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RADIATION CONDITIONS AT THE TOP OF A ROTATIONAL CUSP
IN THE THEORY OF WATER-WAVES ∗

Sergey A. Nazarov
1

and Jari Taskinen
2

Abstract. We study the linearized water-wave problem in a bounded domain (e.g. a finite pond
of water) of R

3, having a cuspidal boundary irregularity created by a submerged body. In earlier
publications the authors discovered that in this situation the spectrum of the problem may contain a
continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study
radiation conditions at a point O of the water surface, where a submerged body touches the surface (see
Fig. 1). The radiation conditions emerge from the requirement that the linear operator associated to
the problem be Fredholm of index zero in relevant weighted function spaces with separated asymptotics.
The classification of incoming and outgoing (seen from O) waves and the unitary scattering matrix are
introduced.
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1. Introduction

1.1. Preamble

We consider the linearized water-wave problem in a bounded domain Ω, like a finite volume water pond
containing a submerged body, touching the water surface in a single point O, see Figures 1 and 2. The problem
consists of the Poisson equation in Ω for the unknown ϕ and given f ,

−Δxϕ(x) = f(x), x ∈ Ω,

homogeneous Neumann conditions ∂νϕ(x) = 0 (∂ν is the normal derivative) on the boundary except for the
water surface Γ, where a Steklov type spectral condition ∂νϕ(x) = λϕ(x) is posed with λ ∈ C as a spectral
parameter. At O the two tangential boundary components create a thinning water blanket, which is cuspidal
in the vertical direction. This geometry makes the asymptotic behaviour of the solutions ϕ as x → O quite
complicated. We shall consider the above problem in the weak formulation, which transforms it into a more
standard spectral problem of an unbounded operator in a Hilbert space. As a consequence of the geometry,
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Figure 1. Domain Ω with
rotational cusp. Figure 2. Cross-section of Ω.

Figure 3. Domain with peak. Figure 4. Domain with beak.

the problem is ill-posed in the Sobolev space H1(Ω). Notice that in presented cuspidal domains the embedding
H1(Ω) ⊂ L2(Γ) may lose compactness or even fail, see [7,8,18,22]. In fact it is shown in [38] that the essential
spectrum is nonempty: it contains a continuous component.

However, finding the essential spectrum is not sufficient to make the boundary value problem well-posed. The
main goal of the present paper becomes to provide a correct formulation of the above linear water-wave problem
by introducing radiation conditions at the point O. To that end, we shall study the Fredholm properties of the
associated linear operator Aβ(λ) in appropriate weighted function spaces, the weights related to the asymptotic
behaviour of the solutions around O. The radiation conditions emerge from the requirement that Aβ(λ) be
Fredholm of index zero in a carefully chosen function space.

There exist several methods to impose appropriate radiation conditions in unbounded domains, but they
are closely connected with the geometry of the outlets to infinity, and therefore cannot directly be applied for
bounded domains.

Our results show that cuspidal irregularity may act as a “black hole” for water waves: incoming waves may
propagate an infinite time towards the cusp. For elastic and acoustic waves in finite volume bodies, black holes
are related to the appearance of the continuous spectrum in cuspidal solids, like in Figures 3 and 4 with peak-
and beak-shaped solids. The elasticity system in irregular domains has been studied in the papers [1,6,30,32].
Notice that black holes have also been experimentally verified for elastic peaks by Mironov [23]. It is remarkable
that cuspidal irregularities are nowadays used in specific engineering devices, like wave filters and dampers (see,
e.g. [5,14] and again [23]). At the end of our paper we continue the discussion on the physical nature of the
radiation conditions.
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We mention that in the more simple case of the Steklov spectral problem for Laplace operator (i.e. the spectral
boundary condition prevailing all around the boundary instead of the homogeneous Neumann condition) the
existence of continuous spectrum in peak-shaped domain was shown in [31,37].

1.2. Formulation of the water wave problem in weighted function spaces

In this section we first present the detailed assumptions on the problem under consideration, its weak for-
mulation and definitions of the appropriate function spaces, and finally consider the linear operator Aβ(λ)
associated to the problem. The domain Ω of the lower half-space R3

− has compact closure Ω = Ω ∪ ∂Ω and its
boundary ∂Ω consists of three parts (see Fig. 2), namely the horizontal water surface

Γ = {x = (y, z) : z = x3 = 0, y = (x1, x2) ∈ Γ′} ⊂ ∂R
3
−, (1.1)

the wall and bottom Σ ⊂ R3
− of the pond, and the surface ∂Θ of the submerged body Θ. We assume ∂Ω to be

Lipschitz everywhere except at the origin O of the Cartesian coordinate system x = (x1, x2, x3). Furthermore,
in a neighbourhood U of O the domain Ω is given by the relation

− h(y) < z < 0, (1.2)

where h is a smooth function in the variables y = (y1, y2) such that

h(0) = 0,∇yh(0) = 0, h(y) = H(y) + O(|y|3), y → 0, (1.3)

H(y) = H11y
2
1 + 2H12y1y2 +H22y

2
2 > 0 for y �= 0. (1.4)

In other words, the surface ∂Θ touches the plane ∂R3
− ⊃ Γ at O.

Also the following notation will be used. Polar coordinates for the variable y = (y1, y2) ∈ ∂R3− are denoted by
(r, ϑ), where r = |y| and ϑ is the angular variable on the circle S1. Punctured sets are denoted by ∂Ω• = ∂Ω\O,
Γ• = Γ \ O, ∂Θ• = ∂Θ \ O, and R2• = R2 \ O. The water blanket ΞR is the subdomain

ΞR := {(y, z); y ∈ BR , 0 > z > −h(y)}, (1.5)

where BR = {y : r < R} is a disk of radius R > 0 and R is so small that ΞR ⊂ U ; it will be necessary later to
choose R small enough.

We consider the boundary value problem of linearized water-wave theory (see, e.g., [15,41])

−Δxϕ(x) = f(x), x ∈ Ω, (1.6)
∂νϕ(x) = 0, x ∈ Σ ∪ ∂Θ•, (1.7)

∂zϕ(x) = λϕ(x), x ∈ Γ•. (1.8)

Here Δx is the Laplace operator in the coordinates of x, ∂ν is the outward normal derivative defined almost
everywhere on ∂Ω• while ∂ν = ∂z = ∂/∂z on Γ. Moreover, ϕ is the velocity potential, λ = ω2/g is a spectral
parameter with the oscillation frequency ω > 0 and the acceleration g due to gravity. The right hand side f
will be an element of a suitable function space.

The weak formulation [16], of the problem (1.6)–(1.8) reads as

(∇xϕ,∇xψ)Ω − λ(ϕ, ψ)Γ = (f, ψ)Ω, ψ ∈ H1(Ω), (1.9)

where ∇x = grad in x, (·, ·)Ξ is the natural scalar product in the Lebesgue space L2(Ξ) and H1(Ω) is the Sobolev
space. In case f = 0 (1.9) can be interpreted as a standard spectral problem of a bounded, symmetric, therefore
self-adjoint, linear operator in a Hilbert space H, the so called Maz’ya space. We include in the appendix,
Section A, the description of the spectrum of this operator, see Theorem A.1.
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However, to pose the radiation conditions related to the problem (1.6–1.8) we need to use appropriate
weighted spaces V 1

β (Ω), β ∈ R, of Kondratiev type (see [11,12,35]) and to study the problem operator in these
spaces. These spaces will be used throughout the paper to describe the asymptotical behaviour of functions,
by presenting them as sums of explicit terms and remainders belonging to some V 1

β (Ω) with a small β. By
V 1

β (Ω) we mean the completion of C∞
c (Ω \ O) (infinitely smooth functions with supports separated from O)

with respect to the norm

‖u;V 1
β (Ω)‖ =

(
‖	β∇xu;L2(Ω)‖2 + ‖	β−1u;L2(Ω)‖2

)1/2
, (1.10)

where 	(x) = |x| is the distance to the irregularity point O. Notice that diminishing β shrinks the space V 1
β (Ω).

Higher order spaces V k
β (Ω), k ≥ 2, are defined in the same way using the norm

∥∥u;V k
β (Ω)

∥∥2
=

k∑
l=0

∥∥	β−k+l∇l
xu;L2(Ω)

∥∥2
. (1.11)

If Ω′ is a subdomain of Ω, the space V 1
β (Ω′) is defined just by replacing Ω by Ω′; in particular the weight

functions 	β and 	β−1 in (1.10) remain the same.
Moreover, given σ ∈ R we mean by V 1

σ (R2) the completion of C∞
c (R2•) with respect to the weighted Kondratiev

norm

‖v;V 1
σ (R2)‖ =

(
‖∇yv;L2

σ(R2)‖2 + ‖v;L2
σ−1(R

2)‖2
)1/2

, (1.12)

where the norm of the weighted Lebesgue space L2
σ(R2) � u is ‖rσu; L2(R2)‖; recall r = |y|. If D is a subdomain

of R2, the space V 1
σ (D) is again defined by replacing R2 by D here.

The following trace inequality holds in V 1
β (Ω):

Lemma 1.1. For any function u ∈ C∞
c (Ω \ O), the inequality

‖u;L2
β(Γ)‖ := ‖	βu;L2(Γ)‖ ≤ c‖u;V 1

β (Ω)‖ (1.13)

is valid, and the constant c depends on Ω, Γ and β only.

Proof. The inequality (1.13) with β = 0 is proven in [38], Lemma 3.1 (see also [22], Sect. 5.4). If β �= 0, we set
uβ = 	βu and observe that

‖∇xuβ;L2(Ω)‖2 ≤ 2‖	β∇xu;L2(Ω)‖2 + cβ‖	β−1u;L2(Ω)‖2 ≤ c‖u;V 1
β (Ω)‖2

in order to conclude (1.13). �

A solution of the problem (1.6–1.8) in the space V 1
β (Ω) means a function ϕ satisfying

(∇xϕ,∇xψ)Ω − λ(ϕ, ψ)Γ = F (ψ) (1.14)

for all ψ ∈ V 1
−β(Ω), where F ∈ V 1

−β(Ω)∗ is the linear functional ψ 
→ (f, ψ)Ω on the space V 1
−β(Ω). Owing

to definition (1.10) and the trace inequality (1.13), the left hand side of (1.14) is properly defined for any
ϕ ∈ V 1

β (Ω) and gives rise to a functional on V 1
−β(Ω) � ψ. Thus, the left hand side of (1.14) determines the

continuous mapping

Aβ(λ) : V 1
β (Ω) → V 1

−β(Ω)∗. (1.15)
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The main objective in Chapter 3 becomes to establish a criterion for the Fredholm property of Aβ(λ) and to
calculate its index

IndAβ(λ) = dim kerAβ(λ) − dim cokerAβ(λ), (1.16)

where kerAβ(λ) denotes the kernel of the operator Aβ(λ) and

cokerAβ(λ) = kerA−β(λ), (1.17)

because A−β(λ) is obviously the adjoint of Aβ(λ).

1.3. Preliminary description of the results and the approach

Chapter 2 contains an analysis of the asymptotic behaviour around O of functions in V 1
β (Ω), which are

solutions of the problem (1.14). Given β and a function ϕ ∈ V 1
β (Ω) we decompose it in a neighbourhood of O as

ϕ(y, z) = ϕ(y) + ϕ⊥(y, z), (1.18)

where ϕ is the mean value function

ϕ(y) = h(y)−1

0∫
−h(y)

ϕ(y, z)dz, and

0∫
−h(y)

ϕ⊥(y, z)dz = 0. (1.19)

We analyze the decay properties of these components in terms of weighted norm estimates; as for ϕ⊥, it will
be shown by a few steps that it belongs to V 1

β1
(Ω), where β1 ≥ β − 1/2. As for ϕ, its properties are studied

with help of a limit partial differential equation in two variables (y1, y2). This is derived in Sections 2.1–2.4 as a
formal limit equation (2.7), using formal asymptotics in the vicinity of O and standard ansätze in the theory of
thin domains (cf. [26]). The properties of the solutions of (2.7) are found by an application of the Kondratiev
theorem (see [11] and Thm. 2.2). These are transformed into the the main result of Chapter 2 (Thm. 2.11) on
the asymptotic behaviour of ϕ as x → O: given β, a solution ϕ ∈ V 1

β (ΞR) of the problem (1.6)–(1.8) can be
written as the sum of ϕ̃ ∈ V 1

β1
(ΞR), where β1 ∈ (β − 1/2, β), plus a finite number of rather explicit functions

called w(j) ∈ V 1
β (ΞR).

The number of functions w(j) depend on the parameter λ; we shall find increasing sequences (λ†q)
∞
q=1 and

(Nq)∞q=1 such that there are 2Nq functions w(j) for λ ∈ [λ†q−1, λ
†
q). In fact the functions w(j) emerge from the

power-law solutions of the limit equation (2.7),

v(y) = rΛV (ϑ), (1.20)

where Λ ∈ C is a complex exponent, V is a smooth function on the unit circle S1, and (r, ϑ) are the polar
coordinates for y.

In Chapter 3 we examine the operator (1.15) of the problem (1.14) and establish in Theorem 3.2 a necessary
and sufficient condition for the Fredholm property of Aβ(λ). It will be necessary to verify the estimate

‖ϕ;V 1
β (Ω)‖ ≤ cβ

(
‖F ;V 1

−β(Ω)∗‖ + ‖ϕ;L2
β−1/2(Ω)‖

)
under a condition for β and λ; in view of the compactness of the embedding V 1

β (Ω) ⊂ L2
β−1/2(Ω), this ensures

the closedness of the range ImAβ(λ), the finite dimensionality of the subspace kerAβ(λ) and, moreover, the fact
that

dim cokerAβ(λ) = dim kerA−β(λ) <∞. (1.21)
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In the last part of Chapter 3 we compute the index (1.16). The index formula (3.34) will involve the number
Nq of the above mentioned power-law solutions and thus depends on the spectral parameter λ. Let us describe
the difference between the properties of the operator Aβ(λ) for λ below and above the first threshold λ† := λ†1
(cf. (2.23)). In the case λ ∈ [0, λ†) the operator A0(λ) is Fredholm and self-adjoint in the Kondratiev space
V 1

0 (Ω), which for β = 0 coincides with the Sobolev space H1(Ω). In other words, a solution ϕ ∈ H1(Ω) with
finite energy ∫

Ω

|∇xϕ(x)|2dx+
∫
Γ

|ϕ(x)|2dy (1.22)

exists, provided the right-hand side F ∈ H1(Ω)∗ of (1.9), or (1.14), satisfies the compatibility conditions

F (ϕj) = 0, j = 1, . . . , J(λ), (1.23)

where ϕ1, . . . , ϕJ(λ) ∈ H1(Ω) are solutions of the homogeneous (F = 0) problem (1.14). This solution ϕ is
defined up to a linear combination of ϕ1, . . . , ϕJ(λ). Under the orthogonality conditions∫

Ω

ϕ(x)ϕj(x)dx = 0, j = 1, . . . , J(λ), (1.24)

it becomes unique and admits the estimate

‖ϕ;H1(Ω)‖ ≤ c(λ)‖F ;H1(Ω)∗‖. (1.25)

All the above facts are due to the Fredholm property of A0(λ). Notice that for λ ∈ [0, λ†), also the operators
Aβ(λ) are of Fredholm index 0, if |β| is small enough. Moreover, for β large enough the index becomes positive
while for sufficiently large −β it is negative.

In the case λ ≥ λ† the operator A0(λ) is no longer Fredholm (and no other operator Aβ(λ) has index 0,
although almost all of them are Fredholm). We shall show that the range Im A0(λ) = A0(λ)H1(Ω) is not closed,
though the kernel and cokernel are finite dimensional. This means that the orthogonality conditions (1.24) imply
the uniqueness of the solution, but the estimate (1.25) does not hold.

The reason for losing the Fredholm property is but the appearance of the power-law solutions (1.20) with
the exponents

Λ = −1 ± iκn(λ), n = 1, . . . , N (1.26)

where the numbers κn(λ) are nonnegative. The distinguishing feature of these solutions is that the inte-
grals (1.22) diverge logarithmically at O (see Rem. 2.1).

Finally, in Chapter 4 we derive the radiation conditions for the water-wave problem from the requirement
that the operator Aβ(λ) becomes Fredholm by choosing its domain and range carefully. First, the right-hand
side of F is to be taken from a smaller space V 1

β (Ω)∗ ⊂ H1(Ω)∗ with β > 0. Second, a solution to (1.14),
ϕ, is to be found in a bigger space V 1

β (Ω) ⊃ H1(Ω). Third, examining this solution we notice that it is
defined up to a linear combination of the J(λ) + N(λ) solutions ϕ1, . . . , ϕJ(λ) ∈ kerA−β(λ) ⊂ H1(Ω) and
ϕJ(λ)+1, . . . , ϕJ(λ)+N(λ) ∈ V 1

β (Ω) to the homogeneous problem (see (1.26); our result on Ind Aβ(λ) is crucial
here). The final step is to formulate N(λ) conditions which make the solution defined up to a linear combination
of ϕ1, . . . , ϕJ(λ) only. The latter form a basis in the subspace coker Aβ(λ) and thus the operator involving these
conditions becomes of index zero. In other words, we fix appropriately the N(λ) coefficients in the above-
mentioned linear combinations, and these conditions are usually called radiation conditions.



RADIATION CONDITIONS AT THE TOP OF A ROTATIONAL CUSP IN THE THEORY OF WATER-WAVES 953

Our method involves a symplectic form, which naturally divides the waves in the water blanket ΞR into
incoming and outgoing ones. In the above explained procedure we actually allow only the outgoing waves:
Aβ(λ) is made Fredholm and of index zero by restricting its domain to a subspace of V 1

β (Ω) which is a sum of
functions in V 1

−β(Ω) and linear combinations of outgoing waves (see Thm. 4.2).
In the case all κn(λ) in (1.26) are positive, the imposed radiation conditions are physical (see explanations

in Sect. 4.5). However, for λ = λ† and for some λ > λ† there appear power-logarithmic solutions (1.20) and our
radiation conditions become intrinsic.

The appendix contains Theorem A.1 concerning the spectrum of the operator of the water-wave problem. It
is a consequence of Theorem 3.2.

We close this section with a review of related literature. First we mention a related paper [3], where trapped
water-waves are considered in a cuspidal domain in dimension two. However, this corresponds to the situation
where the cusp is less sharp, i.e., H(y) = |y|α with α < 2 and thus the compactness of the trace mapping
still holds. Concerning Chapter 2, although the theory of elliptic problems in domains with piecewise smooth
boundaries is well understood (see e.g. [11–13,20,21,27,35]), there is no general method to investigate boundary
value problems in “sharp” cuspidal domains, except in the case of peak-shaped domain, Figure 1 (see [12,19,40]).
In the present paper, the irregularity point with tangency of two boundary components (Fig. 3) results in the
thinning water blanket Ω ∩ U , which is cuspidal in the z-direction but conical in the two other directions y1
and y2. This complication of geometry changes crucially the asymptotic behaviour of solutions as x→ O, and
results have been obtained only for particular problems in mathematical physics, namely, for the Neumann
problem for a scalar second-order elliptic equation (see [24]), the Stokes equations (see [25]) and the elasticity
system with traction-free boundary conditions (see [36]). Therefore, we are forced to start our study in Chapter 2
by deriving the asymptotic representations for a solution ϕ ∈ V 1

β (Ω) of the problem (1.6–1.8).
As for the radiation conditions, there are several known methods for composing them, but this paper is

certainly the first one where the wave phenomenon in a finite volume is treated rigorously. The situation found
in Chapter 3 is typical in diffraction problems related to wave phenomena, and our way to supply the problem
with a Fredholm operator is in some sense standard. The symplectic form, which we use here and which divides
the waves around O into incoming and outgoing ones, is inspired by the approach proposed in [34] (see
also [35], Chap. 6). This is among the the most general and flexible. The calculation of the Poynting vector
is based on the derived asymptotic forms, and it is crucial for the explanation of the physical nature of the
phenomena.

2. Asymptotic analysis

In the main result, Theorem 2.11, of this section we show that assuming β and a solution ϕ ∈ V 1
β (Ω) given,

ϕ can be written as a sum of finitely many quite explicit functions w(q) ∈ V 1
β (Ω) and a term ϕ̃, which has a

better decay at O, as a function in V 1
β1

(Ω), where β − 1/2 ≤ β1 < β.
Chapter 2 is divided into two entities. Sections 2.1–2.4 contain a formal derivation of a limit equation and

its analysis, by which the functions w(q) are found in Theorem 2.2. Sections 2.5–2.7 include the analysis of the
asymptotic behaviour of elements of V 1

β (Ω) around O and the main result of Chapter 2, Theorem 2.11.

2.1. The formal asymptotics

We seek for a formal solution of (1.6)–(1.8), f = 0, which takes in the vicinity of the point O the form

ϕ(x) = v(y) + h(y)s(y, h(y)−1z) + . . . (2.1)

Here, the dots stand for lower-order terms, and moreover, in the polar coordinates (r, ϑ) of the y-plane, v(y) =
rΛV (ϑ) is a power law solution (1.20) of the limit differential equation (2.7) (to be derived), and

s(y, ζ) = rΛS(ϑ, ζ), S ∈ C2(S1 × [−1, 0]). (2.2)
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By ζ = h(y)−1z we understand the fast variable in the water blanket ΞR, see (2.22). The possible values of
Λ ∈ C will be later determined from the eigenvalues of the limit equation (2.7), see (2.12) and (2.10).

In the coordinates y, ζ the differential operators Δx and ∂ν are given by

Δx = h(y)−2∂2
ζ +

(
∇y − h(y)−1∇yh(y)ζ∂ζ

)2
, (2.3)

∂ν = −(1 + |∇yh(y)|2)−1/2
(
h(y)−1∂ζ + ∇yh(y) · ∇y

)
. (2.4)

Here ∂ζ = ∂/∂ζ, ∇y =grad in the variables y = (y1, y2) and the central dot stands for the scalar product in R2.
Notice that the formula (2.4) follows from the definition (1.5).

We insert the decompositions (2.1) and (2.3), (2.4) into the equation (1.6) and into the boundary condi-
tions (1.7), (1.8) in the vicinity of the point O. Then, h(y) is replaced by H(y), see (1.3). Finally we collect
the terms of order rReΛ−2 in (1.6) and rReΛ in (1.7), (1.8), and arrive at the relations

−H(y)−1∂2
ζ s(y, ζ) = Δyv(y), ζ ∈ (−1, 0),

−∂ζs(y,−1) = ∇yH(y) · ∇yv(y), ∂ζs(y, 0) = λv(y). (2.5)

The compatibility condition in the Neumann problem (2.5) for the ordinary differential equation in the inter-
val (−1, 0) reads as

−H(y)Δyv(y) =

0∫
−1

∂2
ζ s(y, ζ)dζ =

[
∂ζs(y, ζ)

]0
−1

= λv(y) + ∇yH(y) · ∇yv(y). (2.6)

In other words, to find the second term in the asymptotic expansion (2.1) we need to solve the partial differential
equation

−∇y ·H(y)∇yv(y) − λv(y) = 0, y ∈ R
2
•. (2.7)

Note that, owing to (1.4), the principal part of the differential operator −∇y ·H(y)∇y degenerates at y = 0.

2.2. Power-law solutions of the limit equation

The operator ∇y ·H(y)∇y reads in the polar coordinates as

− r−1∂rr
3H(ϑ)∂r − r−2∂ϑr

2H(ϑ)∂ϑ, (2.8)

where

H(y) = r2H(ϑ),H ∈ C∞(S1), H > 0. (2.9)

We proceed by usual separation of variables and insert this into (2.7); denoting

μ = (Λ + 2)Λ + 1 = (Λ + 1)2 (2.10)

we obtain the ordinary differential equation

− ∂

∂ϑ
H(ϑ)

∂V

∂ϑ
(ϑ) + H(ϑ)V (ϑ) − λV (ϑ) = μH(ϑ)V (ϑ), ϑ ∈ S

1. (2.11)
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The variational formulation of the spectral problem (2.11) involves the closed semibounded below quadratic
form

q(U, V ;λ) = (H∂ϑV, ∂ϑU)S1 + (HV, U)S1 − λ(V, U)S1 ,

where (·, ·)S1 denotes the inner product of L2(S1). By [2], Theorem 10.2.2, the spectral problem (2.11) admits
for any λ ∈ R+ the monotone unbounded sequence of eigenvalues

μ1(λ) ≤ μ2(λ) ≤ . . . ≤ μp(λ) ≤ . . . , (2.12)

which are listed taking into account their multiplicites. Moreover, there exists a strictly monotone unbounded
sequence of thresholds

0 =: λ†0 < λ† := λ†1 < λ†2 < . . . < λ†q < . . . (2.13)

such that, in the case λ ∈ [λ†q−1, λ
†
q), the number of non-positive eigenvalues in (2.12) is Nq and

0 = N1 < N2 < . . . < Nq < . . . (2.14)

In other words, for λ ∈ [λ†q−1, λ
†
q),

μ1(λ) ≤ . . . ≤ μNq(λ) ≤ 0 < μNq+1(λ) ≤ . . . (2.15)

Note that the multiplicity of an eigenvalue of an elliptic ordinary second-order differential equation on the circle
S1 cannot exceed 2. Hence, Nq+1 ≤ Nq + 2 in (2.14).

It is instructive to consider the special case of axially symmetric cusp, since then one can calculate the above
numbers; this is done in the next section for the convenience of the reader.

Eigenfunctions corresponding to the eigenvalues (2.12) are denoted by V1, V2, . . . , Vp, . . . They can be subject
to the orthogonality and normalization conditions

(HVp, Vq)S1 = δp,q, p, q ∈ N, (2.16)

where δp,q is Kronecker’s symbol.
Owing to (2.10), a positive eigenvalue μj(λ) > 0 gives rise to the following couple of power-law solutions

v±j (y) = rΛ
±
j Vj(ϑ), Λ±

j = −1 ± μj(λ)1/2, (2.17)

with the real exponents Λ±
j = Λ±

j (λ) depending on the parameter λ. If μj(λ) < 0, the exponents Λ±
j = Λ±

j (λ)
in the power-law solutions

v±j (y) = rΛ
±
j Vj(ϑ), Λ±

j = −1 ± i|μj(λ)|1/2 (2.18)

become complex. In the case μj(λ) = 0, only one power-law solution

v0
j (y) = r−1Vj(ϑ) (2.19)

appears; however, a direct calculation demonstrates that the function

v1
j (y) = r−1 ln rVj(ϑ), (2.20)

which is linear in ln r, satisfies the differential equation (2.7) as well.



956 S.A. NAZAROV AND J. TASKINEN

The functions in (2.17)–(2.20) are denoted in the sequel by w(j); see e.g. Theorem 2.2.
Ignoring the factor r−1 we shall call the solutions (2.18) oscillating and the solutions (2.17) decaying (plus) or

growing (minus). The solutions (2.19) and (2.20) remain unnamed since we only employ their linear combinations
in the sequel.

Remark 2.1. The functions (2.18–2.20), defined in the water blanket (1.5), do not belong to the Sobolev space,
because the integral

∫
BR

0∫
−h(y)

∣∣∂rr
−1±i|μj(λ)|V (ϑ)

∣∣2dzdy ∼=
∫
S1

H(ϑ)|V (ϑ)|2dϑ
R∫

0

r2(r−2)2rdr

diverges.

2.3. Axially symmetric case

An orthogonal transform of the coordinates y turns the quadratic polynomial (1.4) into

H(y) = H1y
2
1 +H2y

2
2 , Hp > 0.

If the submerged body is axially symmetric, the identity

H1 = H2 =: H0 > 0 (2.21)

holds, and the solutions of the spectral problem (2.11) are the functions

V (ϑ) = e±ikϑ

corresponding to eigenvalues

μ2k = μ2k+1 = M±k := k2 + 1 − λ

H0
, k = 0, 1, 2, . . . (2.22)

The eigenvalue μ1 = M0 is thus simple and the other eigenvalues μ2j = μ2j+1, j ∈ N = {1, 2, 3, . . .}, are of
multiplicity 2. If λ ∈

[
H0((q − 1)2 + 1), H0(q2 + 1)

)
and q ∈ N, there exist 2q − 1 non-positive eigenvalues

M0, . . . ,M±(q−1) in (2.17). Hence, in this case, λ†1 = H0 = λ†, and, for all q ≥ 2,

λ†q = H0((q − 1)2 + 1), Nq = 2q − 3. (2.23)

2.4. Some facts about the limit equation

We regard the punctured plane R2
• as the full angle and apply results of the theory of elliptic problems in

domains with conical boundary points (see the key works [11,20,21,27] and, e.g., monographs [12,35]) in order
to gain information on the solvability of the limit equation (2.7) and asymptotics of its solution. We apply this
theory to the operator

Lβ : V 1
1+β(R2) → V 1

1−β(R2)∗, (2.24)

which is determined (analogously to (1.14)–(1.15)) by the weak formulation

(H∇yv,∇yu)R2 − λ(v, u)R2 = G(u), u ∈ V 1
1−β(R2). (2.25)



RADIATION CONDITIONS AT THE TOP OF A ROTATIONAL CUSP IN THE THEORY OF WATER-WAVES 957

of the differential equation

−∇y ·H(y)∇yv(y) − λv(y) = g(y), y ∈ R
2
•. (2.26)

Here V 1
σ (R2) is defined in (1.12). Note that V 1

1+β(R2) ⊂ L2
β(R2) = L2

−β(R2)∗ and V 1
1−β(R2) ⊂ L2

−β(R2) so
that the terms on the left-hand side of (2.25) involve extensions of the natural scalar product of L2(R2) to
the duality between appropriate weighted spaces L2

σ(R2) and L2−σ(R2). In the same way, for g ∈ L2
β(R2),

G(u) = (g, u)R2 is a continuous functional in V 1
1−β(R2) � u. In the sequel we of course consider arbitrary

functionals G ∈ V 1
1−β(R2)∗.

Theorem 2.2 ([11]; see also [35], Thm. 3.1.1 and 3.1.4).
(1) The operator Lβ in (2.24) is an isomorphism, if and only if

β + 1 + ReΛ±
j �= 0 for any j ∈ N, (2.27)

where the exponents Λ±
j are determined in (2.17–2.20). If (2.27) is violated, the operator Lβ is not Fredholm,

since the range Im Lβ is not a closed subspace of V 1
−β(R2)∗.

(2) Let the condition (2.27) be fulfilled for β1 and β2 with β2 > β1. If G ∈ V 1
1−β1

(R2)∗ ∩ V 1
1−β2

(R2)∗, the
solutions vp ∈ V 1

1+βp
(R2) with p = 1, 2, given by the first assertion, satisfy

v2(y) = v1(y) +
∑

j

c(j)w(j)(y), (2.28)

where the summation is performed over all power-law solutions (2.17–2.20) with the exponents Λj satisfying the
inclusion

ReΛj ∈ (−1 − β2,−1 − β1). (2.29)

The coefficients c(j) in (2.28) meet the estimate∑
q

|c(j)| ≤ c
(
‖G;V 1

1−β1
(R2)∗‖ + ‖G;V 1

1−β2
(R2)∗‖

)
, (2.30)

where the constant c depends on β2 and β1 but not on G.

Remark 2.3. Since always Λ+
j + Λ−

j = −2, the weight indices ±β satisfy the condition (2.27) simultaneously.
A simple explanation of the method of [11] can be found for example in Chapter 2 of [35], see also the

introductory chapters of the books [12,13]. We emphasize that formula (2.27) gives the asymptotics for the
solution ϕ2 ∈ V 1

1+β2
(R2) as r → +0 and at the same time also for the solution ϕ1 ∈ V 1

1+β1
(R2) as r → +∞.

Only the first of these is interesting for the present study. The terms c(j)w(j) in (2.28) belong to V 1
1+β2

(BR) for
any finite R but live outside V 1

1+β1
(BR). The number of such terms equals 2Nq, according to the definitions in

Section 2.2.

2.5. Decomposing the solution

In Sections 2.5–2.7 we consider the asymptotic behaviour of ϕ ∈ V 1
β (Ω) by treating the components ϕ

and ϕ⊥, see (1.19), separately using their typical properties. Here, “asymptotic behaviour” means belonging
to a weighted space, say V 1

σ (Ω), with an as good, i.e. small, σ as possible. In particular, if ϕ is a solution
of (1.14), the results of Sections 2.1–2.4 will be applied to the mean function ϕ (it depends on two variables
only), to separate a more slowly decaying, but explicit part, and the remainder which decays more rapidly.
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The component ϕ⊥ will have a faster decay as a consequence of the orthogonality condition in (1.19). These
ultimately lead to the main result, that is, Theorem 2.11.

Throughout Section 2.5 we assume that β ∈ R is given, ϕ is an arbitrary element of V 1
β (Ω), and the

components ϕ and ϕ⊥ are defined as in (1.19). The aim is to prove Lemmas 2.4–2.6, concerning asymptotic
behaviour of ϕ and ϕ⊥.

If the support of ϕ is separated from O, the function falls into V 1
σ (Ω) with any weight index σ. Therefore, we

may assume that ϕ is null outside the closure ΞR of the blanket (1.5). Otherwise we multiply ϕ with a suitable
cut-off function. The functions ϕ and ϕ⊥ are defined in BR and ΞR, respectively.

Lemma 2.4. Let ϕ ∈ V 1
β (Ω) satisfy suppϕ ⊂ ΞR. The mean value function ϕ falls into the space V 1

1+β(BR)
and meets the estimate

‖ϕ;V 1
1+β(BR)‖ ≤ c‖ϕ;V 1

β (ΞR)‖. (2.31)

Proof. In view of (1.2–1.4) we get using the Schwartz inequality

∫
BR

r2β |ϕ(y)|2dy =
∫

BR

r2βh(y)−2

∣∣∣∣∣∣∣
0∫

−h(y)

ϕ(y, z)dz

∣∣∣∣∣∣∣
2

dy

≤
∫
ΞR

r2βh(y)−1|ϕ(x)|2dx ≤ c‖ϕ;L2
β−1(ΞR)‖2. (2.32)

Furthermore, let us write

∇yϕ(y) =
1

h(y)

0∫
−h(y)

∇yϕ(y, z)dz − ∇yh(y)
h(y)2

0∫
−h(y)

ϕ(y, z)dz

+h(y)−1∇yh(y)ϕ(y,−h(y)) =: Z1(y) + Z2(y) + Z3(y).

Recalling that |∇yh(y)| ≤ cr and repeating the calculation (2.32), we obtain

‖Z1;L2
1+β(BR)‖2 ≤ c‖∇yϕ;L2

β(ΞR)‖2,

‖Z2;L2
1+β(BR)‖2 ≤ c‖ϕ;L2

β−1(ΞR)‖2.

Finally, the Newton-Leibnitz formula

ϕ(y,−h(y)) = ϕ(y, z) −
z∫

−h(y)

∂ζϕ(y, ζ)dζ

leads to the relations

ϕ(y,−h(y)) =
1

h(y)

0∫
−h(y)

ϕ(y, z)dz − 1
h(y)

0∫
−h(y)

z∫
−h(y)

∂ζϕ(y, ζ)dζdz

= ϕ(y) +
1

h(y)

0∫
−h(y)

ζ∂ζϕ(y, ζ)dζ (2.33)



RADIATION CONDITIONS AT THE TOP OF A ROTATIONAL CUSP IN THE THEORY OF WATER-WAVES 959

and

∫
BR

r2(1+β)|Z3(y)|2dy ≤ c

( ∫
BR

r2(1+β) |∇yh(y)|2
|h(y)|2 |ϕ(y)|2dy +

∫
BR

r2(1+β) |∇yh(y)|2
|h(y)|4

∣∣∣∣∣
0∫

−h(y)

ζ∂ζϕ(y, ζ)dζ

∣∣∣∣∣
2

dy

)

≤ c

( ∫
BR

r2β |ϕ(y)|2dy +
∫
ΞR

r2β |∂ζϕ(y, ζ)|2dydζ
)

≤ C‖ϕ;V 1
β (ΞR)‖2.

The latter completes the proof. �

Lemma 2.5. Let ϕ ∈ V 1
β (Ω) satisfy suppϕ ⊂ ΞR. The functions ϕ+(y) = ϕ(y, 0) − ϕ(y) = ϕ⊥(y, 0) and

ϕ−(y) = ϕ(y,−h(y)) − ϕ(y) = ϕ⊥(y,−h(y)) belong to L2
β−1(BR) and satisfy

‖ϕ±;L2
β−1(BR)‖ ≤ c‖ϕ;V 1

β (ΞR)‖. (2.34)

Proof. Based on (2.33), we obtain

∫
BR

r2(β−1)|ϕ−(y)|2dy =
∫

BR

r2(β−1)|h(y)|−2

∣∣∣∣∣∣∣
0∫

−h(y)

ζ∂ζϕ(y, ζ)dζ

∣∣∣∣∣∣∣
2

dy

≤ c

∫
ΞR

r2(β−1)h(y)|∂zϕ(y, s)|2dx ≤ c‖∂zϕ;L2
β(Ξ)‖2.

Estimation of ϕ+ requires a similar argument. �

Since ∂zϕ⊥(y, z) = ∂zϕ(y, z), the next simple assertion is established by the Poincaré inequality on the
interval (−h(y), 0), which is small as r → 0+.

Lemma 2.6. If ϕ ∈ V 1
β (Ω) and suppϕ ⊂ ΞR, the function ϕ⊥ belongs to L2

β−2(ΞR) and satisfies

‖ϕ⊥;L2
β−2(ΞR)‖ ≤ c‖ϕ;V 1

β (ΞR)‖.

Proof. In view of the orthogonality condition (1.18) we have

∫
BR

r2(β−2)

0∫
−h(y)

|ϕ⊥(y, z)|2dzdy ≤
∫

ΞR

r2(β−2)|h(y)|2|∂zϕ(x)|2dx

≤ c‖∂zϕ;L2
β(ΞR)‖2. (2.35)

�

2.6. Dimension reduction

The aim of Section 2.6 is to formulate equations for the components ϕ and ϕ⊥ of a solution ϕ ∈ V 1
β (Ω) of the

problem (1.14). Moreover, we shall establish for the mean function ϕ a connection to the limit equation (2.7),
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so that in the next section, Theorem 2.2 (in the form of Lem. 2.10) can be applied to it. Recall that ϕ is a
function of y only, being constant in z-direction.

So, in this section we assume that ϕ ∈ V 1
β (ω) solves (1.14) and that F and the indices β and β1 satisfy

F ∈ V 1
−β1

(Ω)∗ ⊂ V 1
−β(Ω)∗, β1 < β2 =: β ≤ β1 + 1/2. (2.36)

Here, the last inequality is assumed due to technical reasons, but it is not really essential, since for example
in Theorem 2.11 one could apply the statement of the theorem iteratively step by step to diminish the weight
index β.

Let χ ∈ C∞(Ω) be a cut-off function which is constant in the variable z, vanishes outside ΞR and is equal to
one inside the blanket (1.5) for r ≤ R/2.

Lemma 2.7. If ϕ and F are as above, the function χϕ solves (1.14) with a functional F̂ , see (2.38), on the
right hand side, F̂ still satisfying the assumptions (2.36). Moreover,

‖F̂ ;V 1
−β1

(Ω)∗‖ ≤ c
(
‖F ;V 1

−β1
(Ω)∗‖ + ‖ϕ;V 1

β (Ω)‖
)
. (2.37)

Proof. Let ψ ∈ V 1
−β(Ω) be an arbitrary test function and put the test function ψ̂ = χψ ∈ V 1

−β(Ω) into (1.14).
The left hand side becomes

(∇xϕ, χ∇xψ)Ω + (∇xϕ, ψ∇xχ)Ω − λ(ϕ, χψ)Γ = (∇x(χϕ),∇xψ)Ω − (ϕ∇xχ,∇xψ)Ω
+ (∇xϕ, ψ∇xχ)Ω − λ(χϕ, ψ)Γ

so that the function χϕ indeed satisfies (1.14), if the functional F̂ on the right hand side is defined by

F̂ (ψ) := F (χψ) − (∇xϕ, ψ∇xχ)Ω + (ϕ∇xχ,∇xψ)Ω. (2.38)

Notice that still F̂ ∈ V 1
−β1

(Ω)∗, since the support of ∇xχ belongs to the set {x ∈ ΞR : R > r > R/2}. The
norm estimate (2.37) follows from the definition. �

In the sequel we redefine ϕ as χϕ. Also, given a test function ψ ∈ V 1
−β(Ω) we write ψ = ψ + ψ⊥ as in the

decomposition (1.18).
The two integral identities of the following lemma are obtained just by inserting to (1.14) the decomposi-

tion (1.18) of ϕ and ψ, since the components ψ and ψ⊥ can be chosen independently. In addition, in the first
term of (2.39) we have integrated over (−h(y), 0) � z.

Lemma 2.8. If ϕ is as above, the following equalities hold for all test functions ψ ∈ V 1
−β(Ω). First,

(h∇yϕ,∇yψ)BR − λ(ϕ, ψ)BR = G(ψ), (2.39)

where

G(ψ) := F̂ (ψ) − (∇yϕ⊥,∇yψ)ΞR + λ
(
ϕ⊥
∣∣
z=0

, ψ
)

BR
. (2.40)

Second,

(∇xϕ⊥,∇xψ⊥)ΞR = G⊥(ψ⊥), (2.41)

where

G⊥(ψ⊥) := F̂ (ψ⊥) − (∇yϕ,∇yψ⊥)ΞR + λ
(
ϕ
∣∣
z=0

, ψ⊥
∣∣
z=0

)
BR
. (2.42)
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Remark 2.9. We notice that, due to (1.19),

0 = ∇y

0∫
−h(y)

ϕ⊥(y, z)dz =

0∫
−h(y)

∇yϕ⊥(y, z)dz + ϕ⊥(y,−h(y))∇yh(y),

and, hence, by definition of ϕ− in Lemma 2.5, we have

(∇yϕ⊥,∇yψ)ΞR =
∫

BR

∇yψ(y)

0∫
−h(y)

∇yϕ⊥(y, z)dzdy

= −(ϕ−∇yh,∇yψ)BR . (2.43)

Similarly, (
ϕ⊥
∣∣
z=0

, ψ
)

BR
= (ϕ+, ψ)BR . (2.44)

Finally, we prove one more lemma. By virtue of Lemma 2.5 and the relation |∇yh(y)| ≤ cr, both the
expressions (2.43) and (2.44) define continuous functionals in ψ ∈ V 1

2−β(BR) and therefore in ψ ∈ V 1
1−β1

(BR),
because 1−β1 ≤ 2−β due to (2.36). Lemma 2.4 yields the same property for F̂ (ψ). Hence, G(ψ) is a continuous
functional in ψ ∈ V 1

1−β1
(BR), see (2.40). Also

((h−H)∇yϕ,∇yψ)BR (2.45)

can be regarded as a functional in ψ ∈ V 1
1−β1

(BR), by taking into account the relation h(y) − H(y) = O(r3)
(see (1.3)). Finally, we recall that the function ϕ vanishes near the circle SR = ∂BR and can thus be extended
as null from BR onto R2.

Taking all these remarks into account reduces the identity (2.39) to the integral identity (2.25) of the limit
equation (2.26); any test function u ∈ V 1

−β(R2) is allowed, since ψ = u
∣∣
BR

∈ V−β1(R2). This proves the following
assertion.

Lemma 2.10. Let the indices β and β1 both satisfy (2.27) and in addition β1 < β ≤ β1 + 1/2. Let F be
as in (2.36), and assume that ϕ ∈ V 1

β (Ω) be as above, solving (1.14) with F̂ . Then the functional G, (2.40),
belongs to V 1

1−β(R2)∗; the function ϕ belongs to the space V 1
1+β(R2) and satisfies the integral identity (2.25) with

G := G for all test functions u ∈ V 1
1−β(R2). In particular, ϕ has the representation (2.28–2.30) of Theorem 2.2

with

v2(y) = ϕ(y) =
1

h(y)

0∫
−h(y)

ϕ(y, z)dz,

for some solution v1 ∈ V 1
1+β1

(R2) of (2.25).

2.7. The theorem on asymptotics

We are in the position to conclude the main result of this section. To simplify the presentation we assume
in the proof that the solution and the data, in particular the spectal parameter λ are real. The complex case
holds true as well, see the remark after the proof.

The cut-off function χ ∈ C∞(Ω) is as in the beginning of Section 2.6.
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Theorem 2.11. Let the two weight indices β1, β2 = β and the functional F satisfy the condition (2.27) and the
relations (2.36). Let ϕ ∈ V 1

β (Ω) be a solution of the problem (1.14). Then it admits the asymptotic decomposition

ϕ(x) = χ(x)
∑

j

c(j)w(j)(y) + ϕ̃(x), (2.46)

where the sum on the right has 2Nq terms, and c(j) and w(j) have the same meaning as in (2.28) and (2.29),
and the remainder ϕ̃ belongs to V 1

β1
(Ω). The following estimate is in addition valid:

‖ϕ̃;V 1
β1

(Ω)‖ +
∑

j

|c(j)| ≤ c
(
‖F ;V 1

−β1
(Ω)∗‖ + ‖ϕ;V 1

β (Ω)‖
)
. (2.47)

Proof. Let ϕ ∈ V 1
β (Ω) be a solution of the problem (1.14) and χ as in the assumption. Since (1−χ)ϕ ∈ V 1

β1
(Ω),

it is enough to prove (2.46) for the function χϕ, which we redefine as ϕ. By Lemma 2.7, the new ϕ still satisfies
equation (1.14) with F̂ . We decompose ϕ = ϕ+ ϕ⊥.

By Lemma 2.10, ϕ has the representation (2.28):

ϕ(x) =
∑

q

c(q)w(q)(y) + v1(x). (2.48)

This can be still multiplied by χ, due to the support of ϕ. We obtain the first term on the right hand side
of (2.46). The rest on the right hand side of (2.48) falls into the term ϕ̃ in (2.46), since v1 ∈ V 1

1+β1
(R2) implies

that the function χv1 belongs to V 1
β1

(Ω), as seen by a direct calculation of the norm.
We need to verify the inclusion ϕ⊥ ∈ V 1

β1
(Ω) in order to complete the proof. To this end, we take into account

that supp ϕ⊥ ⊂ ΞR as usual.
Let us introduce the continuous weight function

W(y) =
{

rβ1 for r > ρ
rβρβ1−β for r ≤ ρ,

(2.49)

where ρ is a positive parameter, to be sent to 0 at the end of the proof. By definition, W(y) = O(rβ) as r → +0,
but at the limit ρ → +0, it becomes equal to rβ1 . In the sequel we prove that the norms ‖∇x(Wϕ⊥);L2(ΞR)‖
and ‖r−2Wϕ⊥;L2(ΞR)‖ are finite for any ρ > 0 so that passing to the limit puts ϕ⊥ into the space Vβ1(ΞR).
Moreover, a crucial trick will just be an application of the Poincaré inequality in the small interval (−h(y), 0) � z,
which is possible due to the orthogonality condition in (1.19).

Clearly,

|∇yW(y)| ≤ cr−1W(y). (2.50)

Furthermore, if v ∈ V 1
β (ΞR), then W2v ∈ V 1

−β(Ω). Hence, we insert W2ϕ⊥ as a test function into (2.41) and
obtain

G⊥(W2ϕ⊥) = (∇xϕ⊥,∇x(W2ϕ⊥))ΞR

= (∇xϕ⊥,W∇x(Wϕ⊥))ΞR + (∇xϕ⊥,Wϕ⊥∇xW)ΞR

= ‖∇x(Wϕ⊥);L2(ΞR)‖2 − ‖ϕ⊥∇xW ;L2(ΞR)‖2

−(ϕ⊥∇xW ,∇x(Wϕ⊥))ΞR + (∇x(Wϕ⊥), ϕ⊥∇xW)ΞR , (2.51)



RADIATION CONDITIONS AT THE TOP OF A ROTATIONAL CUSP IN THE THEORY OF WATER-WAVES 963

where the last two terms cancel each other due to our assumption on real data. Using the Poincaré inequality
(see Lem. 2.6 and cf. the calculation (2.35)) we derive the estimate

‖∇x(Wϕ⊥);L2(ΞR)‖2 ≥ c‖h−1Wϕ⊥;L2(ΞR)‖2.

Thus, fixing R small enough, the formulas (2.50) and (1.3), (1.4) imply ch(y)−1W(y) ≥ 2|∇yW(y)| so that the
right hand side of (2.51) is bigger than

c‖Wϕ⊥;V 1
0 (ΞR)‖2 = c‖∇x(Wϕ⊥);L2(ΞR)‖2 + c‖r−1Wϕ⊥;L2(ΞR)‖2, c > 0.

Let us consider the left hand side of (2.51): we estimate the terms in (2.42). First, we recall that F̂ ∈
V 1
−β1

(Ω)∗ and r−β1W(y) ≤ 1 due to (2.49) so that

|F̂ (W2ϕ⊥)| ≤ cF ‖W2ϕ⊥;V 1
−β1

(Ω)‖2

= cF

⎛⎝ ∫
ΞR

r−2β1
(
|∇x(W(y)2ϕ⊥(x))|2 + r−2W(y)4|ϕ⊥(x)|2

)
dx

⎞⎠1/2

≤ c
(
‖∇x(Wϕ⊥);L2(ΞR)‖2 + ‖r−1Wϕ⊥;L2(ΞR)‖2

)1/2 = c‖Wϕ⊥;V 1
0 (ΞR)‖.

Second, by the calculation (2.43) with ϕ⊥, ψ changed for Wϕ⊥, ϕ, we have

|(∇yϕ,∇y(W2ϕ⊥))ΞR | = |(∇yϕ,∇yhW2ϕ−)BR |

≤ cmax
y∈BR

(r1−2βW(y)2)‖rβ+1∇yϕ;L2(BR)‖‖rβ−1ϕ−;L2(BR)‖. (2.52)

Here we have taken into account Lemmas 2.4 and 2.5. Third, referring to Lemmas 1.1 and 2.5, we obtain∣∣(ϕ∣∣
z=0

,W2ϕ⊥
∣∣
z=0

)
BR

∣∣ ≤ cmax
y∈BR

(r1−2βW(y)2)
∥∥rβϕ

∣∣
z=0

;L2(BR)
∥∥ ‖rβ−1ϕ+;L2(BR)‖. (2.53)

Since 1 − 2β + 2β1 ≥ 0 and W(y) ≤ rβ1 (see (2.36) and (2.49)), both maxima in (2.52) and (2.53) exist.
Moreover, the products of the norms do not exceed c‖ϕ;V 1

β (ΞR)‖2. Hence, the relation (2.51) implies

c1‖F̂ ;V 1
−β1

(ΞR)∗‖ ‖Wϕ⊥;V 1
0 (ΞR)‖ + c2‖ϕ;V 1

β (ΞR)‖2 ≥ ‖Wϕ⊥;V 1
0 (ΞR)‖2

and

‖Wϕ⊥;V 1
0 (ΞR)‖ ≤ c

(
‖ϕ;V 1

β (ΞR)‖ + ‖F̂ ;V 1
−β1

(ΞR)∗‖
)
. (2.54)

Keeping in mind the monotonicity of the weight function and passing to the limit ρ→ +0 in (2.54) yield

‖rβ1ϕ⊥;V 1
0 (ΞR)‖ ≤ c

(
‖ϕ;V 1

β (ΞR) + ‖F ;V 1
−β1

(ΞR)∗‖
)
. (2.55)

The norm on the left is equivalent to ‖ϕ⊥;V 1
β1

(ΞR)‖. Theorem 2.11 is proven. �

In the case of complex data it is enough only to extract the real part of all terms in (2.51); then the last two
terms again disappear. Otherwise the proof is the same.



964 S.A. NAZAROV AND J. TASKINEN

3. The Fredholm property of Aβ(λ)

In this chapter we present a necessary and sufficient condition of the Fredholmess of the operator Aβ(λ), see
Theorem 3.2. In the last section we also compute its index. This will be closely connected to the number of the
power law solutions of the limit equation, which was studied in the preceding chapter.

3.1. Estimating the solution

The purpose of this section is just to derive the following estimate (3.1), which will be needed in the proof
of Theorem 3.2.

Lemma 3.1. Assume that β meets the conditions (2.27) and let ϕ ∈ V 1
β (Ω) be a solution of the problem (1.14).

It satisfies

‖ϕ;V 1
β (Ω)‖ ≤ cβ

(
‖F ;V 1

−β(Ω)∗‖ + ‖ϕ;L2
β−1/2(Ω)‖

)
. (3.1)

Proof. We first mention the following local elliptic estimate (see, e.g. [16,17])

‖ϕ;H1(Ω \ ΞR/2)‖ ≤ c
(
‖F ;V 1

−β(Ω)∗‖ + ‖ϕ;L2(Ω \ ΞR/4)‖
)
. (3.2)

Note that since 	 ≥ c > 0 on Ω \ ΞR/4, the first term on the right is a majorant for the norm of the functional

H1(Ω \ ΞR/4) � u 
→ F ((1 − χ′)u),

where χ′ is a cut-off function, which equals to one in ΞR/4 and vanishes in Ω \ΞR/2. Using the same argument
with the weight 	, we rewrite (3.2) as follows:

‖ϕ;V 1
β (Ω \ ΞR/2)‖ ≤ c

(
‖F ;V 1

−β(Ω)∗‖ + ‖ϕ;L2
β−1/2(Ω)‖

)
. (3.3)

Moreover, in the blanket we consider the product ϕ̂ = χ′ϕ satisfying (1.14) with the new right hand side F̂ (cf.
Lem. 2.7),

‖F̂ ;V 1
−β(ΞR)∗‖ ≤ c

(
‖F ;V 1

−β(ΞR)∗‖ + ‖ϕ;V 1
β (Ω \ ΞR/2)‖

)
. (3.4)

It is plain that F̂ and its norm ‖F̂ ;V 1
−β(ΞR)∗‖ depend on R, however, all constants in the estimates below can

be chosen independent of R: this is evident in Lemmas 2.4–2.6 while the Kondratiev theorem on asymptotics
(Thm. 2.11) is applied in the whole plane R2.

In the following we cease to display the hat for ϕ̂ and consider the problems (2.39) and (2.41) for the terms ϕ
and ϕ⊥ of the decomposition (1.18). We use the notation of Section 2.6 for G, etc. and modify the arguments
of that section as follows.

First, we extend ϕ as zero from BR onto R
2. As in the proof of Lemma 2.10 we see that ϕ satisfies the limit

equation (2.25) with the new right hand side functional u 
→ G(u) + ((h −H)∇yϕ,∇yu)BR , and this leads to
the bound

‖ϕ;V 1
1+β(BR)‖ ≤ c

(
‖G;V 1

1−β(BR)∗‖ + ‖(h−H)∇yϕ;L2
β−1(BR)‖

)
. (3.5)

Processing the right hand side, we have

‖(h−H)∇yϕ;L2
β−1(BR)‖ ≤ c‖r3∇yϕ;L2

β−1(BR)‖ ≤ c‖∇yϕ;L2
β+2(BR)‖

≤ c‖ϕ;V 1
β+2(BR)‖ ≤ c‖ϕ;V 1

β+1(ΞR)‖.
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Here we used Lemma 2.4 with β replaced by β + 1. The same substitution in Lemma 2.5, and (2.43), (2.44)
yield the following inequalities for the last two terms in (2.40):

|(∇yϕ,∇yψ⊥)ΞR | = |(ϕ−∇yh,∇yψ)BR |

≤ c‖rβϕ−;L2(BR)‖ ‖r1−β∇yψ;L2(BR)‖

≤ c‖ϕ;V 1
β+1(ΞR)‖ ‖ψ;V 1

1−β(BR)‖,∣∣(ϕ⊥
∣∣
z=0

, ψ
)

BR

∣∣ ≤ c‖rβϕ+;L2(BR)‖ ‖r−βψ;L2(BR)‖

≤ c‖ϕ;V 1
β+1(ΞR)‖ ‖ψ;V 1

1−β(BR)‖.

In other words, we have

‖ϕ;V 1
β (ΞR)‖ ≤ c‖ϕ;V 1

β+1(BR)‖

≤ c
(
‖F ;V 1

−β(ΞR)∗‖ + ‖ϕ;V 1
β+1(ΞR)‖

)
. (3.6)

The estimate (2.55) for the component ϕ⊥ holds for any weight indices β1 and β2 = β such that β1 ∈
[β2 − 1/2, β2) (cf. (2.36)). Taking β1 = β and β2 = β + 1/2 we thus obtain

‖ϕ⊥;V 1
β (ΞR)‖ ≤ c

(
‖F ;V 1

−β(ΞR)∗‖ + ‖ϕ;V 1
β+1/2(ΞR)‖

)
. (3.7)

Combining the inequalities (3.3), (3.4), (3.6), and (3.7) yields

‖ϕ;V 1
β (Ω)‖ ≤ c

(
‖ϕ;V 1

β (Ω \ ΞR/2)‖ + ‖ϕ;V 1
β (ΞR)‖ + ‖ϕ⊥;V 1

β (ΞR)‖
)

≤ C‖F ;V 1
−β(ΞR)∗‖ + C‖ϕ;L2

β−1/2(Ω)‖

+C‖ϕ;V 1
β+1(ΞR)‖ + C‖ϕ;V 1

β+1/2(ΞR)‖. (3.8)

Recalling the definition of the weighted Kondratiev norm (1.10) we get the estimate

‖ϕ;V 1
β+1/2(ΞR)‖ ≤ ‖ϕ;V 1

β (ΞR)‖ sup
x∈ΞR

	(x)1/2 ≤ ‖ϕ;V 1
β (Ω)‖ sup

x∈ΞR

	(x)1/2,

and similarly for ‖ϕ;V 1
β+1(ΞR)‖. This means, taking a small enough R > 0, the last two terms on the right

hand side of (3.8) can be bounded by a small constant times ‖ϕ;V 1
β (Ω)‖. Moving these to the left hand side,

the desired estimate (3.1) follows. �

3.2. The Fredholm property

Everything is prepared for checking the following assertion for the operator Aβ(λ) : V 1
β (Ω) → V 1

−β(Ω)∗,
defined in (1.15).

Theorem 3.2. Let the weight index β ∈ R be given. The operator Aβ(λ) : V 1
β (Ω) → V 1

−β(Ω)∗ is Fredholm, if
and only if every Λ±

j , j ∈ N (defined in (2.17–2.19), satisfies (2.27), i.e. Re Λ±
j �= −1 − β.

In case Re Λ±
j = −1 − β the range Im Aβ(λ) is not a closed subspace in V 1

−β(Ω)∗.
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Proof. Since the embedding V 1
β (Ω) ⊂ L2

β−1/2(Ω) is compact, the estimate (3.1) ensures that the kernel of
Aβ(λ) is finite dimensional and the range is closed. This is well known, see e.g. Lemma 3 of [39]. Since
Aβ(λ)∗ = A−β(λ) and since the estimate (3.1) also holds for −β instead of β (see Rem. 2.3), the co-kernel

cokerAβ(λ) = kerA−β(λ)

is also finite-dimensional. Hence, Aβ(λ) is Fredholm.
Let us present the idea how to prove the last assertion of the theorem. First, since V 1

β (ω) ⊂ V 1
β+δ(Ω) and

since a small δ > 0 can be found such that the condition (2.27) is met by β + δ and Aβ+δ(λ) is Fredholm, we
obtain

kerAβ(λ) ⊂ kerAβ+δ(λ) and dim kerAβ(λ) <∞. (3.9)

Second, the closedness of the range Im Aβ(λ) guarantees the inequality

‖ϕ;V 1
β (Ω)‖ ≤ c‖Aβ(λ)ϕ;V 1

−β(Ω)∗‖, ϕ ∈ V 1
β (Ω) � kerAβ(λ), (3.10)

but it will not be valid for suitably chosen functions vm (to be defined), for sufficiently large m (compare (3.24)
and (3.15)). Third, we observe that

suppvm ∩ suppvq = ∅ for m �= q, (3.11)

and therefore these functions cannot be linearly independent. These three facts together ensure that the range
Im Aβ(λ) is not closed, completing the proof of the theorem.

To present the details, we consider a nontrivial power-law solution (1.20) with the exponent Λ such that

ReΛ = −1 − β (3.12)

(cf. (2.27)) and the family of functions

v̂m(y) = Xm(r)v(y), m ∈ N, (3.13)

where Xm is a plateau function defined by

Xm(r) = χ0

(
2m + ln

r

R

)
χ0

(
− 2m+1 − ln

r

R

)
(3.14)

and χ0 is a standard cut-off function, χ0(t) = 1 for t ≤ 0 and χ0(t) = 0 for t ≥ 1. Since the function (3.14) is
equal to one in the segment

Υm = [R exp(−2m+1), R exp(−2m)] � r,

we have

‖v̂m;V 1
β (Ω)‖2 ≥ ‖v̂m;L2

β−1(Ω)‖2

=
∫
S1

R∫
0

0∫
−h(y)

r2(β−1)Xm(r)2|v(y)|2dzrdrdϑ

≥ cv

∫
Υm

r2(β−1)r2ReΛrdr = cv

∫
Υm

dr
r

= cv(2m+1 − 2m).
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Hence, the normalized function vm := 2−m/2v̂m satisfies

‖vm;V 1
β (Ω)‖ ≥ C > 0, (3.15)

and a similar calculation shows that

‖vm;V 1
β (Ω)‖ ≤ ‖vm;V 2

β+1(Ω)‖ ≤ C′, (3.16)

for some positive constants C, C′.
Let us compute the norm

‖Aβ(λ)vm;V 1
−β(Ω)∗‖ = sup |(∇xv

m,∇xu)Ω − λ(vm, u)Γ|, (3.17)

where the supremum is taken over all u ∈ V 1
−β(Ω) such that ‖u;V 1

−β(Ω)‖ = 1. Since vm = 0 outside the blanket
ΞR/2, we can make the restriction stronger, i.e., supp u ⊂ ΞR. We then employ the decomposition u = u+ u⊥
as in (1.18) and (1.19). Integrating by parts, we deduce that

(∇xv
m,∇xu)Ω − λ(vm, u)Γ = (−Δxv

m, u)Ω − (∂zv
m − λvm, u)Γ + (∂νv

m, u)∂Θ

= (−hΔxv
m −∇yh · ∇yv

m − λvm, u)BR

+(−Δxv
m, u⊥)ΞR − λ(vm, u⊥)Γ∩∂ΞR + (∂νv

m, u⊥)∂Θ∩∂ΞR . (3.18)

By Lemmas 2.6 and 2.5, and the estimate (3.16), we have

|(Δxv
m, u⊥)Ξ| ≤ c‖vm;V 2

β+1(ΞRm)‖ ‖u⊥;L2
−β−1(ΞRm)‖

≤ c‖vm;V 2
β+1(Ω)‖Rm‖u⊥;L2

−β−2(ΞRm)‖

≤ cCRm‖u;V 1
−β(Ω)‖, (3.19)

|(vm, u⊥)Γ∩∂ΞR | ≤ c‖vm;L2
β(∂ΞRm ∩ Γ)‖ ‖u⊥;L2

−β(∂ΞRm ∩ Γ)‖

≤ c‖vm;V 1
β (ΞR)‖Rm‖u⊥;L2

−β−1(∂ΞRm ∩ Γ)‖

≤ cCRm‖u⊥;V 1
−β(Ω)‖.

Here Rm = R exp(−2m + 1) is fixed such that supp vm ⊂ ΞRm . Furthermore, ∂νv
m(y) = −(1 + |∇yh(y)|2)−1/2

∇yh(y) · ∇yv
m(y) (cf. (1.2–1.4), and so

|(∂νv
m, u)∂Θ∩∂ΞR | ≤ c‖r∇yv

m;L2
β(∂Θ ∩ ∂ΞRm)‖ ‖u⊥;L2

−β(∂Θ ∩ ∂ΞRm)‖

≤ c‖∇yv
m;L2

β+1(∂Θ ∩ ∂ΞR)‖Rm ‖u⊥;L2
−β−1(∂Θ ∩ ∂ΞR)‖

≤ c‖vm;V 2
β+1(ΞR)‖Rm ‖u⊥;V 1

−β(ΞR)‖

≤ cCRm‖u⊥;V 1
−β(ΞR)‖.

Notice that Rm → 0 as m→ 0.
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Based on Lemma 2.4 and formula (1.3), we change h for H in the first scalar product on the right of (3.18)
and observe that

|((h−H)Δyv
m + ∇y(h−H) · ∇yv

m, u)BR | ≤ c
(
‖rβ+3Δyv

m;L2(BRm)‖
+‖rβ+2∇yv

m;L2(BRm)‖
)
‖u;L2

−β(BRm)‖

≤ cRm

(
‖rβ+1∇2

xv
m;L2(ΞRm)‖

+‖rβ∇xv
m;L2(BRm)‖

)
‖u;L2

−β+1(BRm)‖

≤ cRm‖vm;V 2
β+1(ΞR)‖‖u;V 1

−β(ΞR)‖. (3.20)

Furthermore, since v is a power-law solution of the limit equation, the expression

−H(y)Δyv
m(y) −∇yH(y) · ∇yv

m(y) − λvm(y) = −∇y ·H(y)∇yv
m(y) − λvm(y) (3.21)

is nonzero only in the case

r ∈ Υ′
m = (R exp(−2m+1 − 1), R exp(−2m+1))

∪(R exp(−2m), R exp(−2m + 1)), (3.22)

and the modulus of this expression does not exceed

c2−m/2rReΛ.

Hence,

|(∇y ·H∇yv
m − λvm, u)BR | ≤ c2−m/2

∫
Υ′

m

r2βr2ReΛrdr‖r−βu;L2(BR)‖

≤ c2−m/2‖u;V 1
−β(ΞR)‖, (3.23)

because

R exp(−2m+1)∫
R exp(−2m)

dr
r

= ln(R exp(−2m + 1)) − ln(R exp(−2m)) = 1,

and the same is valid for the integral over the second interval in (3.22).
Collecting the estimates (3.19–3.23) and recalling (3.18), (3.17), we see that

‖Aβ(λ)vm;V 1
β (Ω)∗‖ ≤ c2−m/2. (3.24)

The theorem is thus proven. �

3.3. Computing the index

In the case λ ∈ [0, λ†), the self-adjoint operator A0(λ) is Fredholm and therefore

IndA0(λ) = 0. (3.25)
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Under the assumption λ ≥ λ† the Fredholm property does no more hold. However, we can fix a number δ(λ) > 0
such that all exponents of the power-law solutions in the strip

{Λ ∈ C : |Reλ+ 1| < δ(λ)} (3.26)

lie on the line

{Λ ∈ C : ReΛ = −1}. (3.27)

Hence, for β ∈ (0, δ(λ)) both the operators Aβ(λ) and A−β(λ) are Fredholm. Since Aβ(λ) = A−β(λ)∗, we infer
using (1.16) and (1.17) that

IndAβ(λ) = −IndA−β(λ). (3.28)

We apply Theorem 2.11 with β1 = −β. To satisfy the condition (2.36), i.e., β ≤ −β + 1/2, we assume in
addition that δ(λ) ≤ 1/4 in (3.26). Let λ ∈ [λ†q−1, λ

†
q) for some q ∈ N and thresholds taken from (2.13). Then

there exist exactly 2Nq power-law and power-logarithmic solutions (1.20) and (2.20) with exponents Λ in (3.27).
Taking any inverse of the mapping V 1

β (Ω) → Im Aβ(λ), we deduce using Theorem 2.11 that the pre-image

Vβ(λ) = Aβ(λ)−1V 1
β (Ω)∗ ⊂ V 1

β (Ω) (3.29)

of Aβ(λ) differs from V 1
−β(Ω) by L, which is the linear hull of the above mentioned special solutions multiplied

by the cut-off funtion χ. In other words, the quotient space

W(λ) = Vβ(λ)/V 1
−β(Ω) (3.30)

can be identified with C2Nq . By (2.47), the space Vβ(λ) has the intrinsic (Hilbert space) norm

⎛⎝‖ϕ̃;V 1
β1

(Ω)‖2 +
∑

j

|c(j)|2
⎞⎠1/2

(3.31)

for a function ϕ with the representation (2.46). Hence, the quotient (3.30) induces a specific topology in (3.29)
so that the restriction Aβ(λ) of Aβ(λ) onto Vβ(λ) inherits all general properties, in particular,

IndAβ(λ) = IndAβ(λ). (3.32)

Owing to dim W(λ) = 2Nq, we further have

IndAβ(λ) = 2Nq + IndA−β(λ). (3.33)

Comparing (3.28) and (3.33) we can conlude with the last assertion of this section:

Theorem 3.3. For any λ ≥ 0 there exists δ(λ) ∈ (0, 1/4] such that in the case λ ∈ [0, λ†) the operator Aβ(λ)
with β ∈ (−δ(λ), δ(λ)) is of index zero and in the case λ ∈ [λ†q−1, λ

†
q) the operators Aβ(λ) and A−β(λ) with

β ∈ (0, δ(λ)) satisfy

IndAβ(λ) = −IndA−β(λ) = Nq. (3.34)

The numbers λ† = λ†1 and λ†q, Nq, where q ∈ N, are as in Section 2.2.
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We note that Theorem 2.11 passes the equality Ind A0(λ) = 0, observed for λ < λ†, to all operators Aβ(λ)
with β such that the segment [−1 − |β|,−1 + |β|] is free of the exponents Λ±

j in (2.17). Since V 1
β1

(Ω) ⊂ V 1
β2

(ω)
for β2 ≥ β1, the indices of the Fredholm operators Aβ1(λ) and Aβ2(λ) are related by

Ind Aβ1(λ) ≤ Ind Aβ2(λ).

Hence, the function

R � β 
→ Ind Aβ(λ) (3.35)

is piecewise constant monotone increasing. Using Theorem 2.11 iteratively, one may readily express the func-
tion (3.35) in terms of the eigenvalues (2.15) of the problem (2.11).

The formula (3.34) shows that in the case λ ≥ λ† the operator Aβ(λ) is never of index zero.

4. Radiation conditions and wave phenomenon in the water blanket

In this chapter we continue the study of the quotient space W(λ) of (3.30), which we call the space of blanket
waves, and its elements the water waves localized in the water blanket, or shortly the blanket waves. We shall
decompose W(λ) into two components W+(λ) and W−(λ) of outgoing and incoming waves. It will turn out
that the restriction of the operator Aβ(λ) to the direct sum V 1

−β(Ω) ⊕ W+(λ) (rather than the operator on
the entire space V 1

−β(Ω) ⊕ W(λ)) will be Fredholm of index zero. This observation will lead to the radiation
conditions.

4.1. Waves localized in the water blanket

In Sections 4.1 and 4.2 we form a basis of W(λ), which consists of Nq outgoing and Nq incoming waves (so
that these also form bases of the respective subspaces W+(λ) and W−(λ)).

Let λ ∈ [λ†q−1, λ
†
q) with the notation of Section 2.2. In the case the eigenvalue μj(λ) in (2.12) is negative, we

use the power-law solutions (2.18) to define

w±
j (x) = χ(x)r−1±i|μj (λ)|1/2

Vj(ϑ). (4.1)

If μj(λ) = 0, we have according to (2.19), (2.20),

w0
j (x) = χ(x)r−λVj(ϑ), w1

j (x) = χ(x)r−1 ln rVj(ϑ). (4.2)

The cut-off function χ with the support in the blanket is taken from (2.46).
The functions in (4.1), (4.2) are representatives of the equivalence classes in the quotient space W(λ). Since

they are linearly independent and their number is exactly 2Nq = dimW(λ), they form a basis in W(λ).
However, we shall select another specific basis in order to establish the radiation conditions as x → O in ΞR,
and following [34], [35], (Chap. 5), we classify the waves by means of the symplectic form

Qλ(w,v) = (Aβ(λ)w,v)Ω − (w,Aβ(λ)v)Ω. (4.3)

Clearly,

Qλ(w,v) = −Qλ(v,w). (4.4)



RADIATION CONDITIONS AT THE TOP OF A ROTATIONAL CUSP IN THE THEORY OF WATER-WAVES 971

Since Aβ(λ) is the restriction of Aβ(λ) = A−β(λ)∗ onto Vβ(λ), we have in the cases w ∈ V 1
−β(Ω) or v ∈ V 1

−β(Ω)

Qλ(w,v) = 0.

In other words, the form (4.3) is actually defined on W(λ) × W(λ).

4.2. Calculating the form

From the definition of the operator Aβ(λ) in Section 1.2 and the Green formula, for ϕ ∈ V 2
β+1(Ω) ⊂ V 1

β (Ω)
and ϕ ∈ V 1

−β(Ω) we obtain

(Aβ(λ)ϕ, ψ)Ω = (−Δxϕ, ψ)Ω + (∂zϕ− λϕ, ψ)Γ + (∂nϕ, ψ)∂Θ. (4.5)

Let ψ be a function in y with support in ΞR \ O, i.e. ψ ∈ C∞
c (B•

R). We substitute vα
j (see (4.1), (4.2)) for ϕ

and derive the identity

(Aβ(λ)vα
j , ψ)Ω = (−hΔyv

α
j , ψ)BR − λ(vα

j , ψ)BR − (∇yh · ∇yv
α
j , ψ)BR

= −(∇y · h∇yv
α
j − λvα

j , ψ)BR . (4.6)

Note that this calculation is quite similar to (3.18); the first factor h comes from the integration in z ∈ (−h(y), 0)
and the term with ∇yh· is due to the formulas

∂ν = (1 + |∇yh(y)|2)−1/2(−∇yh(y),−∂z),

dsx = (1 + |∇yh(y)|2)1/2dy for x ∈ ∂Θ ∩ ΞR.

In the vicinity of the point y = 0 the function vα
j constitutes a power-law solution of the limit equation (2.7),

and by (1.3) we have |∇y · h(y)∇yv
α
j (y) + λvα

j (y)| = O(r0) as r = |y| → 0 and

∇y · h∇yv
α
j + λvα

j ∈ L2
ε−1(BR) for any ε > 0.

Hence,

|(Aβ(λ)vα
j , ψ)| ≤ c‖ψ;L2

1−ε(BR)‖.

Since vσ
p ∈ V 1

1+ε(BR) ⊂ L2
ε(BR) can be approximated by functions in C∞

c ((BR)•) in the V 1
1+ε-norm, ε ∈ (0, 1/2],

we may replace ψ by vσ
p . As a result, we obtain that

Qλ(vα
j , v

σ
p ) = −(∇y · h∇yv

α
j + λvα

j , v
σ
p )BR + (vα

j ,∇y · h∇yv
σ
p + λvσ

p )BR . (4.7)

We employ the Green formula and obtain

Qλ(vα
j , v

σ
p ) = lim

�→0

(
− (∇y · h∇yv

α
j + λvα

j , v
σ
p )BR\B�

+(vα
j ,∇y · h∇yv

σ
p + λvσ

p )BR\B�

)
= lim

�→0

∫
S1

�

h(y)
(
vσ

p (y)∂rv
α
j (y) − vα

j (y)∂rvσ
p (y)

)
dsy. (4.8)
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Because of (1.3) the change h 
→ H does not influence the limit; this thus equals

Cα,σ
j,p (ln 	)	2−1+iα|μj(λ)|1/2−1−iσ|μp(λ)|1/2

,

where Cα,σ
j,p (ln 	) is at most a quadratic polynomial in ln 	 (cf. (4.1), (4.2)). The left-hand side of (4.8) is finite,

and therefore the limit vanishes provided

α|μj(λ)| �= σ|μp(λ)|;

moreover, the polynomial is constant.
Continuing our calculation, we consider the functions (4.1) and obtain using (2.16)

Qλ(vα
j , v

σ
p ) =

(
(−1 + iα|μj(λ)|1/2) − (−1 − iσ|μp(λ)|1/2)

)
(HVj , Vp)S1

= 2iα|μj(λ)|1/2δj,pδα,σ. (4.9)

Dealing with functions (4.2), we write

Qλ(χr−1(aj + bj ln r)Vj , χr
−1(ap + bp ln r)Vp) = lim

�→0

(
(ap + bp ln 	)(bj − aj − bj ln 	)

−(aj + bj ln 	)(bp − ap − bp ln 	)
)
(HVj , Vp)S1

=
(
ap(bj − aj) − aj(bp − ap)

)
δj,p = (apbj − ajbp)δj,p.

(4.10)

Motivated by (4.9) and (4.10) we set

w±
j (x) =

1√
2
|μj(λ)|−1/4χ(x)r−1±i|μj(λ)|1/2

Vj(ϑ) (4.11)

in the case μj(λ) < 0, and, for μj(λ) = 0,

w±
j (x) =

1√
2
χ(x)r−1/2(1 ± i ln r)Vj(ϑ). (4.12)

The waves (4.11) and (4.12) form the desired basis in W(λ) and they satisfy the relations

Qλ(w±
j ,w

±
p ) = ±iδj,p, Qλ(w±

j ,w
∓
p ) = 0, j, p = 1, . . . , Nq. (4.13)

The waves with the plus sign are called outgoing to the point O, while those with the minus sign are incoming
from the point O; the reason is explained in Section 4.5.

4.3. The scattering matrix

Since ker Aβ(λ) = ker Aβ(λ), we decompose

kerAβ(λ) = kerA−β(λ) ⊕ K(λ). (4.14)

An element in kerA−β(λ) is a solution inH1(Ω) of the homogeneous problem (1.9) (or (1.6–1.8) in the differential
form). These solutions are nothing but eigenfunctions of the problem (1.6–1.8) in H1(Ω), corresponding to the
eigenvalue λ. Analogously to [10,42] and others, we call such solutions trapped modes. By (1.16), (1.17)
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and (3.33), the dimension of the subspace K(λ) ⊂ W(λ) is equal to Nq. Let us show that K(λ) has a basis
y1, . . . ,yNq such that

yj
∼= w−

j +
Nq∑
k=1

sjkw+
j (mod V 1

−β(Ω)) (4.15)

for some numbers sjk. First, let y ∈ K(λ) be arbitrary. Suppose first that

y ∼=
Nq∑
k=1

akw+
j (mod V 1

−β(Ω)). (4.16)

holds for some numbers aj . Recalling (4.4), (4.13) we obtain

0 = Qλ(y,y) =
Nq∑

j,k=1

akajQ(w+
k ,w

+
j ) = i

Nq∑
j=1

|aj |2. (4.17)

Hence, the linear combination (4.16) vanishes. Now, K(λ) has a basis of Nq functions of the form

Nq∑
k=1

b−
jkw

−
k +

Nq∑
k=1

b+
jkw

+
k (mod V 1

−β(Ω)) (4.18)

for some numbers b−
jk, b+

jk. We deduce that the Nq functions

Nq∑
k=1

b−
jkw

−
k (mod V 1

−β(Ω))

form a linearly independent set. (The linear dependence of these functions would imply the linear dependence
of the functions (4.18), by the calculation (4.16–4.17).) Applying the Gram-Schmidt method to the coefficient
matrix (b−

jk) makes the basis (4.18) into the basis (4.15) of K(λ).

Theorem 4.1. In the subspace K(λ) ⊂ kerAβ(λ) one can find a basis y1, . . . ,yNq such that the decomposi-
tions (4.15) hold true. The coefficients sjk form a unitary (Nq ×Nq)-matrix s.

Proof. It suffices to establish the equality

s∗ = s−1. (4.19)

Similarly to (4.17) we obtain

Qλ(yj ,yk) = Qλ

⎛⎝w−
j +

Nq∑
p=1

sjpw+
p ,w

−
k +

Nq∑
m=1

skmw+
m

⎞⎠
= Qλ(w−

j ,w
−
k ) +

Nq∑
p,m=1

sjpskmQλ(w+
p ,w

+
m)

= −iδjk + i
Nq∑

p,m=1

sjpskmδp,m = i

⎛⎝ Nq∑
p,m=1

sjpskm − δjk

⎞⎠ .

Since Aβ(λ)yp = 0, this expression vanishes and the equality (4.19) is true. �



974 S.A. NAZAROV AND J. TASKINEN

4.4. Radiation conditions

The space of waves admits the decomposition

W(λ) = W+(λ) ⊕ W−(λ), (4.20)

where W±(λ) is the linear hull of the waves w±
1 , . . . ,w

±
Nq

. We furthermore introduce the subspace

V+
β (λ) = V 1

−β(Ω) ⊕ W+(λ) = Vβ(λ) � W− ⊂ V 1
β (Ω) (4.21)

and the restriction

A+
β (λ) : V+

β (λ) → V 1
β (Ω)∗ (4.22)

of the operator Aβ(Ω).

Theorem 4.2. The operator A+
β (λ) in (4.22) is Fredholm of index zero. Moreover,

kerA+
β (λ) = kerA−β(λ), cokerA+

β (λ) = cokerAβ(λ) = kerA−β(λ). (4.23)

Proof. By (3.32) and (3.33) we have

IndA+
β (λ) = IndAβ(λ) −Nq = 0. (4.24)

Theorem 4.1 ensures the first equality in (4.23). Since A+
β (λ) = Aβ(λ)

∣∣
V+

β (λ)
, we have coker A+

β (λ) ⊃
coker Aβ(λ), and observing (4.24) we conclude with the second formula in (4.23). �

The radiation conditions hidden in formulas (4.21), (4.22) ought to be interpreted in the framework of function
spaces with weighted norms and separated asymptotics (cf. [28,29,33] and others). Indeed, the space V+

β (λ)
consists of functions of the form

ϕ(x) = ϕ̃(x) +
Nq∑
j=1

ajw+
j (x) (4.25)

and has the norm, cf. (3.31),

‖ϕ;V+
β (λ)‖ =

⎛⎝‖ϕ̃;V 1
−β(Ω)‖2 +

Nq∑
j=1

|aj |2
⎞⎠1/2

. (4.26)

Traditionally the asymptotic form with unknown coefficients aj and the decaying remainder ϕ̃ is regarded
as radiation conditions. Theorem 4.2 tells us that, for any F ∈ V 1

β (Ω)∗ satisfying the J(λ) compatibility
conditions (1.23) and with the basis ϕ1, . . . , ϕJ(λ), the problem (1.14) has a solution in the form (4.25). This
solution is defined up to a linear combination of the eigenfunctions ϕ1, . . . , ϕJ(λ) (trapped modes), and under
the orthogonality conditions (1.24) it admits the estimate

‖ϕ;V−
β (λ)‖ ≤ c(λ)‖F ;V 1

β (Ω)∗‖.

One readily observes that the above-mentioned facts on the solvability of the linear water-wave problem are
exactly the same as for the Fredholm operator A0(λ) in the case λ < λ† (see the text around (1.22–1.25)).
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4.5. Discussion

Theorem 4.2 provides a rigorous formulation of the radiation condition to describe the wave process inside
the finite water blanket (1.5). Let us give a physical interpretation of the asymptotic representation (4.25).
First, we assume that λ > λ† and λ �= λ+

j , j ∈ N.
Recall the formula λ = ω2/g for the spectral parameter λ and the oscillating factor exp(iωt), which comes

from the time-dependent boundary condition

∂2ϕ

∂t2
(t, y, 0) + g

∂ϕ

∂z
(t, y, 0) = 0, x ∈ Γ• (4.27)

for the equilibrium of the water surface (see, e.g. [15,41]). Based on this, (4.1) and (4.11) we write

r exp(iωt)w±
j (x) =

1√
2
χ(x)|μj(λ)|−1/2 exp(i(ωt± |μj(λ)|1/2 ln r))Vj(ϑ). (4.28)

Ignoring the first factor r on the left (see an explanation below), we see that the right-hand side of (4.28) stays
unchanged, if the t- and r-variables are related by

t = ∓ω−1|μj(λ)|1/2 ln r ⇔ r = exp(∓|μj(λ)|−1/2ωt). (4.29)

We then observe that in the plus case in (4.28), increasing t leads to diminishing r in (4.29). This means that the
wave w+

j propagates towards the point O. The minus case in contrast corresponds to a wave which propagates
from O inside the blanket to the water massive.

The radiation conditions (4.25) only allow waves propagating towards the point O. By (4.29), at a fixed
time t′ the wave (4.28) appears at the distance

r′ = exp(−ω|μj(λ)|−1/2t′)

from O, and this tends to 0, if t′ → ∞. Thus, it takes an infinite time for this wave to reach the point, which
in this sense sucks the outgoing waves and becomes “a black hole” for water-waves; in other words, a wave
entering the blanket never leaves it. For analogous effects in acoustics and elasticity, cf. [5,14,23] and others.

In analogy with diffraction in cylindrical domains, we recognize ∓|μj(λ)|1/2e(r) as the wave vector of w±
j ;

here e(r) = (cosϑ, sinϑ, 0). The radiation conditions (4.25) select waves whose vectors are directed to O and
are therefore of Sommerfeld’s type. We consider below a radiation principle of Mandelstam’s type, concerning
the energy flux. We emphasize that none of these physical radiation principles applies to standing (μj(λ) = 0)
waves. However, our radiation conditions (4.25) become physical in the nonthreshold (λ �= λ†) situation.

According to the Mandelstam principle the direction of a propagating wave W is determined by the sign of
the integral ∫

ξρ

e(r) · Î(w)dsx, (4.30)

where Î(w) is the mean value of the Poynting vector I(w) over (0, 2π/ω) � t. The integral (4.30) yields the
energy flux through the surface ξρ = {x ∈ ΞR : r = ρ}; here ρ < R. To determine the Poynting vector, we
consider a domain G inside Ω with a smooth surface ∂G. The rate of the change of the energy kept inside G is
defined by

J :=
∂

∂t

∫
G

|∇xReEw|2dx =
∫

∂G

ν · I(w)dsx, (4.31)
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where Ew = exp(−iωt)w and the integral on the right of (4.31) involves the vector function I(w) to be
determined. We have

J = 2ω
∫
G

∇x(ReEw) · ∇x(ImEw)dx = 2ω
∫

∂G

Re(Ew)ν · ∇x(ImEw)dsx

so that I(w) = 2ω(ReEw)∇x(ImEw) and

Î(w) =
ω2

π

2π/ω∫
0

I(w)dt = −ω
2

4π

2π/ω∫
0

(Ew + Ew)∇x(Ew − Ew)dt

=
ω2

4π

2π/ω∫
0

(w∇xw − w∇xw)dt =
ω

2
(w∇xw − w∇xw).

We now conclude that the integral (4.30) is equal to

ω

2

∫
ξp

(w∂rw − w∂rw)dsx =
ω

2

∫
S1

ρ

h(w∂rw − w∂rw)dsy . (4.32)

Owing to the previous calculations in Section 4.2, the limit ρ→ 0 of the expression (4.32) is simply proportional
to the symplectic form Q(w,w). Thus, the Mandelstam principle leads to our radiation conditions (4.25) as
well.

We emphasize that the above calculation is not true for the power-logarithmic solution (2.20) (see also (4.2)
and (4.12)). We directly extend the division (4.20) of waves according to the symplectic form (4.3) which
is mathematically natural and therefore the radiation conditions (4.25) are called intrinsic in the threshold
situation.

A. Appendix: The spectrum of the self-adjoint operator of the linear

water-wave problem

We complete the paper by a study of the spectrum of (1.6–1.8). Following the approach of [38], we introduce
the Hilbert space (called Maz’ya space) with norm

‖u;H‖ =
(
‖u;H1(Ω)‖2 + ‖u;L2(Γ)‖2

)1/2 (A.1)

and scalar product

〈ϕ, ψ〉 = (∇xϕ,∇xψ)Ω + (ϕ, ψ)Γ. (A.2)

Let the operator T in H given by

〈T ϕ, ψ〉 = (ϕ, ψ)Γ, ϕ, ψ ∈ H; (A.3)

it is evidently continuous and symmetric, therefore, self-adjoint. Moreover, it is positive and ‖T ;H‖ ≤ 1, thus,
the spectrum of T belongs to the closed segment [0, 1]. Besides, the point τ = 0 is an eigenvalue of T with
infinite multiplicity and eigenspace

{ϕ ∈ H1(Ω) : ϕ = 0 on Γ}.
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As shown in [38], the embedding H1(Ω) ⊂ L2(Γ) is not compact and, hence, τ = 0 cannot be the only point
of the essential spectrum of T (see, e.g., [2], Thm. 9.2.1). We prove the following assertion and present a
description of the upper bound τ† ∈ (0, 1) of the essential spectrum.

Theorem A.1. The essential spectrum of the operator T is [0, τ†], where τ† = (1+λ†)−1 ∈ (0, 1). The half-open
segment (0, τ†] is covered by the continuous spectrum of T .

Recall that λ† was defined in Section 2.2, and it depends only on the coefficients Hpq in (1.4).
Before proceeding with the proof we remark that the problem (1.9) with f = 0 is equivalent to the abstract

equation

T ϕ = τϕ in H (A.4)

with the new spectral parameter

τ = (1 + λ)−1. (A.5)

To derive (A.4) is just to add (ϕ, ψ)Γ to both sides of (1.9) and to take definitions (A.2), (A.3) into account.
The relation (A.5) between the spectral parameters passes all properties of the spectrum of T to the spectrum
of (1.6)–(1.8); the only exception is the point τ = 0 which is transformed to infinity. The claim of Theorem A.1
on the continuous spectrum can be rephrased so that the continuous spectrum of the water-wave problem in Ω
coincides with the ray [λ†,+∞) where

λ† = τ−1
† − 1. (A.6)

Below the threshold (A.6) the problem has discrete spectrum. In particular, λ = 0 is a simple eigenvalue with
the eigenfunction ϕ = const.

Proof of Theorem A.1. The inequality

‖	−1u;L2(Ω)‖ ≤ c‖u;H1(Ω)‖ (A.7)

was proven in [38]. Hence, in view of Lemma 1.1 and the definition (1.10) with β = 0, the Hilbert space H with
the scalar product (A.2) coincides algebraically and topologically with the weighted space V 1

0 (Ω) so that

‖u;H‖ ≤ c‖u;V 1
0 (Ω)‖ ≤ C‖u;H‖. (A.8)

Furthermore, according to the definition (A.3) of the operator T in H, the equation

T ϕ− τϕ = F in H,

with τ ∈ (0, 1] and F ∈ H, is equivalent to the variational problem (1.14), where β = 0, λ = τ−1 − 1 and
F (ϕ) = −τ−1〈F , ϕ〉, F ∈ V 1

0 (Ω)∗. This observation implies that in the case the operator A0(λ) is Fredholm,
the point τ = −(1 + λ)−1 falls either into the resolvent set, or into the discrete spectrum of T .

If τ ∈ (0, τ+], then λ = τ−1−1 ≥ λ+, and therefore the operatorA0(λ) is no longer Fredholm, by Theorem 3.2.
This property is inherited by τ , and λ thus falls into the continuous spectrum. It suffices to recall that the
kernel of A0(λ) is finite dimensional (see (3.9)) and the same holds true for ker(T −τ), hence, the interval (0, τ+]
is included in the continuous spectrum. �
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