates on the curl of Ah give estimates on the discrete divergence free part of the gauge potential.
In order to have estimates on Ah, we will use the constraint which gives some control over the divergence of Ah.

The discrete Helmholtz decomposition consists in decomposing the vector field Ah uniquely as the sum of
two orthogonal fields (see Sect. 2.2):

Ah(t) = Åh(t) + grad ph(t),
where Åh(t) ∈ Vh, and ph(t) ∈ Y 0

h for almost all t ∈ [0, T ].

Estimates on discrete divergence free part. To obtain a uniform estimate in the Lq norm in space (for all q < +∞)
of the discrete divergence free part in terms of the L2 norm in space of the curl of the gauge potential Ah, we
apply the estimate of Proposition 2.7 to Åh:

Then there holds:
‖Åh‖L∞(0,T ;Lq(Ω)) ≤ C, ∀q < +∞. (4.11)

Remark 4.2. In 3D, we obtain ‖Åh‖L∞(0,T ;Lq(Ω)) ≤ C, ∀q ≤ 6.

Estimates on the gradient part. The expression of the constraint, if verified at t = 0, gives us that for all
β′
h ∈ Y 0

h ,
〈Ȧh(t),grad β′

h〉 = 〈φ̇h(t), iφh(t)β′
h〉 for every t ∈ [0, T ].

Integrating once more, we obtain

〈Ah(t),grad β′
h〉 = 〈Ah(0),gradβ′

h〉 +
∫ t

0

〈φ̇h, iφhβ′
h〉.

Using the discrete Helmholtz decomposition, we deduce that

〈grad ph(t),grad β′
h〉 = 〈fh(t), β′

h〉,

where

fh(t) = divA0
h +

∫ t

0

�(φ̇hφ̄h).
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Lemma 4.3. fh ∈ L∞(0, T,W−1,q(Ω)) for all q < +∞ and is bounded independently of h in this norm.

Proof. Let q < +∞ be given.

(a) divA0
h is bounded in W−1,q(Ω) by construction.

(b) By Section 4.1.1, φ̇h is bounded in L∞(0, T ;L2(Ω)), |φh| is bounded in L∞(0, T ;H1
0(Ω)), so we have:

φ̇hφ̄h is bounded in L∞(0, T ;Lr(Ω)) for all r < 2.
Put uh(t) =

∫ t
0 �(φ̇hφ̄h)dt. For each r < 2 we have a bound ‖uh‖L∞(0,T ;Lr(Ω)) ≤ C.

Using the Sobolev embedding of Proposition 2.3, we deduce that (uh) is bounded in L∞(0, T ;
W−1,q(Ω)) for all q < +∞.

(a) and (b) allow us to conclude. �

From Proposition 2.9 and the previous lemma, we deduce that for all q < +∞ there exists C(q) such that:

‖ph‖L∞(0,T,W 1,q(Ω)) ≤ C(q).

Remark 4.4. In the 3D case, we have uniform bounds associated with the right-hand sides: fh ∈ L∞(0, T ;
W−1,q(Ω)) where q ≤ 3, φ̇hφ̄h ∈ Lr(Ω) with r ≤ 3

2 , and ph ∈ L∞(0, T,W 1,q(Ω)) for q ≤ 3.

4.1.3. Conclusion

Closing 4.1.1 and 4.1.2 we have:

‖Ah‖L∞(0,T ;Lq(Ω)) ≤ C(q), ∀q < +∞. (4.12)

Remark 4.5. In the 3D case for all q ≤ 3 we have bounds:

‖Ah‖L∞(0,T ;Lq(Ω)) ≤ C. (4.13)

4.2. Strong convergence of φh

We shall obtain strong convergence of φh in C(0, T ;Lq(Ω)) for all q < +∞.

We recall that DAh
φh = Dφh + iAhφh, so that:

‖Dφh‖L∞(0,T ;L2(Ω)) ≤ ‖DAh
φh‖L∞(0,T ;L2(Ω)) + ‖Ahφh‖L∞(0,T ;L2(Ω)).

From estimates (4.12) and (4.6), we can now deduce:

‖φh‖L∞(0,T ;H1
0 (Ω)) ≤ C.

Remark 4.6. To have this in 3 dimensions, we use that Ah ∈ L∞(0, T ;L3(Ω)) and φh ∈ L∞(0, T ;L6(Ω))
which are the limit cases.

Since ‖φ̇h‖Lr(0,T ;L2(Ω)) ≤ C for some r > 1, we deduce by Theorem 2.4 that for a subsequence:

φh → φ as h→ 0 in C(0, T ;L2(Ω)). (4.14)

Then since for all q < +∞, (φh) is bounded in L∞(0, T ;Lq(Ω)), we deduce by an interpolation inequality:

φh → φ as h→ 0 in C(0, T ;Lq(Ω)). (4.15)



754 S.H. CHRISTIANSEN AND C. SCHEID

Remark 4.7. In dimension 3, we can extract a subsequence φh converging to φ in C(0, T ;Lq(Ω)) for all q < 6.

In order to be able to pass to the limit in equations (3.13)–(3.16), we also need a strong convergence for Ah.
To do so, we use the discrete Helmholtz decomposition as before and deduce strong convergence separately on
the discrete divergence free part and the gradient part.

4.3. Strong convergence on the gauge potential

4.3.1. Strong convergence of the discrete divergence free part

We know from energy estimates that:

‖curl Åh‖L∞(0,T ;L2(Ω)) ≤ C,

and from Section 4.1.2:
‖Åh‖L∞(0,T ;Lq(Ω)) ≤ C.

Since time derivation preserves discrete Helmholtz decomposition, we obtain:∣∣∣∣
∣∣∣∣ ∂∂tÅh

∣∣∣∣
∣∣∣∣
Lr(0,T ;L2(Ω))

≤ C, for r > 1.

Therefore, we can apply Proposition 2.7 to Åh and conclude:

There exists Å ∈ C(0, T ;Lq(Ω)) ∩ L∞(0, T ;V) such that after extraction of a subsequence, for all q < +∞,

Åh −→
h→0

Å in C(0, T ;Lq(Ω)). (4.16)

Remark 4.8. In dimension 3, after extraction of a subsequence, Åh −→
h→0

Å in C(0, T ;Lq(Ω)), for q < 3.

4.3.2. Strong convergence on the gradient part

We shall now derive strong convergence for grad ph appearing in the discrete Helmholtz decomposition. We
keep notations of Section 4.1.2.

Let f = divA0 +
∫ t
0 �(φ̇φ̄), we have f ∈ L∞(0, T ;W−1,q(Ω)), for q < +∞.

We recall that

uh =
∫ t

0

�(φ̇hφ̄h)dt, and ‖uh‖L∞(0,T ;Lr(Ω)) ≤ C for r < 2,

and since φ̇hφ̄h ∈ L∞(0, T ;Lr(Ω)), r < 2, bounded independently of h, we deduce from Proposition 2.3:

‖u̇h‖L∞(0,T ;W−1,q(Ω)) ≤ C.

From Theorem 2.4, we deduce that there exists u ∈ C(0, T ;W−1,q(Ω)) such that we can extract a subsequence
still denoted uh that converges to u in C(0, T ;W−1,q(Ω)), for all q < +∞. Furthermore, from weak convergence
of φ̇h and strong convergence of φh in L∞(0, T ;L2(Ω)), we deduce that u =

∫ t
0 �(φ̇φ̄)dt on [0, T ].

Remark 4.9. In the 3D case, uh → u in C(0, T ;W−1,q(Ω)), ∀q < 3.

Since A0
h −→
h→0

A0 in Lq(Ω) for all q < +∞, we deduce also that up to extraction of a subsequence

fh −→
h→0

f in C(0, T ;W−1,q(Ω)), ∀q < +∞.

Applying Proposition 2.9 yields that there exists p ∈ C(0, T ;W 1,q
0 (Ω)) such that ph −→

h→0
p in C(0, T ;W 1,q(Ω)).
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4.3.3. Strong convergence

The decomposition Ah = Åh + grad ph and the last two sections yield, after extraction of subsequences:

Ah −→
h→0

A := Å + grad p in C(0, T ;Lq(Ω)) for all q < +∞. (4.17)

Remark 4.10. In 3 dimensions we get Ah −→
h→0

A in C(0, T ;Lq(Ω)) for all q < 3.

4.4. Conclusion

To sum up, after extraction of a subsequence we get:

Ah −→
h→0

A in C(0, T ;Lq(Ω)) for all q < +∞,

φh −→
h→0

φ in C(0, T ;Lq(Ω)) for all q < +∞.

We then have strong convergence in Lq spaces for both φh and Ah. We are now looking at some estimates on
the second time derivatives of these fields and on the Lagrange multiplier.

4.5. Estimation by compact perturbation

Let q ∈ ]1,+∞[ given, and X q = Lq(Ω) × L2(Ω) ×W 1,q(Ω) equipped with the canonical norm.
Let a be the bilinear form given by:

a(E, ψ, β;E′, ψ′, β′) = 〈E,E′〉 + 〈ψ, ψ′〉 + 〈E′,gradβ〉 + 〈E,gradβ′〉,

and bφ the one given by:

bφ(E, ψ, β;E′, ψ′, β′) = −〈ψ′, iφβ〉 − 〈ψ, iφβ′〉.

In the discrete setting, we will denote by X q
h the space Xh × Y 0

h equipped with the Lq × L2 ×W 1,q-norm.
Finally q′ is such that: 1

q′ + 1
q = 1.

4.5.1. Estimates

This section is dedicated to the proof of the following:

Proposition 4.11. Fix q > 2. Let (Ėh, ψ̇h, βh) ∈ Xh × Y 0
h be the solution of (3.13)–(3.20), so that

(a + bφh
)(Ėh, ψ̇h, βh;E′

h, ψ
′
h, β

′
h) = fAh,φh

(E′
h) + gAh,φh

(ψ′
h).

Then Ėh ∈ L∞(0, T ;H−1(Ω)), ψ̇h ∈ L∞(0, T ;H−1(Ω)), βh ∈ L∞(0, T ;W 1,q′(Ω)) with uniform bounds:

‖Ėh‖L∞(0,T ;H−1(Ω)) ≤ C,

‖ψ̇h‖L∞(0,T ;H−1(Ω)) ≤ C,

and

‖βh‖L∞(0,T ;W 1,q′ (Ω)) ≤ C.
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Proof. First claim. The bilinear form a is continuous on X q × X q′ and verifies a uniform discrete inf-sup
condition in this norm. This fact is proved in the following two steps:

(a) We have a discrete inf-sup condition on (βh,E′
h) �→ 〈E′

h,grad βh〉:
Indeed grad maps Y 0

h to Y1
h, so we deduce by Remark 2.10 that:

inf
βh∈Y 0

h

sup
E′

h∈Y1
h

〈E′
h,gradβh〉

‖βh‖W 1,q(Ω)‖E′
h‖Lq′ (Ω)

≥ 1
C
· (4.18)

The symmetric inequality (with q and q′ exchanged) holds also.
(b) We have also a discrete inf-sup condition on the associated kernel:

Indeed as the L2 projection is stable in the Lq(Ω)-norm (Prop. 2.8), and Helmholtz decomposition
is stable in the Lq-norm (Prop. 2.12), we deduce:

inf
Eh∈Vh

sup
E′

h∈Vh

〈Eh,E′
h〉

‖Eh‖Lq(Ω)‖E′
h‖Lq′ (Ω)

≥ 1
C
· (4.19)

Furthermore,

inf
ψh∈Z0

h

sup
ψ′

h∈Z0
h

〈ψh, ψ′
h〉

‖ψh‖L2(Ω)‖ψ′
h‖L2(Ω)

≥ 1
C
· (4.20)

The following inf-sup condition follows:

inf
(Eh,ψh)∈Vh×Z0

h

sup
(E′

h,ψ
′
h)∈Vh×Z0

h

〈Eh,E′
h〉 + 〈ψh, ψ′

h〉(
‖Eh‖Lq(Ω) + ‖ψh‖L2(Ω)

) (
‖E′

h‖Lq′ (Ω) + ‖ψ′
h‖L2(Ω)

) ≥ 1
C
· (4.21)

This proves the claim.
Furthermore, the space of bilinear forms on X q × X q′ being equipped with the canonical norm, for any φh,

bφh
is a compact bilinear form and H1(Ω) � φ �→ bφ is also compact.

From Proposition 2.13, since φh(t) is in a bounded subset of H1(Ω), we deduce that a+bφh
verifies a uniform

discrete inf-sup condition independent of h and t.
We will now use duality estimates to deduce estimates for solutions (Ėh, ψ̇h, βh) by applying Proposition 2.14

to special spaces X , Y, Xh, Yh, X+, Y−.
We define:

X = X q′ , (4.22)

Y = X q, (4.23)

Xh = Y1
h × Z0

h × Y 0
h = X q′

h , (4.24)

Yh = Y1
h × Z0

h × Y 0
h = X q

h , (4.25)

X+ = H−1(Ω) ×H−1(Ω) ×W 1,q′(Ω), (4.26)

Y− = Hq
0(curl,Ω) ×H1

0 (Ω) ×W 1,q
0 (Ω). (4.27)

Let ã = a + bφh
. For v = (E0, ψ0, β0) ∈ X ′

+ define T ′
hv = (E′

h, ψ
′
h, β

′
h) ∈ Yh to be the solution of:

ã(uh, T ′
hv) = 〈uh, v〉, ∀uh ∈ Xh.

We denote any uh ∈ Xh by uh = (Ẽh, ψ̃h, β̃h). We have T ′
hv ∈ Yh so T ′

hv ∈ Y−. We are looking for a bound
on T ′

hv in the space Y−.
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• A bound for β′
h in W 1,q(Ω) is given by the previous uniform discrete inf-sup condition on ã. One

obtains:
‖β′

h‖W 1,q(Ω) ≤ C
(
‖E0‖H1(Ω) + ‖ψ0‖H1(Ω) + ‖β0‖W−1,q(Ω)

)
. (4.28)

• One has 〈ψ′
h, ψ̃h〉 − 〈ψ̃h, φhβ′

h〉 = 〈ψ0, ψ̃h〉 for all ψ̃h ∈ Z0
h.

The stability for P 0
h , the L2 projection, in H−1(Ω) and q > 2 give that:

‖ψ′
h‖H1(Ω) ≤ C(‖φhβ′

h‖H1(Ω) + ‖ψ0‖H1(Ω)) ≤ C(‖φh‖H1(Ω)‖β′
h‖W 1,q(Ω) + ‖ψ0‖H1(Ω)).

Then using that ‖φh‖L∞(0,T ;H1(Ω)) is bounded independently of h and (4.28), we deduce:

‖ψ′
h‖H1(Ω) ≤ C(‖E0‖H1(Ω) + ‖ψ0‖H1(Ω) + ‖β0‖W−1,q(Ω)).

• Furthermore 〈E′
h, Ẽh〉 + 〈Ẽh,gradβ′

h〉 = 〈E0, Ẽh〉 = 〈P 1
h (E0), Ẽh〉 for all Ẽh ∈ Y1

h.

We have the upper bound of E′
h in the Lq-norm by the inf-sup condition on ã.

Concerning the L2-norm of the curl of E′
h, since E′

h + grad β′
h = P 1

h (E0), we deduce that curlE′
h =

curlP 1
h (E0). By the stability of the L2 projection from H1(Ω) to H(curl,Ω), ‖curlE′

h‖L2(Ω) ≤
C‖E0‖H1(Ω). And so ‖E′

h‖Lq(Ω) + ‖curlE′
h‖L2(Ω) ≤ C(‖E0‖H1(Ω) + ‖ψ0‖H1(Ω) + ‖β0‖W−1,q(Ω)).

We conclude:

‖ψ′
h‖H1(Ω) + ‖E′

h‖Lq(Ω) + ‖curlE′
h‖L2(Ω) + ‖β′

h‖W 1,q(Ω) ≤ C(‖ψ0‖H1(Ω) + ‖E0‖H1(Ω) + ‖β0‖W−1,q(Ω)), (4.29)

which means that
‖T ′

hv‖Y− ≤ ‖v‖X ′
+
. (4.30)

Let lh be defined by:

〈lh, (E′, ψ′, β′)〉 = 〈curlAh, curlE′〉 + 〈DAh
φh, φhE′〉 + 〈DAh

φh, DAh
ψ′〉, (4.31)

then ‖lh‖L∞(0,T ;Y′
−) ≤ C.

We can now use Proposition 2.14 with u = lh to conclude that:

‖Ėh‖L∞(0,T ;H−1(Ω)) + ‖ψ̇h‖L∞(0,T ;H−1(Ω)) + ‖βh‖L∞(0,T ;W 1,q′ (Ω)) ≤ C. (4.32)
�

4.5.2. Conclusion on the convergence

• Eh is bounded independently of h in L∞(0, T ;L2(Ω)), and Ėh is bounded independently of h in
L∞(0, T ;H−1(Ω)). It follows from Theorem 2.4 that after extraction of subsequences:

Eh = −Ȧh → −Ȧ in C(0, T ;H−s(Ω)) for all 0 < s ≤ 1.

• A similar conclusion holds for ψh and ψ:

ψh = −φ̇h → −φ̇ in C(0, T ;H−s(Ω))for all 0 < s ≤ 1.

• Concerning the Lagrange multiplier βh, one concludes that there exists β ∈ L∞(0, T ;W 1,q′
0 (Ω)) such

that:
βh ⇀

h→0
β in L∞(0, T ;W 1,q′(Ω)) weak-star,

and by Sobolev embeddings:

βh ⇀
h→0

β in L∞(0, T ;Lr(Ω)) weak-star for all r <
2q′

2 − q′
·
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4.6. The limit equation

We are now able to study the limit of equations (3.13)–(3.20). The convergence obtained on φh and Ah

permits to take the limit on the right hand side of (3.15). The results obtained in Section 4.5 leads to convergence
on the left hand side. A weak convergence on βh in the appropriate space is here sufficient due to the strong
convergence obtained for φh. We then deduce that for all (E′, ψ′, β′) ∈ C∞

c (]0, T [×Ω)2 × C∞
c (]0, T [×Ω) ×

C∞
c ([0, T ]× Ω)

∫ T

0

〈Ė,E′〉dt+
∫ T

0

〈ψ̇, ψ′〉dt+
∫ T

0

〈E′,grad β〉dt−
∫ T

0

〈ψ′, iφβ〉dt

=
∫ T

0

〈curlA, curlE′〉dt+
∫ T

0

〈DAφ, iφE′〉dt+
∫ T

0

〈DAφ,DAψ
′〉dt (4.33)

and ∫ T

0

〈Ė,gradβ′〉dt−
∫ T

0

〈ψ̇, iφβ′〉dt = 0. (4.34)

Remark 4.12. This formulation is meaningful since we know from Section 4.5.2 that Ė ∈ L∞(0, T ;H−1(Ω))
and ψ̇ ∈ L∞(0, T ;H−1(Ω)).

Remark 4.13. The convergence on Ah and φh obtained in the 3D case (see Rems. 4.7 and 4.10) is insufficient
for passing to the limit in the non-linear terms on the right hand side.

Remark 4.14. From (4.34), one deduces that divA ∈ L∞(0, T ;Lr(Ω)), with r < 2, and in consequence
A ∈ L∞(0, T ;W1,r(Ω)), with r < 2.

4.6.1. Value of the Lagrange multiplier

One can prove that β vanishes as follows. Pick β′ ∈ C∞
c (]0, T [×Ω). Due to the regularity in time of the

solution, this formulation is also valid almost everywhere on [0, T ]. We then apply the almost everywhere version
of (4.33) to test functions E′ = grad β′ and ψ′ = −iφβ′ and obtain using (4.34):

〈grad β′,grad β〉 + 〈φβ′, φβ〉 = 0. (4.35)

Since β ∈ L∞(0, T ;W 1,q′
0 (Ω)), |φ|2β ∈ L∞(0, T ;L2(Ω)) and one then deduces by regularity of solutions of elliptic

equations that β ∈ H1
0 (Ω). Then we can write:

〈grad β,grad β〉 + 〈φβ, φβ〉 = 0, (4.36)

which gives β ≡ 0.

4.6.2. Weak solution of Maxwell Klein Gordon equation

One concludes that for all (E′, ψ′) ∈ C∞
c (]0, T [×Ω)2 × C∞

c (]0, T [×Ω):

−
∫ T

0

〈E, Ė′〉dt−
∫ T

0

〈ψ, ψ̇′〉dt =
∫ T

0

〈curlA, curlE′〉dt+
∫ T

0

〈DAφ, iφE′〉dt+
∫ T

0

〈DAφ,DAψ
′〉dt. (4.37)

(E, ψ) is then a weak solution of Maxwell Klein Gordon equation in the sense of Definition 3.2.
This completes the proof of Theorem 4.1.
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4.6.3. The question of uniqueness of a weak solution

The solution (E,A, ψ, φ) obtained verifies equation (4.37), and due to its regularity, following Lemma 8.2
from [23], one obtains:

(E,A, ψ, φ) ∈ Cw(0, T ;L2(Ω) × Hs(Ω) × L2(Ω) ×H1(Ω)) with s < 1. (4.38)

To the best knowledge of the authors, no uniqueness result is available in the literature for this specific
regularity and gauge. However, due to the various cases already treated by many authors, we expect uniqueness
to hold in this setting. We now discuss some of these results. In [16], uniqueness results are proved, in the
entire space and in a bounded domain, in temporal gauge for a class of more regular solutions in Hs, s ≥ 2.
Uniqueness for the entire Minkowski space for MKG in the Coulomb gauge for fields in Hs, s ≥ 1 spaces is
proved in [20,24]. Unfortunately we only have s < 1 and change of gauge to the temporal gauge poses the
question of the regularity available for the gauge transformation, which is not clear to us. But for the Yang-
Mills equation, reputedly harder to solve than the MKG equations, uniqueness has been proved in [31] for the
temporal gauge for some Hs, s < 1. Such a result for the case of MKG would be sufficient for our needs. We
also notice that in [27] a mixed regularity of the type we obtain (energy control of the electromagnetic field but
not full H1 control of A) is used for uniqueness in Lorenz gauge.

5. Conclusion

We have proved that the constraint preserving scheme converges to a weak solution of the Maxwell Klein
Gordon equation.

This result leads also to a result of existence of solution with data of finite energy. Unfortunately the proof
of convergence does not extend to the three-dimensional case (due to the default of compactness of the Sobolev
embedding), as pointed out by the corresponding remarks throughout the paper. But this problem could be
investigated in a further work using the notions of concentration compactness and Strichartz estimates.
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